| Index: src/IceVariableSplitting.cpp
|
| diff --git a/src/IceVariableSplitting.cpp b/src/IceVariableSplitting.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8680adabed4d6c2b9d784847e63e0f8a6d14c434
|
| --- /dev/null
|
| +++ b/src/IceVariableSplitting.cpp
|
| @@ -0,0 +1,608 @@
|
| +//===- subzero/src/IceVariableSplitting.cpp - Local variable splitting ----===//
|
| +//
|
| +// The Subzero Code Generator
|
| +//
|
| +// This file is distributed under the University of Illinois Open Source
|
| +// License. See LICENSE.TXT for details.
|
| +//
|
| +//===----------------------------------------------------------------------===//
|
| +///
|
| +/// \file
|
| +/// \brief Aggressive block-local variable splitting to improve linear-scan
|
| +/// register allocation.
|
| +///
|
| +//===----------------------------------------------------------------------===//
|
| +
|
| +#include "IceVariableSplitting.h"
|
| +
|
| +#include "IceCfg.h"
|
| +#include "IceCfgNode.h"
|
| +#include "IceClFlags.h"
|
| +#include "IceInst.h"
|
| +#include "IceOperand.h"
|
| +#include "IceTargetLowering.h"
|
| +
|
| +namespace Ice {
|
| +
|
| +namespace {
|
| +
|
| +/// A Variable is "allocable" if it is a register allocation candidate but
|
| +/// doesn't already have a register.
|
| +bool isAllocable(const Variable *Var) {
|
| + if (Var == nullptr)
|
| + return false;
|
| + return !Var->hasReg() && Var->mayHaveReg();
|
| +}
|
| +
|
| +/// A Variable is "inf" if it already has a register or is infinite-weight.
|
| +bool isInf(const Variable *Var) {
|
| + if (Var == nullptr)
|
| + return false;
|
| + return Var->hasReg() || Var->mustHaveReg();
|
| +}
|
| +
|
| +/// VariableMap is a simple helper class that keeps track of the latest split
|
| +/// version of the original Variables, as well as the instruction containing the
|
| +/// last use of the Variable within the current block. For each entry, the
|
| +/// Variable is tagged with the CfgNode that it is valid in, so that we don't
|
| +/// need to clear the entire Map[] vector for each block.
|
| +class VariableMap {
|
| +private:
|
| + VariableMap() = delete;
|
| + VariableMap(const VariableMap &) = delete;
|
| + VariableMap &operator=(const VariableMap &) = delete;
|
| +
|
| + struct VarInfo {
|
| + /// MappedVar is the latest mapped/split version of the Variable.
|
| + Variable *MappedVar = nullptr;
|
| + /// MappedVarNode is the block in which MappedVar is valid.
|
| + const CfgNode *MappedVarNode = nullptr;
|
| + /// LastUseInst is the last instruction in the block that uses the Variable
|
| + /// as a source operand.
|
| + const Inst *LastUseInst = nullptr;
|
| + /// LastUseNode is the block in which LastUseInst is valid.
|
| + const CfgNode *LastUseNode = nullptr;
|
| + VarInfo() = default;
|
| +
|
| + private:
|
| + VarInfo(const VarInfo &) = delete;
|
| + VarInfo &operator=(const VarInfo &) = delete;
|
| + };
|
| +
|
| +public:
|
| + explicit VariableMap(Cfg *Func)
|
| + : Func(Func), NumVars(Func->getNumVariables()), Map(NumVars) {}
|
| + /// Reset the mappings at the start of a block.
|
| + void reset(const CfgNode *CurNode) {
|
| + Node = CurNode;
|
| + // Do a prepass through all the instructions, marking which instruction is
|
| + // the last use of each Variable within the block.
|
| + for (const Inst &Instr : Node->getInsts()) {
|
| + if (Instr.isDeleted())
|
| + continue;
|
| + for (SizeT i = 0; i < Instr.getSrcSize(); ++i) {
|
| + if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr.getSrc(i))) {
|
| + const SizeT VarNum = getVarNum(SrcVar);
|
| + Map[VarNum].LastUseInst = &Instr;
|
| + Map[VarNum].LastUseNode = Node;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + /// Get Var's current mapping (or Var itself if it has no mapping yet).
|
| + Variable *get(Variable *Var) const {
|
| + const SizeT VarNum = getVarNum(Var);
|
| + Variable *MappedVar = Map[VarNum].MappedVar;
|
| + if (MappedVar == nullptr)
|
| + return Var;
|
| + if (Map[VarNum].MappedVarNode != Node)
|
| + return Var;
|
| + return MappedVar;
|
| + }
|
| + /// Create a new linked Variable in the LinkedTo chain, and set it as Var's
|
| + /// latest mapping.
|
| + Variable *makeLinked(Variable *Var) {
|
| + Variable *NewVar = Func->makeVariable(Var->getType());
|
| + NewVar->setRegClass(Var->getRegClass());
|
| + NewVar->setLinkedTo(get(Var));
|
| + const SizeT VarNum = getVarNum(Var);
|
| + Map[VarNum].MappedVar = NewVar;
|
| + Map[VarNum].MappedVarNode = Node;
|
| + return NewVar;
|
| + }
|
| + /// Given Var that is LinkedTo some other variable, re-splice it into the
|
| + /// LinkedTo chain so that the chain is ordered by Variable::getIndex().
|
| + void spliceBlockLocalLinkedToChain(Variable *Var) {
|
| + Variable *LinkedTo = Var->getLinkedTo();
|
| + assert(LinkedTo != nullptr);
|
| + assert(Var->getIndex() > LinkedTo->getIndex());
|
| + const SizeT VarNum = getVarNum(LinkedTo);
|
| + Variable *Link = Map[VarNum].MappedVar;
|
| + if (Link == nullptr || Map[VarNum].MappedVarNode != Node)
|
| + return;
|
| + Variable *LinkParent = Link->getLinkedTo();
|
| + while (LinkParent != nullptr && LinkParent->getIndex() >= Var->getIndex()) {
|
| + Link = LinkParent;
|
| + LinkParent = Link->getLinkedTo();
|
| + }
|
| + Var->setLinkedTo(LinkParent);
|
| + Link->setLinkedTo(Var);
|
| + }
|
| + /// Return whether the given Variable has any uses as a source operand within
|
| + /// the current block. If it has no source operand uses, but is assigned as a
|
| + /// dest variable in some instruction in the block, then we needn't bother
|
| + /// splitting it.
|
| + bool isDestUsedInBlock(const Variable *Dest) const {
|
| + return Map[getVarNum(Dest)].LastUseNode == Node;
|
| + }
|
| + /// Return whether the given instruction is the last use of the given Variable
|
| + /// within the current block. If it is, then we needn't bother splitting the
|
| + /// Variable at this instruction.
|
| + bool isInstLastUseOfVar(const Variable *Var, const Inst *Instr) {
|
| + return Map[getVarNum(Var)].LastUseInst == Instr;
|
| + }
|
| +
|
| +private:
|
| + Cfg *const Func;
|
| + // NumVars is for the size of the Map array. It can be const because any new
|
| + // Variables created during the splitting pass don't need to be mapped.
|
| + const SizeT NumVars;
|
| + CfgVector<VarInfo> Map;
|
| + const CfgNode *Node = nullptr;
|
| + /// Get Var's VarNum, and do some validation.
|
| + SizeT getVarNum(const Variable *Var) const {
|
| + const SizeT VarNum = Var->getIndex();
|
| + assert(VarNum < NumVars);
|
| + return VarNum;
|
| + }
|
| +};
|
| +
|
| +/// LocalVariableSplitter tracks the necessary splitting state across
|
| +/// instructions.
|
| +class LocalVariableSplitter {
|
| + LocalVariableSplitter() = delete;
|
| + LocalVariableSplitter(const LocalVariableSplitter &) = delete;
|
| + LocalVariableSplitter &operator=(const LocalVariableSplitter &) = delete;
|
| +
|
| +public:
|
| + explicit LocalVariableSplitter(Cfg *Func)
|
| + : Target(Func->getTarget()), VarMap(Func) {}
|
| + /// setNode() is called before processing the instructions of a block.
|
| + void setNode(CfgNode *CurNode) {
|
| + Node = CurNode;
|
| + VarMap.reset(Node);
|
| + LinkedToFixups.clear();
|
| + }
|
| + /// finalizeNode() is called after all instructions in the block are
|
| + /// processed.
|
| + void finalizeNode() {
|
| + // Splice in any preexisting LinkedTo links into the single chain. These
|
| + // are the ones that were recorded during setInst().
|
| + for (Variable *Var : LinkedToFixups) {
|
| + VarMap.spliceBlockLocalLinkedToChain(Var);
|
| + }
|
| + }
|
| + /// setInst() is called before processing the next instruction. The iterators
|
| + /// are the insertion points for a new instructions, depending on whether the
|
| + /// new instruction should be inserted before or after the current
|
| + /// instruction.
|
| + void setInst(Inst *CurInst, InstList::iterator Cur, InstList::iterator Next) {
|
| + Instr = CurInst;
|
| + Dest = Instr->getDest();
|
| + IterCur = Cur;
|
| + IterNext = Next;
|
| + ShouldSkipRemainingInstructions = false;
|
| + // Note any preexisting LinkedTo relationships that were created during
|
| + // target lowering. Record them in LinkedToFixups which is then processed
|
| + // in finalizeNode().
|
| + if (Dest != nullptr && Dest->getLinkedTo() != nullptr) {
|
| + LinkedToFixups.emplace_back(Dest);
|
| + }
|
| + }
|
| + bool shouldSkipRemainingInstructions() const {
|
| + return ShouldSkipRemainingInstructions;
|
| + }
|
| + bool isUnconditionallyExecuted() const { return WaitingForLabel == nullptr; }
|
| +
|
| + /// Note: the handle*() functions return true to indicate that the instruction
|
| + /// has now been handled and that the instruction loop should continue to the
|
| + /// next instruction in the block (and return false otherwise). In addition,
|
| + /// they set the ShouldSkipRemainingInstructions flag to indicate that no more
|
| + /// instructions in the block should be processed.
|
| +
|
| + /// Handle an "unwanted" instruction by returning true;
|
| + bool handleUnwantedInstruction() {
|
| + // We can limit the splitting to an arbitrary subset of the instructions,
|
| + // and still expect correct code. As such, we can do instruction-subset
|
| + // bisection to help debug any problems in this pass.
|
| + static constexpr char AnInstructionHasNoName[] = "";
|
| + if (!BuildDefs::minimal() &&
|
| + !getFlags().matchSplitInsts(AnInstructionHasNoName,
|
| + Instr->getNumber())) {
|
| + return true;
|
| + }
|
| + if (!llvm::isa<InstTarget>(Instr)) {
|
| + // Ignore non-lowered instructions like FakeDef/FakeUse.
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + /// Process a potential label instruction.
|
| + bool handleLabel() {
|
| + if (!Instr->isLabel())
|
| + return false;
|
| + // A Label instruction shouldn't have any operands, so it can be handled
|
| + // right here and then move on.
|
| + assert(Dest == nullptr);
|
| + assert(Instr->getSrcSize() == 0);
|
| + if (Instr == WaitingForLabel) {
|
| + // If we found the forward-branch-target Label instruction we're waiting
|
| + // for, then clear the WaitingForLabel state.
|
| + WaitingForLabel = nullptr;
|
| + } else if (WaitingForLabel == nullptr && WaitingForBranchTo == nullptr) {
|
| + // If we found a new Label instruction while the WaitingFor* state is
|
| + // clear, then set things up for this being a backward branch target.
|
| + WaitingForBranchTo = Instr;
|
| + } else {
|
| + // We see something we don't understand, so skip to the next block.
|
| + ShouldSkipRemainingInstructions = true;
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + /// Process a potential intra-block branch instruction.
|
| + bool handleIntraBlockBranch() {
|
| + const Inst *Label = Instr->getIntraBlockBranchTarget();
|
| + if (Label == nullptr)
|
| + return false;
|
| + // An intra-block branch instruction shouldn't have any operands, so it can
|
| + // be handled right here and then move on.
|
| + assert(Dest == nullptr);
|
| + assert(Instr->getSrcSize() == 0);
|
| + if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) {
|
| + WaitingForBranchTo = nullptr;
|
| + } else if (WaitingForBranchTo == nullptr &&
|
| + (WaitingForLabel == nullptr || WaitingForLabel == Label)) {
|
| + WaitingForLabel = Label;
|
| + } else {
|
| + // We see something we don't understand, so skip to the next block.
|
| + ShouldSkipRemainingInstructions = true;
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + /// Specially process a potential "Variable=Variable" assignment instruction,
|
| + /// when it conforms to certain patterns.
|
| + bool handleSimpleVarAssign() {
|
| + if (!Instr->isVarAssign())
|
| + return false;
|
| + const bool DestIsInf = isInf(Dest);
|
| + const bool DestIsAllocable = isAllocable(Dest);
|
| + auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0));
|
| + const bool SrcIsInf = isInf(SrcVar);
|
| + const bool SrcIsAllocable = isAllocable(SrcVar);
|
| + if (DestIsInf && SrcIsInf) {
|
| + // The instruction:
|
| + // t:inf = u:inf
|
| + // No transformation is needed.
|
| + return true;
|
| + }
|
| + if (DestIsInf && SrcIsAllocable && Dest->getType() == SrcVar->getType()) {
|
| + // The instruction:
|
| + // t:inf = v
|
| + // gets transformed to:
|
| + // t:inf = v1
|
| + // v2 = t:inf
|
| + // where:
|
| + // v1 := map[v]
|
| + // v2 := linkTo(v)
|
| + // map[v] := v2
|
| + //
|
| + // If both v2 and its linkedToStackRoot get a stack slot, then "v2=t:inf"
|
| + // is recognized as a redundant assignment and elided.
|
| + //
|
| + // Note that if the dest and src types are different, then this is
|
| + // actually a truncation operation, which would make "v2=t:inf" an invalid
|
| + // instruction. In this case, the type test will make it fall through to
|
| + // the general case below.
|
| + Variable *OldMapped = VarMap.get(SrcVar);
|
| + Instr->replaceSource(0, OldMapped);
|
| + if (isUnconditionallyExecuted()) {
|
| + // Only create new mapping state if the instruction is unconditionally
|
| + // executed.
|
| + if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) {
|
| + Variable *NewMapped = VarMap.makeLinked(SrcVar);
|
| + Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
|
| + Node->getInsts().insert(IterNext, Mov);
|
| + }
|
| + }
|
| + return true;
|
| + }
|
| + if (DestIsAllocable && SrcIsInf) {
|
| + if (!VarMap.isDestUsedInBlock(Dest)) {
|
| + return true;
|
| + }
|
| + // The instruction:
|
| + // v = t:inf
|
| + // gets transformed to:
|
| + // v = t:inf
|
| + // v2 = t:inf
|
| + // where:
|
| + // v2 := linkTo(v)
|
| + // map[v] := v2
|
| + //
|
| + // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as a
|
| + // redundant assignment and elided.
|
| + if (isUnconditionallyExecuted()) {
|
| + // Only create new mapping state if the instruction is unconditionally
|
| + // executed.
|
| + Variable *NewMapped = VarMap.makeLinked(Dest);
|
| + Inst *Mov = Target->createLoweredMove(NewMapped, SrcVar);
|
| + Node->getInsts().insert(IterNext, Mov);
|
| + } else {
|
| + // For a conditionally executed instruction, add a redefinition of the
|
| + // original Dest mapping, without creating a new linked variable.
|
| + Variable *OldMapped = VarMap.get(Dest);
|
| + Inst *Mov = Target->createLoweredMove(OldMapped, SrcVar);
|
| + Mov->setDestRedefined();
|
| + Node->getInsts().insert(IterNext, Mov);
|
| + }
|
| + return true;
|
| + }
|
| + assert(!ShouldSkipRemainingInstructions);
|
| + return false;
|
| + }
|
| +
|
| + /// Process the dest Variable of a Phi instruction.
|
| + bool handlePhi() {
|
| + assert(llvm::isa<InstPhi>(Instr));
|
| + const bool DestIsAllocable = isAllocable(Dest);
|
| + if (!DestIsAllocable)
|
| + return true;
|
| + if (!VarMap.isDestUsedInBlock(Dest))
|
| + return true;
|
| + Variable *NewMapped = VarMap.makeLinked(Dest);
|
| + Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
|
| + Node->getInsts().insert(IterCur, Mov);
|
| + return true;
|
| + }
|
| +
|
| + /// Process an arbitrary instruction.
|
| + bool handleGeneralInst() {
|
| + const bool DestIsAllocable = isAllocable(Dest);
|
| + // The (non-variable-assignment) instruction:
|
| + // ... = F(v)
|
| + // where v is not infinite-weight, gets transformed to:
|
| + // v2 = v1
|
| + // ... = F(v1)
|
| + // where:
|
| + // v1 := map[v]
|
| + // v2 := linkTo(v)
|
| + // map[v] := v2
|
| + // After that, if the "..." dest=u is not infinite-weight, append:
|
| + // u2 = u
|
| + // where:
|
| + // u2 := linkTo(u)
|
| + // map[u] := u2
|
| + for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
|
| + // Iterate over the top-level src vars. Don't bother to dig into
|
| + // e.g. MemOperands because their vars should all be infinite-weight.
|
| + // (This assumption would need to change if the pass were done
|
| + // pre-lowering.)
|
| + if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) {
|
| + const bool SrcIsAllocable = isAllocable(SrcVar);
|
| + if (SrcIsAllocable) {
|
| + Variable *OldMapped = VarMap.get(SrcVar);
|
| + if (isUnconditionallyExecuted()) {
|
| + if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) {
|
| + Variable *NewMapped = VarMap.makeLinked(SrcVar);
|
| + Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped);
|
| + Node->getInsts().insert(IterCur, Mov);
|
| + }
|
| + }
|
| + Instr->replaceSource(i, OldMapped);
|
| + }
|
| + }
|
| + }
|
| + // Transformation of Dest is the same as the "v=t:inf" case above.
|
| + if (DestIsAllocable && VarMap.isDestUsedInBlock(Dest)) {
|
| + if (isUnconditionallyExecuted()) {
|
| + Variable *NewMapped = VarMap.makeLinked(Dest);
|
| + Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
|
| + Node->getInsts().insert(IterNext, Mov);
|
| + } else {
|
| + Variable *OldMapped = VarMap.get(Dest);
|
| + Inst *Mov = Target->createLoweredMove(OldMapped, Dest);
|
| + Mov->setDestRedefined();
|
| + Node->getInsts().insert(IterNext, Mov);
|
| + }
|
| + }
|
| + return true;
|
| + }
|
| +
|
| +private:
|
| + TargetLowering *Target;
|
| + CfgNode *Node = nullptr;
|
| + Inst *Instr = nullptr;
|
| + Variable *Dest = nullptr;
|
| + InstList::iterator IterCur;
|
| + InstList::iterator IterNext;
|
| + bool ShouldSkipRemainingInstructions = false;
|
| + VariableMap VarMap;
|
| + CfgVector<Variable *> LinkedToFixups;
|
| + /// WaitingForLabel and WaitingForBranchTo are for tracking intra-block
|
| + /// control flow.
|
| + const Inst *WaitingForLabel = nullptr;
|
| + const Inst *WaitingForBranchTo = nullptr;
|
| +};
|
| +
|
| +} // end of anonymous namespace
|
| +
|
| +/// Within each basic block, rewrite Variable references in terms of chained
|
| +/// copies of the original Variable. For example:
|
| +/// A = B + C
|
| +/// might be rewritten as:
|
| +/// B1 = B
|
| +/// C1 = C
|
| +/// A = B + C
|
| +/// A1 = A
|
| +/// and then:
|
| +/// D = A + B
|
| +/// might be rewritten as:
|
| +/// A2 = A1
|
| +/// B2 = B1
|
| +/// D = A1 + B1
|
| +/// D1 = D
|
| +///
|
| +/// The purpose is to present the linear-scan register allocator with smaller
|
| +/// live ranges, to help mitigate its "all or nothing" allocation strategy,
|
| +/// while counting on its preference mechanism to keep the split versions in the
|
| +/// same register when possible.
|
| +///
|
| +/// When creating new Variables, A2 is linked to A1 which is linked to A, and
|
| +/// similar for the other Variable linked-to chains. Rewrites apply only to
|
| +/// Variables where mayHaveReg() is true.
|
| +///
|
| +/// At code emission time, redundant linked-to stack assignments will be
|
| +/// recognized and elided. To illustrate using the above example, if A1 gets a
|
| +/// register but A and A2 are on the stack, the "A2=A1" store instruction is
|
| +/// redundant since A and A2 share the same stack slot and A1 originated from A.
|
| +///
|
| +/// Simple assignment instructions are rewritten slightly differently, to take
|
| +/// maximal advantage of Variables known to have registers.
|
| +///
|
| +/// In general, there may be several valid ways to rewrite an instruction: add
|
| +/// the new assignment instruction either before or after the original
|
| +/// instruction, and rewrite the original instruction with either the old or the
|
| +/// new variable mapping. We try to pick a strategy most likely to avoid
|
| +/// potential performance problems. For example, try to avoid storing to the
|
| +/// stack and then immediately reloading from the same location. One
|
| +/// consequence is that code might be generated that loads a register from a
|
| +/// stack location, followed almost immediately by another use of the same stack
|
| +/// location, despite its value already being available in a register as a
|
| +/// result of the first instruction. However, the performance impact here is
|
| +/// likely to be negligible, and a simple availability peephole optimization
|
| +/// could clean it up.
|
| +///
|
| +/// This pass potentially adds a lot of new instructions and variables, and as
|
| +/// such there are compile-time performance concerns, particularly with liveness
|
| +/// analysis and register allocation. Note that for liveness analysis, the new
|
| +/// variables have single-block liveness, so they don't increase the size of the
|
| +/// liveness bit vectors that need to be merged across blocks. As a result, the
|
| +/// performance impact is likely to be linearly related to the number of new
|
| +/// instructions, rather than number of new variables times number of blocks
|
| +/// which would be the case if they were multi-block variables.
|
| +void splitBlockLocalVariables(Cfg *Func) {
|
| + if (!getFlags().getSplitLocalVars())
|
| + return;
|
| + TimerMarker _(TimerStack::TT_splitLocalVars, Func);
|
| + LocalVariableSplitter Splitter(Func);
|
| + // TODO(stichnot): Fix this mechanism for LinkedTo variables and stack slot
|
| + // assignment.
|
| + //
|
| + // To work around shortcomings with stack frame mapping, we want to arrange
|
| + // LinkedTo structure such that within one block, the LinkedTo structure
|
| + // leading to a root forms a list, not a tree. A LinkedTo root can have
|
| + // multiple children linking to it, but only one per block. Furthermore,
|
| + // because stack slot mapping processes variables in numerical order, the
|
| + // LinkedTo chain needs to be ordered such that when A->getLinkedTo() == B,
|
| + // then A->getIndex() > B->getIndex().
|
| + //
|
| + // To effect this, while processing a block we keep track of preexisting
|
| + // LinkedTo relationships via the LinkedToFixups vector, and at the end of the
|
| + // block we splice them in such that the block has a single chain for each
|
| + // root, ordered by getIndex() value.
|
| + CfgVector<Variable *> LinkedToFixups;
|
| + for (CfgNode *Node : Func->getNodes()) {
|
| + // Clear the VarMap and LinkedToFixups at the start of every block.
|
| + LinkedToFixups.clear();
|
| + Splitter.setNode(Node);
|
| + auto &Insts = Node->getInsts();
|
| + auto Iter = Insts.begin();
|
| + auto IterEnd = Insts.end();
|
| + // TODO(stichnot): Figure out why Phi processing usually degrades
|
| + // performance. Disable for now.
|
| + static constexpr bool ProcessPhis = false;
|
| + if (ProcessPhis) {
|
| + for (Inst &Instr : Node->getPhis()) {
|
| + if (Instr.isDeleted())
|
| + continue;
|
| + Splitter.setInst(&Instr, Iter, Iter);
|
| + Splitter.handlePhi();
|
| + }
|
| + }
|
| + InstList::iterator NextIter;
|
| + for (; Iter != IterEnd && !Splitter.shouldSkipRemainingInstructions();
|
| + Iter = NextIter) {
|
| + NextIter = Iter;
|
| + ++NextIter;
|
| + Inst *Instr = iteratorToInst(Iter);
|
| + if (Instr->isDeleted())
|
| + continue;
|
| + Splitter.setInst(Instr, Iter, NextIter);
|
| +
|
| + // Before doing any transformations, take care of the bookkeeping for
|
| + // intra-block branching.
|
| + //
|
| + // This is tricky because the transformation for one instruction may
|
| + // depend on a transformation for a previous instruction, but if that
|
| + // previous instruction is not dynamically executed due to intra-block
|
| + // control flow, it may lead to an inconsistent state and incorrect code.
|
| + //
|
| + // We want to handle some simple cases, and reject some others:
|
| + //
|
| + // 1. For something like a select instruction, we could have:
|
| + // test cond
|
| + // dest = src_false
|
| + // branch conditionally to label
|
| + // dest = src_true
|
| + // label:
|
| + //
|
| + // Between the conditional branch and the label, we need to treat dest and
|
| + // src variables specially, specifically not creating any new state.
|
| + //
|
| + // 2. Some 64-bit atomic instructions may be lowered to a loop:
|
| + // label:
|
| + // ...
|
| + // branch conditionally to label
|
| + //
|
| + // No special treatment is needed, but it's worth tracking so that case #1
|
| + // above can also be handled.
|
| + //
|
| + // 3. Advanced switch lowering can create really complex intra-block
|
| + // control flow, so when we recognize this, we should just stop splitting
|
| + // for the remainder of the block (which isn't much since a switch
|
| + // instruction is a terminator).
|
| + //
|
| + // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture,
|
| + // can result in an if/then/else like structure with two labels. One
|
| + // possibility would be to suspect splitting for the remainder of the
|
| + // lowered instruction, and then resume for the remainder of the block,
|
| + // but since we don't have high-level instruction markers, we might as
|
| + // well just stop splitting for the remainder of the block.
|
| + if (Splitter.handleLabel())
|
| + continue;
|
| + if (Splitter.handleIntraBlockBranch())
|
| + continue;
|
| + if (Splitter.handleUnwantedInstruction())
|
| + continue;
|
| +
|
| + // Intra-block bookkeeping is complete, now do the transformations.
|
| +
|
| + // Determine the transformation based on the kind of instruction, and
|
| + // whether its Variables are infinite-weight. New instructions can be
|
| + // inserted before the current instruction via Iter, or after the current
|
| + // instruction via NextIter.
|
| + if (Splitter.handleSimpleVarAssign())
|
| + continue;
|
| + if (Splitter.handleGeneralInst())
|
| + continue;
|
| + }
|
| + Splitter.finalizeNode();
|
| + }
|
| +
|
| + Func->dump("After splitting local variables");
|
| +}
|
| +
|
| +} // end of namespace Ice
|
|
|