Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 //===- subzero/src/IceVariableSplitting.cpp - Local variable splitting ----===// | |
| 2 // | |
| 3 // The Subzero Code Generator | |
| 4 // | |
| 5 // This file is distributed under the University of Illinois Open Source | |
| 6 // License. See LICENSE.TXT for details. | |
| 7 // | |
| 8 //===----------------------------------------------------------------------===// | |
| 9 /// | |
| 10 /// \file | |
| 11 /// \brief Aggressive block-local variable splitting to improve linear-scan | |
| 12 /// register allocation. | |
| 13 /// | |
| 14 //===----------------------------------------------------------------------===// | |
| 15 | |
| 16 #include "IceVariableSplitting.h" | |
| 17 | |
| 18 #include "IceCfg.h" | |
| 19 #include "IceCfgNode.h" | |
| 20 #include "IceClFlags.h" | |
| 21 #include "IceInst.h" | |
| 22 #include "IceOperand.h" | |
| 23 #include "IceTargetLowering.h" | |
| 24 | |
| 25 namespace Ice { | |
| 26 | |
| 27 namespace { | |
| 28 | |
| 29 /// A Variable is "allocable" if it is a register allocation candidate but | |
| 30 /// doesn't already have a register. | |
| 31 bool isAllocable(const Variable *Var) { | |
| 32 if (Var == nullptr) | |
| 33 return false; | |
| 34 return !Var->hasReg() && Var->mayHaveReg(); | |
| 35 } | |
| 36 | |
| 37 /// A Variable is "inf" if it already has a register or is infinite-weight. | |
| 38 bool isInf(const Variable *Var) { | |
| 39 if (Var == nullptr) | |
| 40 return false; | |
| 41 return Var->hasReg() || Var->mustHaveReg(); | |
| 42 } | |
| 43 | |
| 44 /// VariableMap is a simple helper class that keeps track of the latest split | |
| 45 /// version of the original Variables, as well as the instruction containing the | |
| 46 /// last use of the Variable within the current block. For each entry, the | |
| 47 /// Variable is tagged with the CfgNode that it is valid in, so that we don't | |
| 48 /// need to clear the entire Map[] vector for each block. | |
| 49 class VariableMap { | |
| 50 private: | |
| 51 VariableMap() = delete; | |
| 52 VariableMap(const VariableMap &) = delete; | |
| 53 VariableMap &operator=(const VariableMap &) = delete; | |
| 54 | |
| 55 struct VarInfo { | |
| 56 /// MappedVar is the latest mapped/split version of the Variable. | |
| 57 Variable *MappedVar = nullptr; | |
| 58 /// MappedVarNode is the block in which MappedVar is valid. | |
| 59 const CfgNode *MappedVarNode = nullptr; | |
| 60 /// LastUseInst is the last instruction in the block that uses the Variable | |
| 61 /// as a source operand. | |
| 62 const Inst *LastUseInst = nullptr; | |
| 63 /// LastUseNode is the block in which LastUseInst is valid. | |
| 64 const CfgNode *LastUseNode = nullptr; | |
| 65 VarInfo() = default; | |
| 66 | |
| 67 private: | |
| 68 VarInfo(const VarInfo &) = delete; | |
| 69 VarInfo &operator=(const VarInfo &) = delete; | |
| 70 }; | |
| 71 | |
| 72 public: | |
| 73 explicit VariableMap(Cfg *Func) | |
| 74 : Func(Func), NumVars(Func->getNumVariables()), Map(NumVars) {} | |
| 75 /// Reset the mappings at the start of a block. | |
| 76 void reset(const CfgNode *CurNode) { | |
| 77 Node = CurNode; | |
| 78 // Do a prepass through all the instructions, marking which instruction is | |
| 79 // the last use of each Variable within the block. | |
| 80 for (const Inst &Instr : Node->getInsts()) { | |
| 81 if (Instr.isDeleted()) | |
| 82 continue; | |
| 83 for (SizeT i = 0; i < Instr.getSrcSize(); ++i) { | |
| 84 if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr.getSrc(i))) { | |
| 85 const SizeT VarNum = getVarNum(SrcVar); | |
| 86 Map[VarNum].LastUseInst = &Instr; | |
| 87 Map[VarNum].LastUseNode = Node; | |
| 88 } | |
| 89 } | |
| 90 } | |
| 91 } | |
| 92 /// Get Var's current mapping (or Var itself if it has no mapping yet). | |
| 93 Variable *get(Variable *Var) const { | |
| 94 const SizeT VarNum = getVarNum(Var); | |
| 95 Variable *MappedVar = Map[VarNum].MappedVar; | |
| 96 if (MappedVar == nullptr) | |
| 97 return Var; | |
| 98 if (Map[VarNum].MappedVarNode != Node) | |
| 99 return Var; | |
| 100 return MappedVar; | |
| 101 } | |
| 102 /// Create a new linked Variable in the LinkedTo chain, and set it as Var's | |
| 103 /// latest mapping. | |
| 104 Variable *makeLinked(Variable *Var) { | |
| 105 Variable *NewVar = Func->makeVariable(Var->getType()); | |
| 106 NewVar->setRegClass(Var->getRegClass()); | |
| 107 NewVar->setLinkedTo(get(Var)); | |
| 108 const SizeT VarNum = getVarNum(Var); | |
| 109 Map[VarNum].MappedVar = NewVar; | |
| 110 Map[VarNum].MappedVarNode = Node; | |
| 111 return NewVar; | |
| 112 } | |
| 113 /// Given Var that is LinkedTo some other variable, re-splice it into the | |
| 114 /// LinkedTo chain so that the chain is ordered by Variable::getIndex(). | |
| 115 void spliceBlockLocalLinkedToChain(Variable *Var) { | |
| 116 Variable *LinkedTo = Var->getLinkedTo(); | |
| 117 assert(LinkedTo != nullptr); | |
| 118 assert(Var->getIndex() > LinkedTo->getIndex()); | |
| 119 const SizeT VarNum = getVarNum(LinkedTo); | |
| 120 Variable *Link = Map[VarNum].MappedVar; | |
| 121 if (Link == nullptr || Map[VarNum].MappedVarNode != Node) | |
| 122 return; | |
| 123 Variable *LinkParent = Link->getLinkedTo(); | |
| 124 while (LinkParent != nullptr && LinkParent->getIndex() >= Var->getIndex()) { | |
| 125 Link = LinkParent; | |
| 126 LinkParent = Link->getLinkedTo(); | |
| 127 } | |
| 128 Var->setLinkedTo(LinkParent); | |
| 129 Link->setLinkedTo(Var); | |
| 130 } | |
| 131 /// Return whether the given Variable has any uses as a source operand within | |
| 132 /// the current block. If it has no source operand uses, but is assigned as a | |
| 133 /// dest variable in some instruction in the block, then we needn't bother | |
| 134 /// splitting it. | |
| 135 bool isDestUsedInBlock(const Variable *Dest) const { | |
| 136 return Map[getVarNum(Dest)].LastUseNode == Node; | |
| 137 } | |
| 138 /// Return whether the given instruction is the last use of the given Variable | |
| 139 /// within the current block. If it is, then we needn't bother splitting the | |
| 140 /// Variable at this instruction. | |
| 141 bool isInstLastUseOfVar(const Variable *Var, const Inst *Instr) { | |
| 142 return Map[getVarNum(Var)].LastUseInst == Instr; | |
| 143 } | |
| 144 | |
| 145 private: | |
| 146 Cfg *const Func; | |
| 147 // NumVars is for the size of the Map array. It can be const because any new | |
| 148 // Variables created during the splitting pass don't need to be mapped. | |
| 149 const SizeT NumVars; | |
| 150 CfgVector<VarInfo> Map; | |
| 151 const CfgNode *Node = nullptr; | |
| 152 /// Get Var's VarNum, and do some validation. | |
| 153 SizeT getVarNum(const Variable *Var) const { | |
| 154 const SizeT VarNum = Var->getIndex(); | |
| 155 assert(VarNum < NumVars); | |
| 156 return VarNum; | |
| 157 } | |
| 158 }; | |
| 159 | |
| 160 /// LocalSplittingState tracks the necessary splitting state across | |
| 161 /// instructions. | |
| 162 class LocalSplittingState { | |
| 163 LocalSplittingState() = delete; | |
| 164 LocalSplittingState(const LocalSplittingState &) = delete; | |
| 165 LocalSplittingState &operator=(const LocalSplittingState &) = delete; | |
| 166 | |
| 167 public: | |
| 168 explicit LocalSplittingState(Cfg *Func) | |
| 169 : Target(Func->getTarget()), VarMap(Func) {} | |
| 170 /// setNode() is called before processing the instructions of a block. | |
| 171 void setNode(CfgNode *CurNode) { | |
| 172 Node = CurNode; | |
| 173 VarMap.reset(Node); | |
| 174 LinkedToFixups.clear(); | |
| 175 } | |
| 176 /// finalizeNode() is called after all instructions in the block are | |
| 177 /// processed. | |
| 178 void finalizeNode() { | |
| 179 // Splice in any preexisting LinkedTo links into the single chain. These | |
| 180 // are the ones that were recorded during setInst(). | |
| 181 for (Variable *Var : LinkedToFixups) { | |
| 182 VarMap.spliceBlockLocalLinkedToChain(Var); | |
| 183 } | |
| 184 } | |
| 185 /// setInst() is called before processing the next instruction. The iterators | |
| 186 /// are the insertion points for a new instructions, depending on whether the | |
| 187 /// new instruction should be inserted before or after the current | |
| 188 /// instruction. | |
| 189 void setInst(Inst *CurInst, InstList::iterator Cur, InstList::iterator Next) { | |
| 190 Instr = CurInst; | |
| 191 Dest = Instr->getDest(); | |
| 192 IterCur = Cur; | |
| 193 IterNext = Next; | |
| 194 ShouldSkipAllInstructions = false; | |
| 195 // Note any preexisting LinkedTo relationships that were created during | |
| 196 // target lowering. Record them in LinkedToFixups which is then processed | |
| 197 // in finalizeNode(). | |
| 198 if (Dest != nullptr && Dest->getLinkedTo() != nullptr) { | |
| 199 LinkedToFixups.emplace_back(Dest); | |
| 200 } | |
| 201 } | |
| 202 bool shouldSkipAllInstructions() const { return ShouldSkipAllInstructions; } | |
| 203 bool isUnconditionallyExecuted() const { return WaitingForLabel == nullptr; } | |
| 204 | |
| 205 /// Note: the handle*() functions return true to indicate that the instruction | |
| 206 /// has now been handled and that the instruction loop should continue to the | |
| 207 /// next instruction in the block (and return false otherwise). In addition, | |
| 208 /// they set the ShouldSkipAllInstructions flag to indicate that no more | |
| 209 /// instructions in the block should be processed. | |
| 210 | |
| 211 /// Handle an "unwanted" instruction by returning true; | |
| 212 bool handleUnwantedInstruction() { | |
| 213 // We can limit the splitting to an arbitrary subset of the instructions, | |
| 214 // and still expect correct code. As such, we can do instruction-subset | |
| 215 // bisection to help debug any problems in this pass. | |
| 216 static constexpr char AnInstructionHasNoName[] = ""; | |
| 217 if (!BuildDefs::minimal() && | |
| 218 !getFlags().matchSplitInsts(AnInstructionHasNoName, | |
| 219 Instr->getNumber())) { | |
| 220 return true; | |
| 221 } | |
| 222 if (!llvm::isa<InstTarget>(Instr)) { | |
| 223 // Ignore non-lowered instructions like FakeDef/FakeUse. | |
| 224 return true; | |
| 225 } | |
| 226 return false; | |
| 227 } | |
| 228 | |
| 229 /// Process a potential label instruction. | |
| 230 bool handleLabel() { | |
| 231 if (!Instr->isLabel()) | |
| 232 return false; | |
| 233 // A Label instruction shouldn't have any operands, so it can be handled | |
| 234 // right here and then move on. | |
| 235 assert(Dest == nullptr); | |
| 236 assert(Instr->getSrcSize() == 0); | |
| 237 if (Instr == WaitingForLabel) { | |
| 238 // If we found the forward-branch-target Label instruction we're waiting | |
| 239 // for, then clear the WaitingForLabel state. | |
| 240 WaitingForLabel = nullptr; | |
| 241 } else if (WaitingForLabel == nullptr && WaitingForBranchTo == nullptr) { | |
| 242 // If we found a new Label instruction while the WaitingFor* state is | |
| 243 // clear, then set things up for this being a backward branch target. | |
| 244 WaitingForBranchTo = Instr; | |
| 245 } else { | |
| 246 // We see something we don't understand, so skip to the next block. | |
| 247 ShouldSkipAllInstructions = true; | |
| 248 } | |
| 249 return true; | |
| 250 } | |
| 251 | |
| 252 /// Process a potential intra-block branch instruction. | |
| 253 bool handleIntraBlockBranch() { | |
| 254 const Inst *Label = Instr->getIntraBlockBranchTarget(); | |
| 255 if (Label == nullptr) | |
| 256 return false; | |
| 257 // An intra-block branch instruction shouldn't have any operands, so it can | |
| 258 // be handled right here and then move on. | |
| 259 assert(Dest == nullptr); | |
| 260 assert(Instr->getSrcSize() == 0); | |
| 261 if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) { | |
| 262 WaitingForBranchTo = nullptr; | |
| 263 } else if (WaitingForBranchTo == nullptr && | |
| 264 (WaitingForLabel == nullptr || WaitingForLabel == Label)) { | |
| 265 WaitingForLabel = Label; | |
| 266 } else { | |
| 267 // We see something we don't understand, so skip to the next block. | |
| 268 ShouldSkipAllInstructions = true; | |
| 269 } | |
| 270 return true; | |
| 271 } | |
| 272 | |
| 273 /// Specially process a potential "Variable=Variable" assignment instruction, | |
| 274 /// when it conforms to certain patterns. | |
| 275 bool handleVarAssign() { | |
| 276 if (!Instr->isVarAssign()) | |
| 277 return false; | |
| 278 const bool DestIsInf = isInf(Dest); | |
| 279 const bool DestIsAllocable = isAllocable(Dest); | |
| 280 auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0)); | |
| 281 const bool SrcIsInf = isInf(SrcVar); | |
| 282 const bool SrcIsAllocable = isAllocable(SrcVar); | |
| 283 if (DestIsInf && SrcIsInf) { | |
| 284 // The instruction: | |
| 285 // t:inf = u:inf | |
| 286 // No transformation is needed. | |
| 287 return true; | |
| 288 } | |
| 289 if (DestIsInf && SrcIsAllocable && Dest->getType() == SrcVar->getType()) { | |
| 290 // The instruction: | |
| 291 // t:inf = v | |
| 292 // gets transformed to: | |
| 293 // t:inf = v1 | |
| 294 // v2 = t:inf | |
| 295 // where: | |
| 296 // v1 := map[v] | |
| 297 // v2 := linkTo(v) | |
| 298 // map[v] := v2 | |
| 299 // | |
| 300 // If both v2 and its linkedToStackRoot get a stack slot, then "v2=t:inf" | |
| 301 // is recognized as a redundant assignment and elided. | |
| 302 // | |
| 303 // Note that if the dest and src types are different, then this is | |
| 304 // actually a truncation operation, which would make "v2=t:inf" an invalid | |
| 305 // instruction. In this case, the type test will make it fall through to | |
| 306 // the general case below. | |
| 307 Variable *OldMapped = VarMap.get(SrcVar); | |
| 308 Instr->replaceSource(0, OldMapped); | |
| 309 if (isUnconditionallyExecuted()) { | |
| 310 // Only create new mapping state if the instruction is unconditionally | |
| 311 // executed. | |
| 312 if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) { | |
| 313 Variable *NewMapped = VarMap.makeLinked(SrcVar); | |
| 314 Inst *Mov = Target->createLoweredMove(NewMapped, Dest); | |
| 315 Node->getInsts().insert(IterNext, Mov); | |
| 316 } | |
| 317 } | |
| 318 return true; | |
| 319 } | |
| 320 if (DestIsAllocable && SrcIsInf) { | |
| 321 if (!VarMap.isDestUsedInBlock(Dest)) { | |
| 322 return true; | |
| 323 } | |
| 324 // The instruction: | |
| 325 // v = t:inf | |
| 326 // gets transformed to: | |
| 327 // v = t:inf | |
| 328 // v2 = t:inf | |
| 329 // where: | |
| 330 // v2 := linkTo(v) | |
| 331 // map[v] := v2 | |
| 332 // | |
| 333 // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as a | |
| 334 // redundant assignment and elided. | |
| 335 if (isUnconditionallyExecuted()) { | |
| 336 // Only create new mapping state if the instruction is unconditionally | |
| 337 // executed. | |
| 338 Variable *NewMapped = VarMap.makeLinked(Dest); | |
| 339 Inst *Mov = Target->createLoweredMove(NewMapped, SrcVar); | |
| 340 Node->getInsts().insert(IterNext, Mov); | |
| 341 } else { | |
| 342 // For a conditionally executed instruction, add a redefinition of the | |
| 343 // original Dest mapping, without creating a new linked variable. | |
| 344 Variable *OldMapped = VarMap.get(Dest); | |
| 345 Inst *Mov = Target->createLoweredMove(OldMapped, SrcVar); | |
| 346 Mov->setDestRedefined(); | |
| 347 Node->getInsts().insert(IterNext, Mov); | |
| 348 } | |
| 349 return true; | |
| 350 } | |
| 351 assert(!ShouldSkipAllInstructions); | |
| 352 return false; | |
| 353 } | |
| 354 | |
| 355 /// Process the dest Variable of a Phi instruction. | |
| 356 bool handlePhi() { | |
| 357 assert(llvm::isa<InstPhi>(Instr)); | |
| 358 const bool DestIsAllocable = isAllocable(Dest); | |
| 359 if (!DestIsAllocable) | |
| 360 return true; | |
| 361 if (!VarMap.isDestUsedInBlock(Dest)) | |
| 362 return true; | |
| 363 Variable *NewMapped = VarMap.makeLinked(Dest); | |
| 364 Inst *Mov = Target->createLoweredMove(NewMapped, Dest); | |
| 365 Node->getInsts().insert(IterCur, Mov); | |
| 366 return true; | |
| 367 } | |
| 368 | |
| 369 /// Process an arbitrary instruction. | |
| 370 bool handleGeneralInst() { | |
| 371 const bool DestIsAllocable = isAllocable(Dest); | |
| 372 // The (non-variable-assignment) instruction: | |
| 373 // ... = F(v) | |
| 374 // where v is not infinite-weight, gets transformed to: | |
| 375 // v2 = v1 | |
| 376 // ... = F(v1) | |
| 377 // where: | |
| 378 // v1 := map[v] | |
| 379 // v2 := linkTo(v) | |
| 380 // map[v] := v2 | |
| 381 // After that, if the "..." dest=u is not infinite-weight, append: | |
| 382 // u2 = u | |
| 383 // where: | |
| 384 // u2 := linkTo(u) | |
| 385 // map[u] := u2 | |
| 386 for (SizeT i = 0; i < Instr->getSrcSize(); ++i) { | |
| 387 // Iterate over the top-level src vars. Don't bother to dig into | |
| 388 // e.g. MemOperands because their vars should all be infinite-weight. | |
| 389 // (This assumption would need to change if the pass were done | |
| 390 // pre-lowering.) | |
| 391 if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) { | |
| 392 const bool SrcIsAllocable = isAllocable(SrcVar); | |
| 393 if (SrcIsAllocable) { | |
| 394 Variable *OldMapped = VarMap.get(SrcVar); | |
| 395 if (isUnconditionallyExecuted()) { | |
| 396 if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) { | |
| 397 Variable *NewMapped = VarMap.makeLinked(SrcVar); | |
| 398 Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped); | |
| 399 Node->getInsts().insert(IterCur, Mov); | |
| 400 } | |
| 401 } | |
| 402 Instr->replaceSource(i, OldMapped); | |
| 403 } | |
| 404 } | |
| 405 } | |
| 406 // Transformation of Dest is the same as the "v=t:inf" case above. | |
| 407 if (DestIsAllocable && VarMap.isDestUsedInBlock(Dest)) { | |
| 408 if (isUnconditionallyExecuted()) { | |
| 409 Variable *NewMapped = VarMap.makeLinked(Dest); | |
| 410 Inst *Mov = Target->createLoweredMove(NewMapped, Dest); | |
| 411 Node->getInsts().insert(IterNext, Mov); | |
| 412 } else { | |
| 413 Variable *OldMapped = VarMap.get(Dest); | |
| 414 Inst *Mov = Target->createLoweredMove(OldMapped, Dest); | |
| 415 Mov->setDestRedefined(); | |
| 416 Node->getInsts().insert(IterNext, Mov); | |
| 417 } | |
| 418 } | |
| 419 return true; | |
| 420 } | |
| 421 | |
| 422 private: | |
| 423 TargetLowering *Target; | |
| 424 CfgNode *Node = nullptr; | |
| 425 Inst *Instr = nullptr; | |
| 426 Variable *Dest = nullptr; | |
| 427 InstList::iterator IterCur; | |
| 428 InstList::iterator IterNext; | |
| 429 bool ShouldSkipAllInstructions = false; | |
| 430 VariableMap VarMap; | |
| 431 CfgVector<Variable *> LinkedToFixups; | |
| 432 /// WaitingForLabel and WaitingForBranchTo are for tracking intra-block | |
| 433 /// control flow. | |
| 434 const Inst *WaitingForLabel = nullptr; | |
| 435 const Inst *WaitingForBranchTo = nullptr; | |
| 436 }; | |
| 437 | |
| 438 } // end of anonymous namespace | |
| 439 | |
| 440 /// Within each basic block, rewrite Variable references in terms of chained | |
| 441 /// copies of the original Variable. For example: | |
| 442 /// A = B + C | |
| 443 /// might be rewritten as: | |
| 444 /// B1 = B | |
| 445 /// C1 = C | |
| 446 /// A = B + C | |
| 447 /// A1 = A | |
| 448 /// and then: | |
| 449 /// D = A + B | |
| 450 /// might be rewritten as: | |
| 451 /// A2 = A1 | |
| 452 /// B2 = B1 | |
| 453 /// D = A1 + B1 | |
| 454 /// D1 = D | |
| 455 /// | |
| 456 /// The purpose is to present the linear-scan register allocator with smaller | |
| 457 /// live ranges, to help mitigate its "all or nothing" allocation strategy, | |
| 458 /// while counting on its preference mechanism to keep the split versions in the | |
| 459 /// same register when possible. | |
| 460 /// | |
| 461 /// When creating new Variables, A2 is linked to A1 which is linked to A, and | |
| 462 /// similar for the other Variable linked-to chains. Rewrites apply only to | |
| 463 /// Variables where mayHaveReg() is true. | |
| 464 /// | |
| 465 /// At code emission time, redundant linked-to stack assignments will be | |
| 466 /// recognized and elided. To illustrate using the above example, if A1 gets a | |
| 467 /// register but A and A2 are on the stack, the "A2=A1" store instruction is | |
| 468 /// redundant since A and A2 share the same stack slot and A1 originated from A. | |
| 469 /// | |
| 470 /// Simple assignment instructions are rewritten slightly differently, to take | |
| 471 /// maximal advantage of Variables known to have registers. | |
| 472 /// | |
| 473 /// In general, there may be several valid ways to rewrite an instruction: add | |
| 474 /// the new assignment instruction either before or after the original | |
| 475 /// instruction, and rewrite the original instruction with either the old or the | |
| 476 /// new variable mapping. We try to pick a strategy most likely to avoid | |
| 477 /// potential performance problems. For example, try to avoid storing to the | |
| 478 /// stack and then immediately reloading from the same location. One | |
| 479 /// consequence is that code might be generated that loads a register from a | |
| 480 /// stack location, followed almost immediately by another use of the same stack | |
| 481 /// location, despite its value already being available in a register as a | |
| 482 /// result of the first instruction. However, the performance impact here is | |
| 483 /// likely to be negligible, and a simple availability peephole optimization | |
| 484 /// could clean it up. | |
| 485 /// | |
| 486 /// This pass potentially adds a lot of new instructions and variables, and as | |
| 487 /// such there are compile-time performance concerns, particularly with liveness | |
| 488 /// analysis and register allocation. Note that for liveness analysis, the new | |
| 489 /// variables have single-block liveness, so they don't increase the size of the | |
| 490 /// liveness bit vectors that need to be merged across blocks. As a result, the | |
| 491 /// performance impact is likely to be linearly related to the number of new | |
| 492 /// instructions, rather than number of new variables times number of blocks | |
| 493 /// which would be the case if they were multi-block variables. | |
| 494 void splitBlockLocalVariables(Cfg *Func) { | |
| 495 if (!getFlags().getSplitLocalVars()) | |
| 496 return; | |
| 497 TimerMarker _(TimerStack::TT_splitLocalVars, Func); | |
| 498 LocalSplittingState State(Func); | |
| 499 // TODO(stichnot): Fix this mechanism for LinkedTo variables and stack slot | |
| 500 // assignment. | |
| 501 // | |
| 502 // To work around shortcomings with stack frame mapping, we want to arrange | |
| 503 // LinkedTo structure such that within one block, the LinkedTo structure | |
| 504 // leading to a root forms a list, not a tree. A LinkedTo root can have | |
| 505 // multiple children linking to it, but only one per block. Furthermore, | |
| 506 // because stack slot mapping processes variables in numerical order, the | |
| 507 // LinkedTo chain needs to be ordered such that when A->getLinkedTo()==B, then | |
| 508 // A->getIndex()>B->getIndex(). | |
| 509 // | |
| 510 // To effect this, while processing a block we keep track of preexisting | |
| 511 // LinkedTo relationships via the LinkedToFixups vector, and at the end of the | |
| 512 // block we splice them in such that the block has a single chain for each | |
| 513 // root, ordered by getIndex() value. | |
| 514 CfgVector<Variable *> LinkedToFixups; | |
| 515 for (CfgNode *Node : Func->getNodes()) { | |
| 516 // Clear the VarMap and LinkedToFixups at the start of every block. | |
| 517 LinkedToFixups.clear(); | |
| 518 State.setNode(Node); | |
| 519 auto &Insts = Node->getInsts(); | |
| 520 auto Iter = Insts.begin(); | |
| 521 auto IterEnd = Insts.end(); | |
| 522 // TODO(stichnot): Figure out why Phi processing usually degrades | |
| 523 // performance. Disable for now.q | |
|
John
2016/08/01 14:17:32
now.q?
Jim Stichnoth
2016/08/01 15:13:51
heh. Done.
maybe should have been now.:wq or
| |
| 524 static constexpr bool ProcessPhis = false; | |
| 525 if (ProcessPhis) { | |
| 526 for (Inst &Instr : Node->getPhis()) { | |
| 527 if (Instr.isDeleted()) | |
| 528 continue; | |
| 529 State.setInst(&Instr, Iter, Iter); | |
| 530 State.handlePhi(); | |
| 531 } | |
| 532 } | |
| 533 InstList::iterator NextIter; | |
| 534 for (; Iter != IterEnd && !State.shouldSkipAllInstructions(); | |
| 535 Iter = NextIter) { | |
| 536 NextIter = Iter; | |
| 537 ++NextIter; | |
| 538 Inst *Instr = iteratorToInst(Iter); | |
| 539 if (Instr->isDeleted()) | |
| 540 continue; | |
| 541 State.setInst(Instr, Iter, NextIter); | |
| 542 | |
| 543 // Before doing any transformations, take care of the bookkeeping for | |
| 544 // intra-block branching. | |
| 545 // | |
| 546 // This is tricky because the transformation for one instruction may | |
| 547 // depend on a transformation for a previous instruction, but if that | |
| 548 // previous instruction is not dynamically executed due to intra-block | |
| 549 // control flow, it may lead to an inconsistent state and incorrect code. | |
| 550 // | |
| 551 // We want to handle some simple cases, and reject some others: | |
| 552 // | |
| 553 // 1. For something like a select instruction, we could have: | |
| 554 // test cond | |
| 555 // dest = src_false | |
| 556 // branch conditionally to label | |
| 557 // dest = src_true | |
| 558 // label: | |
| 559 // | |
| 560 // Between the conditional branch and the label, we need to treat dest and | |
| 561 // src variables specially, specifically not creating any new state. | |
| 562 // | |
| 563 // 2. Some 64-bit atomic instructions may be lowered to a loop: | |
| 564 // label: | |
| 565 // ... | |
| 566 // branch conditionally to label | |
| 567 // | |
| 568 // No special treatment is needed, but it's worth tracking so that case #1 | |
| 569 // above can also be handled. | |
| 570 // | |
| 571 // 3. Advanced switch lowering can create really complex intra-block | |
| 572 // control flow, so when we recognize this, we should just stop splitting | |
| 573 // for the remainder of the block (which isn't much since a switch | |
| 574 // instruction is a terminator). | |
| 575 // | |
| 576 // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture, | |
| 577 // can result in an if/then/else like structure with two labels. One | |
| 578 // possibility would be to suspect splitting for the remainder of the | |
| 579 // lowered instruction, and then resume for the remainder of the block, | |
| 580 // but since we don't have high-level instruction markers, we might as | |
| 581 // well just stop splitting for the remainder of the block. | |
| 582 if (State.handleLabel()) | |
| 583 continue; | |
| 584 if (State.handleIntraBlockBranch()) | |
| 585 continue; | |
| 586 if (State.handleUnwantedInstruction()) | |
| 587 continue; | |
| 588 | |
| 589 // Intra-block bookkeeping is complete, now do the transformations. | |
| 590 | |
| 591 // Determine the transformation based on the kind of instruction, and | |
| 592 // whether its Variables are infinite-weight. New instructions can be | |
| 593 // inserted before the current instruction via Iter, or after the current | |
| 594 // instruction via NextIter. | |
| 595 if (State.handleVarAssign()) | |
| 596 continue; | |
| 597 if (State.handleGeneralInst()) | |
|
John
2016/08/01 14:17:32
no need for this if here, right?
Jim Stichnoth
2016/08/01 15:13:51
True, but I kinda like the consistency, and it mak
| |
| 598 continue; | |
| 599 } | |
| 600 State.finalizeNode(); | |
| 601 } | |
| 602 | |
| 603 Func->dump("After splitting local variables"); | |
| 604 } | |
| 605 | |
| 606 } // end of namespace Ice | |
| OLD | NEW |