Index: src/builtins/builtins-array.cc |
diff --git a/src/builtins/builtins-array.cc b/src/builtins/builtins-array.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ba6ec24304d817abb02589f2d202846833928c31 |
--- /dev/null |
+++ b/src/builtins/builtins-array.cc |
@@ -0,0 +1,1275 @@ |
+// Copyright 2016 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "src/builtins/builtins.h" |
+#include "src/builtins/builtins-utils.h" |
+#include "src/elements.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+namespace { |
+ |
+inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) { |
+ // This is an extended version of ECMA-262 7.1.11 handling signed values |
+ // Try to convert object to a number and clamp values to [kMinInt, kMaxInt] |
+ if (object->IsSmi()) { |
+ *out = Smi::cast(object)->value(); |
+ return true; |
+ } else if (object->IsHeapNumber()) { |
+ double value = HeapNumber::cast(object)->value(); |
+ if (std::isnan(value)) { |
+ *out = 0; |
+ } else if (value > kMaxInt) { |
+ *out = kMaxInt; |
+ } else if (value < kMinInt) { |
+ *out = kMinInt; |
+ } else { |
+ *out = static_cast<int>(value); |
+ } |
+ return true; |
+ } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) { |
+ *out = 0; |
+ return true; |
+ } else if (object->IsBoolean()) { |
+ *out = object->IsTrue(isolate); |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object, |
+ int* out) { |
+ Context* context = *isolate->native_context(); |
+ Map* map = object->map(); |
+ if (map != context->sloppy_arguments_map() && |
+ map != context->strict_arguments_map() && |
+ map != context->fast_aliased_arguments_map()) { |
+ return false; |
+ } |
+ DCHECK(object->HasFastElements() || object->HasFastArgumentsElements()); |
+ Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex); |
+ if (!len_obj->IsSmi()) return false; |
+ *out = Max(0, Smi::cast(len_obj)->value()); |
+ return *out <= object->elements()->length(); |
+} |
+ |
+inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object) { |
+ DisallowHeapAllocation no_gc; |
+ HeapObject* prototype = HeapObject::cast(object->map()->prototype()); |
+ HeapObject* null = isolate->heap()->null_value(); |
+ HeapObject* empty = isolate->heap()->empty_fixed_array(); |
+ while (prototype != null) { |
+ Map* map = prototype->map(); |
+ if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false; |
+ if (JSObject::cast(prototype)->elements() != empty) return false; |
+ prototype = HeapObject::cast(map->prototype()); |
+ } |
+ return true; |
+} |
+ |
+inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate, |
+ JSArray* receiver) { |
+ return PrototypeHasNoElements(isolate, receiver); |
+} |
+ |
+inline bool HasSimpleElements(JSObject* current) { |
+ return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER && |
+ !current->GetElementsAccessor()->HasAccessors(current); |
+} |
+ |
+inline bool HasOnlySimpleReceiverElements(Isolate* isolate, |
+ JSObject* receiver) { |
+ // Check that we have no accessors on the receiver's elements. |
+ if (!HasSimpleElements(receiver)) return false; |
+ return PrototypeHasNoElements(isolate, receiver); |
+} |
+ |
+inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) { |
+ DisallowHeapAllocation no_gc; |
+ PrototypeIterator iter(isolate, receiver, kStartAtReceiver); |
+ for (; !iter.IsAtEnd(); iter.Advance()) { |
+ if (iter.GetCurrent()->IsJSProxy()) return false; |
+ JSObject* current = iter.GetCurrent<JSObject>(); |
+ if (!HasSimpleElements(current)) return false; |
+ } |
+ return true; |
+} |
+ |
+// Returns |false| if not applicable. |
+MUST_USE_RESULT |
+inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate, |
+ Handle<Object> receiver, |
+ BuiltinArguments* args, |
+ int first_added_arg) { |
+ if (!receiver->IsJSArray()) return false; |
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
+ ElementsKind origin_kind = array->GetElementsKind(); |
+ if (IsDictionaryElementsKind(origin_kind)) return false; |
+ if (!array->map()->is_extensible()) return false; |
+ if (args == nullptr) return true; |
+ |
+ // If there may be elements accessors in the prototype chain, the fast path |
+ // cannot be used if there arguments to add to the array. |
+ if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false; |
+ |
+ // Adding elements to the array prototype would break code that makes sure |
+ // it has no elements. Handle that elsewhere. |
+ if (isolate->IsAnyInitialArrayPrototype(array)) return false; |
+ |
+ // Need to ensure that the arguments passed in args can be contained in |
+ // the array. |
+ int args_length = args->length(); |
+ if (first_added_arg >= args_length) return true; |
+ |
+ if (IsFastObjectElementsKind(origin_kind)) return true; |
+ ElementsKind target_kind = origin_kind; |
+ { |
+ DisallowHeapAllocation no_gc; |
+ for (int i = first_added_arg; i < args_length; i++) { |
+ Object* arg = (*args)[i]; |
+ if (arg->IsHeapObject()) { |
+ if (arg->IsHeapNumber()) { |
+ target_kind = FAST_DOUBLE_ELEMENTS; |
+ } else { |
+ target_kind = FAST_ELEMENTS; |
+ break; |
+ } |
+ } |
+ } |
+ } |
+ if (target_kind != origin_kind) { |
+ // Use a short-lived HandleScope to avoid creating several copies of the |
+ // elements handle which would cause issues when left-trimming later-on. |
+ HandleScope scope(isolate); |
+ JSObject::TransitionElementsKind(array, target_kind); |
+ } |
+ return true; |
+} |
+ |
+MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate, |
+ Handle<JSFunction> function, |
+ BuiltinArguments args) { |
+ HandleScope handleScope(isolate); |
+ int argc = args.length() - 1; |
+ ScopedVector<Handle<Object>> argv(argc); |
+ for (int i = 0; i < argc; ++i) { |
+ argv[i] = args.at<Object>(i + 1); |
+ } |
+ RETURN_RESULT_OR_FAILURE( |
+ isolate, |
+ Execution::Call(isolate, function, args.receiver(), argc, argv.start())); |
+} |
+ |
+Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) { |
+ HandleScope scope(isolate); |
+ Handle<Object> receiver = args.receiver(); |
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { |
+ return CallJsIntrinsic(isolate, isolate->array_push(), args); |
+ } |
+ // Fast Elements Path |
+ int to_add = args.length() - 1; |
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
+ int len = Smi::cast(array->length())->value(); |
+ if (to_add == 0) return Smi::FromInt(len); |
+ |
+ // Currently fixed arrays cannot grow too big, so we should never hit this. |
+ DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); |
+ |
+ if (JSArray::HasReadOnlyLength(array)) { |
+ return CallJsIntrinsic(isolate, isolate->array_push(), args); |
+ } |
+ |
+ ElementsAccessor* accessor = array->GetElementsAccessor(); |
+ int new_length = accessor->Push(array, &args, to_add); |
+ return Smi::FromInt(new_length); |
+} |
+} // namespace |
+ |
+BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); } |
+ |
+// TODO(verwaest): This is a temporary helper until the FastArrayPush stub can |
+// tailcall to the builtin directly. |
+RUNTIME_FUNCTION(Runtime_ArrayPush) { |
+ DCHECK_EQ(2, args.length()); |
+ Arguments* incoming = reinterpret_cast<Arguments*>(args[0]); |
+ // Rewrap the arguments as builtins arguments. |
+ int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver; |
+ BuiltinArguments caller_args(argc, incoming->arguments() + 1); |
+ return DoArrayPush(isolate, caller_args); |
+} |
+ |
+BUILTIN(ArrayPop) { |
+ HandleScope scope(isolate); |
+ Handle<Object> receiver = args.receiver(); |
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) { |
+ return CallJsIntrinsic(isolate, isolate->array_pop(), args); |
+ } |
+ |
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
+ |
+ uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value()); |
+ if (len == 0) return isolate->heap()->undefined_value(); |
+ |
+ if (JSArray::HasReadOnlyLength(array)) { |
+ return CallJsIntrinsic(isolate, isolate->array_pop(), args); |
+ } |
+ |
+ Handle<Object> result; |
+ if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { |
+ // Fast Elements Path |
+ result = array->GetElementsAccessor()->Pop(array); |
+ } else { |
+ // Use Slow Lookup otherwise |
+ uint32_t new_length = len - 1; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, result, JSReceiver::GetElement(isolate, array, new_length)); |
+ JSArray::SetLength(array, new_length); |
+ } |
+ return *result; |
+} |
+ |
+BUILTIN(ArrayShift) { |
+ HandleScope scope(isolate); |
+ Heap* heap = isolate->heap(); |
+ Handle<Object> receiver = args.receiver(); |
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) || |
+ !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { |
+ return CallJsIntrinsic(isolate, isolate->array_shift(), args); |
+ } |
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
+ |
+ int len = Smi::cast(array->length())->value(); |
+ if (len == 0) return heap->undefined_value(); |
+ |
+ if (JSArray::HasReadOnlyLength(array)) { |
+ return CallJsIntrinsic(isolate, isolate->array_shift(), args); |
+ } |
+ |
+ Handle<Object> first = array->GetElementsAccessor()->Shift(array); |
+ return *first; |
+} |
+ |
+BUILTIN(ArrayUnshift) { |
+ HandleScope scope(isolate); |
+ Handle<Object> receiver = args.receiver(); |
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { |
+ return CallJsIntrinsic(isolate, isolate->array_unshift(), args); |
+ } |
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
+ int to_add = args.length() - 1; |
+ if (to_add == 0) return array->length(); |
+ |
+ // Currently fixed arrays cannot grow too big, so we should never hit this. |
+ DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); |
+ |
+ if (JSArray::HasReadOnlyLength(array)) { |
+ return CallJsIntrinsic(isolate, isolate->array_unshift(), args); |
+ } |
+ |
+ ElementsAccessor* accessor = array->GetElementsAccessor(); |
+ int new_length = accessor->Unshift(array, &args, to_add); |
+ return Smi::FromInt(new_length); |
+} |
+ |
+BUILTIN(ArraySlice) { |
+ HandleScope scope(isolate); |
+ Handle<Object> receiver = args.receiver(); |
+ int len = -1; |
+ int relative_start = 0; |
+ int relative_end = 0; |
+ |
+ if (receiver->IsJSArray()) { |
+ DisallowHeapAllocation no_gc; |
+ JSArray* array = JSArray::cast(*receiver); |
+ if (V8_UNLIKELY(!array->HasFastElements() || |
+ !IsJSArrayFastElementMovingAllowed(isolate, array) || |
+ !isolate->IsArraySpeciesLookupChainIntact() || |
+ // If this is a subclass of Array, then call out to JS |
+ !array->HasArrayPrototype(isolate))) { |
+ AllowHeapAllocation allow_allocation; |
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
+ } |
+ len = Smi::cast(array->length())->value(); |
+ } else if (receiver->IsJSObject() && |
+ GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver), |
+ &len)) { |
+ // Array.prototype.slice.call(arguments, ...) is quite a common idiom |
+ // (notably more than 50% of invocations in Web apps). |
+ // Treat it in C++ as well. |
+ DCHECK(JSObject::cast(*receiver)->HasFastElements() || |
+ JSObject::cast(*receiver)->HasFastArgumentsElements()); |
+ } else { |
+ AllowHeapAllocation allow_allocation; |
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
+ } |
+ DCHECK_LE(0, len); |
+ int argument_count = args.length() - 1; |
+ // Note carefully chosen defaults---if argument is missing, |
+ // it's undefined which gets converted to 0 for relative_start |
+ // and to len for relative_end. |
+ relative_start = 0; |
+ relative_end = len; |
+ if (argument_count > 0) { |
+ DisallowHeapAllocation no_gc; |
+ if (!ClampedToInteger(isolate, args[1], &relative_start)) { |
+ AllowHeapAllocation allow_allocation; |
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
+ } |
+ if (argument_count > 1) { |
+ Object* end_arg = args[2]; |
+ // slice handles the end_arg specially |
+ if (end_arg->IsUndefined(isolate)) { |
+ relative_end = len; |
+ } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) { |
+ AllowHeapAllocation allow_allocation; |
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
+ } |
+ } |
+ } |
+ |
+ // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. |
+ uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0) |
+ : Min(relative_start, len); |
+ |
+ // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. |
+ uint32_t actual_end = |
+ (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); |
+ |
+ Handle<JSObject> object = Handle<JSObject>::cast(receiver); |
+ ElementsAccessor* accessor = object->GetElementsAccessor(); |
+ return *accessor->Slice(object, actual_start, actual_end); |
+} |
+ |
+BUILTIN(ArraySplice) { |
+ HandleScope scope(isolate); |
+ Handle<Object> receiver = args.receiver(); |
+ if (V8_UNLIKELY( |
+ !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) || |
+ // If this is a subclass of Array, then call out to JS. |
+ !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) || |
+ // If anything with @@species has been messed with, call out to JS. |
+ !isolate->IsArraySpeciesLookupChainIntact())) { |
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
+ } |
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
+ |
+ int argument_count = args.length() - 1; |
+ int relative_start = 0; |
+ if (argument_count > 0) { |
+ DisallowHeapAllocation no_gc; |
+ if (!ClampedToInteger(isolate, args[1], &relative_start)) { |
+ AllowHeapAllocation allow_allocation; |
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
+ } |
+ } |
+ int len = Smi::cast(array->length())->value(); |
+ // clip relative start to [0, len] |
+ int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) |
+ : Min(relative_start, len); |
+ |
+ int actual_delete_count; |
+ if (argument_count == 1) { |
+ // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is |
+ // given as a request to delete all the elements from the start. |
+ // And it differs from the case of undefined delete count. |
+ // This does not follow ECMA-262, but we do the same for compatibility. |
+ DCHECK(len - actual_start >= 0); |
+ actual_delete_count = len - actual_start; |
+ } else { |
+ int delete_count = 0; |
+ DisallowHeapAllocation no_gc; |
+ if (argument_count > 1) { |
+ if (!ClampedToInteger(isolate, args[2], &delete_count)) { |
+ AllowHeapAllocation allow_allocation; |
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
+ } |
+ } |
+ actual_delete_count = Min(Max(delete_count, 0), len - actual_start); |
+ } |
+ |
+ int add_count = (argument_count > 1) ? (argument_count - 2) : 0; |
+ int new_length = len - actual_delete_count + add_count; |
+ |
+ if (new_length != len && JSArray::HasReadOnlyLength(array)) { |
+ AllowHeapAllocation allow_allocation; |
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
+ } |
+ ElementsAccessor* accessor = array->GetElementsAccessor(); |
+ Handle<JSArray> result_array = accessor->Splice( |
+ array, actual_start, actual_delete_count, &args, add_count); |
+ return *result_array; |
+} |
+ |
+// Array Concat ------------------------------------------------------------- |
+ |
+namespace { |
+ |
+/** |
+ * A simple visitor visits every element of Array's. |
+ * The backend storage can be a fixed array for fast elements case, |
+ * or a dictionary for sparse array. Since Dictionary is a subtype |
+ * of FixedArray, the class can be used by both fast and slow cases. |
+ * The second parameter of the constructor, fast_elements, specifies |
+ * whether the storage is a FixedArray or Dictionary. |
+ * |
+ * An index limit is used to deal with the situation that a result array |
+ * length overflows 32-bit non-negative integer. |
+ */ |
+class ArrayConcatVisitor { |
+ public: |
+ ArrayConcatVisitor(Isolate* isolate, Handle<Object> storage, |
+ bool fast_elements) |
+ : isolate_(isolate), |
+ storage_(isolate->global_handles()->Create(*storage)), |
+ index_offset_(0u), |
+ bit_field_(FastElementsField::encode(fast_elements) | |
+ ExceedsLimitField::encode(false) | |
+ IsFixedArrayField::encode(storage->IsFixedArray())) { |
+ DCHECK(!(this->fast_elements() && !is_fixed_array())); |
+ } |
+ |
+ ~ArrayConcatVisitor() { clear_storage(); } |
+ |
+ MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) { |
+ uint32_t index = index_offset_ + i; |
+ |
+ if (i >= JSObject::kMaxElementCount - index_offset_) { |
+ set_exceeds_array_limit(true); |
+ // Exception hasn't been thrown at this point. Return true to |
+ // break out, and caller will throw. !visit would imply that |
+ // there is already a pending exception. |
+ return true; |
+ } |
+ |
+ if (!is_fixed_array()) { |
+ LookupIterator it(isolate_, storage_, index, LookupIterator::OWN); |
+ MAYBE_RETURN( |
+ JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR), |
+ false); |
+ return true; |
+ } |
+ |
+ if (fast_elements()) { |
+ if (index < static_cast<uint32_t>(storage_fixed_array()->length())) { |
+ storage_fixed_array()->set(index, *elm); |
+ return true; |
+ } |
+ // Our initial estimate of length was foiled, possibly by |
+ // getters on the arrays increasing the length of later arrays |
+ // during iteration. |
+ // This shouldn't happen in anything but pathological cases. |
+ SetDictionaryMode(); |
+ // Fall-through to dictionary mode. |
+ } |
+ DCHECK(!fast_elements()); |
+ Handle<SeededNumberDictionary> dict( |
+ SeededNumberDictionary::cast(*storage_)); |
+ // The object holding this backing store has just been allocated, so |
+ // it cannot yet be used as a prototype. |
+ Handle<SeededNumberDictionary> result = |
+ SeededNumberDictionary::AtNumberPut(dict, index, elm, false); |
+ if (!result.is_identical_to(dict)) { |
+ // Dictionary needed to grow. |
+ clear_storage(); |
+ set_storage(*result); |
+ } |
+ return true; |
+ } |
+ |
+ void increase_index_offset(uint32_t delta) { |
+ if (JSObject::kMaxElementCount - index_offset_ < delta) { |
+ index_offset_ = JSObject::kMaxElementCount; |
+ } else { |
+ index_offset_ += delta; |
+ } |
+ // If the initial length estimate was off (see special case in visit()), |
+ // but the array blowing the limit didn't contain elements beyond the |
+ // provided-for index range, go to dictionary mode now. |
+ if (fast_elements() && |
+ index_offset_ > |
+ static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { |
+ SetDictionaryMode(); |
+ } |
+ } |
+ |
+ bool exceeds_array_limit() const { |
+ return ExceedsLimitField::decode(bit_field_); |
+ } |
+ |
+ Handle<JSArray> ToArray() { |
+ DCHECK(is_fixed_array()); |
+ Handle<JSArray> array = isolate_->factory()->NewJSArray(0); |
+ Handle<Object> length = |
+ isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); |
+ Handle<Map> map = JSObject::GetElementsTransitionMap( |
+ array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); |
+ array->set_map(*map); |
+ array->set_length(*length); |
+ array->set_elements(*storage_fixed_array()); |
+ return array; |
+ } |
+ |
+ // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever |
+ // (otherwise) |
+ Handle<FixedArray> storage_fixed_array() { |
+ DCHECK(is_fixed_array()); |
+ return Handle<FixedArray>::cast(storage_); |
+ } |
+ Handle<JSReceiver> storage_jsreceiver() { |
+ DCHECK(!is_fixed_array()); |
+ return Handle<JSReceiver>::cast(storage_); |
+ } |
+ |
+ private: |
+ // Convert storage to dictionary mode. |
+ void SetDictionaryMode() { |
+ DCHECK(fast_elements() && is_fixed_array()); |
+ Handle<FixedArray> current_storage = storage_fixed_array(); |
+ Handle<SeededNumberDictionary> slow_storage( |
+ SeededNumberDictionary::New(isolate_, current_storage->length())); |
+ uint32_t current_length = static_cast<uint32_t>(current_storage->length()); |
+ FOR_WITH_HANDLE_SCOPE( |
+ isolate_, uint32_t, i = 0, i, i < current_length, i++, { |
+ Handle<Object> element(current_storage->get(i), isolate_); |
+ if (!element->IsTheHole(isolate_)) { |
+ // The object holding this backing store has just been allocated, so |
+ // it cannot yet be used as a prototype. |
+ Handle<SeededNumberDictionary> new_storage = |
+ SeededNumberDictionary::AtNumberPut(slow_storage, i, element, |
+ false); |
+ if (!new_storage.is_identical_to(slow_storage)) { |
+ slow_storage = loop_scope.CloseAndEscape(new_storage); |
+ } |
+ } |
+ }); |
+ clear_storage(); |
+ set_storage(*slow_storage); |
+ set_fast_elements(false); |
+ } |
+ |
+ inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); } |
+ |
+ inline void set_storage(FixedArray* storage) { |
+ DCHECK(is_fixed_array()); |
+ storage_ = isolate_->global_handles()->Create(storage); |
+ } |
+ |
+ class FastElementsField : public BitField<bool, 0, 1> {}; |
+ class ExceedsLimitField : public BitField<bool, 1, 1> {}; |
+ class IsFixedArrayField : public BitField<bool, 2, 1> {}; |
+ |
+ bool fast_elements() const { return FastElementsField::decode(bit_field_); } |
+ void set_fast_elements(bool fast) { |
+ bit_field_ = FastElementsField::update(bit_field_, fast); |
+ } |
+ void set_exceeds_array_limit(bool exceeds) { |
+ bit_field_ = ExceedsLimitField::update(bit_field_, exceeds); |
+ } |
+ bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); } |
+ |
+ Isolate* isolate_; |
+ Handle<Object> storage_; // Always a global handle. |
+ // Index after last seen index. Always less than or equal to |
+ // JSObject::kMaxElementCount. |
+ uint32_t index_offset_; |
+ uint32_t bit_field_; |
+}; |
+ |
+uint32_t EstimateElementCount(Handle<JSArray> array) { |
+ DisallowHeapAllocation no_gc; |
+ uint32_t length = static_cast<uint32_t>(array->length()->Number()); |
+ int element_count = 0; |
+ switch (array->GetElementsKind()) { |
+ case FAST_SMI_ELEMENTS: |
+ case FAST_HOLEY_SMI_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case FAST_HOLEY_ELEMENTS: { |
+ // Fast elements can't have lengths that are not representable by |
+ // a 32-bit signed integer. |
+ DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); |
+ int fast_length = static_cast<int>(length); |
+ Isolate* isolate = array->GetIsolate(); |
+ FixedArray* elements = FixedArray::cast(array->elements()); |
+ for (int i = 0; i < fast_length; i++) { |
+ if (!elements->get(i)->IsTheHole(isolate)) element_count++; |
+ } |
+ break; |
+ } |
+ case FAST_DOUBLE_ELEMENTS: |
+ case FAST_HOLEY_DOUBLE_ELEMENTS: { |
+ // Fast elements can't have lengths that are not representable by |
+ // a 32-bit signed integer. |
+ DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); |
+ int fast_length = static_cast<int>(length); |
+ if (array->elements()->IsFixedArray()) { |
+ DCHECK(FixedArray::cast(array->elements())->length() == 0); |
+ break; |
+ } |
+ FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); |
+ for (int i = 0; i < fast_length; i++) { |
+ if (!elements->is_the_hole(i)) element_count++; |
+ } |
+ break; |
+ } |
+ case DICTIONARY_ELEMENTS: { |
+ SeededNumberDictionary* dictionary = |
+ SeededNumberDictionary::cast(array->elements()); |
+ Isolate* isolate = dictionary->GetIsolate(); |
+ int capacity = dictionary->Capacity(); |
+ for (int i = 0; i < capacity; i++) { |
+ Object* key = dictionary->KeyAt(i); |
+ if (dictionary->IsKey(isolate, key)) { |
+ element_count++; |
+ } |
+ } |
+ break; |
+ } |
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: |
+ |
+ TYPED_ARRAYS(TYPED_ARRAY_CASE) |
+#undef TYPED_ARRAY_CASE |
+ // External arrays are always dense. |
+ return length; |
+ case NO_ELEMENTS: |
+ return 0; |
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: |
+ case FAST_STRING_WRAPPER_ELEMENTS: |
+ case SLOW_STRING_WRAPPER_ELEMENTS: |
+ UNREACHABLE(); |
+ return 0; |
+ } |
+ // As an estimate, we assume that the prototype doesn't contain any |
+ // inherited elements. |
+ return element_count; |
+} |
+ |
+// Used for sorting indices in a List<uint32_t>. |
+int compareUInt32(const uint32_t* ap, const uint32_t* bp) { |
+ uint32_t a = *ap; |
+ uint32_t b = *bp; |
+ return (a == b) ? 0 : (a < b) ? -1 : 1; |
+} |
+ |
+void CollectElementIndices(Handle<JSObject> object, uint32_t range, |
+ List<uint32_t>* indices) { |
+ Isolate* isolate = object->GetIsolate(); |
+ ElementsKind kind = object->GetElementsKind(); |
+ switch (kind) { |
+ case FAST_SMI_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case FAST_HOLEY_SMI_ELEMENTS: |
+ case FAST_HOLEY_ELEMENTS: { |
+ DisallowHeapAllocation no_gc; |
+ FixedArray* elements = FixedArray::cast(object->elements()); |
+ uint32_t length = static_cast<uint32_t>(elements->length()); |
+ if (range < length) length = range; |
+ for (uint32_t i = 0; i < length; i++) { |
+ if (!elements->get(i)->IsTheHole(isolate)) { |
+ indices->Add(i); |
+ } |
+ } |
+ break; |
+ } |
+ case FAST_HOLEY_DOUBLE_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: { |
+ if (object->elements()->IsFixedArray()) { |
+ DCHECK(object->elements()->length() == 0); |
+ break; |
+ } |
+ Handle<FixedDoubleArray> elements( |
+ FixedDoubleArray::cast(object->elements())); |
+ uint32_t length = static_cast<uint32_t>(elements->length()); |
+ if (range < length) length = range; |
+ for (uint32_t i = 0; i < length; i++) { |
+ if (!elements->is_the_hole(i)) { |
+ indices->Add(i); |
+ } |
+ } |
+ break; |
+ } |
+ case DICTIONARY_ELEMENTS: { |
+ DisallowHeapAllocation no_gc; |
+ SeededNumberDictionary* dict = |
+ SeededNumberDictionary::cast(object->elements()); |
+ uint32_t capacity = dict->Capacity(); |
+ FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, { |
+ Object* k = dict->KeyAt(j); |
+ if (!dict->IsKey(isolate, k)) continue; |
+ DCHECK(k->IsNumber()); |
+ uint32_t index = static_cast<uint32_t>(k->Number()); |
+ if (index < range) { |
+ indices->Add(index); |
+ } |
+ }); |
+ break; |
+ } |
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: |
+ |
+ TYPED_ARRAYS(TYPED_ARRAY_CASE) |
+#undef TYPED_ARRAY_CASE |
+ { |
+ uint32_t length = static_cast<uint32_t>( |
+ FixedArrayBase::cast(object->elements())->length()); |
+ if (range <= length) { |
+ length = range; |
+ // We will add all indices, so we might as well clear it first |
+ // and avoid duplicates. |
+ indices->Clear(); |
+ } |
+ for (uint32_t i = 0; i < length; i++) { |
+ indices->Add(i); |
+ } |
+ if (length == range) return; // All indices accounted for already. |
+ break; |
+ } |
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { |
+ ElementsAccessor* accessor = object->GetElementsAccessor(); |
+ for (uint32_t i = 0; i < range; i++) { |
+ if (accessor->HasElement(object, i)) { |
+ indices->Add(i); |
+ } |
+ } |
+ break; |
+ } |
+ case FAST_STRING_WRAPPER_ELEMENTS: |
+ case SLOW_STRING_WRAPPER_ELEMENTS: { |
+ DCHECK(object->IsJSValue()); |
+ Handle<JSValue> js_value = Handle<JSValue>::cast(object); |
+ DCHECK(js_value->value()->IsString()); |
+ Handle<String> string(String::cast(js_value->value()), isolate); |
+ uint32_t length = static_cast<uint32_t>(string->length()); |
+ uint32_t i = 0; |
+ uint32_t limit = Min(length, range); |
+ for (; i < limit; i++) { |
+ indices->Add(i); |
+ } |
+ ElementsAccessor* accessor = object->GetElementsAccessor(); |
+ for (; i < range; i++) { |
+ if (accessor->HasElement(object, i)) { |
+ indices->Add(i); |
+ } |
+ } |
+ break; |
+ } |
+ case NO_ELEMENTS: |
+ break; |
+ } |
+ |
+ PrototypeIterator iter(isolate, object); |
+ if (!iter.IsAtEnd()) { |
+ // The prototype will usually have no inherited element indices, |
+ // but we have to check. |
+ CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range, |
+ indices); |
+ } |
+} |
+ |
+bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver, |
+ uint32_t length, ArrayConcatVisitor* visitor) { |
+ FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, { |
+ Maybe<bool> maybe = JSReceiver::HasElement(receiver, i); |
+ if (!maybe.IsJust()) return false; |
+ if (maybe.FromJust()) { |
+ Handle<Object> element_value; |
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
+ isolate, element_value, JSReceiver::GetElement(isolate, receiver, i), |
+ false); |
+ if (!visitor->visit(i, element_value)) return false; |
+ } |
+ }); |
+ visitor->increase_index_offset(length); |
+ return true; |
+} |
+ |
+/** |
+ * A helper function that visits "array" elements of a JSReceiver in numerical |
+ * order. |
+ * |
+ * The visitor argument called for each existing element in the array |
+ * with the element index and the element's value. |
+ * Afterwards it increments the base-index of the visitor by the array |
+ * length. |
+ * Returns false if any access threw an exception, otherwise true. |
+ */ |
+bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver, |
+ ArrayConcatVisitor* visitor) { |
+ uint32_t length = 0; |
+ |
+ if (receiver->IsJSArray()) { |
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
+ length = static_cast<uint32_t>(array->length()->Number()); |
+ } else { |
+ Handle<Object> val; |
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
+ isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false); |
+ // TODO(caitp): Support larger element indexes (up to 2^53-1). |
+ if (!val->ToUint32(&length)) { |
+ length = 0; |
+ } |
+ // TODO(cbruni): handle other element kind as well |
+ return IterateElementsSlow(isolate, receiver, length, visitor); |
+ } |
+ |
+ if (!HasOnlySimpleElements(isolate, *receiver)) { |
+ return IterateElementsSlow(isolate, receiver, length, visitor); |
+ } |
+ Handle<JSObject> array = Handle<JSObject>::cast(receiver); |
+ |
+ switch (array->GetElementsKind()) { |
+ case FAST_SMI_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case FAST_HOLEY_SMI_ELEMENTS: |
+ case FAST_HOLEY_ELEMENTS: { |
+ // Run through the elements FixedArray and use HasElement and GetElement |
+ // to check the prototype for missing elements. |
+ Handle<FixedArray> elements(FixedArray::cast(array->elements())); |
+ int fast_length = static_cast<int>(length); |
+ DCHECK(fast_length <= elements->length()); |
+ FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { |
+ Handle<Object> element_value(elements->get(j), isolate); |
+ if (!element_value->IsTheHole(isolate)) { |
+ if (!visitor->visit(j, element_value)) return false; |
+ } else { |
+ Maybe<bool> maybe = JSReceiver::HasElement(array, j); |
+ if (!maybe.IsJust()) return false; |
+ if (maybe.FromJust()) { |
+ // Call GetElement on array, not its prototype, or getters won't |
+ // have the correct receiver. |
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
+ isolate, element_value, |
+ JSReceiver::GetElement(isolate, array, j), false); |
+ if (!visitor->visit(j, element_value)) return false; |
+ } |
+ } |
+ }); |
+ break; |
+ } |
+ case FAST_HOLEY_DOUBLE_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: { |
+ // Empty array is FixedArray but not FixedDoubleArray. |
+ if (length == 0) break; |
+ // Run through the elements FixedArray and use HasElement and GetElement |
+ // to check the prototype for missing elements. |
+ if (array->elements()->IsFixedArray()) { |
+ DCHECK(array->elements()->length() == 0); |
+ break; |
+ } |
+ Handle<FixedDoubleArray> elements( |
+ FixedDoubleArray::cast(array->elements())); |
+ int fast_length = static_cast<int>(length); |
+ DCHECK(fast_length <= elements->length()); |
+ FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { |
+ if (!elements->is_the_hole(j)) { |
+ double double_value = elements->get_scalar(j); |
+ Handle<Object> element_value = |
+ isolate->factory()->NewNumber(double_value); |
+ if (!visitor->visit(j, element_value)) return false; |
+ } else { |
+ Maybe<bool> maybe = JSReceiver::HasElement(array, j); |
+ if (!maybe.IsJust()) return false; |
+ if (maybe.FromJust()) { |
+ // Call GetElement on array, not its prototype, or getters won't |
+ // have the correct receiver. |
+ Handle<Object> element_value; |
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
+ isolate, element_value, |
+ JSReceiver::GetElement(isolate, array, j), false); |
+ if (!visitor->visit(j, element_value)) return false; |
+ } |
+ } |
+ }); |
+ break; |
+ } |
+ |
+ case DICTIONARY_ELEMENTS: { |
+ Handle<SeededNumberDictionary> dict(array->element_dictionary()); |
+ List<uint32_t> indices(dict->Capacity() / 2); |
+ // Collect all indices in the object and the prototypes less |
+ // than length. This might introduce duplicates in the indices list. |
+ CollectElementIndices(array, length, &indices); |
+ indices.Sort(&compareUInt32); |
+ int n = indices.length(); |
+ FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, { |
+ uint32_t index = indices[j]; |
+ Handle<Object> element; |
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
+ isolate, element, JSReceiver::GetElement(isolate, array, index), |
+ false); |
+ if (!visitor->visit(index, element)) return false; |
+ // Skip to next different index (i.e., omit duplicates). |
+ do { |
+ j++; |
+ } while (j < n && indices[j] == index); |
+ }); |
+ break; |
+ } |
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { |
+ FOR_WITH_HANDLE_SCOPE( |
+ isolate, uint32_t, index = 0, index, index < length, index++, { |
+ Handle<Object> element; |
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
+ isolate, element, JSReceiver::GetElement(isolate, array, index), |
+ false); |
+ if (!visitor->visit(index, element)) return false; |
+ }); |
+ break; |
+ } |
+ case NO_ELEMENTS: |
+ break; |
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: |
+ TYPED_ARRAYS(TYPED_ARRAY_CASE) |
+#undef TYPED_ARRAY_CASE |
+ return IterateElementsSlow(isolate, receiver, length, visitor); |
+ case FAST_STRING_WRAPPER_ELEMENTS: |
+ case SLOW_STRING_WRAPPER_ELEMENTS: |
+ // |array| is guaranteed to be an array or typed array. |
+ UNREACHABLE(); |
+ break; |
+ } |
+ visitor->increase_index_offset(length); |
+ return true; |
+} |
+ |
+static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) { |
+ HandleScope handle_scope(isolate); |
+ if (!obj->IsJSReceiver()) return Just(false); |
+ if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { |
+ // Slow path if @@isConcatSpreadable has been used. |
+ Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol()); |
+ Handle<Object> value; |
+ MaybeHandle<Object> maybeValue = |
+ i::Runtime::GetObjectProperty(isolate, obj, key); |
+ if (!maybeValue.ToHandle(&value)) return Nothing<bool>(); |
+ if (!value->IsUndefined(isolate)) return Just(value->BooleanValue()); |
+ } |
+ return Object::IsArray(obj); |
+} |
+ |
+Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species, |
+ Isolate* isolate) { |
+ int argument_count = args->length(); |
+ |
+ bool is_array_species = *species == isolate->context()->array_function(); |
+ |
+ // Pass 1: estimate the length and number of elements of the result. |
+ // The actual length can be larger if any of the arguments have getters |
+ // that mutate other arguments (but will otherwise be precise). |
+ // The number of elements is precise if there are no inherited elements. |
+ |
+ ElementsKind kind = FAST_SMI_ELEMENTS; |
+ |
+ uint32_t estimate_result_length = 0; |
+ uint32_t estimate_nof_elements = 0; |
+ FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { |
+ Handle<Object> obj((*args)[i], isolate); |
+ uint32_t length_estimate; |
+ uint32_t element_estimate; |
+ if (obj->IsJSArray()) { |
+ Handle<JSArray> array(Handle<JSArray>::cast(obj)); |
+ length_estimate = static_cast<uint32_t>(array->length()->Number()); |
+ if (length_estimate != 0) { |
+ ElementsKind array_kind = |
+ GetPackedElementsKind(array->GetElementsKind()); |
+ kind = GetMoreGeneralElementsKind(kind, array_kind); |
+ } |
+ element_estimate = EstimateElementCount(array); |
+ } else { |
+ if (obj->IsHeapObject()) { |
+ kind = GetMoreGeneralElementsKind( |
+ kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS); |
+ } |
+ length_estimate = 1; |
+ element_estimate = 1; |
+ } |
+ // Avoid overflows by capping at kMaxElementCount. |
+ if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { |
+ estimate_result_length = JSObject::kMaxElementCount; |
+ } else { |
+ estimate_result_length += length_estimate; |
+ } |
+ if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { |
+ estimate_nof_elements = JSObject::kMaxElementCount; |
+ } else { |
+ estimate_nof_elements += element_estimate; |
+ } |
+ }); |
+ |
+ // If estimated number of elements is more than half of length, a |
+ // fixed array (fast case) is more time and space-efficient than a |
+ // dictionary. |
+ bool fast_case = |
+ is_array_species && (estimate_nof_elements * 2) >= estimate_result_length; |
+ |
+ if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { |
+ Handle<FixedArrayBase> storage = |
+ isolate->factory()->NewFixedDoubleArray(estimate_result_length); |
+ int j = 0; |
+ bool failure = false; |
+ if (estimate_result_length > 0) { |
+ Handle<FixedDoubleArray> double_storage = |
+ Handle<FixedDoubleArray>::cast(storage); |
+ for (int i = 0; i < argument_count; i++) { |
+ Handle<Object> obj((*args)[i], isolate); |
+ if (obj->IsSmi()) { |
+ double_storage->set(j, Smi::cast(*obj)->value()); |
+ j++; |
+ } else if (obj->IsNumber()) { |
+ double_storage->set(j, obj->Number()); |
+ j++; |
+ } else { |
+ DisallowHeapAllocation no_gc; |
+ JSArray* array = JSArray::cast(*obj); |
+ uint32_t length = static_cast<uint32_t>(array->length()->Number()); |
+ switch (array->GetElementsKind()) { |
+ case FAST_HOLEY_DOUBLE_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: { |
+ // Empty array is FixedArray but not FixedDoubleArray. |
+ if (length == 0) break; |
+ FixedDoubleArray* elements = |
+ FixedDoubleArray::cast(array->elements()); |
+ for (uint32_t i = 0; i < length; i++) { |
+ if (elements->is_the_hole(i)) { |
+ // TODO(jkummerow/verwaest): We could be a bit more clever |
+ // here: Check if there are no elements/getters on the |
+ // prototype chain, and if so, allow creation of a holey |
+ // result array. |
+ // Same thing below (holey smi case). |
+ failure = true; |
+ break; |
+ } |
+ double double_value = elements->get_scalar(i); |
+ double_storage->set(j, double_value); |
+ j++; |
+ } |
+ break; |
+ } |
+ case FAST_HOLEY_SMI_ELEMENTS: |
+ case FAST_SMI_ELEMENTS: { |
+ Object* the_hole = isolate->heap()->the_hole_value(); |
+ FixedArray* elements(FixedArray::cast(array->elements())); |
+ for (uint32_t i = 0; i < length; i++) { |
+ Object* element = elements->get(i); |
+ if (element == the_hole) { |
+ failure = true; |
+ break; |
+ } |
+ int32_t int_value = Smi::cast(element)->value(); |
+ double_storage->set(j, int_value); |
+ j++; |
+ } |
+ break; |
+ } |
+ case FAST_HOLEY_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case DICTIONARY_ELEMENTS: |
+ case NO_ELEMENTS: |
+ DCHECK_EQ(0u, length); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ } |
+ if (failure) break; |
+ } |
+ } |
+ if (!failure) { |
+ return *isolate->factory()->NewJSArrayWithElements(storage, kind, j); |
+ } |
+ // In case of failure, fall through. |
+ } |
+ |
+ Handle<Object> storage; |
+ if (fast_case) { |
+ // The backing storage array must have non-existing elements to preserve |
+ // holes across concat operations. |
+ storage = |
+ isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); |
+ } else if (is_array_species) { |
+ // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate |
+ uint32_t at_least_space_for = |
+ estimate_nof_elements + (estimate_nof_elements >> 2); |
+ storage = SeededNumberDictionary::New(isolate, at_least_space_for); |
+ } else { |
+ DCHECK(species->IsConstructor()); |
+ Handle<Object> length(Smi::FromInt(0), isolate); |
+ Handle<Object> storage_object; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, storage_object, |
+ Execution::New(isolate, species, species, 1, &length)); |
+ storage = storage_object; |
+ } |
+ |
+ ArrayConcatVisitor visitor(isolate, storage, fast_case); |
+ |
+ for (int i = 0; i < argument_count; i++) { |
+ Handle<Object> obj((*args)[i], isolate); |
+ Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj); |
+ MAYBE_RETURN(spreadable, isolate->heap()->exception()); |
+ if (spreadable.FromJust()) { |
+ Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj); |
+ if (!IterateElements(isolate, object, &visitor)) { |
+ return isolate->heap()->exception(); |
+ } |
+ } else { |
+ if (!visitor.visit(0, obj)) return isolate->heap()->exception(); |
+ visitor.increase_index_offset(1); |
+ } |
+ } |
+ |
+ if (visitor.exceeds_array_limit()) { |
+ THROW_NEW_ERROR_RETURN_FAILURE( |
+ isolate, NewRangeError(MessageTemplate::kInvalidArrayLength)); |
+ } |
+ |
+ if (is_array_species) { |
+ return *visitor.ToArray(); |
+ } else { |
+ return *visitor.storage_jsreceiver(); |
+ } |
+} |
+ |
+bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) { |
+ DisallowHeapAllocation no_gc; |
+ Map* map = obj->map(); |
+ // If there is only the 'length' property we are fine. |
+ if (map->prototype() == |
+ isolate->native_context()->initial_array_prototype() && |
+ map->NumberOfOwnDescriptors() == 1) { |
+ return true; |
+ } |
+ // TODO(cbruni): slower lookup for array subclasses and support slow |
+ // @@IsConcatSpreadable lookup. |
+ return false; |
+} |
+ |
+MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, |
+ BuiltinArguments* args) { |
+ if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { |
+ return MaybeHandle<JSArray>(); |
+ } |
+ // We shouldn't overflow when adding another len. |
+ const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); |
+ STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); |
+ STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt); |
+ USE(kHalfOfMaxInt); |
+ |
+ int n_arguments = args->length(); |
+ int result_len = 0; |
+ { |
+ DisallowHeapAllocation no_gc; |
+ // Iterate through all the arguments performing checks |
+ // and calculating total length. |
+ for (int i = 0; i < n_arguments; i++) { |
+ Object* arg = (*args)[i]; |
+ if (!arg->IsJSArray()) return MaybeHandle<JSArray>(); |
+ if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { |
+ return MaybeHandle<JSArray>(); |
+ } |
+ // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. |
+ if (!JSObject::cast(arg)->HasFastElements()) { |
+ return MaybeHandle<JSArray>(); |
+ } |
+ Handle<JSArray> array(JSArray::cast(arg), isolate); |
+ if (!IsSimpleArray(isolate, array)) { |
+ return MaybeHandle<JSArray>(); |
+ } |
+ // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't |
+ // overflow. |
+ result_len += Smi::cast(array->length())->value(); |
+ DCHECK(result_len >= 0); |
+ // Throw an Error if we overflow the FixedArray limits |
+ if (FixedDoubleArray::kMaxLength < result_len || |
+ FixedArray::kMaxLength < result_len) { |
+ AllowHeapAllocation gc; |
+ THROW_NEW_ERROR(isolate, |
+ NewRangeError(MessageTemplate::kInvalidArrayLength), |
+ JSArray); |
+ } |
+ } |
+ } |
+ return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); |
+} |
+ |
+} // namespace |
+ |
+// ES6 22.1.3.1 Array.prototype.concat |
+BUILTIN(ArrayConcat) { |
+ HandleScope scope(isolate); |
+ |
+ Handle<Object> receiver = args.receiver(); |
+ // TODO(bmeurer): Do we really care about the exact exception message here? |
+ if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) { |
+ THROW_NEW_ERROR_RETURN_FAILURE( |
+ isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, |
+ isolate->factory()->NewStringFromAsciiChecked( |
+ "Array.prototype.concat"))); |
+ } |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, receiver, Object::ToObject(isolate, args.receiver())); |
+ args[0] = *receiver; |
+ |
+ Handle<JSArray> result_array; |
+ |
+ // Avoid a real species read to avoid extra lookups to the array constructor |
+ if (V8_LIKELY(receiver->IsJSArray() && |
+ Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) && |
+ isolate->IsArraySpeciesLookupChainIntact())) { |
+ if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { |
+ return *result_array; |
+ } |
+ if (isolate->has_pending_exception()) return isolate->heap()->exception(); |
+ } |
+ // Reading @@species happens before anything else with a side effect, so |
+ // we can do it here to determine whether to take the fast path. |
+ Handle<Object> species; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, species, Object::ArraySpeciesConstructor(isolate, receiver)); |
+ if (*species == *isolate->array_function()) { |
+ if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { |
+ return *result_array; |
+ } |
+ if (isolate->has_pending_exception()) return isolate->heap()->exception(); |
+ } |
+ return Slow_ArrayConcat(&args, species, isolate); |
+} |
+ |
+void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) { |
+ typedef compiler::Node Node; |
+ typedef CodeStubAssembler::Label Label; |
+ |
+ Node* object = assembler->Parameter(1); |
+ Node* context = assembler->Parameter(4); |
+ |
+ Label call_runtime(assembler), return_true(assembler), |
+ return_false(assembler); |
+ |
+ assembler->GotoIf(assembler->WordIsSmi(object), &return_false); |
+ Node* instance_type = assembler->LoadInstanceType(object); |
+ |
+ assembler->GotoIf(assembler->Word32Equal( |
+ instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)), |
+ &return_true); |
+ |
+ // TODO(verwaest): Handle proxies in-place. |
+ assembler->Branch(assembler->Word32Equal( |
+ instance_type, assembler->Int32Constant(JS_PROXY_TYPE)), |
+ &call_runtime, &return_false); |
+ |
+ assembler->Bind(&return_true); |
+ assembler->Return(assembler->BooleanConstant(true)); |
+ |
+ assembler->Bind(&return_false); |
+ assembler->Return(assembler->BooleanConstant(false)); |
+ |
+ assembler->Bind(&call_runtime); |
+ assembler->Return( |
+ assembler->CallRuntime(Runtime::kArrayIsArray, context, object)); |
+} |
+ |
+} // namespace internal |
+} // namespace v8 |