Chromium Code Reviews| Index: src/IceCfg.cpp |
| diff --git a/src/IceCfg.cpp b/src/IceCfg.cpp |
| index 23c363fa7791938a5a05a0edfc6adaf72167f48b..82568e25c90d36e416924d5d9eec2c14437e97df 100644 |
| --- a/src/IceCfg.cpp |
| +++ b/src/IceCfg.cpp |
| @@ -788,6 +788,362 @@ void Cfg::shortCircuitJumps() { |
| Nodes = NewList; |
| } |
| +namespace { |
| + |
| +/// VariableMap is a simple helper class for splitLocalVars(), that keeps track |
| +/// of the latest split version of the original Variables. |
| +class VariableMap { |
| +private: |
| + VariableMap() = delete; |
| + VariableMap(const VariableMap &) = delete; |
| + VariableMap &operator=(const VariableMap &) = delete; |
| + |
| +public: |
| + explicit VariableMap(Cfg *Func) |
| + : Func(Func), NumVars(Func->getNumVariables()) {} |
| + /// Reset the mappings at the start of a block. |
| + void reset() { Map.assign(NumVars, nullptr); } |
| + /// Get Var's current mapping (or Var itself if it has no mapping yet). |
| + Variable *get(Variable *Var) const { |
| + const SizeT VarNum = getVarNum(Var); |
| + Variable *MappedVar = Map[VarNum]; |
| + return MappedVar == nullptr ? Var : MappedVar; |
| + } |
| + /// Create a new linked Variable in the LinkedTo chain, and set it as Var's |
| + /// latest mapping. |
| + Variable *makeLinked(Variable *Var) { |
| + Variable *NewVar = Func->makeVariable(Var->getType()); |
| + NewVar->setRegClass(Var->getRegClass()); |
| + NewVar->setLinkedTo(get(Var)); |
| + const SizeT VarNum = getVarNum(Var); |
| + Map[VarNum] = NewVar; |
| + return NewVar; |
| + } |
| + |
| +private: |
| + Cfg *const Func; |
| + // NumVars is for the size of the Map array. It can be const because any new |
| + // Variables created during the splitting pass don't need to be mapped. |
| + const SizeT NumVars; |
| + CfgVector<Variable *> Map; |
| + /// Get Var's VarNum, and do some validation. |
| + SizeT getVarNum(Variable *Var) const { |
| + const SizeT VarNum = Var->getIndex(); |
| + assert(VarNum < NumVars); |
| + assert(Var->mayHaveReg()); |
| + return VarNum; |
| + } |
| +}; |
| + |
| +/// A Variable is "allocable" if it is a register allocation candidate but |
| +/// doesn't already have a register. |
| +bool isAllocable(const Variable *Var) { |
| + if (Var == nullptr) |
| + return false; |
| + return !Var->hasReg() && Var->mayHaveReg(); |
| +} |
| + |
| +/// A Variable is "inf" if it already has a register or is infinite-weight. |
| +bool isInf(const Variable *Var) { |
| + if (Var == nullptr) |
| + return false; |
| + return Var->hasReg() || Var->mustHaveReg(); |
| +} |
| + |
| +} // end of anonymous namespace |
| + |
| +/// Within each basic block, rewrite Variable references in terms of chained |
| +/// copies of the original Variable. For example: |
| +/// A = B + C |
| +/// might be rewritten as: |
| +/// B1 = B |
| +/// C1 = C |
| +/// A = B + C |
| +/// A1 = A |
| +/// and then: |
| +/// D = A + B |
| +/// might be rewritten as: |
| +/// A2 = A1 |
| +/// B2 = B1 |
| +/// D = A1 + B1 |
| +/// D1 = D |
| +/// |
| +/// The purpose is to present the linear-scan register allocator with smaller |
| +/// live ranges, to help mitigate its "all or nothing" allocation strategy, |
| +/// while counting on its preference mechanism to keep the split versions in the |
| +/// same register when possible. |
| +/// |
| +/// When creating new Variables, A2 is linked to A1 which is linked to A, and |
| +/// similar for the other Variable linked-to chains. Rewrites apply only to |
| +/// Variables where mayHaveReg() is true. |
| +/// |
| +/// At code emission time, redundant linked-to stack assignments will be |
| +/// recognized and elided. To illustrate using the above example, if A1 gets a |
| +/// register but A and A2 are on the stack, the "A2=A1" store instruction is |
| +/// redundant since A and A2 share the same stack slot and A1 originated from A. |
| +/// |
| +/// Simple assignment instructions are rewritten slightly differently, to take |
| +/// maximal advantage of Variables known to have registers. |
| +/// |
| +/// In general, there may be several valid ways to rewrite an instruction: add |
| +/// the new assignment instruction either before or after the original |
| +/// instruction, and rewrite the original instruction with either the old or the |
| +/// new variable mapping. We try to pick a strategy most likely to avoid |
| +/// potential performance problems. For example, try to avoid storing to the |
| +/// stack and then immediately reloading from the same location. One |
| +/// consequence is that code might be generated that loads a register from a |
| +/// stack location, followed almost immediately by another use of the same stack |
| +/// location, despite its value already being available in a register as a |
| +/// result of the first instruction. However, the performance impact here is |
| +/// likely to be negligible, and a simple availability peephole optimization |
| +/// could clean it up. |
| +/// |
| +/// This pass potentially adds a lot of new instructions and variables, and as |
| +/// such there are compile-time performance concerns, particularly with liveness |
| +/// analysis and register allocation. Note that for liveness analysis, the new |
| +/// variables have single-block liveness, so they don't increase the size of the |
| +/// liveness bit vectors that need to be merged across blocks. As a result, the |
| +/// performance impact is likely to be linearly related to the number of new |
| +/// instructions, rather than number of new variables times number of blocks |
| +/// which would be the case if they were multi-block variables. |
| +void Cfg::splitLocalVars() { |
|
John
2016/07/26 18:59:39
this is really hard to follow. I know there are a
Jim Stichnoth
2016/07/28 23:37:03
Done.
|
| + if (!getFlags().getSplitLocalVars()) |
| + return; |
| + TimerMarker _(TimerStack::TT_splitLocalVars, this); |
| + VariableMap VarMap(this); |
| + for (CfgNode *Node : getNodes()) { |
| + // Clear the VarMap at the start of every block. |
| + VarMap.reset(); |
| + auto &Insts = Node->getInsts(); |
| + auto Iter = Insts.begin(); |
| + auto IterEnd = Insts.end(); |
| + // TODO(stichnot): Also create assignments/mappings for phi dest variables. |
| + InstList::iterator NextIter; |
| + const Inst *WaitingForLabel = nullptr; |
| + const Inst *WaitingForBranchTo = nullptr; |
| + for (; Iter != IterEnd; Iter = NextIter) { |
| + NextIter = Iter; |
| + ++NextIter; |
| + Inst *Instr = iteratorToInst(Iter); |
| + if (Instr->isDeleted()) |
| + continue; |
| + |
| + // Before doing any transformations, take care of the bookkeeping for |
| + // intra-block branching. |
| + // |
| + // This is tricky because the transformation for one instruction may |
| + // depend on a transformation for a previous instruction, but if that |
| + // previous instruction is not dynamically executed due to intra-block |
| + // control flow, it may lead to an inconsistent state and incorrect code. |
| + // |
| + // We want to handle some simple cases, and reject some others: |
| + // |
| + // 1. For something like a select instruction, we could have: |
| + // test cond |
| + // dest = src_false |
| + // branch conditionally to label |
| + // dest = src_true |
| + // label: |
| + // |
| + // Between the conditional branch and the label, we need to treat dest and |
| + // src variables specially, specifically not creating any new state. |
| + // |
| + // 2. Some 64-bit atomic instructions may be lowered to a loop: |
| + // label: |
| + // ... |
| + // branch conditionally to label |
| + // |
| + // No special treatment is needed, but it's worth tracking so that case #1 |
| + // above can also be handled. |
| + // |
| + // 3. Advanced switch lowering can create really complex intra-block |
| + // control flow, so when we recognize this, we should just stop splitting |
| + // for the remainder of the block (which isn't much since a switch |
| + // instruction is a terminator). |
| + // |
| + // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture, |
| + // can result in an if/then/else like structure with two labels. One |
| + // possibility would be to suspect splitting for the remainder of the |
| + // lowered instruction, and then resume for the remainder of the block, |
| + // but since we don't have high-level instruction markers, we might as |
| + // well just stop splitting for the remainder of the block. |
| + if (Instr->isLabel()) { |
| + // A Label instruction shouldn't have any operands, so it can be handled |
| + // right here and then move on. |
| + assert(Instr->getDest() == nullptr); |
| + assert(Instr->getSrcSize() == 0); |
| + if (Instr == WaitingForLabel) { |
| + // If we found the forward-branch-target Label instruction we're |
| + // waiting for, then clear the WaitingForLabel state. |
| + WaitingForLabel = nullptr; |
| + } else if (WaitingForLabel == nullptr && |
| + WaitingForBranchTo == nullptr) { |
| + // If we found a new Label instruction while the WaitingFor* state is |
| + // clear, then set things up for this being a backward branch target. |
| + WaitingForBranchTo = Instr; |
| + } else { |
| + // We see something we don't understand, so skip to the next block. |
| + break; |
| + } |
| + continue; // move to next instruction |
| + } |
| + if (const Inst *Label = Instr->getIntraBlockBranchTarget()) { |
| + // An intra-block branch instruction shouldn't have any operands, so it |
| + // can be handled right here and then move on. |
| + assert(Instr->getDest() == nullptr); |
| + assert(Instr->getSrcSize() == 0); |
| + if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) { |
| + WaitingForBranchTo = nullptr; |
| + } else if (WaitingForBranchTo == nullptr && |
| + (WaitingForLabel == nullptr || WaitingForLabel == Label)) { |
| + WaitingForLabel = Label; |
| + } else { |
| + // We see something we don't understand, so skip to the next block. |
| + break; |
| + } |
| + continue; // move to next instruction |
| + } |
| + |
| + // Intra-block bookkeeping is complete, now do the transformations. |
| + static constexpr char AnInstructionHasNoName[] = ""; |
| + // We can limit the splitting to an arbitrary subset of the instructions, |
| + // and still expect correct code. As such, we can do instruction-subset |
| + // bisection to help debug any problems in this pass. |
| + if (!BuildDefs::minimal() && |
| + !getFlags().matchSplitInsts(AnInstructionHasNoName, |
| + Instr->getNumber())) |
| + continue; |
| + |
| + if (!llvm::isa<InstTarget>(Instr)) { |
| + // Ignore non-lowered instructions like FakeDef/FakeUse. |
| + continue; |
| + } |
| + const bool IsUnconditionallyExecuted = (WaitingForLabel == nullptr); |
| + Variable *Dest = Instr->getDest(); |
| + const bool DestIsInf = isInf(Dest); |
| + const bool DestIsAllocable = isAllocable(Dest); |
| + // Determine the transformation based on the kind of instruction, and |
| + // whether its Variables are infinite-weight. New instructions can be |
| + // inserted before the current instruction via Iter, or after the current |
| + // instruction via NextIter. |
| + if (Instr->isVarAssign()) { |
| + auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0)); |
| + const bool SrcIsInf = isInf(SrcVar); |
| + const bool SrcIsAllocable = isAllocable(SrcVar); |
| + if (DestIsInf && SrcIsInf) { |
| + // The instruction: |
| + // t:inf = u:inf |
| + // No transformation is needed. |
| + continue; |
| + } else if (DestIsInf && SrcIsAllocable && |
| + Dest->getType() == Instr->getSrc(0)->getType()) { |
| + // The instruction: |
| + // t:inf = v |
| + // gets transformed to: |
| + // t:inf = v1 |
| + // v2 = t:inf |
| + // where: |
| + // v1 := map[v] |
| + // v2 := linkTo(v) |
| + // map[v] := v2 |
| + // |
| + // If both v2 and its linkedToStackRoot get a stack slot, then |
| + // "v2=t:inf" is recognized as a redundant assignment and elided. |
| + // |
| + // Note that if the dest and src types are different, then this is |
| + // actually a truncation operation, which would make "v2=t:inf" an |
| + // invalid instruction. In this case, the type test will make it fall |
| + // through to the general case below. |
| + Variable *OldMapped = VarMap.get(SrcVar); |
| + Instr->replaceSource(0, OldMapped); |
| + if (IsUnconditionallyExecuted) { |
| + // Only create new mapping state if the instruction is |
| + // unconditionally executed. |
| + Variable *NewMapped = VarMap.makeLinked(SrcVar); |
| + Inst *Mov = Target->createLoweredMove(NewMapped, Dest); |
| + Insts.insert(NextIter, Mov); |
| + } |
| + continue; |
| + } else if (DestIsAllocable && SrcIsInf) { |
| + // The instruction: |
| + // v = t:inf |
| + // gets transformed to: |
| + // v = t:inf |
| + // v2 = t:inf |
| + // where: |
| + // v2 := linkTo(v) |
| + // map[v] := v2 |
| + // |
| + // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as |
| + // a redundant assignment and elided. |
| + if (IsUnconditionallyExecuted) { |
| + // Only create new mapping state if the instruction is |
| + // unconditionally executed. |
| + Variable *NewMapped = VarMap.makeLinked(Dest); |
| + Inst *Mov = Target->createLoweredMove(NewMapped, SrcVar); |
| + Insts.insert(NextIter, Mov); |
| + } else { |
| + // For a conditionally executed instruction, add a redefinition of |
| + // the original Dest mapping, without creating a new linked |
| + // variable. |
| + Variable *OldMapped = VarMap.get(Dest); |
| + Inst *Mov = Target->createLoweredMove(OldMapped, SrcVar); |
| + Mov->setDestRedefined(); |
| + Insts.insert(NextIter, Mov); |
| + } |
| + continue; |
| + } |
| + } |
| + // The (non-variable-assignment) instruction: |
| + // ... = F(v) |
| + // where v is not infinite-weight, gets transformed to: |
| + // v2 = v1 |
| + // ... = F(v1) |
| + // where: |
| + // v1 := map[v] |
| + // v2 := linkTo(v) |
| + // map[v] := v2 |
| + // After that, if the "..." dest=u is not infinite-weight, append: |
| + // u2 = u |
| + // where: |
| + // u2 := linkTo(u) |
| + // map[u] := u2 |
| + for (SizeT i = 0; i < Instr->getSrcSize(); ++i) { |
| + // Iterate over the top-level src vars. Don't bother to dig into |
| + // e.g. MemOperands because their vars should all be infinite-weight. |
| + // (This assumption would need to change if the pass were done |
| + // pre-lowering.) |
| + if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) { |
| + const bool SrcIsAllocable = isAllocable(SrcVar); |
| + if (SrcIsAllocable) { |
| + Variable *OldMapped = VarMap.get(SrcVar); |
| + if (IsUnconditionallyExecuted) { |
| + Variable *NewMapped = VarMap.makeLinked(SrcVar); |
| + Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped); |
| + Insts.insert(Iter, Mov); |
| + } |
| + Instr->replaceSource(i, OldMapped); |
| + } |
| + } |
| + } |
| + // Transformation of Dest is the same as the "v=t:inf" case above. |
| + if (DestIsAllocable) { |
| + if (IsUnconditionallyExecuted) { |
| + Variable *NewMapped = VarMap.makeLinked(Dest); |
| + Inst *Mov = Target->createLoweredMove(NewMapped, Dest); |
| + Insts.insert(NextIter, Mov); |
| + } else { |
| + Variable *OldMapped = VarMap.get(Dest); |
| + Inst *Mov = Target->createLoweredMove(OldMapped, Dest); |
| + Mov->setDestRedefined(); |
| + Insts.insert(NextIter, Mov); |
| + } |
| + } |
| + } |
| + } |
| + dump("After splitting local variables"); |
| +} |
| + |
| void Cfg::doArgLowering() { |
| TimerMarker T(TimerStack::TT_doArgLowering, this); |
| getTarget()->lowerArguments(); |
| @@ -1661,7 +2017,7 @@ void Cfg::emit() { |
| emitTextHeader(FunctionName, Ctx, Asm); |
| if (getFlags().getDecorateAsm()) { |
| for (Variable *Var : getVariables()) { |
| - if (Var->hasStackOffset() && !Var->isRematerializable()) { |
| + if (Var->hasKnownStackOffset() && !Var->isRematerializable()) { |
| Str << "\t" << Var->getSymbolicStackOffset() << " = " |
| << Var->getStackOffset() << "\n"; |
| } |