Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(61)

Unified Diff: src/builtins/builtins-array.cc

Issue 2158793003: [builtins] move array builtins into its own file. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@declares
Patch Set: rebase Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/builtins/builtins.cc ('k') | src/builtins/builtins-utils.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/builtins/builtins-array.cc
diff --git a/src/builtins/builtins-array.cc b/src/builtins/builtins-array.cc
new file mode 100644
index 0000000000000000000000000000000000000000..ba6ec24304d817abb02589f2d202846833928c31
--- /dev/null
+++ b/src/builtins/builtins-array.cc
@@ -0,0 +1,1275 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/builtins/builtins.h"
+#include "src/builtins/builtins-utils.h"
+#include "src/elements.h"
+
+namespace v8 {
+namespace internal {
+
+namespace {
+
+inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) {
+ // This is an extended version of ECMA-262 7.1.11 handling signed values
+ // Try to convert object to a number and clamp values to [kMinInt, kMaxInt]
+ if (object->IsSmi()) {
+ *out = Smi::cast(object)->value();
+ return true;
+ } else if (object->IsHeapNumber()) {
+ double value = HeapNumber::cast(object)->value();
+ if (std::isnan(value)) {
+ *out = 0;
+ } else if (value > kMaxInt) {
+ *out = kMaxInt;
+ } else if (value < kMinInt) {
+ *out = kMinInt;
+ } else {
+ *out = static_cast<int>(value);
+ }
+ return true;
+ } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) {
+ *out = 0;
+ return true;
+ } else if (object->IsBoolean()) {
+ *out = object->IsTrue(isolate);
+ return true;
+ }
+ return false;
+}
+
+inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object,
+ int* out) {
+ Context* context = *isolate->native_context();
+ Map* map = object->map();
+ if (map != context->sloppy_arguments_map() &&
+ map != context->strict_arguments_map() &&
+ map != context->fast_aliased_arguments_map()) {
+ return false;
+ }
+ DCHECK(object->HasFastElements() || object->HasFastArgumentsElements());
+ Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex);
+ if (!len_obj->IsSmi()) return false;
+ *out = Max(0, Smi::cast(len_obj)->value());
+ return *out <= object->elements()->length();
+}
+
+inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object) {
+ DisallowHeapAllocation no_gc;
+ HeapObject* prototype = HeapObject::cast(object->map()->prototype());
+ HeapObject* null = isolate->heap()->null_value();
+ HeapObject* empty = isolate->heap()->empty_fixed_array();
+ while (prototype != null) {
+ Map* map = prototype->map();
+ if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false;
+ if (JSObject::cast(prototype)->elements() != empty) return false;
+ prototype = HeapObject::cast(map->prototype());
+ }
+ return true;
+}
+
+inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate,
+ JSArray* receiver) {
+ return PrototypeHasNoElements(isolate, receiver);
+}
+
+inline bool HasSimpleElements(JSObject* current) {
+ return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER &&
+ !current->GetElementsAccessor()->HasAccessors(current);
+}
+
+inline bool HasOnlySimpleReceiverElements(Isolate* isolate,
+ JSObject* receiver) {
+ // Check that we have no accessors on the receiver's elements.
+ if (!HasSimpleElements(receiver)) return false;
+ return PrototypeHasNoElements(isolate, receiver);
+}
+
+inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) {
+ DisallowHeapAllocation no_gc;
+ PrototypeIterator iter(isolate, receiver, kStartAtReceiver);
+ for (; !iter.IsAtEnd(); iter.Advance()) {
+ if (iter.GetCurrent()->IsJSProxy()) return false;
+ JSObject* current = iter.GetCurrent<JSObject>();
+ if (!HasSimpleElements(current)) return false;
+ }
+ return true;
+}
+
+// Returns |false| if not applicable.
+MUST_USE_RESULT
+inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate,
+ Handle<Object> receiver,
+ BuiltinArguments* args,
+ int first_added_arg) {
+ if (!receiver->IsJSArray()) return false;
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver);
+ ElementsKind origin_kind = array->GetElementsKind();
+ if (IsDictionaryElementsKind(origin_kind)) return false;
+ if (!array->map()->is_extensible()) return false;
+ if (args == nullptr) return true;
+
+ // If there may be elements accessors in the prototype chain, the fast path
+ // cannot be used if there arguments to add to the array.
+ if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false;
+
+ // Adding elements to the array prototype would break code that makes sure
+ // it has no elements. Handle that elsewhere.
+ if (isolate->IsAnyInitialArrayPrototype(array)) return false;
+
+ // Need to ensure that the arguments passed in args can be contained in
+ // the array.
+ int args_length = args->length();
+ if (first_added_arg >= args_length) return true;
+
+ if (IsFastObjectElementsKind(origin_kind)) return true;
+ ElementsKind target_kind = origin_kind;
+ {
+ DisallowHeapAllocation no_gc;
+ for (int i = first_added_arg; i < args_length; i++) {
+ Object* arg = (*args)[i];
+ if (arg->IsHeapObject()) {
+ if (arg->IsHeapNumber()) {
+ target_kind = FAST_DOUBLE_ELEMENTS;
+ } else {
+ target_kind = FAST_ELEMENTS;
+ break;
+ }
+ }
+ }
+ }
+ if (target_kind != origin_kind) {
+ // Use a short-lived HandleScope to avoid creating several copies of the
+ // elements handle which would cause issues when left-trimming later-on.
+ HandleScope scope(isolate);
+ JSObject::TransitionElementsKind(array, target_kind);
+ }
+ return true;
+}
+
+MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate,
+ Handle<JSFunction> function,
+ BuiltinArguments args) {
+ HandleScope handleScope(isolate);
+ int argc = args.length() - 1;
+ ScopedVector<Handle<Object>> argv(argc);
+ for (int i = 0; i < argc; ++i) {
+ argv[i] = args.at<Object>(i + 1);
+ }
+ RETURN_RESULT_OR_FAILURE(
+ isolate,
+ Execution::Call(isolate, function, args.receiver(), argc, argv.start()));
+}
+
+Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) {
+ HandleScope scope(isolate);
+ Handle<Object> receiver = args.receiver();
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
+ return CallJsIntrinsic(isolate, isolate->array_push(), args);
+ }
+ // Fast Elements Path
+ int to_add = args.length() - 1;
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver);
+ int len = Smi::cast(array->length())->value();
+ if (to_add == 0) return Smi::FromInt(len);
+
+ // Currently fixed arrays cannot grow too big, so we should never hit this.
+ DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());
+
+ if (JSArray::HasReadOnlyLength(array)) {
+ return CallJsIntrinsic(isolate, isolate->array_push(), args);
+ }
+
+ ElementsAccessor* accessor = array->GetElementsAccessor();
+ int new_length = accessor->Push(array, &args, to_add);
+ return Smi::FromInt(new_length);
+}
+} // namespace
+
+BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); }
+
+// TODO(verwaest): This is a temporary helper until the FastArrayPush stub can
+// tailcall to the builtin directly.
+RUNTIME_FUNCTION(Runtime_ArrayPush) {
+ DCHECK_EQ(2, args.length());
+ Arguments* incoming = reinterpret_cast<Arguments*>(args[0]);
+ // Rewrap the arguments as builtins arguments.
+ int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver;
+ BuiltinArguments caller_args(argc, incoming->arguments() + 1);
+ return DoArrayPush(isolate, caller_args);
+}
+
+BUILTIN(ArrayPop) {
+ HandleScope scope(isolate);
+ Handle<Object> receiver = args.receiver();
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) {
+ return CallJsIntrinsic(isolate, isolate->array_pop(), args);
+ }
+
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver);
+
+ uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value());
+ if (len == 0) return isolate->heap()->undefined_value();
+
+ if (JSArray::HasReadOnlyLength(array)) {
+ return CallJsIntrinsic(isolate, isolate->array_pop(), args);
+ }
+
+ Handle<Object> result;
+ if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
+ // Fast Elements Path
+ result = array->GetElementsAccessor()->Pop(array);
+ } else {
+ // Use Slow Lookup otherwise
+ uint32_t new_length = len - 1;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, result, JSReceiver::GetElement(isolate, array, new_length));
+ JSArray::SetLength(array, new_length);
+ }
+ return *result;
+}
+
+BUILTIN(ArrayShift) {
+ HandleScope scope(isolate);
+ Heap* heap = isolate->heap();
+ Handle<Object> receiver = args.receiver();
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) ||
+ !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
+ return CallJsIntrinsic(isolate, isolate->array_shift(), args);
+ }
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver);
+
+ int len = Smi::cast(array->length())->value();
+ if (len == 0) return heap->undefined_value();
+
+ if (JSArray::HasReadOnlyLength(array)) {
+ return CallJsIntrinsic(isolate, isolate->array_shift(), args);
+ }
+
+ Handle<Object> first = array->GetElementsAccessor()->Shift(array);
+ return *first;
+}
+
+BUILTIN(ArrayUnshift) {
+ HandleScope scope(isolate);
+ Handle<Object> receiver = args.receiver();
+ if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
+ return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
+ }
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver);
+ int to_add = args.length() - 1;
+ if (to_add == 0) return array->length();
+
+ // Currently fixed arrays cannot grow too big, so we should never hit this.
+ DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());
+
+ if (JSArray::HasReadOnlyLength(array)) {
+ return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
+ }
+
+ ElementsAccessor* accessor = array->GetElementsAccessor();
+ int new_length = accessor->Unshift(array, &args, to_add);
+ return Smi::FromInt(new_length);
+}
+
+BUILTIN(ArraySlice) {
+ HandleScope scope(isolate);
+ Handle<Object> receiver = args.receiver();
+ int len = -1;
+ int relative_start = 0;
+ int relative_end = 0;
+
+ if (receiver->IsJSArray()) {
+ DisallowHeapAllocation no_gc;
+ JSArray* array = JSArray::cast(*receiver);
+ if (V8_UNLIKELY(!array->HasFastElements() ||
+ !IsJSArrayFastElementMovingAllowed(isolate, array) ||
+ !isolate->IsArraySpeciesLookupChainIntact() ||
+ // If this is a subclass of Array, then call out to JS
+ !array->HasArrayPrototype(isolate))) {
+ AllowHeapAllocation allow_allocation;
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args);
+ }
+ len = Smi::cast(array->length())->value();
+ } else if (receiver->IsJSObject() &&
+ GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver),
+ &len)) {
+ // Array.prototype.slice.call(arguments, ...) is quite a common idiom
+ // (notably more than 50% of invocations in Web apps).
+ // Treat it in C++ as well.
+ DCHECK(JSObject::cast(*receiver)->HasFastElements() ||
+ JSObject::cast(*receiver)->HasFastArgumentsElements());
+ } else {
+ AllowHeapAllocation allow_allocation;
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args);
+ }
+ DCHECK_LE(0, len);
+ int argument_count = args.length() - 1;
+ // Note carefully chosen defaults---if argument is missing,
+ // it's undefined which gets converted to 0 for relative_start
+ // and to len for relative_end.
+ relative_start = 0;
+ relative_end = len;
+ if (argument_count > 0) {
+ DisallowHeapAllocation no_gc;
+ if (!ClampedToInteger(isolate, args[1], &relative_start)) {
+ AllowHeapAllocation allow_allocation;
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args);
+ }
+ if (argument_count > 1) {
+ Object* end_arg = args[2];
+ // slice handles the end_arg specially
+ if (end_arg->IsUndefined(isolate)) {
+ relative_end = len;
+ } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) {
+ AllowHeapAllocation allow_allocation;
+ return CallJsIntrinsic(isolate, isolate->array_slice(), args);
+ }
+ }
+ }
+
+ // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
+ uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
+ : Min(relative_start, len);
+
+ // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
+ uint32_t actual_end =
+ (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len);
+
+ Handle<JSObject> object = Handle<JSObject>::cast(receiver);
+ ElementsAccessor* accessor = object->GetElementsAccessor();
+ return *accessor->Slice(object, actual_start, actual_end);
+}
+
+BUILTIN(ArraySplice) {
+ HandleScope scope(isolate);
+ Handle<Object> receiver = args.receiver();
+ if (V8_UNLIKELY(
+ !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) ||
+ // If this is a subclass of Array, then call out to JS.
+ !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) ||
+ // If anything with @@species has been messed with, call out to JS.
+ !isolate->IsArraySpeciesLookupChainIntact())) {
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args);
+ }
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver);
+
+ int argument_count = args.length() - 1;
+ int relative_start = 0;
+ if (argument_count > 0) {
+ DisallowHeapAllocation no_gc;
+ if (!ClampedToInteger(isolate, args[1], &relative_start)) {
+ AllowHeapAllocation allow_allocation;
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args);
+ }
+ }
+ int len = Smi::cast(array->length())->value();
+ // clip relative start to [0, len]
+ int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
+ : Min(relative_start, len);
+
+ int actual_delete_count;
+ if (argument_count == 1) {
+ // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
+ // given as a request to delete all the elements from the start.
+ // And it differs from the case of undefined delete count.
+ // This does not follow ECMA-262, but we do the same for compatibility.
+ DCHECK(len - actual_start >= 0);
+ actual_delete_count = len - actual_start;
+ } else {
+ int delete_count = 0;
+ DisallowHeapAllocation no_gc;
+ if (argument_count > 1) {
+ if (!ClampedToInteger(isolate, args[2], &delete_count)) {
+ AllowHeapAllocation allow_allocation;
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args);
+ }
+ }
+ actual_delete_count = Min(Max(delete_count, 0), len - actual_start);
+ }
+
+ int add_count = (argument_count > 1) ? (argument_count - 2) : 0;
+ int new_length = len - actual_delete_count + add_count;
+
+ if (new_length != len && JSArray::HasReadOnlyLength(array)) {
+ AllowHeapAllocation allow_allocation;
+ return CallJsIntrinsic(isolate, isolate->array_splice(), args);
+ }
+ ElementsAccessor* accessor = array->GetElementsAccessor();
+ Handle<JSArray> result_array = accessor->Splice(
+ array, actual_start, actual_delete_count, &args, add_count);
+ return *result_array;
+}
+
+// Array Concat -------------------------------------------------------------
+
+namespace {
+
+/**
+ * A simple visitor visits every element of Array's.
+ * The backend storage can be a fixed array for fast elements case,
+ * or a dictionary for sparse array. Since Dictionary is a subtype
+ * of FixedArray, the class can be used by both fast and slow cases.
+ * The second parameter of the constructor, fast_elements, specifies
+ * whether the storage is a FixedArray or Dictionary.
+ *
+ * An index limit is used to deal with the situation that a result array
+ * length overflows 32-bit non-negative integer.
+ */
+class ArrayConcatVisitor {
+ public:
+ ArrayConcatVisitor(Isolate* isolate, Handle<Object> storage,
+ bool fast_elements)
+ : isolate_(isolate),
+ storage_(isolate->global_handles()->Create(*storage)),
+ index_offset_(0u),
+ bit_field_(FastElementsField::encode(fast_elements) |
+ ExceedsLimitField::encode(false) |
+ IsFixedArrayField::encode(storage->IsFixedArray())) {
+ DCHECK(!(this->fast_elements() && !is_fixed_array()));
+ }
+
+ ~ArrayConcatVisitor() { clear_storage(); }
+
+ MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) {
+ uint32_t index = index_offset_ + i;
+
+ if (i >= JSObject::kMaxElementCount - index_offset_) {
+ set_exceeds_array_limit(true);
+ // Exception hasn't been thrown at this point. Return true to
+ // break out, and caller will throw. !visit would imply that
+ // there is already a pending exception.
+ return true;
+ }
+
+ if (!is_fixed_array()) {
+ LookupIterator it(isolate_, storage_, index, LookupIterator::OWN);
+ MAYBE_RETURN(
+ JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR),
+ false);
+ return true;
+ }
+
+ if (fast_elements()) {
+ if (index < static_cast<uint32_t>(storage_fixed_array()->length())) {
+ storage_fixed_array()->set(index, *elm);
+ return true;
+ }
+ // Our initial estimate of length was foiled, possibly by
+ // getters on the arrays increasing the length of later arrays
+ // during iteration.
+ // This shouldn't happen in anything but pathological cases.
+ SetDictionaryMode();
+ // Fall-through to dictionary mode.
+ }
+ DCHECK(!fast_elements());
+ Handle<SeededNumberDictionary> dict(
+ SeededNumberDictionary::cast(*storage_));
+ // The object holding this backing store has just been allocated, so
+ // it cannot yet be used as a prototype.
+ Handle<SeededNumberDictionary> result =
+ SeededNumberDictionary::AtNumberPut(dict, index, elm, false);
+ if (!result.is_identical_to(dict)) {
+ // Dictionary needed to grow.
+ clear_storage();
+ set_storage(*result);
+ }
+ return true;
+ }
+
+ void increase_index_offset(uint32_t delta) {
+ if (JSObject::kMaxElementCount - index_offset_ < delta) {
+ index_offset_ = JSObject::kMaxElementCount;
+ } else {
+ index_offset_ += delta;
+ }
+ // If the initial length estimate was off (see special case in visit()),
+ // but the array blowing the limit didn't contain elements beyond the
+ // provided-for index range, go to dictionary mode now.
+ if (fast_elements() &&
+ index_offset_ >
+ static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
+ SetDictionaryMode();
+ }
+ }
+
+ bool exceeds_array_limit() const {
+ return ExceedsLimitField::decode(bit_field_);
+ }
+
+ Handle<JSArray> ToArray() {
+ DCHECK(is_fixed_array());
+ Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
+ Handle<Object> length =
+ isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
+ Handle<Map> map = JSObject::GetElementsTransitionMap(
+ array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
+ array->set_map(*map);
+ array->set_length(*length);
+ array->set_elements(*storage_fixed_array());
+ return array;
+ }
+
+ // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever
+ // (otherwise)
+ Handle<FixedArray> storage_fixed_array() {
+ DCHECK(is_fixed_array());
+ return Handle<FixedArray>::cast(storage_);
+ }
+ Handle<JSReceiver> storage_jsreceiver() {
+ DCHECK(!is_fixed_array());
+ return Handle<JSReceiver>::cast(storage_);
+ }
+
+ private:
+ // Convert storage to dictionary mode.
+ void SetDictionaryMode() {
+ DCHECK(fast_elements() && is_fixed_array());
+ Handle<FixedArray> current_storage = storage_fixed_array();
+ Handle<SeededNumberDictionary> slow_storage(
+ SeededNumberDictionary::New(isolate_, current_storage->length()));
+ uint32_t current_length = static_cast<uint32_t>(current_storage->length());
+ FOR_WITH_HANDLE_SCOPE(
+ isolate_, uint32_t, i = 0, i, i < current_length, i++, {
+ Handle<Object> element(current_storage->get(i), isolate_);
+ if (!element->IsTheHole(isolate_)) {
+ // The object holding this backing store has just been allocated, so
+ // it cannot yet be used as a prototype.
+ Handle<SeededNumberDictionary> new_storage =
+ SeededNumberDictionary::AtNumberPut(slow_storage, i, element,
+ false);
+ if (!new_storage.is_identical_to(slow_storage)) {
+ slow_storage = loop_scope.CloseAndEscape(new_storage);
+ }
+ }
+ });
+ clear_storage();
+ set_storage(*slow_storage);
+ set_fast_elements(false);
+ }
+
+ inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); }
+
+ inline void set_storage(FixedArray* storage) {
+ DCHECK(is_fixed_array());
+ storage_ = isolate_->global_handles()->Create(storage);
+ }
+
+ class FastElementsField : public BitField<bool, 0, 1> {};
+ class ExceedsLimitField : public BitField<bool, 1, 1> {};
+ class IsFixedArrayField : public BitField<bool, 2, 1> {};
+
+ bool fast_elements() const { return FastElementsField::decode(bit_field_); }
+ void set_fast_elements(bool fast) {
+ bit_field_ = FastElementsField::update(bit_field_, fast);
+ }
+ void set_exceeds_array_limit(bool exceeds) {
+ bit_field_ = ExceedsLimitField::update(bit_field_, exceeds);
+ }
+ bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); }
+
+ Isolate* isolate_;
+ Handle<Object> storage_; // Always a global handle.
+ // Index after last seen index. Always less than or equal to
+ // JSObject::kMaxElementCount.
+ uint32_t index_offset_;
+ uint32_t bit_field_;
+};
+
+uint32_t EstimateElementCount(Handle<JSArray> array) {
+ DisallowHeapAllocation no_gc;
+ uint32_t length = static_cast<uint32_t>(array->length()->Number());
+ int element_count = 0;
+ switch (array->GetElementsKind()) {
+ case FAST_SMI_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS: {
+ // Fast elements can't have lengths that are not representable by
+ // a 32-bit signed integer.
+ DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
+ int fast_length = static_cast<int>(length);
+ Isolate* isolate = array->GetIsolate();
+ FixedArray* elements = FixedArray::cast(array->elements());
+ for (int i = 0; i < fast_length; i++) {
+ if (!elements->get(i)->IsTheHole(isolate)) element_count++;
+ }
+ break;
+ }
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS: {
+ // Fast elements can't have lengths that are not representable by
+ // a 32-bit signed integer.
+ DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
+ int fast_length = static_cast<int>(length);
+ if (array->elements()->IsFixedArray()) {
+ DCHECK(FixedArray::cast(array->elements())->length() == 0);
+ break;
+ }
+ FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements());
+ for (int i = 0; i < fast_length; i++) {
+ if (!elements->is_the_hole(i)) element_count++;
+ }
+ break;
+ }
+ case DICTIONARY_ELEMENTS: {
+ SeededNumberDictionary* dictionary =
+ SeededNumberDictionary::cast(array->elements());
+ Isolate* isolate = dictionary->GetIsolate();
+ int capacity = dictionary->Capacity();
+ for (int i = 0; i < capacity; i++) {
+ Object* key = dictionary->KeyAt(i);
+ if (dictionary->IsKey(isolate, key)) {
+ element_count++;
+ }
+ }
+ break;
+ }
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
+
+ TYPED_ARRAYS(TYPED_ARRAY_CASE)
+#undef TYPED_ARRAY_CASE
+ // External arrays are always dense.
+ return length;
+ case NO_ELEMENTS:
+ return 0;
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+ case FAST_STRING_WRAPPER_ELEMENTS:
+ case SLOW_STRING_WRAPPER_ELEMENTS:
+ UNREACHABLE();
+ return 0;
+ }
+ // As an estimate, we assume that the prototype doesn't contain any
+ // inherited elements.
+ return element_count;
+}
+
+// Used for sorting indices in a List<uint32_t>.
+int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
+ uint32_t a = *ap;
+ uint32_t b = *bp;
+ return (a == b) ? 0 : (a < b) ? -1 : 1;
+}
+
+void CollectElementIndices(Handle<JSObject> object, uint32_t range,
+ List<uint32_t>* indices) {
+ Isolate* isolate = object->GetIsolate();
+ ElementsKind kind = object->GetElementsKind();
+ switch (kind) {
+ case FAST_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS: {
+ DisallowHeapAllocation no_gc;
+ FixedArray* elements = FixedArray::cast(object->elements());
+ uint32_t length = static_cast<uint32_t>(elements->length());
+ if (range < length) length = range;
+ for (uint32_t i = 0; i < length; i++) {
+ if (!elements->get(i)->IsTheHole(isolate)) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS: {
+ if (object->elements()->IsFixedArray()) {
+ DCHECK(object->elements()->length() == 0);
+ break;
+ }
+ Handle<FixedDoubleArray> elements(
+ FixedDoubleArray::cast(object->elements()));
+ uint32_t length = static_cast<uint32_t>(elements->length());
+ if (range < length) length = range;
+ for (uint32_t i = 0; i < length; i++) {
+ if (!elements->is_the_hole(i)) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ case DICTIONARY_ELEMENTS: {
+ DisallowHeapAllocation no_gc;
+ SeededNumberDictionary* dict =
+ SeededNumberDictionary::cast(object->elements());
+ uint32_t capacity = dict->Capacity();
+ FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, {
+ Object* k = dict->KeyAt(j);
+ if (!dict->IsKey(isolate, k)) continue;
+ DCHECK(k->IsNumber());
+ uint32_t index = static_cast<uint32_t>(k->Number());
+ if (index < range) {
+ indices->Add(index);
+ }
+ });
+ break;
+ }
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
+
+ TYPED_ARRAYS(TYPED_ARRAY_CASE)
+#undef TYPED_ARRAY_CASE
+ {
+ uint32_t length = static_cast<uint32_t>(
+ FixedArrayBase::cast(object->elements())->length());
+ if (range <= length) {
+ length = range;
+ // We will add all indices, so we might as well clear it first
+ // and avoid duplicates.
+ indices->Clear();
+ }
+ for (uint32_t i = 0; i < length; i++) {
+ indices->Add(i);
+ }
+ if (length == range) return; // All indices accounted for already.
+ break;
+ }
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
+ ElementsAccessor* accessor = object->GetElementsAccessor();
+ for (uint32_t i = 0; i < range; i++) {
+ if (accessor->HasElement(object, i)) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ case FAST_STRING_WRAPPER_ELEMENTS:
+ case SLOW_STRING_WRAPPER_ELEMENTS: {
+ DCHECK(object->IsJSValue());
+ Handle<JSValue> js_value = Handle<JSValue>::cast(object);
+ DCHECK(js_value->value()->IsString());
+ Handle<String> string(String::cast(js_value->value()), isolate);
+ uint32_t length = static_cast<uint32_t>(string->length());
+ uint32_t i = 0;
+ uint32_t limit = Min(length, range);
+ for (; i < limit; i++) {
+ indices->Add(i);
+ }
+ ElementsAccessor* accessor = object->GetElementsAccessor();
+ for (; i < range; i++) {
+ if (accessor->HasElement(object, i)) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ case NO_ELEMENTS:
+ break;
+ }
+
+ PrototypeIterator iter(isolate, object);
+ if (!iter.IsAtEnd()) {
+ // The prototype will usually have no inherited element indices,
+ // but we have to check.
+ CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range,
+ indices);
+ }
+}
+
+bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver,
+ uint32_t length, ArrayConcatVisitor* visitor) {
+ FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, {
+ Maybe<bool> maybe = JSReceiver::HasElement(receiver, i);
+ if (!maybe.IsJust()) return false;
+ if (maybe.FromJust()) {
+ Handle<Object> element_value;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element_value, JSReceiver::GetElement(isolate, receiver, i),
+ false);
+ if (!visitor->visit(i, element_value)) return false;
+ }
+ });
+ visitor->increase_index_offset(length);
+ return true;
+}
+
+/**
+ * A helper function that visits "array" elements of a JSReceiver in numerical
+ * order.
+ *
+ * The visitor argument called for each existing element in the array
+ * with the element index and the element's value.
+ * Afterwards it increments the base-index of the visitor by the array
+ * length.
+ * Returns false if any access threw an exception, otherwise true.
+ */
+bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver,
+ ArrayConcatVisitor* visitor) {
+ uint32_t length = 0;
+
+ if (receiver->IsJSArray()) {
+ Handle<JSArray> array = Handle<JSArray>::cast(receiver);
+ length = static_cast<uint32_t>(array->length()->Number());
+ } else {
+ Handle<Object> val;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false);
+ // TODO(caitp): Support larger element indexes (up to 2^53-1).
+ if (!val->ToUint32(&length)) {
+ length = 0;
+ }
+ // TODO(cbruni): handle other element kind as well
+ return IterateElementsSlow(isolate, receiver, length, visitor);
+ }
+
+ if (!HasOnlySimpleElements(isolate, *receiver)) {
+ return IterateElementsSlow(isolate, receiver, length, visitor);
+ }
+ Handle<JSObject> array = Handle<JSObject>::cast(receiver);
+
+ switch (array->GetElementsKind()) {
+ case FAST_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS: {
+ // Run through the elements FixedArray and use HasElement and GetElement
+ // to check the prototype for missing elements.
+ Handle<FixedArray> elements(FixedArray::cast(array->elements()));
+ int fast_length = static_cast<int>(length);
+ DCHECK(fast_length <= elements->length());
+ FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
+ Handle<Object> element_value(elements->get(j), isolate);
+ if (!element_value->IsTheHole(isolate)) {
+ if (!visitor->visit(j, element_value)) return false;
+ } else {
+ Maybe<bool> maybe = JSReceiver::HasElement(array, j);
+ if (!maybe.IsJust()) return false;
+ if (maybe.FromJust()) {
+ // Call GetElement on array, not its prototype, or getters won't
+ // have the correct receiver.
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element_value,
+ JSReceiver::GetElement(isolate, array, j), false);
+ if (!visitor->visit(j, element_value)) return false;
+ }
+ }
+ });
+ break;
+ }
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS: {
+ // Empty array is FixedArray but not FixedDoubleArray.
+ if (length == 0) break;
+ // Run through the elements FixedArray and use HasElement and GetElement
+ // to check the prototype for missing elements.
+ if (array->elements()->IsFixedArray()) {
+ DCHECK(array->elements()->length() == 0);
+ break;
+ }
+ Handle<FixedDoubleArray> elements(
+ FixedDoubleArray::cast(array->elements()));
+ int fast_length = static_cast<int>(length);
+ DCHECK(fast_length <= elements->length());
+ FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
+ if (!elements->is_the_hole(j)) {
+ double double_value = elements->get_scalar(j);
+ Handle<Object> element_value =
+ isolate->factory()->NewNumber(double_value);
+ if (!visitor->visit(j, element_value)) return false;
+ } else {
+ Maybe<bool> maybe = JSReceiver::HasElement(array, j);
+ if (!maybe.IsJust()) return false;
+ if (maybe.FromJust()) {
+ // Call GetElement on array, not its prototype, or getters won't
+ // have the correct receiver.
+ Handle<Object> element_value;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element_value,
+ JSReceiver::GetElement(isolate, array, j), false);
+ if (!visitor->visit(j, element_value)) return false;
+ }
+ }
+ });
+ break;
+ }
+
+ case DICTIONARY_ELEMENTS: {
+ Handle<SeededNumberDictionary> dict(array->element_dictionary());
+ List<uint32_t> indices(dict->Capacity() / 2);
+ // Collect all indices in the object and the prototypes less
+ // than length. This might introduce duplicates in the indices list.
+ CollectElementIndices(array, length, &indices);
+ indices.Sort(&compareUInt32);
+ int n = indices.length();
+ FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, {
+ uint32_t index = indices[j];
+ Handle<Object> element;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element, JSReceiver::GetElement(isolate, array, index),
+ false);
+ if (!visitor->visit(index, element)) return false;
+ // Skip to next different index (i.e., omit duplicates).
+ do {
+ j++;
+ } while (j < n && indices[j] == index);
+ });
+ break;
+ }
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
+ FOR_WITH_HANDLE_SCOPE(
+ isolate, uint32_t, index = 0, index, index < length, index++, {
+ Handle<Object> element;
+ ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+ isolate, element, JSReceiver::GetElement(isolate, array, index),
+ false);
+ if (!visitor->visit(index, element)) return false;
+ });
+ break;
+ }
+ case NO_ELEMENTS:
+ break;
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
+ TYPED_ARRAYS(TYPED_ARRAY_CASE)
+#undef TYPED_ARRAY_CASE
+ return IterateElementsSlow(isolate, receiver, length, visitor);
+ case FAST_STRING_WRAPPER_ELEMENTS:
+ case SLOW_STRING_WRAPPER_ELEMENTS:
+ // |array| is guaranteed to be an array or typed array.
+ UNREACHABLE();
+ break;
+ }
+ visitor->increase_index_offset(length);
+ return true;
+}
+
+static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) {
+ HandleScope handle_scope(isolate);
+ if (!obj->IsJSReceiver()) return Just(false);
+ if (!isolate->IsIsConcatSpreadableLookupChainIntact()) {
+ // Slow path if @@isConcatSpreadable has been used.
+ Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
+ Handle<Object> value;
+ MaybeHandle<Object> maybeValue =
+ i::Runtime::GetObjectProperty(isolate, obj, key);
+ if (!maybeValue.ToHandle(&value)) return Nothing<bool>();
+ if (!value->IsUndefined(isolate)) return Just(value->BooleanValue());
+ }
+ return Object::IsArray(obj);
+}
+
+Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species,
+ Isolate* isolate) {
+ int argument_count = args->length();
+
+ bool is_array_species = *species == isolate->context()->array_function();
+
+ // Pass 1: estimate the length and number of elements of the result.
+ // The actual length can be larger if any of the arguments have getters
+ // that mutate other arguments (but will otherwise be precise).
+ // The number of elements is precise if there are no inherited elements.
+
+ ElementsKind kind = FAST_SMI_ELEMENTS;
+
+ uint32_t estimate_result_length = 0;
+ uint32_t estimate_nof_elements = 0;
+ FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, {
+ Handle<Object> obj((*args)[i], isolate);
+ uint32_t length_estimate;
+ uint32_t element_estimate;
+ if (obj->IsJSArray()) {
+ Handle<JSArray> array(Handle<JSArray>::cast(obj));
+ length_estimate = static_cast<uint32_t>(array->length()->Number());
+ if (length_estimate != 0) {
+ ElementsKind array_kind =
+ GetPackedElementsKind(array->GetElementsKind());
+ kind = GetMoreGeneralElementsKind(kind, array_kind);
+ }
+ element_estimate = EstimateElementCount(array);
+ } else {
+ if (obj->IsHeapObject()) {
+ kind = GetMoreGeneralElementsKind(
+ kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS);
+ }
+ length_estimate = 1;
+ element_estimate = 1;
+ }
+ // Avoid overflows by capping at kMaxElementCount.
+ if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
+ estimate_result_length = JSObject::kMaxElementCount;
+ } else {
+ estimate_result_length += length_estimate;
+ }
+ if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
+ estimate_nof_elements = JSObject::kMaxElementCount;
+ } else {
+ estimate_nof_elements += element_estimate;
+ }
+ });
+
+ // If estimated number of elements is more than half of length, a
+ // fixed array (fast case) is more time and space-efficient than a
+ // dictionary.
+ bool fast_case =
+ is_array_species && (estimate_nof_elements * 2) >= estimate_result_length;
+
+ if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
+ Handle<FixedArrayBase> storage =
+ isolate->factory()->NewFixedDoubleArray(estimate_result_length);
+ int j = 0;
+ bool failure = false;
+ if (estimate_result_length > 0) {
+ Handle<FixedDoubleArray> double_storage =
+ Handle<FixedDoubleArray>::cast(storage);
+ for (int i = 0; i < argument_count; i++) {
+ Handle<Object> obj((*args)[i], isolate);
+ if (obj->IsSmi()) {
+ double_storage->set(j, Smi::cast(*obj)->value());
+ j++;
+ } else if (obj->IsNumber()) {
+ double_storage->set(j, obj->Number());
+ j++;
+ } else {
+ DisallowHeapAllocation no_gc;
+ JSArray* array = JSArray::cast(*obj);
+ uint32_t length = static_cast<uint32_t>(array->length()->Number());
+ switch (array->GetElementsKind()) {
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS: {
+ // Empty array is FixedArray but not FixedDoubleArray.
+ if (length == 0) break;
+ FixedDoubleArray* elements =
+ FixedDoubleArray::cast(array->elements());
+ for (uint32_t i = 0; i < length; i++) {
+ if (elements->is_the_hole(i)) {
+ // TODO(jkummerow/verwaest): We could be a bit more clever
+ // here: Check if there are no elements/getters on the
+ // prototype chain, and if so, allow creation of a holey
+ // result array.
+ // Same thing below (holey smi case).
+ failure = true;
+ break;
+ }
+ double double_value = elements->get_scalar(i);
+ double_storage->set(j, double_value);
+ j++;
+ }
+ break;
+ }
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_SMI_ELEMENTS: {
+ Object* the_hole = isolate->heap()->the_hole_value();
+ FixedArray* elements(FixedArray::cast(array->elements()));
+ for (uint32_t i = 0; i < length; i++) {
+ Object* element = elements->get(i);
+ if (element == the_hole) {
+ failure = true;
+ break;
+ }
+ int32_t int_value = Smi::cast(element)->value();
+ double_storage->set(j, int_value);
+ j++;
+ }
+ break;
+ }
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case NO_ELEMENTS:
+ DCHECK_EQ(0u, length);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ if (failure) break;
+ }
+ }
+ if (!failure) {
+ return *isolate->factory()->NewJSArrayWithElements(storage, kind, j);
+ }
+ // In case of failure, fall through.
+ }
+
+ Handle<Object> storage;
+ if (fast_case) {
+ // The backing storage array must have non-existing elements to preserve
+ // holes across concat operations.
+ storage =
+ isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
+ } else if (is_array_species) {
+ // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
+ uint32_t at_least_space_for =
+ estimate_nof_elements + (estimate_nof_elements >> 2);
+ storage = SeededNumberDictionary::New(isolate, at_least_space_for);
+ } else {
+ DCHECK(species->IsConstructor());
+ Handle<Object> length(Smi::FromInt(0), isolate);
+ Handle<Object> storage_object;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, storage_object,
+ Execution::New(isolate, species, species, 1, &length));
+ storage = storage_object;
+ }
+
+ ArrayConcatVisitor visitor(isolate, storage, fast_case);
+
+ for (int i = 0; i < argument_count; i++) {
+ Handle<Object> obj((*args)[i], isolate);
+ Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj);
+ MAYBE_RETURN(spreadable, isolate->heap()->exception());
+ if (spreadable.FromJust()) {
+ Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj);
+ if (!IterateElements(isolate, object, &visitor)) {
+ return isolate->heap()->exception();
+ }
+ } else {
+ if (!visitor.visit(0, obj)) return isolate->heap()->exception();
+ visitor.increase_index_offset(1);
+ }
+ }
+
+ if (visitor.exceeds_array_limit()) {
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewRangeError(MessageTemplate::kInvalidArrayLength));
+ }
+
+ if (is_array_species) {
+ return *visitor.ToArray();
+ } else {
+ return *visitor.storage_jsreceiver();
+ }
+}
+
+bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) {
+ DisallowHeapAllocation no_gc;
+ Map* map = obj->map();
+ // If there is only the 'length' property we are fine.
+ if (map->prototype() ==
+ isolate->native_context()->initial_array_prototype() &&
+ map->NumberOfOwnDescriptors() == 1) {
+ return true;
+ }
+ // TODO(cbruni): slower lookup for array subclasses and support slow
+ // @@IsConcatSpreadable lookup.
+ return false;
+}
+
+MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate,
+ BuiltinArguments* args) {
+ if (!isolate->IsIsConcatSpreadableLookupChainIntact()) {
+ return MaybeHandle<JSArray>();
+ }
+ // We shouldn't overflow when adding another len.
+ const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
+ STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
+ STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt);
+ USE(kHalfOfMaxInt);
+
+ int n_arguments = args->length();
+ int result_len = 0;
+ {
+ DisallowHeapAllocation no_gc;
+ // Iterate through all the arguments performing checks
+ // and calculating total length.
+ for (int i = 0; i < n_arguments; i++) {
+ Object* arg = (*args)[i];
+ if (!arg->IsJSArray()) return MaybeHandle<JSArray>();
+ if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) {
+ return MaybeHandle<JSArray>();
+ }
+ // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS.
+ if (!JSObject::cast(arg)->HasFastElements()) {
+ return MaybeHandle<JSArray>();
+ }
+ Handle<JSArray> array(JSArray::cast(arg), isolate);
+ if (!IsSimpleArray(isolate, array)) {
+ return MaybeHandle<JSArray>();
+ }
+ // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't
+ // overflow.
+ result_len += Smi::cast(array->length())->value();
+ DCHECK(result_len >= 0);
+ // Throw an Error if we overflow the FixedArray limits
+ if (FixedDoubleArray::kMaxLength < result_len ||
+ FixedArray::kMaxLength < result_len) {
+ AllowHeapAllocation gc;
+ THROW_NEW_ERROR(isolate,
+ NewRangeError(MessageTemplate::kInvalidArrayLength),
+ JSArray);
+ }
+ }
+ }
+ return ElementsAccessor::Concat(isolate, args, n_arguments, result_len);
+}
+
+} // namespace
+
+// ES6 22.1.3.1 Array.prototype.concat
+BUILTIN(ArrayConcat) {
+ HandleScope scope(isolate);
+
+ Handle<Object> receiver = args.receiver();
+ // TODO(bmeurer): Do we really care about the exact exception message here?
+ if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) {
+ THROW_NEW_ERROR_RETURN_FAILURE(
+ isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
+ isolate->factory()->NewStringFromAsciiChecked(
+ "Array.prototype.concat")));
+ }
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, receiver, Object::ToObject(isolate, args.receiver()));
+ args[0] = *receiver;
+
+ Handle<JSArray> result_array;
+
+ // Avoid a real species read to avoid extra lookups to the array constructor
+ if (V8_LIKELY(receiver->IsJSArray() &&
+ Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) &&
+ isolate->IsArraySpeciesLookupChainIntact())) {
+ if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
+ return *result_array;
+ }
+ if (isolate->has_pending_exception()) return isolate->heap()->exception();
+ }
+ // Reading @@species happens before anything else with a side effect, so
+ // we can do it here to determine whether to take the fast path.
+ Handle<Object> species;
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+ isolate, species, Object::ArraySpeciesConstructor(isolate, receiver));
+ if (*species == *isolate->array_function()) {
+ if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
+ return *result_array;
+ }
+ if (isolate->has_pending_exception()) return isolate->heap()->exception();
+ }
+ return Slow_ArrayConcat(&args, species, isolate);
+}
+
+void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) {
+ typedef compiler::Node Node;
+ typedef CodeStubAssembler::Label Label;
+
+ Node* object = assembler->Parameter(1);
+ Node* context = assembler->Parameter(4);
+
+ Label call_runtime(assembler), return_true(assembler),
+ return_false(assembler);
+
+ assembler->GotoIf(assembler->WordIsSmi(object), &return_false);
+ Node* instance_type = assembler->LoadInstanceType(object);
+
+ assembler->GotoIf(assembler->Word32Equal(
+ instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)),
+ &return_true);
+
+ // TODO(verwaest): Handle proxies in-place.
+ assembler->Branch(assembler->Word32Equal(
+ instance_type, assembler->Int32Constant(JS_PROXY_TYPE)),
+ &call_runtime, &return_false);
+
+ assembler->Bind(&return_true);
+ assembler->Return(assembler->BooleanConstant(true));
+
+ assembler->Bind(&return_false);
+ assembler->Return(assembler->BooleanConstant(false));
+
+ assembler->Bind(&call_runtime);
+ assembler->Return(
+ assembler->CallRuntime(Runtime::kArrayIsArray, context, object));
+}
+
+} // namespace internal
+} // namespace v8
« no previous file with comments | « src/builtins/builtins.cc ('k') | src/builtins/builtins-utils.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698