OLD | NEW |
---|---|
(Empty) | |
1 //===- subzero/src/IceVariableSplitting.cpp - Local variable splitting ----===// | |
2 // | |
3 // The Subzero Code Generator | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 /// | |
10 /// \file | |
11 /// \brief Aggressive block-local variable splitting to improve linear-scan | |
12 /// register allocation. | |
13 /// | |
14 //===----------------------------------------------------------------------===// | |
15 | |
16 #include "IceVariableSplitting.h" | |
17 | |
18 #include "IceCfg.h" | |
19 #include "IceCfgNode.h" | |
20 #include "IceClFlags.h" | |
21 #include "IceInst.h" | |
22 #include "IceOperand.h" | |
23 #include "IceTargetLowering.h" | |
24 | |
25 namespace Ice { | |
26 | |
27 namespace { | |
28 | |
29 /// A Variable is "allocable" if it is a register allocation candidate but | |
30 /// doesn't already have a register. | |
31 bool isAllocable(const Variable *Var) { | |
32 if (Var == nullptr) | |
33 return false; | |
34 return !Var->hasReg() && Var->mayHaveReg(); | |
35 } | |
36 | |
37 /// A Variable is "inf" if it already has a register or is infinite-weight. | |
38 bool isInf(const Variable *Var) { | |
39 if (Var == nullptr) | |
40 return false; | |
41 return Var->hasReg() || Var->mustHaveReg(); | |
42 } | |
43 | |
44 /// VariableMap is a simple helper class for splitLocalVars(), that keeps track | |
45 /// of the latest split version of the original Variables. For each entry, the | |
46 /// Variable is tagged with the CfgNode that it is valid in, so that we don't | |
47 /// need to clear the entire Map[] vector for each block. | |
48 class VariableMap { | |
49 private: | |
50 VariableMap() = delete; | |
51 VariableMap(const VariableMap &) = delete; | |
52 VariableMap &operator=(const VariableMap &) = delete; | |
53 | |
54 /// VarNodePair is basically std::pair<Variable*,CfgNode*> . | |
55 struct VarNodePair { | |
56 Variable *Var = nullptr; | |
57 const CfgNode *Node = nullptr; | |
58 VarNodePair() = default; | |
59 | |
60 private: | |
61 VarNodePair(const VarNodePair &) = delete; | |
62 VarNodePair &operator=(const VarNodePair &) = delete; | |
63 }; | |
64 | |
65 public: | |
66 explicit VariableMap(Cfg *Func) | |
67 : Func(Func), NumVars(Func->getNumVariables()), Map(NumVars) {} | |
68 /// Reset the mappings at the start of a block. | |
69 void reset(const CfgNode *CurNode) { Node = CurNode; } | |
70 /// Get Var's current mapping (or Var itself if it has no mapping yet). | |
71 Variable *get(Variable *Var) const { | |
72 const SizeT VarNum = getVarNum(Var); | |
73 Variable *MappedVar = Map[VarNum].Var; | |
74 if (MappedVar == nullptr) | |
75 return Var; | |
76 if (Map[VarNum].Node != Node) | |
77 return Var; | |
78 return MappedVar; | |
79 } | |
80 /// Create a new linked Variable in the LinkedTo chain, and set it as Var's | |
81 /// latest mapping. | |
82 Variable *makeLinked(Variable *Var) { | |
83 Variable *NewVar = Func->makeVariable(Var->getType()); | |
84 NewVar->setRegClass(Var->getRegClass()); | |
85 NewVar->setLinkedTo(get(Var)); | |
86 const SizeT VarNum = getVarNum(Var); | |
87 Map[VarNum].Var = NewVar; | |
88 Map[VarNum].Node = Node; | |
89 return NewVar; | |
90 } | |
91 /// Given Var that is LinkedTo some other variable, re-splice it into the | |
92 /// LinkedTo chain so that the chain is ordered by Variable::getIndex(). | |
93 void spliceBlockLocalLinkedToChain(Variable *Var) { | |
94 Variable *LinkedTo = Var->getLinkedTo(); | |
95 assert(LinkedTo != nullptr); | |
96 assert(Var->getIndex() > LinkedTo->getIndex()); | |
97 const SizeT VarNum = getVarNum(LinkedTo); | |
98 Variable *Link = Map[VarNum].Var; | |
99 if (Link == nullptr || Map[VarNum].Node != Node) | |
100 return; | |
101 Variable *LinkParent = Link->getLinkedTo(); | |
102 while (LinkParent != nullptr && LinkParent->getIndex() >= Var->getIndex()) { | |
103 Link = LinkParent; | |
104 LinkParent = Link->getLinkedTo(); | |
105 } | |
106 Var->setLinkedTo(LinkParent); | |
107 Link->setLinkedTo(Var); | |
108 } | |
109 | |
110 private: | |
111 Cfg *const Func; | |
112 // NumVars is for the size of the Map array. It can be const because any new | |
113 // Variables created during the splitting pass don't need to be mapped. | |
114 const SizeT NumVars; | |
115 CfgVector<VarNodePair> Map; | |
116 const CfgNode *Node = nullptr; | |
117 /// Get Var's VarNum, and do some validation. | |
118 SizeT getVarNum(Variable *Var) const { | |
119 const SizeT VarNum = Var->getIndex(); | |
120 assert(VarNum < NumVars); | |
121 return VarNum; | |
122 } | |
123 }; | |
124 | |
125 /// LocalSplittingState tracks the necessary splitting state across | |
126 /// instructions. | |
127 class LocalSplittingState { | |
John
2016/08/01 14:17:32
This is not really a State, it contains the State
Jim Stichnoth
2016/08/01 15:13:50
Changed to "class LocalVariableSplitter Splitter".
| |
128 LocalSplittingState() = delete; | |
129 LocalSplittingState(const LocalSplittingState &) = delete; | |
130 LocalSplittingState &operator=(const LocalSplittingState &) = delete; | |
131 | |
132 public: | |
133 explicit LocalSplittingState(Cfg *Func) | |
134 : Target(Func->getTarget()), VarMap(Func) {} | |
135 /// setNode() is called before processing the instructions of a block. | |
136 void setNode(CfgNode *CurNode) { | |
137 Node = CurNode; | |
138 VarMap.reset(Node); | |
139 LinkedToFixups.clear(); | |
140 } | |
141 /// finalizeNode() is called after all instructions in the block are | |
142 /// processed. | |
143 void finalizeNode() { | |
144 // Splice in any preexisting LinkedTo links into the single chain. These | |
145 // are the ones that were recorded during setInst(). | |
146 for (Variable *Var : LinkedToFixups) { | |
147 VarMap.spliceBlockLocalLinkedToChain(Var); | |
148 } | |
149 } | |
150 /// setInst() is called before processing the next instruction. The iterators | |
151 /// are the insertion points for a new instructions, depending on whether the | |
152 /// new instruction should be inserted before or after the current | |
153 /// instruction. | |
154 void setInst(Inst *CurInst, InstList::iterator Cur, InstList::iterator Next) { | |
John
2016/08/01 14:17:32
isn't it possible to infer CurInst from Cur, and v
Jim Stichnoth
2016/08/01 15:13:51
Not if CurInst is a phi instruction. (I think I h
| |
155 Instr = CurInst; | |
156 Dest = Instr->getDest(); | |
157 IterCur = Cur; | |
158 IterNext = Next; | |
159 ShouldSkipThisInstruction = false; | |
160 ShouldSkipAllInstructions = false; | |
161 // Note any preexisting LinkedTo relationships that were created during | |
162 // target lowering. Record them in LinkedToFixups which is then processed | |
163 // in finalizeNode(). | |
164 if (Dest != nullptr && Dest->getLinkedTo() != nullptr) { | |
165 LinkedToFixups.emplace_back(Dest); | |
166 } | |
167 } | |
168 bool shouldSkipThisInstruction() const { return ShouldSkipThisInstruction; } | |
John
2016/08/01 14:17:32
perhaps this should
return ShouldSkipThisInstruct
Jim Stichnoth
2016/08/01 15:13:51
I think I sidestepped this issue with the later pa
| |
169 bool shouldSkipAllInstructions() const { return ShouldSkipAllInstructions; } | |
170 bool isUnconditionallyExecuted() const { return WaitingForLabel == nullptr; } | |
171 | |
172 /// Note: the handle*() functions set the ShouldSkipThisInstruction flag to | |
173 /// indicate that the instruction has now been handled and that the | |
174 /// instruction loop should continue to the next instruction in the block. In | |
175 /// addition, they set the ShouldSkipAllInstructions flag to indicate that no | |
John
2016/08/01 14:17:32
If it indicates that no more instructions should b
Jim Stichnoth
2016/08/01 15:13:51
Done.
| |
176 /// more instructions in the block should be processed. | |
177 | |
178 /// Process an "unwanted" instruction by setting the ShouldSkipThisInstruction | |
179 /// flag as necessary. | |
180 void handleUnwantedInstruction() { | |
John
2016/08/01 14:17:32
Maybe return bool, and rename this to
isUnwantedI
Jim Stichnoth
2016/08/01 15:13:51
I did change all the handle*() functions to return
| |
181 // We can limit the splitting to an arbitrary subset of the instructions, | |
182 // and still expect correct code. As such, we can do instruction-subset | |
183 // bisection to help debug any problems in this pass. | |
184 static constexpr char AnInstructionHasNoName[] = ""; | |
185 if (!BuildDefs::minimal() && | |
186 !getFlags().matchSplitInsts(AnInstructionHasNoName, | |
187 Instr->getNumber())) { | |
188 ShouldSkipThisInstruction = true; | |
189 return; | |
190 } | |
191 if (!llvm::isa<InstTarget>(Instr)) { | |
192 // Ignore non-lowered instructions like FakeDef/FakeUse. | |
193 ShouldSkipThisInstruction = true; | |
194 return; | |
195 } | |
196 } | |
197 | |
198 /// Process a potential label instruction. | |
199 void handleLabel() { | |
John
2016/08/01 14:17:32
Maybe return bool, and rename this to
isLabel()
Jim Stichnoth
2016/08/01 15:13:51
Similar to above. I like to keep "handle" because
| |
200 if (!Instr->isLabel()) | |
201 return; | |
202 ShouldSkipThisInstruction = true; | |
203 // A Label instruction shouldn't have any operands, so it can be handled | |
204 // right here and then move on. | |
205 assert(Dest == nullptr); | |
206 assert(Instr->getSrcSize() == 0); | |
207 if (Instr == WaitingForLabel) { | |
John
2016/08/01 14:17:32
this approach will fail with "deep" short-circuiti
Jim Stichnoth
2016/08/01 19:55:36
By "fail", I assume you mean the entire short-circ
| |
208 // If we found the forward-branch-target Label instruction we're waiting | |
209 // for, then clear the WaitingForLabel state. | |
210 WaitingForLabel = nullptr; | |
211 } else if (WaitingForLabel == nullptr && WaitingForBranchTo == nullptr) { | |
212 // If we found a new Label instruction while the WaitingFor* state is | |
213 // clear, then set things up for this being a backward branch target. | |
214 WaitingForBranchTo = Instr; | |
215 } else { | |
216 // We see something we don't understand, so skip to the next block. | |
217 ShouldSkipAllInstructions = true; | |
218 } | |
219 } | |
220 | |
221 /// Process a potential intra-block branch instruction. | |
222 void handleIntraBlockBranch() { | |
John
2016/08/01 14:17:32
Maybe return bool, and rename this to
isIntraBloc
Jim Stichnoth
2016/08/01 15:13:51
(same as above with respect to state changes)
| |
223 const Inst *Label = Instr->getIntraBlockBranchTarget(); | |
224 if (Label == nullptr) | |
225 return; | |
226 ShouldSkipThisInstruction = true; | |
227 // An intra-block branch instruction shouldn't have any operands, so it can | |
228 // be handled right here and then move on. | |
229 assert(Dest == nullptr); | |
230 assert(Instr->getSrcSize() == 0); | |
231 if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) { | |
232 WaitingForBranchTo = nullptr; | |
233 } else if (WaitingForBranchTo == nullptr && | |
234 (WaitingForLabel == nullptr || WaitingForLabel == Label)) { | |
235 WaitingForLabel = Label; | |
236 } else { | |
237 // We see something we don't understand, so skip to the next block. | |
238 ShouldSkipAllInstructions = true; | |
239 } | |
240 } | |
241 | |
242 /// Specially process a potential "Variable=Variable" assignment instruction, | |
243 /// when it conforms to certain patterns. | |
244 void handleVarAssign() { | |
John
2016/08/01 14:17:32
Maybe return bool, and rename this to
isTrivialVa
Jim Stichnoth
2016/08/01 15:13:51
I still like "handle" because of the possible side
| |
245 if (!Instr->isVarAssign()) | |
246 return; | |
247 const bool DestIsInf = isInf(Dest); | |
248 const bool DestIsAllocable = isAllocable(Dest); | |
249 auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0)); | |
250 const bool SrcIsInf = isInf(SrcVar); | |
251 const bool SrcIsAllocable = isAllocable(SrcVar); | |
252 if (DestIsInf && SrcIsInf) { | |
253 // The instruction: | |
254 // t:inf = u:inf | |
255 // No transformation is needed. | |
256 ShouldSkipThisInstruction = true; | |
257 return; | |
258 } | |
259 if (DestIsInf && SrcIsAllocable && Dest->getType() == SrcVar->getType()) { | |
260 // The instruction: | |
261 // t:inf = v | |
262 // gets transformed to: | |
263 // t:inf = v1 | |
264 // v2 = t:inf | |
265 // where: | |
266 // v1 := map[v] | |
267 // v2 := linkTo(v) | |
268 // map[v] := v2 | |
269 // | |
270 // If both v2 and its linkedToStackRoot get a stack slot, then "v2=t:inf" | |
271 // is recognized as a redundant assignment and elided. | |
272 // | |
273 // Note that if the dest and src types are different, then this is | |
274 // actually a truncation operation, which would make "v2=t:inf" an invalid | |
275 // instruction. In this case, the type test will make it fall through to | |
276 // the general case below. | |
277 Variable *OldMapped = VarMap.get(SrcVar); | |
278 Instr->replaceSource(0, OldMapped); | |
279 if (isUnconditionallyExecuted()) { | |
280 // Only create new mapping state if the instruction is unconditionally | |
281 // executed. | |
282 Variable *NewMapped = VarMap.makeLinked(SrcVar); | |
283 Inst *Mov = Target->createLoweredMove(NewMapped, Dest); | |
284 Node->getInsts().insert(IterNext, Mov); | |
285 } | |
286 ShouldSkipThisInstruction = true; | |
287 return; | |
288 } | |
289 if (DestIsAllocable && SrcIsInf) { | |
290 // The instruction: | |
291 // v = t:inf | |
292 // gets transformed to: | |
293 // v = t:inf | |
294 // v2 = t:inf | |
295 // where: | |
296 // v2 := linkTo(v) | |
297 // map[v] := v2 | |
298 // | |
299 // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as a | |
300 // redundant assignment and elided. | |
301 if (isUnconditionallyExecuted()) { | |
302 // Only create new mapping state if the instruction is unconditionally | |
303 // executed. | |
304 Variable *NewMapped = VarMap.makeLinked(Dest); | |
305 Inst *Mov = Target->createLoweredMove(NewMapped, SrcVar); | |
306 Node->getInsts().insert(IterNext, Mov); | |
307 } else { | |
308 // For a conditionally executed instruction, add a redefinition of the | |
309 // original Dest mapping, without creating a new linked variable. | |
310 Variable *OldMapped = VarMap.get(Dest); | |
311 Inst *Mov = Target->createLoweredMove(OldMapped, SrcVar); | |
312 Mov->setDestRedefined(); | |
313 Node->getInsts().insert(IterNext, Mov); | |
314 } | |
315 ShouldSkipThisInstruction = true; | |
316 return; | |
317 } | |
318 assert(!ShouldSkipThisInstruction); | |
319 assert(!ShouldSkipAllInstructions); | |
320 } | |
321 | |
322 /// Process an arbitrary instruction. | |
323 void handleGeneralInst() { | |
324 const bool DestIsAllocable = isAllocable(Dest); | |
325 // The (non-variable-assignment) instruction: | |
326 // ... = F(v) | |
327 // where v is not infinite-weight, gets transformed to: | |
328 // v2 = v1 | |
329 // ... = F(v1) | |
330 // where: | |
331 // v1 := map[v] | |
332 // v2 := linkTo(v) | |
333 // map[v] := v2 | |
334 // After that, if the "..." dest=u is not infinite-weight, append: | |
335 // u2 = u | |
336 // where: | |
337 // u2 := linkTo(u) | |
338 // map[u] := u2 | |
339 for (SizeT i = 0; i < Instr->getSrcSize(); ++i) { | |
340 // Iterate over the top-level src vars. Don't bother to dig into | |
341 // e.g. MemOperands because their vars should all be infinite-weight. | |
342 // (This assumption would need to change if the pass were done | |
343 // pre-lowering.) | |
344 if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) { | |
345 const bool SrcIsAllocable = isAllocable(SrcVar); | |
346 if (SrcIsAllocable) { | |
347 Variable *OldMapped = VarMap.get(SrcVar); | |
348 if (isUnconditionallyExecuted()) { | |
349 Variable *NewMapped = VarMap.makeLinked(SrcVar); | |
350 Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped); | |
351 Node->getInsts().insert(IterCur, Mov); | |
352 } | |
353 Instr->replaceSource(i, OldMapped); | |
354 } | |
355 } | |
356 } | |
357 // Transformation of Dest is the same as the "v=t:inf" case above. | |
358 if (DestIsAllocable) { | |
359 if (isUnconditionallyExecuted()) { | |
360 Variable *NewMapped = VarMap.makeLinked(Dest); | |
361 Inst *Mov = Target->createLoweredMove(NewMapped, Dest); | |
362 Node->getInsts().insert(IterNext, Mov); | |
363 } else { | |
364 Variable *OldMapped = VarMap.get(Dest); | |
365 Inst *Mov = Target->createLoweredMove(OldMapped, Dest); | |
366 Mov->setDestRedefined(); | |
367 Node->getInsts().insert(IterNext, Mov); | |
368 } | |
369 } | |
370 } | |
371 | |
372 private: | |
373 TargetLowering *Target; | |
374 CfgNode *Node = nullptr; | |
375 Inst *Instr = nullptr; | |
376 Variable *Dest = nullptr; | |
377 InstList::iterator IterCur; | |
378 InstList::iterator IterNext; | |
379 bool ShouldSkipThisInstruction = false; | |
380 bool ShouldSkipAllInstructions = false; | |
381 VariableMap VarMap; | |
382 CfgVector<Variable *> LinkedToFixups; | |
383 /// WaitingForLabel and WaitingForBranchTo are for tracking intra-block | |
384 /// control flow. | |
385 const Inst *WaitingForLabel = nullptr; | |
386 const Inst *WaitingForBranchTo = nullptr; | |
387 }; | |
388 | |
389 } // end of anonymous namespace | |
390 | |
391 /// Within each basic block, rewrite Variable references in terms of chained | |
392 /// copies of the original Variable. For example: | |
393 /// A = B + C | |
394 /// might be rewritten as: | |
395 /// B1 = B | |
396 /// C1 = C | |
397 /// A = B + C | |
398 /// A1 = A | |
399 /// and then: | |
400 /// D = A + B | |
401 /// might be rewritten as: | |
402 /// A2 = A1 | |
403 /// B2 = B1 | |
404 /// D = A1 + B1 | |
405 /// D1 = D | |
406 /// | |
407 /// The purpose is to present the linear-scan register allocator with smaller | |
408 /// live ranges, to help mitigate its "all or nothing" allocation strategy, | |
409 /// while counting on its preference mechanism to keep the split versions in the | |
410 /// same register when possible. | |
411 /// | |
412 /// When creating new Variables, A2 is linked to A1 which is linked to A, and | |
413 /// similar for the other Variable linked-to chains. Rewrites apply only to | |
414 /// Variables where mayHaveReg() is true. | |
415 /// | |
416 /// At code emission time, redundant linked-to stack assignments will be | |
417 /// recognized and elided. To illustrate using the above example, if A1 gets a | |
418 /// register but A and A2 are on the stack, the "A2=A1" store instruction is | |
419 /// redundant since A and A2 share the same stack slot and A1 originated from A. | |
420 /// | |
421 /// Simple assignment instructions are rewritten slightly differently, to take | |
422 /// maximal advantage of Variables known to have registers. | |
423 /// | |
424 /// In general, there may be several valid ways to rewrite an instruction: add | |
425 /// the new assignment instruction either before or after the original | |
426 /// instruction, and rewrite the original instruction with either the old or the | |
427 /// new variable mapping. We try to pick a strategy most likely to avoid | |
428 /// potential performance problems. For example, try to avoid storing to the | |
429 /// stack and then immediately reloading from the same location. One | |
430 /// consequence is that code might be generated that loads a register from a | |
431 /// stack location, followed almost immediately by another use of the same stack | |
432 /// location, despite its value already being available in a register as a | |
433 /// result of the first instruction. However, the performance impact here is | |
434 /// likely to be negligible, and a simple availability peephole optimization | |
435 /// could clean it up. | |
436 /// | |
437 /// This pass potentially adds a lot of new instructions and variables, and as | |
438 /// such there are compile-time performance concerns, particularly with liveness | |
439 /// analysis and register allocation. Note that for liveness analysis, the new | |
440 /// variables have single-block liveness, so they don't increase the size of the | |
441 /// liveness bit vectors that need to be merged across blocks. As a result, the | |
442 /// performance impact is likely to be linearly related to the number of new | |
443 /// instructions, rather than number of new variables times number of blocks | |
444 /// which would be the case if they were multi-block variables. | |
445 void splitBlockLocalVariables(Cfg *Func) { | |
446 if (!getFlags().getSplitLocalVars()) | |
447 return; | |
448 TimerMarker _(TimerStack::TT_splitLocalVars, Func); | |
449 LocalSplittingState State(Func); | |
450 // TODO(stichnot): Fix this mechanism for LinkedTo variables and stack slot | |
451 // assignment. | |
452 // | |
453 // To work around shortcomings with stack frame mapping, we want to arrange | |
454 // LinkedTo structure such that within one block, the LinkedTo structure | |
455 // leading to a root forms a list, not a tree. A LinkedTo root can have | |
456 // multiple children linking to it, but only one per block. Furthermore, | |
457 // because stack slot mapping processes variables in numerical order, the | |
458 // LinkedTo chain needs to be ordered such that when A->getLinkedTo()==B, then | |
459 // A->getIndex()>B->getIndex(). | |
460 // | |
461 // To effect this, while processing a block we keep track of preexisting | |
462 // LinkedTo relationships via the LinkedToFixups vector, and at the end of the | |
463 // block we splice them in such that the block has a single chain for each | |
464 // root, ordered by getIndex() value. | |
465 CfgVector<Variable *> LinkedToFixups; | |
466 for (CfgNode *Node : Func->getNodes()) { | |
467 // Clear the VarMap and LinkedToFixups at the start of every block. | |
468 LinkedToFixups.clear(); | |
469 State.setNode(Node); | |
470 auto &Insts = Node->getInsts(); | |
471 auto Iter = Insts.begin(); | |
472 auto IterEnd = Insts.end(); | |
473 // TODO(stichnot): Also create assignments/mappings for phi dest variables. | |
474 InstList::iterator NextIter; | |
475 for (; Iter != IterEnd && !State.shouldSkipAllInstructions(); | |
476 Iter = NextIter) { | |
477 NextIter = Iter; | |
478 ++NextIter; | |
479 Inst *Instr = iteratorToInst(Iter); | |
480 if (Instr->isDeleted()) | |
481 continue; | |
482 State.setInst(Instr, Iter, NextIter); | |
483 | |
484 // Before doing any transformations, take care of the bookkeeping for | |
485 // intra-block branching. | |
486 // | |
487 // This is tricky because the transformation for one instruction may | |
488 // depend on a transformation for a previous instruction, but if that | |
489 // previous instruction is not dynamically executed due to intra-block | |
490 // control flow, it may lead to an inconsistent state and incorrect code. | |
491 // | |
492 // We want to handle some simple cases, and reject some others: | |
493 // | |
494 // 1. For something like a select instruction, we could have: | |
495 // test cond | |
496 // dest = src_false | |
497 // branch conditionally to label | |
498 // dest = src_true | |
499 // label: | |
500 // | |
501 // Between the conditional branch and the label, we need to treat dest and | |
502 // src variables specially, specifically not creating any new state. | |
503 // | |
504 // 2. Some 64-bit atomic instructions may be lowered to a loop: | |
505 // label: | |
506 // ... | |
507 // branch conditionally to label | |
508 // | |
509 // No special treatment is needed, but it's worth tracking so that case #1 | |
510 // above can also be handled. | |
511 // | |
512 // 3. Advanced switch lowering can create really complex intra-block | |
513 // control flow, so when we recognize this, we should just stop splitting | |
514 // for the remainder of the block (which isn't much since a switch | |
515 // instruction is a terminator). | |
516 // | |
517 // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture, | |
518 // can result in an if/then/else like structure with two labels. One | |
519 // possibility would be to suspect splitting for the remainder of the | |
520 // lowered instruction, and then resume for the remainder of the block, | |
521 // but since we don't have high-level instruction markers, we might as | |
522 // well just stop splitting for the remainder of the block. | |
523 State.handleLabel(); | |
John
2016/08/01 14:17:32
if these returned bool, this could be
if (State.i
Jim Stichnoth
2016/08/01 15:13:51
Done, in the later patchset.
| |
524 State.handleIntraBlockBranch(); | |
525 State.handleUnwantedInstruction(); | |
526 if (State.shouldSkipThisInstruction()) | |
527 continue; | |
528 | |
529 // Intra-block bookkeeping is complete, now do the transformations. | |
530 | |
531 // Determine the transformation based on the kind of instruction, and | |
532 // whether its Variables are infinite-weight. New instructions can be | |
John
2016/08/01 14:17:32
... and you can get rid of the special-case for va
Jim Stichnoth
2016/08/01 15:13:51
I think it's much cleaner now in the later patchse
| |
533 // inserted before the current instruction via Iter, or after the current | |
534 // instruction via NextIter. | |
535 if (Instr->isVarAssign()) { | |
536 State.handleVarAssign(); | |
537 if (State.shouldSkipThisInstruction()) | |
538 continue; | |
539 } | |
540 State.handleGeneralInst(); | |
541 // Don't bother checking State.shouldSkipThisInstruction() since this the | |
542 // end of the loop. | |
543 } | |
544 State.finalizeNode(); | |
545 } | |
546 | |
547 Func->dump("After splitting local variables"); | |
548 } | |
549 | |
550 } // end of namespace Ice | |
OLD | NEW |