Index: src/compiler/store-store-elimination.cc |
diff --git a/src/compiler/store-store-elimination.cc b/src/compiler/store-store-elimination.cc |
index 3b7e3e053e018e1ee194cafcb02845d528857051..ec00994f1fcd88a43e38cb0d2d550c77dfaa81b5 100644 |
--- a/src/compiler/store-store-elimination.cc |
+++ b/src/compiler/store-store-elimination.cc |
@@ -13,152 +13,132 @@ namespace v8 { |
namespace internal { |
namespace compiler { |
-#define TRACE(fmt, ...) \ |
- do { \ |
- if (FLAG_trace_store_elimination) { \ |
- PrintF("StoreStoreElimination::ReduceEligibleNode: " fmt "\n", \ |
- ##__VA_ARGS__); \ |
- } \ |
+#define TRACE1(fmt, ...) \ |
+ do { \ |
+ if (FLAG_trace_store_elimination) { \ |
+ PrintF("StoreStoreElimination::Run: " fmt "\n", ##__VA_ARGS__); \ |
+ } \ |
} while (false) |
-// A simple store-store elimination. When the effect chain contains the |
-// following sequence, |
-// |
-// - StoreField[[+off_1]](x1, y1) |
-// - StoreField[[+off_2]](x2, y2) |
-// - StoreField[[+off_3]](x3, y3) |
-// ... |
-// - StoreField[[+off_n]](xn, yn) |
-// |
-// where the xes are the objects and the ys are the values to be stored, then |
-// we are going to say that a store is superfluous if the same offset of the |
-// same object will be stored to in the future. If off_i == off_j and xi == xj |
-// and i < j, then we optimize the i'th StoreField away. |
-// |
-// This optimization should be initiated on the last StoreField in such a |
-// sequence. |
-// |
-// The algorithm works by walking the effect chain from the last StoreField |
-// upwards. While walking, we maintain a map {futureStore} from offsets to |
-// nodes; initially it is empty. As we walk the effect chain upwards, if |
-// futureStore[off] = n, then any store to node {n} with offset {off} is |
-// guaranteed to be useless because we do a tagged-width[2] store to that |
-// offset of that object in the near future anyway. For example, for this |
-// effect chain |
-// |
-// 71: StoreField(60, 0) |
-// 72: StoreField(65, 8) |
-// 73: StoreField(63, 8) |
-// 74: StoreField(65, 16) |
-// 75: StoreField(62, 8) |
-// |
-// just before we get to 72, we will have futureStore = {8: 63, 16: 65}. |
+#define TRACE2(level, fmt, ...) \ |
+ do { \ |
+ if (FLAG_trace_store_elimination && \ |
+ FLAG_trace_store_elimination_level >= (level)) { \ |
+ PrintF("StoreStoreFinder: [%d] " fmt "\n", level, ##__VA_ARGS__); \ |
+ } \ |
+ } while (false) |
Jarin
2016/07/20 11:43:33
This feels a bit over-engineered - normally, you w
bgeron
2016/07/20 16:27:16
Because trace level 1 is ~37% as big as trace leve
|
+ |
+// CHECK_EXTRA is like CHECK, but has two or more arguments: a boolean |
+// expression, a format string, and any number of extra arguments. The boolean |
+// expression will be evaluated at runtime. If it evaluates to false, then an |
+// error message will be shown containing the condition, as well as the extra |
+// info formatted like with printf. |
+#define CHECK_EXTRA(condition, fmt, ...) \ |
+ do { \ |
+ if (V8_UNLIKELY(!(condition))) { \ |
+ V8_Fatal(__FILE__, __LINE__, "Check failed: %s. Extra info: " fmt, \ |
+ #condition, ##__VA_ARGS__); \ |
+ } \ |
+ } while (0) |
+ |
+#ifdef DEBUG |
+#define DCHECK_EXTRA(condition, fmt, ...) \ |
+ CHECK_EXTRA(condition, fmt, ##__VA_ARGS__) |
+#else |
+#define DCHECK_EXTRA(condition, fmt, ...) ((void)0) |
+#endif |
+ |
+// Store-store elimination. |
// |
-// Here is the complete process. |
+// The aim of this optimization is to detect the following pattern in the |
+// effect graph: |
// |
-// - We are at the end of a sequence of consecutive StoreFields. |
-// - We start out with futureStore = empty. |
-// - We then walk the effect chain upwards to find the next StoreField [1]. |
+// - StoreField[+24, kRepTagged](263, ...) |
// |
-// 1. If the offset is not a key of {futureStore} yet, we put it in. |
-// 2. If the offset is a key of {futureStore}, but futureStore[offset] is a |
-// different node, we overwrite futureStore[offset] with the current node. |
-// 3. If the offset is a key of {futureStore} and futureStore[offset] equals |
-// this node, we eliminate this StoreField. |
+// ... lots of nodes from which the field at offset 24 of the object |
+// returned by node #263 cannot be observed ... |
// |
-// As long as the current effect input points to a node with a single effect |
-// output, and as long as its opcode is StoreField, we keep traversing |
-// upwards. |
+// - StoreField[+24, kRepTagged](263, ...) |
// |
+// In such situations, the earlier StoreField cannot be observed, and can be |
+// eliminated. This optimization should work for any offset and input node, of |
+// course. |
// |
+// The optimization also works across splits. It currently does not work for |
+// loops, because we tend to put a stack check in loops, and like deopts, |
+// stack checks can observe anything. |
// |
-// footnotes: |
+// The implementation consists of two phases. The first phase |
+// (StoreStoreFinder) analyzes the graph, and at every point determines what |
+// fields are guaranteed not to be observed in the future. The second phase |
+// then eliminates all StoreField nodes that are known to be unobservable. |
// |
-// [1] We make sure that we only traverse the linear part, that is, the part |
-// where every node has exactly one incoming and one outgoing effect edge. |
-// Also, we only keep walking upwards as long as we keep finding consecutive |
-// StoreFields on the same node. |
+// Per node, we store a data structure called the UnobservablesSet, which is a |
+// set of pairs of nodes and offsets. For instance, a Return always has an |
+// empty UnobservablesSet, as does a deoptimization, throw, or stack check. |
+// The UnobservablesSet of a StoreField consists of the node and the offset |
+// that it stores to, as well as the UnobservablesSet of the next node in the |
+// effect chain. When there are multiple succeeding nodes in the effect graph, |
+// then the intersection of their UnobservablesSet is taken, and then the |
+// offset of that StoreField is added. |
// |
-// [2] This optimization is sound only in certain cases. Specifically, the |
-// presence of a future store to {off} by itself does not automatically mean |
-// that earlier stores to {off} are superfluous: a future narrow store does |
-// not obviate an earlier wide store. However, future stores of a certain |
-// size do obviate stores to the same offset of lesser or equal size. |
+// To allow for cycles in the effect graph, the implementation does a fixpoint |
+// computation. Unfortunately, we compute a least fixpoint not a greatest |
+// fixpoint. In practical terms this means that if we have a loop without any |
+// deopt or stack check, and a StoreField inside and after the loop, then we |
+// will not detect that the StoreField inside the loop is unobservable. This |
+// means that theoretically this implementation is slightly suboptimal. |
+// However, in practice we always put a stack check inside a loop, so the |
+// implementation should be optimal in practice. |
// |
-// It turns out that we are most interested in stores of "tagged" size, |
-// which is 8 bytes on 64-bit archs and 4 bit on 32-bit archs. In |
-// {futureStore}, we record future writes that are of at least this size. |
-// The three cases are actually a bit more subtle. |
+// To implement this fixpoint, we use a special value |
+// UnobservablesSet::Undetermined(), which is functionally empty. When a |
+// node's UnobservablesSet is undetermined, then that means that we have no |
+// knowledge about what fields are unobservable at that point. In contrast, |
+// when a node's UnobservablesSet is determined but empty, and the node is not |
+// marked for revisiting, then the node's effect input is determined and up- |
+// to-date. Initially, the UnobservablesSet of all nodes is set to |
+// undetermined. |
// |
-// 1. If the offset is not a key of {futureStore} and the StoreField is of |
-// "tagged" size or wider, then we put it in. |
-// 2. If the offset is present in {futureStore} but the value is different, |
-// then we overwrite the value if the current StoreField is of "tagged" |
-// size or wider. |
-// 3. If the offset is present and the value matches the node, and the |
-// current StoreField is AT MOST of "tagged" size, then we eliminate this |
-// StoreField. |
+// We apply some sharing to save memory. The class UnobservablesSet is only a |
+// pointer wide, and a copy does not use any heap (or temp_zone) memory. Most |
+// changes to an UnobservablesSet allocate in the temp_zone. |
Jarin
2016/07/20 11:43:33
This blurb should go into the UnobservablesSet cla
bgeron
2016/07/20 16:27:16
Done.
|
+ |
+// An ideal store-store elimination would keep for every object a set of byte |
+// ranges into that object which are unobservable. We skimp on this, and only |
+// store a set of offsets. If offset {off} is in the set, then that means that |
+// bytes {off} up to but excluding {off+taggedSize} are unobservable, where |
+// {taggedSize} is the size in bytes of a tagged value. We don't record that |
+// writes smaller than taggedSize are unobservable, and we don't optimize away |
+// writes larger than taggedSize. |
// |
-// Examples of stores that we do not detect as superfluous: 2-byte stores |
-// followed by 2-byte stores to the same offset; 16-byte stores followed by |
-// 16-byte stores to the same offset. On ia32, we do not detect consecutive |
-// float64 stores as superfluous, and on x86 we do not detect consecutive |
-// int32 stores as superfluous. |
- |
-// At a late stage, we realized that this code is more complicated than it |
-// needs to be: if we store a set of pairs (offset, node), the code simplifies |
-// to 3 cases instead of 6. We could even store a map from nodes to sets of |
-// bytes. |
- |
-StoreStoreElimination::StoreStoreElimination(JSGraph* js_graph, Zone* temp_zone) |
- : jsgraph_(js_graph), temp_zone_(temp_zone) {} |
- |
-StoreStoreElimination::~StoreStoreElimination() {} |
- |
-void StoreStoreElimination::Run() { |
- // The store-store elimination performs work on chains of certain types of |
- // nodes. The elimination must be invoked on the lowest node in such a |
- // chain; we have a helper function IsEligibleNode that returns true |
- // precisely on the lowest node in such a chain. |
- // |
- // Because the elimination removes nodes from the graph, even remove nodes |
- // that the elimination was not invoked on, we cannot use a normal |
- // AdvancedReducer but we manually find which nodes to invoke the |
- // elimination on. Then in a next step, we invoke the elimination for each |
- // node that was eligible. |
- |
- NodeVector eligible(temp_zone()); // loops over all nodes |
- AllNodes all(temp_zone(), jsgraph()->graph()); |
- |
- for (Node* node : all.live) { |
- if (IsEligibleNode(node)) { |
- eligible.push_back(node); |
- } |
- } |
+// The result should be that this store-store elimination is fast enough, and |
+// also optimizes away most superfluous stores. |
- for (Node* node : eligible) { |
- ReduceEligibleNode(node); |
- } |
-} |
+// Assumption: every byte of a JS object is only ever accessed through one |
+// offset. For instance, byte 15 of a given object may be accessed using a |
+// two-byte read at offset 14, or a four-byte read at offset 12, but never |
+// both in the same program. |
-namespace { |
+// This implementation needs all dead nodes removed from the graph, and the |
+// graph should be trimmed. |
-// 16 bits was chosen fairly arbitrarily; it seems enough now. 8 bits is too |
-// few. |
-typedef uint16_t Offset; |
+namespace { |
// To safely cast an offset from a FieldAccess, which has a wider range |
// (namely int). |
-Offset ToOffset(int offset) { |
- CHECK(0 <= offset && offset < (1 << 8 * sizeof(Offset))); |
- return (Offset)offset; |
+StoreOffset to_offset(int offset) { |
Jarin
2016/07/20 11:43:33
Function names should be CamelCase. (Here and belo
bgeron
2016/07/20 16:27:16
Yeah, you're right. I was thinking of the "simple
|
+ CHECK(0 <= offset && offset < (1 << 8 * sizeof(StoreOffset))); |
+ return (StoreOffset)offset; |
} |
-Offset ToOffset(const FieldAccess& access) { return ToOffset(access.offset); } |
+StoreOffset to_offset(const FieldAccess& access) { |
+ return to_offset(access.offset); |
+} |
// If node has a single effect use, return that node. If node has no or |
// multiple effect uses, return nullptr. |
-Node* SingleEffectUse(Node* node) { |
+Node* single_effect_use(Node* node) { |
Node* last_use = nullptr; |
for (Edge edge : node->use_edges()) { |
if (!NodeProperties::IsEffectEdge(edge)) { |
@@ -174,27 +154,17 @@ Node* SingleEffectUse(Node* node) { |
return last_use; |
} |
-// Return true if node is the last consecutive StoreField node in a linear |
-// part of the effect chain. |
-bool IsEndOfStoreFieldChain(Node* node) { |
- Node* next_on_chain = SingleEffectUse(node); |
- return (next_on_chain == nullptr || |
- next_on_chain->op()->opcode() != IrOpcode::kStoreField); |
-} |
- |
-// The argument must be a StoreField node. If there is a node before it in the |
-// effect chain, and if this part of the effect chain is linear (no other |
-// effect uses of that previous node), then return that previous node. |
-// Otherwise, return nullptr. |
-// |
-// The returned node need not be a StoreField. |
-Node* PreviousEffectBeforeStoreField(Node* node) { |
- DCHECK_EQ(node->op()->opcode(), IrOpcode::kStoreField); |
- DCHECK_EQ(node->op()->EffectInputCount(), 1); |
- |
- Node* previous = NodeProperties::GetEffectInput(node); |
- if (previous != nullptr && node == SingleEffectUse(previous)) { |
- return previous; |
+// If there is a node before {node} in the effect chain, and if this part of |
+// the effect chain is linear (no other effect uses of that previous node), |
+// then return that previous node. Otherwise, return nullptr. |
+Node* previous_effect_in_chain(Node* node) { |
+ if (node->op()->EffectInputCount() == 1) { |
+ Node* previous = NodeProperties::GetEffectInput(node); |
+ if (previous != nullptr && node == single_effect_use(previous)) { |
+ return previous; |
+ } else { |
+ return nullptr; |
+ } |
} else { |
return nullptr; |
} |
@@ -207,113 +177,457 @@ size_t rep_size_of(FieldAccess access) { |
return rep_size_of(access.machine_type.representation()); |
} |
-bool AtMostTagged(FieldAccess access) { |
+bool at_most_tagged(FieldAccess access) { |
return rep_size_of(access) <= rep_size_of(MachineRepresentation::kTagged); |
} |
-bool AtLeastTagged(FieldAccess access) { |
+bool at_least_tagged(FieldAccess access) { |
return rep_size_of(access) >= rep_size_of(MachineRepresentation::kTagged); |
} |
+int effect_use_count(Node* node) { |
+ int uses = 0; |
+ for (const Edge edge : node->use_edges()) { |
+ if (NodeProperties::IsEffectEdge(edge)) { |
+ uses++; |
+ } |
+ } |
+ return uses; |
+} |
+ |
} // namespace |
-bool StoreStoreElimination::IsEligibleNode(Node* node) { |
- return (node->op()->opcode() == IrOpcode::kStoreField) && |
- IsEndOfStoreFieldChain(node); |
+void StoreStoreElimination::Run(JSGraph* js_graph, Zone* temp_zone) { |
+ // Find superfluous nodes |
+ GraphReducer graph_reducer(temp_zone, js_graph->graph(), js_graph->Dead()); |
+ StoreStoreFinder finder(&graph_reducer, js_graph, temp_zone); |
+ graph_reducer.AddReducer(&finder); |
+ graph_reducer.ReduceGraph(); |
+ |
+ // Remove superfluous nodes |
+ TRACE1("Eliminating %d nodes", (int)finder.to_remove_const().size()); |
+ for (Node* node : finder.to_remove_const()) { |
+ TRACE1(" Eliminating node: #%d:%s", node->id(), node->op()->mnemonic()); |
+ Node* previous_effect = NodeProperties::GetEffectInput(node); |
+ NodeProperties::ReplaceUses(node, nullptr, previous_effect, nullptr, |
+ nullptr); |
+ node->Kill(); |
+ } |
} |
-void StoreStoreElimination::ReduceEligibleNode(Node* node) { |
- DCHECK(IsEligibleNode(node)); |
+bool StoreStoreFinder::IsEligibleNode(Node* node) { |
+ DCHECK_LE(node->op()->EffectOutputCount(), 1); |
- // if (FLAG_trace_store_elimination) { |
- // PrintF("** StoreStoreElimination::ReduceEligibleNode: activated: |
- // #%d\n", |
- // node->id()); |
- // } |
+ TRACE2(5, "%d e-inputs, %d e-outputs, %d e-uses for node %d:%s", |
+ node->op()->EffectInputCount(), node->op()->EffectOutputCount(), |
+ effect_use_count(node), node->id(), node->op()->mnemonic()); |
- TRACE("activated: #%d", node->id()); |
+ bool isEffectful = (node->op()->EffectInputCount() >= 1); |
+ bool endsEffectChain = |
+ (effect_use_count(node) == 1) |
+ ? (single_effect_use(node)->op()->EffectInputCount() >= 2) |
+ : true; |
+ return isEffectful && endsEffectChain; |
+} |
- // Initialize empty futureStore. |
- ZoneMap<Offset, Node*> futureStore(temp_zone()); |
+// Recompute unobservables-set for a node. Will also mark superfluous nodes |
+// as to be removed. |
+ |
+UnobservablesSet StoreStoreFinder::RecomputeSet(Node* node, |
+ UnobservablesSet uses) { |
+ // Usually, we decide using the operator properties that an operator |
+ // observes everything or observes nothing (see CanObserveAnything, |
+ // CanObserveNothing), but there are some opcodes we treat specially. |
+ switch (node->op()->opcode()) { |
+ case IrOpcode::kStoreField: { |
+ Node* stored_to = node->InputAt(0); |
+ FieldAccess access = OpParameter<FieldAccess>(node->op()); |
+ StoreOffset offset = to_offset(access); |
+ |
+ StoreObservation observation = {stored_to->id(), offset}; |
+ bool presentInSet = uses.Contains(observation); |
+ |
+ if (presentInSet && at_most_tagged(access)) { |
+ TRACE2(1, " #%d is StoreField[+%d,%s](#%d), unobservable", node->id(), |
+ offset, |
+ MachineReprToString(access.machine_type.representation()), |
+ stored_to->id()); |
+ to_remove().insert(node); |
+ return uses; |
+ } else if (presentInSet && !at_most_tagged(access)) { |
+ TRACE2(1, |
+ " #%d is StoreField[+%d,%s](#%d), repeated in future but too " |
+ "big to optimize away", |
+ node->id(), offset, |
+ MachineReprToString(access.machine_type.representation()), |
+ stored_to->id()); |
+ return uses; |
+ } else if (!presentInSet && at_least_tagged(access)) { |
+ TRACE2(1, |
+ " #%d is StoreField[+%d,%s](#%d), observable, recording in set", |
+ node->id(), offset, |
+ MachineReprToString(access.machine_type.representation()), |
+ stored_to->id()); |
+ return uses.Add(observation, temp_zone()); |
+ } else if (!presentInSet && !at_least_tagged(access)) { |
+ TRACE2(1, |
+ " #%d is StoreField[+%d,%s](#%d), observable but too small to " |
+ "record", |
+ node->id(), offset, |
+ MachineReprToString(access.machine_type.representation()), |
+ stored_to->id()); |
+ return uses; |
+ } else { |
+ UNREACHABLE(); |
+ } |
+ break; |
+ } |
+ case IrOpcode::kLoadField: { |
+ Node* loaded_from = node->InputAt(0); |
+ FieldAccess access = OpParameter<FieldAccess>(node->op()); |
+ StoreOffset offset = to_offset(access); |
+ |
+ TRACE2(1, |
+ " #%d is LoadField[+%d,%s](#%d), removing all offsets [+%d] from " |
+ "set", |
+ node->id(), offset, |
+ MachineReprToString(access.machine_type.representation()), |
+ loaded_from->id(), offset); |
+ |
+ return uses.RemoveSameOffset(offset, temp_zone()); |
+ break; |
+ } |
+ default: |
+ if (CanObserveNothing(node)) { |
+ TRACE2(1, " #%d:%s can observe nothing, set stays unchanged", |
+ node->id(), node->op()->mnemonic()); |
+ return uses; |
+ } else if (CanObserveAnything(node)) { |
+ TRACE2(1, " #%d:%s can observe everything, recording empty set", |
+ node->id(), node->op()->mnemonic()); |
+ return UnobservablesSet::DeterminedEmpty(temp_zone()); |
+ } else { |
+ // It is safe to turn this check off in the future, but it is better |
+ // to list opcodes in CanObserveNothing, in CanObserveAnything, or if |
+ // you don't know, to add another case inside this DCHECK_EXTRA. |
+ DCHECK_EXTRA(node->op()->opcode() == IrOpcode::kCall, "%s", |
+ node->op()->mnemonic()); |
+ TRACE2(1, |
+ " cannot determine unobservables-set for #%d:%s; " |
+ "conservatively recording empty set", |
+ node->id(), node->op()->mnemonic()); |
+ return UnobservablesSet::DeterminedEmpty(temp_zone()); |
+ } |
+ } |
+ UNREACHABLE(); |
+ return UnobservablesSet::Undetermined(); |
+} |
+ |
+bool StoreStoreFinder::CanObserveNothing(Node* node) { |
+ Operator::Properties mask = |
+ Operator::kNoRead | Operator::kNoDeopt | Operator::kNoThrow; |
+ |
+ return (node->op()->properties() & mask) == mask || |
Jarin
2016/07/20 11:43:33
node->op()->HasProperty(Operator::kNoRead | Operat
bgeron
2016/07/20 16:27:16
That doesn't compile, because Operator::kNoRead |
|
+ node->opcode() == IrOpcode::kAllocate || |
+ node->opcode() == IrOpcode::kCheckedLoad || |
+ node->opcode() == IrOpcode::kLoadElement; |
+} |
+ |
+bool StoreStoreFinder::CanObserveAnything(Node* node) { |
+ const Operator* op = node->op(); |
+ auto opcode = op->opcode(); |
+ if (opcode == IrOpcode::kLoad) { |
+ return true; |
+ } |
+ return !op->HasProperty(Operator::kNoThrow) || |
+ !op->HasProperty(Operator::kNoDeopt); |
+} |
+ |
+// Initialize unobservable_ with js_graph->graph->NodeCount() empty sets. |
+StoreStoreFinder::StoreStoreFinder(Editor* editor, JSGraph* js_graph, |
+ Zone* temp_zone) |
+ : AdvancedReducer(editor), |
+ jsgraph_(js_graph), |
+ temp_zone_(temp_zone), |
+ unobservable_(js_graph->graph()->NodeCount(), |
+ UnobservablesSet::Undetermined(), temp_zone), |
+ to_remove_(temp_zone) {} |
+ |
+StoreStoreFinder::~StoreStoreFinder() {} |
+ |
+Reduction StoreStoreFinder::Reduce(Node* node) { |
+ if (IsEligibleNode(node)) { |
+ return ReduceEligibleNode(node); |
+ } else { |
+ return NoChange(); |
+ } |
+} |
+ |
+Reduction StoreStoreFinder::ReduceEligibleNode(Node* node) { |
+ TRACE2(1, "Found eligible node: %4d:%s", node->id(), node->op()->mnemonic()); |
- Node* current_node = node; |
+ Node* cur = node; |
+ TRACE2(1, " Recomputing unobservable-use-intersection for #%d:%s", cur->id(), |
+ cur->op()->mnemonic()); |
+ UnobservablesSet after_set = RecomputeUseIntersection(cur); |
+ bool cur_set_changed; |
do { |
- FieldAccess access = OpParameter<FieldAccess>(current_node->op()); |
- Offset offset = ToOffset(access); |
- Node* object_input = current_node->InputAt(0); |
- |
- Node* previous = PreviousEffectBeforeStoreField(current_node); |
- |
- // Find the map entry. |
- ZoneMap<Offset, Node*>::iterator find_result = futureStore.find(offset); |
- |
- bool present = find_result != futureStore.end(); |
- Node* value = present ? find_result->second : nullptr; |
- |
- if (present && value == object_input && AtMostTagged(access)) { |
- // Key was present, and the value equalled object_input. This means |
- // that soon after in the effect chain, we will do a StoreField to the |
- // same object with the same offset, therefore current_node can be |
- // optimized away. Also, the future StoreField is at least as big as this |
- // one. |
- // |
- // We don't need to update futureStore. |
- |
- Node* previous_effect = NodeProperties::GetEffectInput(current_node); |
- |
- NodeProperties::ReplaceUses(current_node, nullptr, previous_effect, |
- nullptr, nullptr); |
- current_node->Kill(); |
- TRACE("#%d[[+%d,%s]](#%d) -- at most tagged size, eliminated", |
- current_node->id(), offset, |
- MachineReprToString(access.machine_type.representation()), |
- object_input->id()); |
- } else if (present && value == object_input && !AtMostTagged(access)) { |
- TRACE("#%d[[+%d,%s]](#%d) -- too wide, not eliminated", |
- current_node->id(), offset, |
- MachineReprToString(access.machine_type.representation()), |
- object_input->id()); |
- } else if (present && value != object_input && AtLeastTagged(access)) { |
- // Key was present, and the value did not equal object_input. This means |
- // that there is a StoreField to this offset in the future, but the |
- // object instance comes from a different Node. We pessimistically |
- // assume that we cannot optimize current_node away. However, we will |
- // guess that the current StoreField is more relevant than the future |
- // one, record the current StoreField in futureStore instead, and |
- // continue ascending up the chain. |
- find_result->second = object_input; |
- TRACE("#%d[[+%d,%s]](#%d) -- wide enough, diff object, updated in map", |
- current_node->id(), offset, |
- MachineReprToString(access.machine_type.representation()), |
- object_input->id()); |
- } else if (!present && AtLeastTagged(access)) { |
- // Key was not present. This means that there is no matching |
- // StoreField to this offset in the future, so we cannot optimize |
- // current_node away. However, we will record the current StoreField |
- // in futureStore, and continue ascending up the chain. |
- futureStore.insert(std::make_pair(offset, object_input)); |
- TRACE( |
- "#%d[[+%d,%s]](#%d) -- wide enough, key not present, inserted in map", |
- current_node->id(), offset, |
- MachineReprToString(access.machine_type.representation()), |
- object_input->id()); |
- } else if (!AtLeastTagged(access)) { |
- TRACE("#%d[[+%d,%s]](#%d) -- too narrow to record", current_node->id(), |
- offset, MachineReprToString(access.machine_type.representation()), |
- object_input->id()); |
+ UnobservablesSet before_set = RecomputeSet(cur, after_set); |
+ |
+ DCHECK_NOT_NULL(before_set.set()); |
+ TRACE2(2, " %d StoreObservations in new set", |
+ (int)before_set.set()->size()); |
+ |
+ UnobservablesSet* stored_for_node = &unobservable().at(cur->id()); |
+ |
+ cur_set_changed = (*stored_for_node != before_set); |
+ |
+ if (!stored_for_node->IsUndetermined() && !cur_set_changed) { |
+ // We will not be able to update the part of this chain above any more. |
+ // Exit. |
+ TRACE2(1, "+ No change: stabilized. Stopping this chain."); |
+ break; |
+ } else if (stored_for_node->IsUndetermined() && !cur_set_changed) { |
+ DCHECK(before_set.IsEmpty()); |
+ TRACE2(2, " Still empty set, but marking determined. Walking up."); |
} else { |
- UNREACHABLE(); |
+ TRACE2(2, " Growing unreachable-set and walking up."); |
} |
- // Regardless of whether we eliminated node {current}, we want to |
- // continue walking up the effect chain. |
+ // Overwrite vector in-place. |
+ *stored_for_node = before_set; |
+ |
+ Node* previous = previous_effect_in_chain(cur); |
+ if (previous == nullptr && cur_set_changed) { |
+ TRACE2(1, |
+ "- Reached top of chain; marking effect inputs for revisiting."); |
+ for (int i = 0; i < cur->op()->EffectInputCount(); i++) { |
+ Node* input = NodeProperties::GetEffectInput(cur, i); |
+ if (!CanObserveAnything(input)) { |
+ Revisit(input); |
+ } |
+ } |
+ |
+ cur = nullptr; |
+ } else if (previous == nullptr && !cur_set_changed) { |
+ TRACE2(1, "+ Reached top of chain and stabilized."); |
+ cur = nullptr; |
+ } else { |
+ // Update variables for next loop iteration |
+ cur = previous; |
+ DCHECK(effect_use_count(previous) == 1); |
+ after_set = before_set; |
+ if (FLAG_turbo_verify_store_elimination) { |
+ DCHECK(after_set == RecomputeUseIntersection(cur)); |
+ } |
+ DCHECK_NOT_NULL(cur); |
+ } |
+ } while (cur != nullptr); |
+ |
+ return NoChange(); |
+} |
+ |
+// Compute the intersection of the UnobservablesSets of all effect uses and |
+// return it. This function only works if {node} has an effect use. |
+// |
+// The result UnobservablesSet will always be determined. |
+UnobservablesSet StoreStoreFinder::RecomputeUseIntersection(Node* node) { |
+ TRACE2(4, " recomputing use intersections of #%d:%s", node->id(), |
+ node->op()->mnemonic()); |
+ |
+ // {first} == true indicates that we haven't looked at any elements yet. |
+ // {first} == false indicates that cur_set is the intersection of at least one |
+ // thing. |
- current_node = previous; |
- } while (current_node != nullptr && |
- current_node->op()->opcode() == IrOpcode::kStoreField); |
+ bool first = true; |
+ UnobservablesSet cur_set = UnobservablesSet::Undetermined(); // irrelevant |
+ |
+ for (Edge edge : node->use_edges()) { |
+ // Skip non-effect edges |
+ if (!NodeProperties::IsEffectEdge(edge)) { |
+ continue; |
+ } |
+ |
+ Node* use = edge.from(); |
+ TRACE2(4, " found use %d", use->id()); |
+ UnobservablesSet new_set = unobservable().at(use->id()); |
+ // Include new_set in the intersection. |
+ if (first) { |
+ // Intersection of a one-element set is that one element |
+ first = false; |
+ cur_set = new_set; |
+ } else { |
+ // Take the intersection of cur_set and new_set. |
+ cur_set = cur_set.Intersect(new_set, temp_zone()); |
+ } |
+ |
+ if (FLAG_trace_store_elimination) { |
+ // Serialise the UnobservablesSet. |
+ std::ostringstream os; |
+ os << "intersected with " << new_set << ", current intersection is " |
+ << cur_set; |
+ std::string msg = os.str(); |
+ TRACE2(4, " %s", msg.c_str()); |
+ } |
+ } |
+ |
+ if (first) { |
+ // There were no effect uses. |
+ auto opcode = node->op()->opcode(); |
+ // List of opcodes that may end this effect chain. The opcodes are not |
+ // important to the soundness of this optimization; this serves as a |
+ // general sanity check. Add opcodes to this list as it suits you. |
+ // |
+ // Everything is observable after these opcodes; return the empty set. |
+ DCHECK_EXTRA( |
+ opcode == IrOpcode::kReturn || opcode == IrOpcode::kTerminate || |
+ opcode == IrOpcode::kDeoptimize || opcode == IrOpcode::kThrow, |
+ "for #%d:%s", node->id(), node->op()->mnemonic()); |
+ USE(opcode); // silence warning about unused variable |
+ |
+ TRACE2(3, " ..no effect uses, so unobservables-set = []"); |
+ return UnobservablesSet::DeterminedEmpty(temp_zone()); |
+ } else { |
+ if (cur_set.IsUndetermined()) { |
+ cur_set = UnobservablesSet::DeterminedEmpty(temp_zone()); |
+ } |
+ |
+ if (FLAG_trace_store_elimination) { |
+ // Serialise the UnobservablesSet. |
+ std::ostringstream os; |
+ os << cur_set; |
+ std::string msg = os.str(); |
+ TRACE2(2, " ..use-intersection: %s", msg.c_str()); |
+ } |
+ |
+ return cur_set; |
+ } |
+} |
+ |
+UnobservablesSet UnobservablesSet::Undetermined() { return UnobservablesSet(); } |
+ |
+UnobservablesSet::UnobservablesSet() : set_(nullptr) {} |
+ |
+UnobservablesSet UnobservablesSet::DeterminedEmpty(Zone* zone) { |
+ // Create a new empty UnobservablesSet. This allocates in the zone, and |
+ // can probably be optimized to use a global singleton. |
+ ZoneSet<StoreObservation>* empty_set = |
+ new (zone->New(sizeof(ZoneSet<StoreObservation>))) |
+ ZoneSet<StoreObservation>(zone); |
+ return UnobservablesSet(empty_set); |
+} |
+ |
+// Computes the intersection of two UnobservablesSets. May return |
+// UnobservablesSet::Undetermined() instead of an empty UnobservablesSet for |
+// speed. |
+UnobservablesSet UnobservablesSet::Intersect(UnobservablesSet other, |
+ Zone* zone) const { |
+ if (set() == nullptr || other.set() == nullptr) { |
+ return Undetermined(); |
+ } else if (other.set() == nullptr) { |
+ return *this; |
+ } else { |
+ ZoneSet<StoreObservation>* intersection = |
+ new (zone->New(sizeof(ZoneSet<StoreObservation>))) |
+ ZoneSet<StoreObservation>(zone); |
+ // Put the intersection of set() and other.set() in intersection. |
+ set_intersection(set()->begin(), set()->end(), other.set()->begin(), |
+ other.set()->end(), |
+ std::inserter(*intersection, intersection->end())); |
+ TRACE2(3, "intersected; result:"); |
+ for (StoreObservation obs : *intersection) { |
+ std::ostringstream os; |
+ os << obs; |
+ std::string msg = os.str(); |
+ TRACE2(3, "- %s", msg.c_str()); |
+ } |
+ return UnobservablesSet(intersection); |
+ } |
+} |
+ |
+UnobservablesSet UnobservablesSet::Add(StoreObservation obs, Zone* zone) const { |
+ bool present = (set()->find(obs) != set()->end()); |
+ if (present) { |
+ return *this; |
+ } else { |
+ // Make a new empty set. |
+ ZoneSet<StoreObservation>* new_set = |
+ new (zone->New(sizeof(ZoneSet<StoreObservation>))) |
+ ZoneSet<StoreObservation>(zone); |
+ // Copy the old elements over. |
+ *new_set = *set(); |
+ // Add the new element. |
+ bool inserted = new_set->insert(obs).second; |
+ DCHECK(inserted); |
+ USE(inserted); // silence warning about unused variable |
+ |
+ return UnobservablesSet(new_set); |
+ } |
+} |
+ |
+UnobservablesSet UnobservablesSet::RemoveSameOffset(StoreOffset offset, |
+ Zone* zone) const { |
+ // Make a new empty set. |
+ ZoneSet<StoreObservation>* new_set = |
+ new (zone->New(sizeof(ZoneSet<StoreObservation>))) |
+ ZoneSet<StoreObservation>(zone); |
+ // Copy all elements over that have a different offset. |
+ for (auto obs : *set()) { |
+ if (obs.offset_ != offset) { |
+ new_set->insert(obs); |
+ } |
+ } |
+ |
+ return UnobservablesSet(new_set); |
+} |
+ |
+// Used for debugging. |
+std::ostream& operator<<(std::ostream& os, UnobservablesSet set) { |
+ if (set.set() == nullptr) { |
+ os << "(undetermined)"; |
+ } else { |
+ os << "["; |
+ bool first = true; |
+ for (StoreObservation obs : *set.set()) { |
+ if (!first) { |
+ os << ","; |
+ } else { |
+ first = false; |
+ } |
+ os << obs; |
+ } |
+ os << "]"; |
+ } |
+ return os; |
+} |
+ |
+bool UnobservablesSet::operator==(const UnobservablesSet& other) const { |
+ if (IsUndetermined() || other.IsUndetermined()) { |
+ TRACE2(4, " (either is undetermined)"); |
+ return IsEmpty() && other.IsEmpty(); |
+ } else { |
+ TRACE2(4, " (neither is undetermined)"); |
+ // Both pointers guaranteed not to be nullptrs. |
+ return *set() == *other.set(); |
+ } |
+} |
+ |
+bool UnobservablesSet::operator!=(const UnobservablesSet& other) const { |
+ return !(*this == other); |
+} |
+ |
+bool operator==(StoreObservation a, StoreObservation b) { |
+ return (a.id_ == b.id_) && (a.offset_ == b.offset_); |
+} |
+ |
+bool operator<(StoreObservation a, StoreObservation b) { |
+ return (a.id_ < b.id_) || (a.id_ == b.id_ && a.offset_ < b.offset_); |
+} |
- TRACE("finished"); |
+std::ostream& operator<<(std::ostream& os, StoreObservation obs) { |
+ os << "#" << obs.id_ << "[+" << obs.offset_ << "]"; |
+ return os; |
} |
} // namespace compiler |