| Index: src/builtins/builtins-array.cc
|
| diff --git a/src/builtins/builtins-array.cc b/src/builtins/builtins-array.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ba6ec24304d817abb02589f2d202846833928c31
|
| --- /dev/null
|
| +++ b/src/builtins/builtins-array.cc
|
| @@ -0,0 +1,1275 @@
|
| +// Copyright 2016 the V8 project authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "src/builtins/builtins.h"
|
| +#include "src/builtins/builtins-utils.h"
|
| +#include "src/elements.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +namespace {
|
| +
|
| +inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) {
|
| + // This is an extended version of ECMA-262 7.1.11 handling signed values
|
| + // Try to convert object to a number and clamp values to [kMinInt, kMaxInt]
|
| + if (object->IsSmi()) {
|
| + *out = Smi::cast(object)->value();
|
| + return true;
|
| + } else if (object->IsHeapNumber()) {
|
| + double value = HeapNumber::cast(object)->value();
|
| + if (std::isnan(value)) {
|
| + *out = 0;
|
| + } else if (value > kMaxInt) {
|
| + *out = kMaxInt;
|
| + } else if (value < kMinInt) {
|
| + *out = kMinInt;
|
| + } else {
|
| + *out = static_cast<int>(value);
|
| + }
|
| + return true;
|
| + } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) {
|
| + *out = 0;
|
| + return true;
|
| + } else if (object->IsBoolean()) {
|
| + *out = object->IsTrue(isolate);
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object,
|
| + int* out) {
|
| + Context* context = *isolate->native_context();
|
| + Map* map = object->map();
|
| + if (map != context->sloppy_arguments_map() &&
|
| + map != context->strict_arguments_map() &&
|
| + map != context->fast_aliased_arguments_map()) {
|
| + return false;
|
| + }
|
| + DCHECK(object->HasFastElements() || object->HasFastArgumentsElements());
|
| + Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex);
|
| + if (!len_obj->IsSmi()) return false;
|
| + *out = Max(0, Smi::cast(len_obj)->value());
|
| + return *out <= object->elements()->length();
|
| +}
|
| +
|
| +inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object) {
|
| + DisallowHeapAllocation no_gc;
|
| + HeapObject* prototype = HeapObject::cast(object->map()->prototype());
|
| + HeapObject* null = isolate->heap()->null_value();
|
| + HeapObject* empty = isolate->heap()->empty_fixed_array();
|
| + while (prototype != null) {
|
| + Map* map = prototype->map();
|
| + if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false;
|
| + if (JSObject::cast(prototype)->elements() != empty) return false;
|
| + prototype = HeapObject::cast(map->prototype());
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate,
|
| + JSArray* receiver) {
|
| + return PrototypeHasNoElements(isolate, receiver);
|
| +}
|
| +
|
| +inline bool HasSimpleElements(JSObject* current) {
|
| + return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER &&
|
| + !current->GetElementsAccessor()->HasAccessors(current);
|
| +}
|
| +
|
| +inline bool HasOnlySimpleReceiverElements(Isolate* isolate,
|
| + JSObject* receiver) {
|
| + // Check that we have no accessors on the receiver's elements.
|
| + if (!HasSimpleElements(receiver)) return false;
|
| + return PrototypeHasNoElements(isolate, receiver);
|
| +}
|
| +
|
| +inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) {
|
| + DisallowHeapAllocation no_gc;
|
| + PrototypeIterator iter(isolate, receiver, kStartAtReceiver);
|
| + for (; !iter.IsAtEnd(); iter.Advance()) {
|
| + if (iter.GetCurrent()->IsJSProxy()) return false;
|
| + JSObject* current = iter.GetCurrent<JSObject>();
|
| + if (!HasSimpleElements(current)) return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Returns |false| if not applicable.
|
| +MUST_USE_RESULT
|
| +inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate,
|
| + Handle<Object> receiver,
|
| + BuiltinArguments* args,
|
| + int first_added_arg) {
|
| + if (!receiver->IsJSArray()) return false;
|
| + Handle<JSArray> array = Handle<JSArray>::cast(receiver);
|
| + ElementsKind origin_kind = array->GetElementsKind();
|
| + if (IsDictionaryElementsKind(origin_kind)) return false;
|
| + if (!array->map()->is_extensible()) return false;
|
| + if (args == nullptr) return true;
|
| +
|
| + // If there may be elements accessors in the prototype chain, the fast path
|
| + // cannot be used if there arguments to add to the array.
|
| + if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false;
|
| +
|
| + // Adding elements to the array prototype would break code that makes sure
|
| + // it has no elements. Handle that elsewhere.
|
| + if (isolate->IsAnyInitialArrayPrototype(array)) return false;
|
| +
|
| + // Need to ensure that the arguments passed in args can be contained in
|
| + // the array.
|
| + int args_length = args->length();
|
| + if (first_added_arg >= args_length) return true;
|
| +
|
| + if (IsFastObjectElementsKind(origin_kind)) return true;
|
| + ElementsKind target_kind = origin_kind;
|
| + {
|
| + DisallowHeapAllocation no_gc;
|
| + for (int i = first_added_arg; i < args_length; i++) {
|
| + Object* arg = (*args)[i];
|
| + if (arg->IsHeapObject()) {
|
| + if (arg->IsHeapNumber()) {
|
| + target_kind = FAST_DOUBLE_ELEMENTS;
|
| + } else {
|
| + target_kind = FAST_ELEMENTS;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + if (target_kind != origin_kind) {
|
| + // Use a short-lived HandleScope to avoid creating several copies of the
|
| + // elements handle which would cause issues when left-trimming later-on.
|
| + HandleScope scope(isolate);
|
| + JSObject::TransitionElementsKind(array, target_kind);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate,
|
| + Handle<JSFunction> function,
|
| + BuiltinArguments args) {
|
| + HandleScope handleScope(isolate);
|
| + int argc = args.length() - 1;
|
| + ScopedVector<Handle<Object>> argv(argc);
|
| + for (int i = 0; i < argc; ++i) {
|
| + argv[i] = args.at<Object>(i + 1);
|
| + }
|
| + RETURN_RESULT_OR_FAILURE(
|
| + isolate,
|
| + Execution::Call(isolate, function, args.receiver(), argc, argv.start()));
|
| +}
|
| +
|
| +Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) {
|
| + HandleScope scope(isolate);
|
| + Handle<Object> receiver = args.receiver();
|
| + if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
|
| + return CallJsIntrinsic(isolate, isolate->array_push(), args);
|
| + }
|
| + // Fast Elements Path
|
| + int to_add = args.length() - 1;
|
| + Handle<JSArray> array = Handle<JSArray>::cast(receiver);
|
| + int len = Smi::cast(array->length())->value();
|
| + if (to_add == 0) return Smi::FromInt(len);
|
| +
|
| + // Currently fixed arrays cannot grow too big, so we should never hit this.
|
| + DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());
|
| +
|
| + if (JSArray::HasReadOnlyLength(array)) {
|
| + return CallJsIntrinsic(isolate, isolate->array_push(), args);
|
| + }
|
| +
|
| + ElementsAccessor* accessor = array->GetElementsAccessor();
|
| + int new_length = accessor->Push(array, &args, to_add);
|
| + return Smi::FromInt(new_length);
|
| +}
|
| +} // namespace
|
| +
|
| +BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); }
|
| +
|
| +// TODO(verwaest): This is a temporary helper until the FastArrayPush stub can
|
| +// tailcall to the builtin directly.
|
| +RUNTIME_FUNCTION(Runtime_ArrayPush) {
|
| + DCHECK_EQ(2, args.length());
|
| + Arguments* incoming = reinterpret_cast<Arguments*>(args[0]);
|
| + // Rewrap the arguments as builtins arguments.
|
| + int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver;
|
| + BuiltinArguments caller_args(argc, incoming->arguments() + 1);
|
| + return DoArrayPush(isolate, caller_args);
|
| +}
|
| +
|
| +BUILTIN(ArrayPop) {
|
| + HandleScope scope(isolate);
|
| + Handle<Object> receiver = args.receiver();
|
| + if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) {
|
| + return CallJsIntrinsic(isolate, isolate->array_pop(), args);
|
| + }
|
| +
|
| + Handle<JSArray> array = Handle<JSArray>::cast(receiver);
|
| +
|
| + uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value());
|
| + if (len == 0) return isolate->heap()->undefined_value();
|
| +
|
| + if (JSArray::HasReadOnlyLength(array)) {
|
| + return CallJsIntrinsic(isolate, isolate->array_pop(), args);
|
| + }
|
| +
|
| + Handle<Object> result;
|
| + if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
|
| + // Fast Elements Path
|
| + result = array->GetElementsAccessor()->Pop(array);
|
| + } else {
|
| + // Use Slow Lookup otherwise
|
| + uint32_t new_length = len - 1;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, result, JSReceiver::GetElement(isolate, array, new_length));
|
| + JSArray::SetLength(array, new_length);
|
| + }
|
| + return *result;
|
| +}
|
| +
|
| +BUILTIN(ArrayShift) {
|
| + HandleScope scope(isolate);
|
| + Heap* heap = isolate->heap();
|
| + Handle<Object> receiver = args.receiver();
|
| + if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) ||
|
| + !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
|
| + return CallJsIntrinsic(isolate, isolate->array_shift(), args);
|
| + }
|
| + Handle<JSArray> array = Handle<JSArray>::cast(receiver);
|
| +
|
| + int len = Smi::cast(array->length())->value();
|
| + if (len == 0) return heap->undefined_value();
|
| +
|
| + if (JSArray::HasReadOnlyLength(array)) {
|
| + return CallJsIntrinsic(isolate, isolate->array_shift(), args);
|
| + }
|
| +
|
| + Handle<Object> first = array->GetElementsAccessor()->Shift(array);
|
| + return *first;
|
| +}
|
| +
|
| +BUILTIN(ArrayUnshift) {
|
| + HandleScope scope(isolate);
|
| + Handle<Object> receiver = args.receiver();
|
| + if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
|
| + return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
|
| + }
|
| + Handle<JSArray> array = Handle<JSArray>::cast(receiver);
|
| + int to_add = args.length() - 1;
|
| + if (to_add == 0) return array->length();
|
| +
|
| + // Currently fixed arrays cannot grow too big, so we should never hit this.
|
| + DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());
|
| +
|
| + if (JSArray::HasReadOnlyLength(array)) {
|
| + return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
|
| + }
|
| +
|
| + ElementsAccessor* accessor = array->GetElementsAccessor();
|
| + int new_length = accessor->Unshift(array, &args, to_add);
|
| + return Smi::FromInt(new_length);
|
| +}
|
| +
|
| +BUILTIN(ArraySlice) {
|
| + HandleScope scope(isolate);
|
| + Handle<Object> receiver = args.receiver();
|
| + int len = -1;
|
| + int relative_start = 0;
|
| + int relative_end = 0;
|
| +
|
| + if (receiver->IsJSArray()) {
|
| + DisallowHeapAllocation no_gc;
|
| + JSArray* array = JSArray::cast(*receiver);
|
| + if (V8_UNLIKELY(!array->HasFastElements() ||
|
| + !IsJSArrayFastElementMovingAllowed(isolate, array) ||
|
| + !isolate->IsArraySpeciesLookupChainIntact() ||
|
| + // If this is a subclass of Array, then call out to JS
|
| + !array->HasArrayPrototype(isolate))) {
|
| + AllowHeapAllocation allow_allocation;
|
| + return CallJsIntrinsic(isolate, isolate->array_slice(), args);
|
| + }
|
| + len = Smi::cast(array->length())->value();
|
| + } else if (receiver->IsJSObject() &&
|
| + GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver),
|
| + &len)) {
|
| + // Array.prototype.slice.call(arguments, ...) is quite a common idiom
|
| + // (notably more than 50% of invocations in Web apps).
|
| + // Treat it in C++ as well.
|
| + DCHECK(JSObject::cast(*receiver)->HasFastElements() ||
|
| + JSObject::cast(*receiver)->HasFastArgumentsElements());
|
| + } else {
|
| + AllowHeapAllocation allow_allocation;
|
| + return CallJsIntrinsic(isolate, isolate->array_slice(), args);
|
| + }
|
| + DCHECK_LE(0, len);
|
| + int argument_count = args.length() - 1;
|
| + // Note carefully chosen defaults---if argument is missing,
|
| + // it's undefined which gets converted to 0 for relative_start
|
| + // and to len for relative_end.
|
| + relative_start = 0;
|
| + relative_end = len;
|
| + if (argument_count > 0) {
|
| + DisallowHeapAllocation no_gc;
|
| + if (!ClampedToInteger(isolate, args[1], &relative_start)) {
|
| + AllowHeapAllocation allow_allocation;
|
| + return CallJsIntrinsic(isolate, isolate->array_slice(), args);
|
| + }
|
| + if (argument_count > 1) {
|
| + Object* end_arg = args[2];
|
| + // slice handles the end_arg specially
|
| + if (end_arg->IsUndefined(isolate)) {
|
| + relative_end = len;
|
| + } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) {
|
| + AllowHeapAllocation allow_allocation;
|
| + return CallJsIntrinsic(isolate, isolate->array_slice(), args);
|
| + }
|
| + }
|
| + }
|
| +
|
| + // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
|
| + uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
|
| + : Min(relative_start, len);
|
| +
|
| + // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
|
| + uint32_t actual_end =
|
| + (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len);
|
| +
|
| + Handle<JSObject> object = Handle<JSObject>::cast(receiver);
|
| + ElementsAccessor* accessor = object->GetElementsAccessor();
|
| + return *accessor->Slice(object, actual_start, actual_end);
|
| +}
|
| +
|
| +BUILTIN(ArraySplice) {
|
| + HandleScope scope(isolate);
|
| + Handle<Object> receiver = args.receiver();
|
| + if (V8_UNLIKELY(
|
| + !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) ||
|
| + // If this is a subclass of Array, then call out to JS.
|
| + !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) ||
|
| + // If anything with @@species has been messed with, call out to JS.
|
| + !isolate->IsArraySpeciesLookupChainIntact())) {
|
| + return CallJsIntrinsic(isolate, isolate->array_splice(), args);
|
| + }
|
| + Handle<JSArray> array = Handle<JSArray>::cast(receiver);
|
| +
|
| + int argument_count = args.length() - 1;
|
| + int relative_start = 0;
|
| + if (argument_count > 0) {
|
| + DisallowHeapAllocation no_gc;
|
| + if (!ClampedToInteger(isolate, args[1], &relative_start)) {
|
| + AllowHeapAllocation allow_allocation;
|
| + return CallJsIntrinsic(isolate, isolate->array_splice(), args);
|
| + }
|
| + }
|
| + int len = Smi::cast(array->length())->value();
|
| + // clip relative start to [0, len]
|
| + int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
|
| + : Min(relative_start, len);
|
| +
|
| + int actual_delete_count;
|
| + if (argument_count == 1) {
|
| + // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
|
| + // given as a request to delete all the elements from the start.
|
| + // And it differs from the case of undefined delete count.
|
| + // This does not follow ECMA-262, but we do the same for compatibility.
|
| + DCHECK(len - actual_start >= 0);
|
| + actual_delete_count = len - actual_start;
|
| + } else {
|
| + int delete_count = 0;
|
| + DisallowHeapAllocation no_gc;
|
| + if (argument_count > 1) {
|
| + if (!ClampedToInteger(isolate, args[2], &delete_count)) {
|
| + AllowHeapAllocation allow_allocation;
|
| + return CallJsIntrinsic(isolate, isolate->array_splice(), args);
|
| + }
|
| + }
|
| + actual_delete_count = Min(Max(delete_count, 0), len - actual_start);
|
| + }
|
| +
|
| + int add_count = (argument_count > 1) ? (argument_count - 2) : 0;
|
| + int new_length = len - actual_delete_count + add_count;
|
| +
|
| + if (new_length != len && JSArray::HasReadOnlyLength(array)) {
|
| + AllowHeapAllocation allow_allocation;
|
| + return CallJsIntrinsic(isolate, isolate->array_splice(), args);
|
| + }
|
| + ElementsAccessor* accessor = array->GetElementsAccessor();
|
| + Handle<JSArray> result_array = accessor->Splice(
|
| + array, actual_start, actual_delete_count, &args, add_count);
|
| + return *result_array;
|
| +}
|
| +
|
| +// Array Concat -------------------------------------------------------------
|
| +
|
| +namespace {
|
| +
|
| +/**
|
| + * A simple visitor visits every element of Array's.
|
| + * The backend storage can be a fixed array for fast elements case,
|
| + * or a dictionary for sparse array. Since Dictionary is a subtype
|
| + * of FixedArray, the class can be used by both fast and slow cases.
|
| + * The second parameter of the constructor, fast_elements, specifies
|
| + * whether the storage is a FixedArray or Dictionary.
|
| + *
|
| + * An index limit is used to deal with the situation that a result array
|
| + * length overflows 32-bit non-negative integer.
|
| + */
|
| +class ArrayConcatVisitor {
|
| + public:
|
| + ArrayConcatVisitor(Isolate* isolate, Handle<Object> storage,
|
| + bool fast_elements)
|
| + : isolate_(isolate),
|
| + storage_(isolate->global_handles()->Create(*storage)),
|
| + index_offset_(0u),
|
| + bit_field_(FastElementsField::encode(fast_elements) |
|
| + ExceedsLimitField::encode(false) |
|
| + IsFixedArrayField::encode(storage->IsFixedArray())) {
|
| + DCHECK(!(this->fast_elements() && !is_fixed_array()));
|
| + }
|
| +
|
| + ~ArrayConcatVisitor() { clear_storage(); }
|
| +
|
| + MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) {
|
| + uint32_t index = index_offset_ + i;
|
| +
|
| + if (i >= JSObject::kMaxElementCount - index_offset_) {
|
| + set_exceeds_array_limit(true);
|
| + // Exception hasn't been thrown at this point. Return true to
|
| + // break out, and caller will throw. !visit would imply that
|
| + // there is already a pending exception.
|
| + return true;
|
| + }
|
| +
|
| + if (!is_fixed_array()) {
|
| + LookupIterator it(isolate_, storage_, index, LookupIterator::OWN);
|
| + MAYBE_RETURN(
|
| + JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR),
|
| + false);
|
| + return true;
|
| + }
|
| +
|
| + if (fast_elements()) {
|
| + if (index < static_cast<uint32_t>(storage_fixed_array()->length())) {
|
| + storage_fixed_array()->set(index, *elm);
|
| + return true;
|
| + }
|
| + // Our initial estimate of length was foiled, possibly by
|
| + // getters on the arrays increasing the length of later arrays
|
| + // during iteration.
|
| + // This shouldn't happen in anything but pathological cases.
|
| + SetDictionaryMode();
|
| + // Fall-through to dictionary mode.
|
| + }
|
| + DCHECK(!fast_elements());
|
| + Handle<SeededNumberDictionary> dict(
|
| + SeededNumberDictionary::cast(*storage_));
|
| + // The object holding this backing store has just been allocated, so
|
| + // it cannot yet be used as a prototype.
|
| + Handle<SeededNumberDictionary> result =
|
| + SeededNumberDictionary::AtNumberPut(dict, index, elm, false);
|
| + if (!result.is_identical_to(dict)) {
|
| + // Dictionary needed to grow.
|
| + clear_storage();
|
| + set_storage(*result);
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + void increase_index_offset(uint32_t delta) {
|
| + if (JSObject::kMaxElementCount - index_offset_ < delta) {
|
| + index_offset_ = JSObject::kMaxElementCount;
|
| + } else {
|
| + index_offset_ += delta;
|
| + }
|
| + // If the initial length estimate was off (see special case in visit()),
|
| + // but the array blowing the limit didn't contain elements beyond the
|
| + // provided-for index range, go to dictionary mode now.
|
| + if (fast_elements() &&
|
| + index_offset_ >
|
| + static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
|
| + SetDictionaryMode();
|
| + }
|
| + }
|
| +
|
| + bool exceeds_array_limit() const {
|
| + return ExceedsLimitField::decode(bit_field_);
|
| + }
|
| +
|
| + Handle<JSArray> ToArray() {
|
| + DCHECK(is_fixed_array());
|
| + Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
|
| + Handle<Object> length =
|
| + isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
|
| + Handle<Map> map = JSObject::GetElementsTransitionMap(
|
| + array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
|
| + array->set_map(*map);
|
| + array->set_length(*length);
|
| + array->set_elements(*storage_fixed_array());
|
| + return array;
|
| + }
|
| +
|
| + // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever
|
| + // (otherwise)
|
| + Handle<FixedArray> storage_fixed_array() {
|
| + DCHECK(is_fixed_array());
|
| + return Handle<FixedArray>::cast(storage_);
|
| + }
|
| + Handle<JSReceiver> storage_jsreceiver() {
|
| + DCHECK(!is_fixed_array());
|
| + return Handle<JSReceiver>::cast(storage_);
|
| + }
|
| +
|
| + private:
|
| + // Convert storage to dictionary mode.
|
| + void SetDictionaryMode() {
|
| + DCHECK(fast_elements() && is_fixed_array());
|
| + Handle<FixedArray> current_storage = storage_fixed_array();
|
| + Handle<SeededNumberDictionary> slow_storage(
|
| + SeededNumberDictionary::New(isolate_, current_storage->length()));
|
| + uint32_t current_length = static_cast<uint32_t>(current_storage->length());
|
| + FOR_WITH_HANDLE_SCOPE(
|
| + isolate_, uint32_t, i = 0, i, i < current_length, i++, {
|
| + Handle<Object> element(current_storage->get(i), isolate_);
|
| + if (!element->IsTheHole(isolate_)) {
|
| + // The object holding this backing store has just been allocated, so
|
| + // it cannot yet be used as a prototype.
|
| + Handle<SeededNumberDictionary> new_storage =
|
| + SeededNumberDictionary::AtNumberPut(slow_storage, i, element,
|
| + false);
|
| + if (!new_storage.is_identical_to(slow_storage)) {
|
| + slow_storage = loop_scope.CloseAndEscape(new_storage);
|
| + }
|
| + }
|
| + });
|
| + clear_storage();
|
| + set_storage(*slow_storage);
|
| + set_fast_elements(false);
|
| + }
|
| +
|
| + inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); }
|
| +
|
| + inline void set_storage(FixedArray* storage) {
|
| + DCHECK(is_fixed_array());
|
| + storage_ = isolate_->global_handles()->Create(storage);
|
| + }
|
| +
|
| + class FastElementsField : public BitField<bool, 0, 1> {};
|
| + class ExceedsLimitField : public BitField<bool, 1, 1> {};
|
| + class IsFixedArrayField : public BitField<bool, 2, 1> {};
|
| +
|
| + bool fast_elements() const { return FastElementsField::decode(bit_field_); }
|
| + void set_fast_elements(bool fast) {
|
| + bit_field_ = FastElementsField::update(bit_field_, fast);
|
| + }
|
| + void set_exceeds_array_limit(bool exceeds) {
|
| + bit_field_ = ExceedsLimitField::update(bit_field_, exceeds);
|
| + }
|
| + bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); }
|
| +
|
| + Isolate* isolate_;
|
| + Handle<Object> storage_; // Always a global handle.
|
| + // Index after last seen index. Always less than or equal to
|
| + // JSObject::kMaxElementCount.
|
| + uint32_t index_offset_;
|
| + uint32_t bit_field_;
|
| +};
|
| +
|
| +uint32_t EstimateElementCount(Handle<JSArray> array) {
|
| + DisallowHeapAllocation no_gc;
|
| + uint32_t length = static_cast<uint32_t>(array->length()->Number());
|
| + int element_count = 0;
|
| + switch (array->GetElementsKind()) {
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS: {
|
| + // Fast elements can't have lengths that are not representable by
|
| + // a 32-bit signed integer.
|
| + DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
|
| + int fast_length = static_cast<int>(length);
|
| + Isolate* isolate = array->GetIsolate();
|
| + FixedArray* elements = FixedArray::cast(array->elements());
|
| + for (int i = 0; i < fast_length; i++) {
|
| + if (!elements->get(i)->IsTheHole(isolate)) element_count++;
|
| + }
|
| + break;
|
| + }
|
| + case FAST_DOUBLE_ELEMENTS:
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS: {
|
| + // Fast elements can't have lengths that are not representable by
|
| + // a 32-bit signed integer.
|
| + DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
|
| + int fast_length = static_cast<int>(length);
|
| + if (array->elements()->IsFixedArray()) {
|
| + DCHECK(FixedArray::cast(array->elements())->length() == 0);
|
| + break;
|
| + }
|
| + FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements());
|
| + for (int i = 0; i < fast_length; i++) {
|
| + if (!elements->is_the_hole(i)) element_count++;
|
| + }
|
| + break;
|
| + }
|
| + case DICTIONARY_ELEMENTS: {
|
| + SeededNumberDictionary* dictionary =
|
| + SeededNumberDictionary::cast(array->elements());
|
| + Isolate* isolate = dictionary->GetIsolate();
|
| + int capacity = dictionary->Capacity();
|
| + for (int i = 0; i < capacity; i++) {
|
| + Object* key = dictionary->KeyAt(i);
|
| + if (dictionary->IsKey(isolate, key)) {
|
| + element_count++;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| +#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
|
| +
|
| + TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
| +#undef TYPED_ARRAY_CASE
|
| + // External arrays are always dense.
|
| + return length;
|
| + case NO_ELEMENTS:
|
| + return 0;
|
| + case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
|
| + case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
|
| + case FAST_STRING_WRAPPER_ELEMENTS:
|
| + case SLOW_STRING_WRAPPER_ELEMENTS:
|
| + UNREACHABLE();
|
| + return 0;
|
| + }
|
| + // As an estimate, we assume that the prototype doesn't contain any
|
| + // inherited elements.
|
| + return element_count;
|
| +}
|
| +
|
| +// Used for sorting indices in a List<uint32_t>.
|
| +int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
|
| + uint32_t a = *ap;
|
| + uint32_t b = *bp;
|
| + return (a == b) ? 0 : (a < b) ? -1 : 1;
|
| +}
|
| +
|
| +void CollectElementIndices(Handle<JSObject> object, uint32_t range,
|
| + List<uint32_t>* indices) {
|
| + Isolate* isolate = object->GetIsolate();
|
| + ElementsKind kind = object->GetElementsKind();
|
| + switch (kind) {
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS: {
|
| + DisallowHeapAllocation no_gc;
|
| + FixedArray* elements = FixedArray::cast(object->elements());
|
| + uint32_t length = static_cast<uint32_t>(elements->length());
|
| + if (range < length) length = range;
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + if (!elements->get(i)->IsTheHole(isolate)) {
|
| + indices->Add(i);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS: {
|
| + if (object->elements()->IsFixedArray()) {
|
| + DCHECK(object->elements()->length() == 0);
|
| + break;
|
| + }
|
| + Handle<FixedDoubleArray> elements(
|
| + FixedDoubleArray::cast(object->elements()));
|
| + uint32_t length = static_cast<uint32_t>(elements->length());
|
| + if (range < length) length = range;
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + if (!elements->is_the_hole(i)) {
|
| + indices->Add(i);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case DICTIONARY_ELEMENTS: {
|
| + DisallowHeapAllocation no_gc;
|
| + SeededNumberDictionary* dict =
|
| + SeededNumberDictionary::cast(object->elements());
|
| + uint32_t capacity = dict->Capacity();
|
| + FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, {
|
| + Object* k = dict->KeyAt(j);
|
| + if (!dict->IsKey(isolate, k)) continue;
|
| + DCHECK(k->IsNumber());
|
| + uint32_t index = static_cast<uint32_t>(k->Number());
|
| + if (index < range) {
|
| + indices->Add(index);
|
| + }
|
| + });
|
| + break;
|
| + }
|
| +#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
|
| +
|
| + TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
| +#undef TYPED_ARRAY_CASE
|
| + {
|
| + uint32_t length = static_cast<uint32_t>(
|
| + FixedArrayBase::cast(object->elements())->length());
|
| + if (range <= length) {
|
| + length = range;
|
| + // We will add all indices, so we might as well clear it first
|
| + // and avoid duplicates.
|
| + indices->Clear();
|
| + }
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + indices->Add(i);
|
| + }
|
| + if (length == range) return; // All indices accounted for already.
|
| + break;
|
| + }
|
| + case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
|
| + case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
|
| + ElementsAccessor* accessor = object->GetElementsAccessor();
|
| + for (uint32_t i = 0; i < range; i++) {
|
| + if (accessor->HasElement(object, i)) {
|
| + indices->Add(i);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case FAST_STRING_WRAPPER_ELEMENTS:
|
| + case SLOW_STRING_WRAPPER_ELEMENTS: {
|
| + DCHECK(object->IsJSValue());
|
| + Handle<JSValue> js_value = Handle<JSValue>::cast(object);
|
| + DCHECK(js_value->value()->IsString());
|
| + Handle<String> string(String::cast(js_value->value()), isolate);
|
| + uint32_t length = static_cast<uint32_t>(string->length());
|
| + uint32_t i = 0;
|
| + uint32_t limit = Min(length, range);
|
| + for (; i < limit; i++) {
|
| + indices->Add(i);
|
| + }
|
| + ElementsAccessor* accessor = object->GetElementsAccessor();
|
| + for (; i < range; i++) {
|
| + if (accessor->HasElement(object, i)) {
|
| + indices->Add(i);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case NO_ELEMENTS:
|
| + break;
|
| + }
|
| +
|
| + PrototypeIterator iter(isolate, object);
|
| + if (!iter.IsAtEnd()) {
|
| + // The prototype will usually have no inherited element indices,
|
| + // but we have to check.
|
| + CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range,
|
| + indices);
|
| + }
|
| +}
|
| +
|
| +bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver,
|
| + uint32_t length, ArrayConcatVisitor* visitor) {
|
| + FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, {
|
| + Maybe<bool> maybe = JSReceiver::HasElement(receiver, i);
|
| + if (!maybe.IsJust()) return false;
|
| + if (maybe.FromJust()) {
|
| + Handle<Object> element_value;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element_value, JSReceiver::GetElement(isolate, receiver, i),
|
| + false);
|
| + if (!visitor->visit(i, element_value)) return false;
|
| + }
|
| + });
|
| + visitor->increase_index_offset(length);
|
| + return true;
|
| +}
|
| +
|
| +/**
|
| + * A helper function that visits "array" elements of a JSReceiver in numerical
|
| + * order.
|
| + *
|
| + * The visitor argument called for each existing element in the array
|
| + * with the element index and the element's value.
|
| + * Afterwards it increments the base-index of the visitor by the array
|
| + * length.
|
| + * Returns false if any access threw an exception, otherwise true.
|
| + */
|
| +bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver,
|
| + ArrayConcatVisitor* visitor) {
|
| + uint32_t length = 0;
|
| +
|
| + if (receiver->IsJSArray()) {
|
| + Handle<JSArray> array = Handle<JSArray>::cast(receiver);
|
| + length = static_cast<uint32_t>(array->length()->Number());
|
| + } else {
|
| + Handle<Object> val;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false);
|
| + // TODO(caitp): Support larger element indexes (up to 2^53-1).
|
| + if (!val->ToUint32(&length)) {
|
| + length = 0;
|
| + }
|
| + // TODO(cbruni): handle other element kind as well
|
| + return IterateElementsSlow(isolate, receiver, length, visitor);
|
| + }
|
| +
|
| + if (!HasOnlySimpleElements(isolate, *receiver)) {
|
| + return IterateElementsSlow(isolate, receiver, length, visitor);
|
| + }
|
| + Handle<JSObject> array = Handle<JSObject>::cast(receiver);
|
| +
|
| + switch (array->GetElementsKind()) {
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS: {
|
| + // Run through the elements FixedArray and use HasElement and GetElement
|
| + // to check the prototype for missing elements.
|
| + Handle<FixedArray> elements(FixedArray::cast(array->elements()));
|
| + int fast_length = static_cast<int>(length);
|
| + DCHECK(fast_length <= elements->length());
|
| + FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
|
| + Handle<Object> element_value(elements->get(j), isolate);
|
| + if (!element_value->IsTheHole(isolate)) {
|
| + if (!visitor->visit(j, element_value)) return false;
|
| + } else {
|
| + Maybe<bool> maybe = JSReceiver::HasElement(array, j);
|
| + if (!maybe.IsJust()) return false;
|
| + if (maybe.FromJust()) {
|
| + // Call GetElement on array, not its prototype, or getters won't
|
| + // have the correct receiver.
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element_value,
|
| + JSReceiver::GetElement(isolate, array, j), false);
|
| + if (!visitor->visit(j, element_value)) return false;
|
| + }
|
| + }
|
| + });
|
| + break;
|
| + }
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS: {
|
| + // Empty array is FixedArray but not FixedDoubleArray.
|
| + if (length == 0) break;
|
| + // Run through the elements FixedArray and use HasElement and GetElement
|
| + // to check the prototype for missing elements.
|
| + if (array->elements()->IsFixedArray()) {
|
| + DCHECK(array->elements()->length() == 0);
|
| + break;
|
| + }
|
| + Handle<FixedDoubleArray> elements(
|
| + FixedDoubleArray::cast(array->elements()));
|
| + int fast_length = static_cast<int>(length);
|
| + DCHECK(fast_length <= elements->length());
|
| + FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
|
| + if (!elements->is_the_hole(j)) {
|
| + double double_value = elements->get_scalar(j);
|
| + Handle<Object> element_value =
|
| + isolate->factory()->NewNumber(double_value);
|
| + if (!visitor->visit(j, element_value)) return false;
|
| + } else {
|
| + Maybe<bool> maybe = JSReceiver::HasElement(array, j);
|
| + if (!maybe.IsJust()) return false;
|
| + if (maybe.FromJust()) {
|
| + // Call GetElement on array, not its prototype, or getters won't
|
| + // have the correct receiver.
|
| + Handle<Object> element_value;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element_value,
|
| + JSReceiver::GetElement(isolate, array, j), false);
|
| + if (!visitor->visit(j, element_value)) return false;
|
| + }
|
| + }
|
| + });
|
| + break;
|
| + }
|
| +
|
| + case DICTIONARY_ELEMENTS: {
|
| + Handle<SeededNumberDictionary> dict(array->element_dictionary());
|
| + List<uint32_t> indices(dict->Capacity() / 2);
|
| + // Collect all indices in the object and the prototypes less
|
| + // than length. This might introduce duplicates in the indices list.
|
| + CollectElementIndices(array, length, &indices);
|
| + indices.Sort(&compareUInt32);
|
| + int n = indices.length();
|
| + FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, {
|
| + uint32_t index = indices[j];
|
| + Handle<Object> element;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element, JSReceiver::GetElement(isolate, array, index),
|
| + false);
|
| + if (!visitor->visit(index, element)) return false;
|
| + // Skip to next different index (i.e., omit duplicates).
|
| + do {
|
| + j++;
|
| + } while (j < n && indices[j] == index);
|
| + });
|
| + break;
|
| + }
|
| + case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
|
| + case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
|
| + FOR_WITH_HANDLE_SCOPE(
|
| + isolate, uint32_t, index = 0, index, index < length, index++, {
|
| + Handle<Object> element;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element, JSReceiver::GetElement(isolate, array, index),
|
| + false);
|
| + if (!visitor->visit(index, element)) return false;
|
| + });
|
| + break;
|
| + }
|
| + case NO_ELEMENTS:
|
| + break;
|
| +#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
|
| + TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
| +#undef TYPED_ARRAY_CASE
|
| + return IterateElementsSlow(isolate, receiver, length, visitor);
|
| + case FAST_STRING_WRAPPER_ELEMENTS:
|
| + case SLOW_STRING_WRAPPER_ELEMENTS:
|
| + // |array| is guaranteed to be an array or typed array.
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + visitor->increase_index_offset(length);
|
| + return true;
|
| +}
|
| +
|
| +static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) {
|
| + HandleScope handle_scope(isolate);
|
| + if (!obj->IsJSReceiver()) return Just(false);
|
| + if (!isolate->IsIsConcatSpreadableLookupChainIntact()) {
|
| + // Slow path if @@isConcatSpreadable has been used.
|
| + Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
|
| + Handle<Object> value;
|
| + MaybeHandle<Object> maybeValue =
|
| + i::Runtime::GetObjectProperty(isolate, obj, key);
|
| + if (!maybeValue.ToHandle(&value)) return Nothing<bool>();
|
| + if (!value->IsUndefined(isolate)) return Just(value->BooleanValue());
|
| + }
|
| + return Object::IsArray(obj);
|
| +}
|
| +
|
| +Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species,
|
| + Isolate* isolate) {
|
| + int argument_count = args->length();
|
| +
|
| + bool is_array_species = *species == isolate->context()->array_function();
|
| +
|
| + // Pass 1: estimate the length and number of elements of the result.
|
| + // The actual length can be larger if any of the arguments have getters
|
| + // that mutate other arguments (but will otherwise be precise).
|
| + // The number of elements is precise if there are no inherited elements.
|
| +
|
| + ElementsKind kind = FAST_SMI_ELEMENTS;
|
| +
|
| + uint32_t estimate_result_length = 0;
|
| + uint32_t estimate_nof_elements = 0;
|
| + FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, {
|
| + Handle<Object> obj((*args)[i], isolate);
|
| + uint32_t length_estimate;
|
| + uint32_t element_estimate;
|
| + if (obj->IsJSArray()) {
|
| + Handle<JSArray> array(Handle<JSArray>::cast(obj));
|
| + length_estimate = static_cast<uint32_t>(array->length()->Number());
|
| + if (length_estimate != 0) {
|
| + ElementsKind array_kind =
|
| + GetPackedElementsKind(array->GetElementsKind());
|
| + kind = GetMoreGeneralElementsKind(kind, array_kind);
|
| + }
|
| + element_estimate = EstimateElementCount(array);
|
| + } else {
|
| + if (obj->IsHeapObject()) {
|
| + kind = GetMoreGeneralElementsKind(
|
| + kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS);
|
| + }
|
| + length_estimate = 1;
|
| + element_estimate = 1;
|
| + }
|
| + // Avoid overflows by capping at kMaxElementCount.
|
| + if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
|
| + estimate_result_length = JSObject::kMaxElementCount;
|
| + } else {
|
| + estimate_result_length += length_estimate;
|
| + }
|
| + if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
|
| + estimate_nof_elements = JSObject::kMaxElementCount;
|
| + } else {
|
| + estimate_nof_elements += element_estimate;
|
| + }
|
| + });
|
| +
|
| + // If estimated number of elements is more than half of length, a
|
| + // fixed array (fast case) is more time and space-efficient than a
|
| + // dictionary.
|
| + bool fast_case =
|
| + is_array_species && (estimate_nof_elements * 2) >= estimate_result_length;
|
| +
|
| + if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
|
| + Handle<FixedArrayBase> storage =
|
| + isolate->factory()->NewFixedDoubleArray(estimate_result_length);
|
| + int j = 0;
|
| + bool failure = false;
|
| + if (estimate_result_length > 0) {
|
| + Handle<FixedDoubleArray> double_storage =
|
| + Handle<FixedDoubleArray>::cast(storage);
|
| + for (int i = 0; i < argument_count; i++) {
|
| + Handle<Object> obj((*args)[i], isolate);
|
| + if (obj->IsSmi()) {
|
| + double_storage->set(j, Smi::cast(*obj)->value());
|
| + j++;
|
| + } else if (obj->IsNumber()) {
|
| + double_storage->set(j, obj->Number());
|
| + j++;
|
| + } else {
|
| + DisallowHeapAllocation no_gc;
|
| + JSArray* array = JSArray::cast(*obj);
|
| + uint32_t length = static_cast<uint32_t>(array->length()->Number());
|
| + switch (array->GetElementsKind()) {
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS: {
|
| + // Empty array is FixedArray but not FixedDoubleArray.
|
| + if (length == 0) break;
|
| + FixedDoubleArray* elements =
|
| + FixedDoubleArray::cast(array->elements());
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + if (elements->is_the_hole(i)) {
|
| + // TODO(jkummerow/verwaest): We could be a bit more clever
|
| + // here: Check if there are no elements/getters on the
|
| + // prototype chain, and if so, allow creation of a holey
|
| + // result array.
|
| + // Same thing below (holey smi case).
|
| + failure = true;
|
| + break;
|
| + }
|
| + double double_value = elements->get_scalar(i);
|
| + double_storage->set(j, double_value);
|
| + j++;
|
| + }
|
| + break;
|
| + }
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_SMI_ELEMENTS: {
|
| + Object* the_hole = isolate->heap()->the_hole_value();
|
| + FixedArray* elements(FixedArray::cast(array->elements()));
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + Object* element = elements->get(i);
|
| + if (element == the_hole) {
|
| + failure = true;
|
| + break;
|
| + }
|
| + int32_t int_value = Smi::cast(element)->value();
|
| + double_storage->set(j, int_value);
|
| + j++;
|
| + }
|
| + break;
|
| + }
|
| + case FAST_HOLEY_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case DICTIONARY_ELEMENTS:
|
| + case NO_ELEMENTS:
|
| + DCHECK_EQ(0u, length);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + }
|
| + if (failure) break;
|
| + }
|
| + }
|
| + if (!failure) {
|
| + return *isolate->factory()->NewJSArrayWithElements(storage, kind, j);
|
| + }
|
| + // In case of failure, fall through.
|
| + }
|
| +
|
| + Handle<Object> storage;
|
| + if (fast_case) {
|
| + // The backing storage array must have non-existing elements to preserve
|
| + // holes across concat operations.
|
| + storage =
|
| + isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
|
| + } else if (is_array_species) {
|
| + // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
|
| + uint32_t at_least_space_for =
|
| + estimate_nof_elements + (estimate_nof_elements >> 2);
|
| + storage = SeededNumberDictionary::New(isolate, at_least_space_for);
|
| + } else {
|
| + DCHECK(species->IsConstructor());
|
| + Handle<Object> length(Smi::FromInt(0), isolate);
|
| + Handle<Object> storage_object;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, storage_object,
|
| + Execution::New(isolate, species, species, 1, &length));
|
| + storage = storage_object;
|
| + }
|
| +
|
| + ArrayConcatVisitor visitor(isolate, storage, fast_case);
|
| +
|
| + for (int i = 0; i < argument_count; i++) {
|
| + Handle<Object> obj((*args)[i], isolate);
|
| + Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj);
|
| + MAYBE_RETURN(spreadable, isolate->heap()->exception());
|
| + if (spreadable.FromJust()) {
|
| + Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj);
|
| + if (!IterateElements(isolate, object, &visitor)) {
|
| + return isolate->heap()->exception();
|
| + }
|
| + } else {
|
| + if (!visitor.visit(0, obj)) return isolate->heap()->exception();
|
| + visitor.increase_index_offset(1);
|
| + }
|
| + }
|
| +
|
| + if (visitor.exceeds_array_limit()) {
|
| + THROW_NEW_ERROR_RETURN_FAILURE(
|
| + isolate, NewRangeError(MessageTemplate::kInvalidArrayLength));
|
| + }
|
| +
|
| + if (is_array_species) {
|
| + return *visitor.ToArray();
|
| + } else {
|
| + return *visitor.storage_jsreceiver();
|
| + }
|
| +}
|
| +
|
| +bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) {
|
| + DisallowHeapAllocation no_gc;
|
| + Map* map = obj->map();
|
| + // If there is only the 'length' property we are fine.
|
| + if (map->prototype() ==
|
| + isolate->native_context()->initial_array_prototype() &&
|
| + map->NumberOfOwnDescriptors() == 1) {
|
| + return true;
|
| + }
|
| + // TODO(cbruni): slower lookup for array subclasses and support slow
|
| + // @@IsConcatSpreadable lookup.
|
| + return false;
|
| +}
|
| +
|
| +MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate,
|
| + BuiltinArguments* args) {
|
| + if (!isolate->IsIsConcatSpreadableLookupChainIntact()) {
|
| + return MaybeHandle<JSArray>();
|
| + }
|
| + // We shouldn't overflow when adding another len.
|
| + const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
|
| + STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
|
| + STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt);
|
| + USE(kHalfOfMaxInt);
|
| +
|
| + int n_arguments = args->length();
|
| + int result_len = 0;
|
| + {
|
| + DisallowHeapAllocation no_gc;
|
| + // Iterate through all the arguments performing checks
|
| + // and calculating total length.
|
| + for (int i = 0; i < n_arguments; i++) {
|
| + Object* arg = (*args)[i];
|
| + if (!arg->IsJSArray()) return MaybeHandle<JSArray>();
|
| + if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) {
|
| + return MaybeHandle<JSArray>();
|
| + }
|
| + // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS.
|
| + if (!JSObject::cast(arg)->HasFastElements()) {
|
| + return MaybeHandle<JSArray>();
|
| + }
|
| + Handle<JSArray> array(JSArray::cast(arg), isolate);
|
| + if (!IsSimpleArray(isolate, array)) {
|
| + return MaybeHandle<JSArray>();
|
| + }
|
| + // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't
|
| + // overflow.
|
| + result_len += Smi::cast(array->length())->value();
|
| + DCHECK(result_len >= 0);
|
| + // Throw an Error if we overflow the FixedArray limits
|
| + if (FixedDoubleArray::kMaxLength < result_len ||
|
| + FixedArray::kMaxLength < result_len) {
|
| + AllowHeapAllocation gc;
|
| + THROW_NEW_ERROR(isolate,
|
| + NewRangeError(MessageTemplate::kInvalidArrayLength),
|
| + JSArray);
|
| + }
|
| + }
|
| + }
|
| + return ElementsAccessor::Concat(isolate, args, n_arguments, result_len);
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +// ES6 22.1.3.1 Array.prototype.concat
|
| +BUILTIN(ArrayConcat) {
|
| + HandleScope scope(isolate);
|
| +
|
| + Handle<Object> receiver = args.receiver();
|
| + // TODO(bmeurer): Do we really care about the exact exception message here?
|
| + if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) {
|
| + THROW_NEW_ERROR_RETURN_FAILURE(
|
| + isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
|
| + isolate->factory()->NewStringFromAsciiChecked(
|
| + "Array.prototype.concat")));
|
| + }
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, receiver, Object::ToObject(isolate, args.receiver()));
|
| + args[0] = *receiver;
|
| +
|
| + Handle<JSArray> result_array;
|
| +
|
| + // Avoid a real species read to avoid extra lookups to the array constructor
|
| + if (V8_LIKELY(receiver->IsJSArray() &&
|
| + Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) &&
|
| + isolate->IsArraySpeciesLookupChainIntact())) {
|
| + if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
|
| + return *result_array;
|
| + }
|
| + if (isolate->has_pending_exception()) return isolate->heap()->exception();
|
| + }
|
| + // Reading @@species happens before anything else with a side effect, so
|
| + // we can do it here to determine whether to take the fast path.
|
| + Handle<Object> species;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, species, Object::ArraySpeciesConstructor(isolate, receiver));
|
| + if (*species == *isolate->array_function()) {
|
| + if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
|
| + return *result_array;
|
| + }
|
| + if (isolate->has_pending_exception()) return isolate->heap()->exception();
|
| + }
|
| + return Slow_ArrayConcat(&args, species, isolate);
|
| +}
|
| +
|
| +void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) {
|
| + typedef compiler::Node Node;
|
| + typedef CodeStubAssembler::Label Label;
|
| +
|
| + Node* object = assembler->Parameter(1);
|
| + Node* context = assembler->Parameter(4);
|
| +
|
| + Label call_runtime(assembler), return_true(assembler),
|
| + return_false(assembler);
|
| +
|
| + assembler->GotoIf(assembler->WordIsSmi(object), &return_false);
|
| + Node* instance_type = assembler->LoadInstanceType(object);
|
| +
|
| + assembler->GotoIf(assembler->Word32Equal(
|
| + instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)),
|
| + &return_true);
|
| +
|
| + // TODO(verwaest): Handle proxies in-place.
|
| + assembler->Branch(assembler->Word32Equal(
|
| + instance_type, assembler->Int32Constant(JS_PROXY_TYPE)),
|
| + &call_runtime, &return_false);
|
| +
|
| + assembler->Bind(&return_true);
|
| + assembler->Return(assembler->BooleanConstant(true));
|
| +
|
| + assembler->Bind(&return_false);
|
| + assembler->Return(assembler->BooleanConstant(false));
|
| +
|
| + assembler->Bind(&call_runtime);
|
| + assembler->Return(
|
| + assembler->CallRuntime(Runtime::kArrayIsArray, context, object));
|
| +}
|
| +
|
| +} // namespace internal
|
| +} // namespace v8
|
|
|