Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: src/IceCfg.cpp

Issue 2177033002: Subzero: Local variable splitting. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Cleanup Created 4 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/IceCfg.h ('k') | src/IceClFlags.h » ('j') | src/IceInst.h » ('J')
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 //===- subzero/src/IceCfg.cpp - Control flow graph implementation ---------===// 1 //===- subzero/src/IceCfg.cpp - Control flow graph implementation ---------===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 /// 9 ///
10 /// \file 10 /// \file
(...skipping 770 matching lines...) Expand 10 before | Expand all | Expand 10 after
781 } 781 }
782 } 782 }
783 783
784 SizeT NodeIndex = 0; 784 SizeT NodeIndex = 0;
785 for (auto *Node : NewList) { 785 for (auto *Node : NewList) {
786 Node->resetIndex(NodeIndex++); 786 Node->resetIndex(NodeIndex++);
787 } 787 }
788 Nodes = NewList; 788 Nodes = NewList;
789 } 789 }
790 790
791 namespace {
792
793 /// VariableMap is a simple helper class for splitLocalVars(), that keeps track
794 /// of the latest split version of the original Variables.
795 class VariableMap {
796 private:
797 VariableMap() = delete;
798 VariableMap(const VariableMap &) = delete;
799 VariableMap &operator=(const VariableMap &) = delete;
800
801 public:
802 explicit VariableMap(Cfg *Func)
803 : Func(Func), NumVars(Func->getNumVariables()) {}
804 /// Reset the mappings at the start of a block.
805 void reset() { Map.assign(NumVars, nullptr); }
806 /// Get Var's current mapping (or Var itself if it has no mapping yet).
807 Variable *get(Variable *Var) const {
808 const SizeT VarNum = getVarNum(Var);
809 Variable *MappedVar = Map[VarNum];
810 return MappedVar == nullptr ? Var : MappedVar;
811 }
812 /// Create a new linked Variable in the LinkedTo chain, and set it as Var's
813 /// latest mapping.
814 Variable *makeLinked(Variable *Var) {
815 Variable *NewVar = Func->makeVariable(Var->getType());
816 NewVar->setRegClass(Var->getRegClass());
817 NewVar->setLinkedTo(get(Var));
818 const SizeT VarNum = getVarNum(Var);
819 Map[VarNum] = NewVar;
820 return NewVar;
821 }
822
823 private:
824 Cfg *const Func;
825 // NumVars is for the size of the Map array. It can be const because any new
826 // Variables created during the splitting pass don't need to be mapped.
827 const SizeT NumVars;
828 CfgVector<Variable *> Map;
829 /// Get Var's VarNum, and do some validation.
830 SizeT getVarNum(Variable *Var) const {
831 const SizeT VarNum = Var->getIndex();
832 assert(VarNum < NumVars);
833 assert(Var->mayHaveReg());
834 return VarNum;
835 }
836 };
837
838 /// A Variable is "normal" if it is a register allocation candidate but doesn't
839 /// already have a register.
840 bool isNormal(const Variable *Var) {
Eric Holk 2016/07/25 19:59:22 I'm not sure "normal" is the best name here, but I
Jim Stichnoth 2016/07/26 05:59:09 Done - using the shorter "allocable".
841 if (Var == nullptr)
842 return false;
843 return !Var->hasReg() && Var->mayHaveReg();
844 }
845
846 /// A Variable is "inf" if it already has a register or is infinite-weight.
847 bool isInf(const Variable *Var) {
848 if (Var == nullptr)
849 return false;
850 return Var->hasReg() || Var->mustHaveReg();
851 }
852
853 } // end of anonymous namespace
854
855 /// Within each basic block, rewrite Variable references in terms of chained
856 /// copies of the original Variable. For example:
857 /// A = B + C
858 /// might be rewritten as:
859 /// B1 = B
860 /// C1 = C
861 /// A = B + C
Eric Holk 2016/07/25 19:59:22 Should this be `A = B1 + C1`?
Jim Stichnoth 2016/07/26 05:59:09 No... see also the description in lines 1100-1101
862 /// A1 = A
863 /// and then:
864 /// D = A + B
865 /// might be rewritten as:
866 /// A2 = A1
867 /// B2 = B1
868 /// D = A1 + B1
869 /// D1 = D
870 ///
871 /// The purpose is to present the linear-scan register allocator with smaller
872 /// live ranges, to help mitigate its "all or nothing" allocation strategy,
873 /// while counting on its preference mechanism to keep the split versions in the
874 /// same register when possible.
875 ///
876 /// When creating new Variables, A2 is linked to A1 which is linked to A, and
877 /// similar for the other Variable linked-to chains. Rewrites apply only to
878 /// Variables where mayHaveReg() is true.
879 ///
880 /// At code emission time, redundant linked-to stack assignments will be
881 /// recognized and elided. To illustrate using the above example, if A1 gets a
882 /// register but A and A2 are on the stack, the "A2=A1" store instruction is
883 /// redundant since A and A2 share the same stack slot and A1 originated from A.
884 ///
885 /// Simple assignment instructions are rewritten slightly differently, to take
886 /// maximal advantage of Variables known to have registers.
887 ///
888 /// In general, there may be several valid ways to rewrite an instruction: add
889 /// the new assignment instruction either before or after the original
890 /// instruction, and rewrite the original instruction with either the old or the
891 /// new variable mapping. We try to pick a strategy most likely to avoid
892 /// potential performance problems. For example, try to avoid storing to the
893 /// stack and then immediately reloading from the same location. One
894 /// consequence is that code might be generated that loads a register from a
895 /// stack location, followed almost immediately by another use of the same stack
896 /// location, despite its value already being available in a register as a
897 /// result of the first instruction. However, the performance impact here is
898 /// likely to be negligible, and a simple availability peephole optimization
899 /// could clean it up.
900 ///
901 /// This pass potentially adds a lot of new instructions and variables, and as
902 /// such there are compile-time performance concerns, particularly with liveness
903 /// analysis and register allocation. Note that for liveness analysis, the new
904 /// variables have single-block liveness, so they don't increase the size of the
905 /// liveness bit vectors that need to be merged across blocks. As a result, the
906 /// performance impact is likely to be linearly related to the number of new
907 /// instructions, without the quadratic nature that liveness analysis usually
Eric Holk 2016/07/25 19:59:22 Does this mean that splitting live ranges totally
Jim Stichnoth 2016/07/26 05:59:09 I rephrased the "quadratic" part in the comment.
908 /// has.
909 void Cfg::splitLocalVars() {
910 if (!getFlags().getSplitLocalVars())
911 return;
912 TimerMarker _(TimerStack::TT_splitLocalVars, this);
913 VariableMap VarMap(this);
914 for (CfgNode *Node : getNodes()) {
915 // Clear the VarMap at the start of every block.
916 VarMap.reset();
917 auto &Insts = Node->getInsts();
918 auto Iter = Insts.begin();
919 auto IterEnd = Insts.end();
920 // TODO(stichnot): Also create assignments/mappings for phi dest variables.
921 InstList::iterator NextIter;
922 const Inst *WaitingForLabel = nullptr;
923 const Inst *WaitingForBranchTo = nullptr;
924 for (; Iter != IterEnd; Iter = NextIter) {
925 NextIter = Iter;
926 ++NextIter;
927 Inst *Instr = iteratorToInst(Iter);
928 if (Instr->isDeleted())
929 continue;
930
931 // Before doing any transformations, take care of the bookkeeping for
932 // intra-block branching.
933 //
934 // This is tricky because the transformation for one instruction may
935 // depend on a transformation for a previous instruction, but if that
936 // previous instruction is not dynamically executed due to intra-block
937 // control flow, it may lead to an inconsistent state and incorrect code.
938 //
939 // We want to handle some simple cases, and reject some others:
940 //
941 // 1. For something like a select instruction, we could have:
942 // test cond
943 // dest = src_false
944 // branch conditionally to label
945 // dest = src_true
946 // label:
947 //
948 // Between the conditional branch and the label, we need to treat dest and
949 // src variables specially, specifically not creating any new state.
950 //
951 // 2. Some 64-bit atomic instructions may be lowered to a loop:
952 // label:
953 // ...
954 // branch conditionally to label
955 //
956 // No special treatment is needed, but it's worth tracking so that case #1
957 // above can also be handled.
958 //
959 // 3. Advanced switch lowering can create really complex intra-block
960 // control flow, so when we recognize this, we should just stop splitting
961 // for the remainder of the block (which isn't much since a switch
962 // instruction is a terminator).
963 //
964 // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture,
965 // can result in an if/then/else like structure with two labels. One
966 // possibility would be to suspect splitting for the remainder of the
967 // lowered instruction, and then resume for the remainder of the block,
968 // but since we don't have high-level instruction markers, we might as
969 // well just stop splitting for the remainder of the block.
970 if (Instr->isLabel()) {
971 // A Label instruction shouldn't have any operands, so it can be handled
972 // right here and then move on.
973 assert(Instr->getDest() == nullptr);
974 assert(Instr->getSrcSize() == 0);
975 if (Instr == WaitingForLabel) {
976 // If we found the forward-branch-target Label instruction we're
977 // waiting for, then clear the WaitingForLabel state.
978 WaitingForLabel = nullptr;
979 } else if (WaitingForLabel == nullptr &&
980 WaitingForBranchTo == nullptr) {
981 // If we found a new Label instruction while the WaitingFor* state is
982 // clear, then set things up for this being a backward branch target.
983 WaitingForBranchTo = Instr;
984 } else {
985 // We see something we don't understand, so skip to the next block.
986 break;
987 }
988 continue; // move to next instruction
989 }
990 if (const Inst *Label = Instr->isIntraBlockBranch()) {
991 // An intra-block branch instruction shouldn't have any operands, so it
992 // can be handled right here and then move on.
993 assert(Instr->getDest() == nullptr);
994 assert(Instr->getSrcSize() == 0);
995 if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) {
996 WaitingForBranchTo = nullptr;
997 } else if (WaitingForBranchTo == nullptr &&
998 (WaitingForLabel == nullptr || WaitingForLabel == Label)) {
999 WaitingForLabel = Label;
1000 } else {
1001 // We see something we don't understand, so skip to the next block.
1002 break;
1003 }
1004 continue; // move to next instruction
1005 }
1006
1007 // Intra-block bookkeeping is complete, now do the transformations.
1008 static constexpr char AnInstructionHasNoName[] = "";
Eric Holk 2016/07/25 19:59:22 :)
1009 // We can limit the splitting to an arbitrary subset of the instructions,
1010 // and still expect correct code. As such, we can do instruction-subset
1011 // bisection to help debug any problems in this pass.
1012 if (!BuildDefs::minimal() &&
1013 !getFlags().matchSplitInsts(AnInstructionHasNoName,
Eric Holk 2016/07/25 19:59:22 This is a little unclear to me, but I think I get
Jim Stichnoth 2016/07/26 05:59:09 Right -- class RangeSpec allows matching by name o
1014 Instr->getNumber()))
1015 continue;
1016
1017 if (!llvm::isa<InstTarget>(Instr)) {
1018 // Ignore non-lowered instructions like FakeDef/FakeUse.
1019 continue;
1020 }
1021 const bool IsUnconditionallyExecuted = (WaitingForLabel == nullptr);
1022 Variable *Dest = Instr->getDest();
1023 const bool DestIsInf = isInf(Dest);
1024 const bool DestIsNormal = isNormal(Dest);
1025 // Determine the transformation based on the kind of instruction, and
1026 // whether its Variables are infinite-weight. New instructions can be
1027 // inserted before the current instruction via Iter, or after the current
1028 // instruction via NextIter.
1029 if (Instr->isVarAssign()) {
1030 auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0));
1031 const bool SrcIsInf = isInf(SrcVar);
1032 const bool SrcIsNormal = isNormal(SrcVar);
1033 if (DestIsInf && SrcIsInf) {
1034 // The instruction:
1035 // t:inf = u:inf
1036 // No transformation is needed.
1037 continue;
1038 } else if (DestIsInf && SrcIsNormal &&
1039 Dest->getType() == Instr->getSrc(0)->getType()) {
1040 // The instruction:
1041 // t:inf = v
1042 // gets transformed to:
1043 // t:inf = v1
1044 // v2 = t:inf
1045 // where:
1046 // v1 := map[v]
1047 // v2 := linkTo(v)
1048 // map[v] := v2
1049 //
1050 // If both v2 and its linkedToStackRoot get a stack slot, then
1051 // "v2=t:inf" is recognized as a redundant assignment and elided.
1052 //
1053 // Note that if the dest and src types are different, then this is
1054 // actually a truncation operation, which would make "v2=t:inf" an
1055 // invalid instruction. In this case, the type test will make it fall
1056 // through to the general case below.
1057 Variable *OldMapped = VarMap.get(SrcVar);
1058 Instr->replaceSource(0, OldMapped);
1059 if (IsUnconditionallyExecuted) {
1060 // Only create new mapping state if the instruction is
1061 // unconditionally executed.
1062 Variable *NewMapped = VarMap.makeLinked(SrcVar);
1063 Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
1064 Insts.insert(NextIter, Mov);
1065 }
1066 continue;
1067 } else if (DestIsNormal && SrcIsInf) {
1068 // The instruction:
1069 // v = t:inf
1070 // gets transformed to:
1071 // v = t:inf
1072 // v2 = t:inf
1073 // where:
1074 // v2 := linkTo(v)
1075 // map[v] := v2
1076 //
1077 // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as
1078 // a redundant assignment and elided.
1079 if (IsUnconditionallyExecuted) {
1080 // Only create new mapping state if the instruction is
1081 // unconditionally executed.
1082 Variable *NewMapped = VarMap.makeLinked(Dest);
1083 Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
1084 Insts.insert(NextIter, Mov);
1085 } else {
1086 // For a conditionally executed instruction, add a redefinition of
1087 // the original Dest mapping, without creating a new linked
1088 // variable.
1089 Variable *OldMapped = VarMap.get(Dest);
1090 Inst *Mov = Target->createLoweredMove(OldMapped, Dest);
1091 Mov->setDestRedefined();
1092 Insts.insert(NextIter, Mov);
1093 }
1094 continue;
1095 }
1096 }
1097 // The (non-variable-assignment) instruction:
1098 // ... = F(v)
1099 // where v is not infinite-weight, gets transformed to:
1100 // v2 = v1
1101 // ... = F(v1)
1102 // where:
1103 // v1 := map[v]
1104 // v2 := linkTo(v)
1105 // map[v] := v2
1106 // After that, if the "..." dest=u is not infinite-weight, append:
1107 // u2 = u
1108 // where:
1109 // u2 := linkTo(u)
1110 // map[u] := u2
1111 for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
1112 // Iterate over the top-level src vars. Don't bother to dig into
1113 // e.g. MemOperands because their vars should all be infinite-weight.
1114 // (This assumption would need to change if the pass were done
1115 // pre-lowering.)
1116 if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) {
1117 const bool SrcIsNormal = isNormal(SrcVar);
1118 if (SrcIsNormal) {
1119 Variable *OldMapped = VarMap.get(SrcVar);
1120 if (IsUnconditionallyExecuted) {
1121 Variable *NewMapped = VarMap.makeLinked(SrcVar);
1122 Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped);
1123 Insts.insert(Iter, Mov);
1124 }
1125 Instr->replaceSource(i, OldMapped);
1126 }
1127 }
1128 }
1129 // Transformation of Dest is the same as the "v=t:inf" case above.
1130 if (DestIsNormal) {
1131 if (IsUnconditionallyExecuted) {
1132 Variable *NewMapped = VarMap.makeLinked(Dest);
1133 Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
1134 Insts.insert(NextIter, Mov);
1135 } else {
1136 Variable *OldMapped = VarMap.get(Dest);
1137 Inst *Mov = Target->createLoweredMove(OldMapped, Dest);
1138 Mov->setDestRedefined();
1139 Insts.insert(NextIter, Mov);
1140 }
1141 }
1142 }
1143 }
1144 dump("After splitting local variables");
1145 }
1146
791 void Cfg::doArgLowering() { 1147 void Cfg::doArgLowering() {
792 TimerMarker T(TimerStack::TT_doArgLowering, this); 1148 TimerMarker T(TimerStack::TT_doArgLowering, this);
793 getTarget()->lowerArguments(); 1149 getTarget()->lowerArguments();
794 } 1150 }
795 1151
796 void Cfg::sortAndCombineAllocas(CfgVector<InstAlloca *> &Allocas, 1152 void Cfg::sortAndCombineAllocas(CfgVector<InstAlloca *> &Allocas,
797 uint32_t CombinedAlignment, InstList &Insts, 1153 uint32_t CombinedAlignment, InstList &Insts,
798 AllocaBaseVariableType BaseVariableType) { 1154 AllocaBaseVariableType BaseVariableType) {
799 if (Allocas.empty()) 1155 if (Allocas.empty())
800 return; 1156 return;
(...skipping 966 matching lines...) Expand 10 before | Expand all | Expand 10 after
1767 } 2123 }
1768 } 2124 }
1769 // Print each basic block 2125 // Print each basic block
1770 for (CfgNode *Node : Nodes) 2126 for (CfgNode *Node : Nodes)
1771 Node->dump(this); 2127 Node->dump(this);
1772 if (isVerbose(IceV_Instructions)) 2128 if (isVerbose(IceV_Instructions))
1773 Str << "}\n"; 2129 Str << "}\n";
1774 } 2130 }
1775 2131
1776 } // end of namespace Ice 2132 } // end of namespace Ice
OLDNEW
« no previous file with comments | « src/IceCfg.h ('k') | src/IceClFlags.h » ('j') | src/IceInst.h » ('J')

Powered by Google App Engine
This is Rietveld 408576698