| OLD | NEW |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "src/builtins/builtins.h" | 5 #include "src/builtins/builtins.h" |
| 6 #include "src/builtins/builtins-utils.h" |
| 6 | 7 |
| 7 #include "src/api-arguments.h" | 8 #include "src/api-arguments.h" |
| 8 #include "src/api-natives.h" | 9 #include "src/api-natives.h" |
| 9 #include "src/base/ieee754.h" | 10 #include "src/base/ieee754.h" |
| 10 #include "src/base/once.h" | 11 #include "src/base/once.h" |
| 11 #include "src/bootstrapper.h" | 12 #include "src/bootstrapper.h" |
| 12 #include "src/code-factory.h" | 13 #include "src/code-factory.h" |
| 13 #include "src/code-stub-assembler.h" | |
| 14 #include "src/dateparser-inl.h" | 14 #include "src/dateparser-inl.h" |
| 15 #include "src/elements.h" | |
| 16 #include "src/frames-inl.h" | 15 #include "src/frames-inl.h" |
| 17 #include "src/gdb-jit.h" | 16 #include "src/gdb-jit.h" |
| 18 #include "src/globals.h" | 17 #include "src/globals.h" |
| 19 #include "src/ic/handler-compiler.h" | 18 #include "src/ic/handler-compiler.h" |
| 20 #include "src/ic/ic.h" | 19 #include "src/ic/ic.h" |
| 21 #include "src/isolate-inl.h" | 20 #include "src/isolate-inl.h" |
| 22 #include "src/json-parser.h" | 21 #include "src/json-parser.h" |
| 23 #include "src/json-stringifier.h" | 22 #include "src/json-stringifier.h" |
| 24 #include "src/messages.h" | 23 #include "src/messages.h" |
| 25 #include "src/property-descriptor.h" | 24 #include "src/property-descriptor.h" |
| 26 #include "src/prototype.h" | 25 #include "src/prototype.h" |
| 27 #include "src/string-builder.h" | 26 #include "src/string-builder.h" |
| 28 #include "src/uri.h" | 27 #include "src/uri.h" |
| 29 #include "src/vm-state-inl.h" | 28 #include "src/vm-state-inl.h" |
| 30 | 29 |
| 31 namespace v8 { | 30 namespace v8 { |
| 32 namespace internal { | 31 namespace internal { |
| 33 | 32 |
| 34 namespace { | 33 // Forward declarations for C++ builtins. |
| 35 | 34 #define FORWARD_DECLARE(Name) \ |
| 36 // Arguments object passed to C++ builtins. | 35 Object* Builtin_##Name(int argc, Object** args, Isolate* isolate); |
| 37 class BuiltinArguments : public Arguments { | 36 BUILTIN_LIST_C(FORWARD_DECLARE) |
| 38 public: | 37 #undef FORWARD_DECLARE |
| 39 BuiltinArguments(int length, Object** arguments) | |
| 40 : Arguments(length, arguments) { | |
| 41 // Check we have at least the receiver. | |
| 42 DCHECK_LE(1, this->length()); | |
| 43 } | |
| 44 | |
| 45 Object*& operator[](int index) { | |
| 46 DCHECK_LT(index, length()); | |
| 47 return Arguments::operator[](index); | |
| 48 } | |
| 49 | |
| 50 template <class S> | |
| 51 Handle<S> at(int index) { | |
| 52 DCHECK_LT(index, length()); | |
| 53 return Arguments::at<S>(index); | |
| 54 } | |
| 55 | |
| 56 Handle<Object> atOrUndefined(Isolate* isolate, int index) { | |
| 57 if (index >= length()) { | |
| 58 return isolate->factory()->undefined_value(); | |
| 59 } | |
| 60 return at<Object>(index); | |
| 61 } | |
| 62 | |
| 63 Handle<Object> receiver() { return Arguments::at<Object>(0); } | |
| 64 | |
| 65 static const int kNewTargetOffset = 0; | |
| 66 static const int kTargetOffset = 1; | |
| 67 static const int kArgcOffset = 2; | |
| 68 static const int kNumExtraArgs = 3; | |
| 69 static const int kNumExtraArgsWithReceiver = 4; | |
| 70 | |
| 71 template <class S> | |
| 72 Handle<S> target() { | |
| 73 return Arguments::at<S>(Arguments::length() - 1 - kTargetOffset); | |
| 74 } | |
| 75 Handle<HeapObject> new_target() { | |
| 76 return Arguments::at<HeapObject>(Arguments::length() - 1 - | |
| 77 kNewTargetOffset); | |
| 78 } | |
| 79 | |
| 80 // Gets the total number of arguments including the receiver (but | |
| 81 // excluding extra arguments). | |
| 82 int length() const { return Arguments::length() - kNumExtraArgs; } | |
| 83 }; | |
| 84 | |
| 85 // ---------------------------------------------------------------------------- | |
| 86 // Support macro for defining builtins in C++. | |
| 87 // ---------------------------------------------------------------------------- | |
| 88 // | |
| 89 // A builtin function is defined by writing: | |
| 90 // | |
| 91 // BUILTIN(name) { | |
| 92 // ... | |
| 93 // } | |
| 94 // | |
| 95 // In the body of the builtin function the arguments can be accessed | |
| 96 // through the BuiltinArguments object args. | |
| 97 // TODO(cbruni): add global flag to check whether any tracing events have been | |
| 98 // enabled. | |
| 99 #define BUILTIN(name) \ | |
| 100 MUST_USE_RESULT static Object* Builtin_Impl_##name(BuiltinArguments args, \ | |
| 101 Isolate* isolate); \ | |
| 102 \ | |
| 103 V8_NOINLINE static Object* Builtin_Impl_Stats_##name( \ | |
| 104 int args_length, Object** args_object, Isolate* isolate) { \ | |
| 105 BuiltinArguments args(args_length, args_object); \ | |
| 106 RuntimeCallTimerScope timer(isolate, &RuntimeCallStats::Builtin_##name); \ | |
| 107 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.runtime"), \ | |
| 108 "V8.Builtin_" #name); \ | |
| 109 return Builtin_Impl_##name(args, isolate); \ | |
| 110 } \ | |
| 111 \ | |
| 112 MUST_USE_RESULT Object* Builtin_##name( \ | |
| 113 int args_length, Object** args_object, Isolate* isolate) { \ | |
| 114 DCHECK(isolate->context() == nullptr || isolate->context()->IsContext()); \ | |
| 115 if (FLAG_runtime_call_stats) { \ | |
| 116 return Builtin_Impl_Stats_##name(args_length, args_object, isolate); \ | |
| 117 } \ | |
| 118 BuiltinArguments args(args_length, args_object); \ | |
| 119 return Builtin_Impl_##name(args, isolate); \ | |
| 120 } \ | |
| 121 \ | |
| 122 MUST_USE_RESULT static Object* Builtin_Impl_##name(BuiltinArguments args, \ | |
| 123 Isolate* isolate) | |
| 124 | |
| 125 // ---------------------------------------------------------------------------- | |
| 126 | |
| 127 #define CHECK_RECEIVER(Type, name, method) \ | |
| 128 if (!args.receiver()->Is##Type()) { \ | |
| 129 THROW_NEW_ERROR_RETURN_FAILURE( \ | |
| 130 isolate, \ | |
| 131 NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, \ | |
| 132 isolate->factory()->NewStringFromAsciiChecked(method), \ | |
| 133 args.receiver())); \ | |
| 134 } \ | |
| 135 Handle<Type> name = Handle<Type>::cast(args.receiver()) | |
| 136 | |
| 137 // Throws a TypeError for {method} if the receiver is not coercible to Object, | |
| 138 // or converts the receiver to a String otherwise and assigns it to a new var | |
| 139 // with the given {name}. | |
| 140 #define TO_THIS_STRING(name, method) \ | |
| 141 if (args.receiver()->IsNull(isolate) || \ | |
| 142 args.receiver()->IsUndefined(isolate)) { \ | |
| 143 THROW_NEW_ERROR_RETURN_FAILURE( \ | |
| 144 isolate, \ | |
| 145 NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, \ | |
| 146 isolate->factory()->NewStringFromAsciiChecked(method))); \ | |
| 147 } \ | |
| 148 Handle<String> name; \ | |
| 149 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( \ | |
| 150 isolate, name, Object::ToString(isolate, args.receiver())) | |
| 151 | |
| 152 inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) { | |
| 153 // This is an extended version of ECMA-262 7.1.11 handling signed values | |
| 154 // Try to convert object to a number and clamp values to [kMinInt, kMaxInt] | |
| 155 if (object->IsSmi()) { | |
| 156 *out = Smi::cast(object)->value(); | |
| 157 return true; | |
| 158 } else if (object->IsHeapNumber()) { | |
| 159 double value = HeapNumber::cast(object)->value(); | |
| 160 if (std::isnan(value)) { | |
| 161 *out = 0; | |
| 162 } else if (value > kMaxInt) { | |
| 163 *out = kMaxInt; | |
| 164 } else if (value < kMinInt) { | |
| 165 *out = kMinInt; | |
| 166 } else { | |
| 167 *out = static_cast<int>(value); | |
| 168 } | |
| 169 return true; | |
| 170 } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) { | |
| 171 *out = 0; | |
| 172 return true; | |
| 173 } else if (object->IsBoolean()) { | |
| 174 *out = object->IsTrue(isolate); | |
| 175 return true; | |
| 176 } | |
| 177 return false; | |
| 178 } | |
| 179 | |
| 180 inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object, | |
| 181 int* out) { | |
| 182 Context* context = *isolate->native_context(); | |
| 183 Map* map = object->map(); | |
| 184 if (map != context->sloppy_arguments_map() && | |
| 185 map != context->strict_arguments_map() && | |
| 186 map != context->fast_aliased_arguments_map()) { | |
| 187 return false; | |
| 188 } | |
| 189 DCHECK(object->HasFastElements() || object->HasFastArgumentsElements()); | |
| 190 Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex); | |
| 191 if (!len_obj->IsSmi()) return false; | |
| 192 *out = Max(0, Smi::cast(len_obj)->value()); | |
| 193 return *out <= object->elements()->length(); | |
| 194 } | |
| 195 | |
| 196 inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object) { | |
| 197 DisallowHeapAllocation no_gc; | |
| 198 HeapObject* prototype = HeapObject::cast(object->map()->prototype()); | |
| 199 HeapObject* null = isolate->heap()->null_value(); | |
| 200 HeapObject* empty = isolate->heap()->empty_fixed_array(); | |
| 201 while (prototype != null) { | |
| 202 Map* map = prototype->map(); | |
| 203 if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false; | |
| 204 if (JSObject::cast(prototype)->elements() != empty) return false; | |
| 205 prototype = HeapObject::cast(map->prototype()); | |
| 206 } | |
| 207 return true; | |
| 208 } | |
| 209 | |
| 210 inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate, | |
| 211 JSArray* receiver) { | |
| 212 return PrototypeHasNoElements(isolate, receiver); | |
| 213 } | |
| 214 | |
| 215 inline bool HasSimpleElements(JSObject* current) { | |
| 216 return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER && | |
| 217 !current->GetElementsAccessor()->HasAccessors(current); | |
| 218 } | |
| 219 | |
| 220 inline bool HasOnlySimpleReceiverElements(Isolate* isolate, | |
| 221 JSObject* receiver) { | |
| 222 // Check that we have no accessors on the receiver's elements. | |
| 223 if (!HasSimpleElements(receiver)) return false; | |
| 224 return PrototypeHasNoElements(isolate, receiver); | |
| 225 } | |
| 226 | |
| 227 inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) { | |
| 228 DisallowHeapAllocation no_gc; | |
| 229 PrototypeIterator iter(isolate, receiver, kStartAtReceiver); | |
| 230 for (; !iter.IsAtEnd(); iter.Advance()) { | |
| 231 if (iter.GetCurrent()->IsJSProxy()) return false; | |
| 232 JSObject* current = iter.GetCurrent<JSObject>(); | |
| 233 if (!HasSimpleElements(current)) return false; | |
| 234 } | |
| 235 return true; | |
| 236 } | |
| 237 | |
| 238 // Returns |false| if not applicable. | |
| 239 MUST_USE_RESULT | |
| 240 inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate, | |
| 241 Handle<Object> receiver, | |
| 242 BuiltinArguments* args, | |
| 243 int first_added_arg) { | |
| 244 if (!receiver->IsJSArray()) return false; | |
| 245 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
| 246 ElementsKind origin_kind = array->GetElementsKind(); | |
| 247 if (IsDictionaryElementsKind(origin_kind)) return false; | |
| 248 if (!array->map()->is_extensible()) return false; | |
| 249 if (args == nullptr) return true; | |
| 250 | |
| 251 // If there may be elements accessors in the prototype chain, the fast path | |
| 252 // cannot be used if there arguments to add to the array. | |
| 253 if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false; | |
| 254 | |
| 255 // Adding elements to the array prototype would break code that makes sure | |
| 256 // it has no elements. Handle that elsewhere. | |
| 257 if (isolate->IsAnyInitialArrayPrototype(array)) return false; | |
| 258 | |
| 259 // Need to ensure that the arguments passed in args can be contained in | |
| 260 // the array. | |
| 261 int args_length = args->length(); | |
| 262 if (first_added_arg >= args_length) return true; | |
| 263 | |
| 264 if (IsFastObjectElementsKind(origin_kind)) return true; | |
| 265 ElementsKind target_kind = origin_kind; | |
| 266 { | |
| 267 DisallowHeapAllocation no_gc; | |
| 268 for (int i = first_added_arg; i < args_length; i++) { | |
| 269 Object* arg = (*args)[i]; | |
| 270 if (arg->IsHeapObject()) { | |
| 271 if (arg->IsHeapNumber()) { | |
| 272 target_kind = FAST_DOUBLE_ELEMENTS; | |
| 273 } else { | |
| 274 target_kind = FAST_ELEMENTS; | |
| 275 break; | |
| 276 } | |
| 277 } | |
| 278 } | |
| 279 } | |
| 280 if (target_kind != origin_kind) { | |
| 281 // Use a short-lived HandleScope to avoid creating several copies of the | |
| 282 // elements handle which would cause issues when left-trimming later-on. | |
| 283 HandleScope scope(isolate); | |
| 284 JSObject::TransitionElementsKind(array, target_kind); | |
| 285 } | |
| 286 return true; | |
| 287 } | |
| 288 | |
| 289 MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate, | |
| 290 Handle<JSFunction> function, | |
| 291 BuiltinArguments args) { | |
| 292 HandleScope handleScope(isolate); | |
| 293 int argc = args.length() - 1; | |
| 294 ScopedVector<Handle<Object>> argv(argc); | |
| 295 for (int i = 0; i < argc; ++i) { | |
| 296 argv[i] = args.at<Object>(i + 1); | |
| 297 } | |
| 298 RETURN_RESULT_OR_FAILURE( | |
| 299 isolate, | |
| 300 Execution::Call(isolate, function, args.receiver(), argc, argv.start())); | |
| 301 } | |
| 302 | |
| 303 } // namespace | |
| 304 | 38 |
| 305 BUILTIN(Illegal) { | 39 BUILTIN(Illegal) { |
| 306 UNREACHABLE(); | 40 UNREACHABLE(); |
| 307 return isolate->heap()->undefined_value(); // Make compiler happy. | 41 return isolate->heap()->undefined_value(); // Make compiler happy. |
| 308 } | 42 } |
| 309 | 43 |
| 310 BUILTIN(EmptyFunction) { return isolate->heap()->undefined_value(); } | 44 BUILTIN(EmptyFunction) { return isolate->heap()->undefined_value(); } |
| 311 | 45 |
| 312 void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) { | |
| 313 typedef compiler::Node Node; | |
| 314 typedef CodeStubAssembler::Label Label; | |
| 315 | |
| 316 Node* object = assembler->Parameter(1); | |
| 317 Node* context = assembler->Parameter(4); | |
| 318 | |
| 319 Label call_runtime(assembler), return_true(assembler), | |
| 320 return_false(assembler); | |
| 321 | |
| 322 assembler->GotoIf(assembler->WordIsSmi(object), &return_false); | |
| 323 Node* instance_type = assembler->LoadInstanceType(object); | |
| 324 | |
| 325 assembler->GotoIf(assembler->Word32Equal( | |
| 326 instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)), | |
| 327 &return_true); | |
| 328 | |
| 329 // TODO(verwaest): Handle proxies in-place. | |
| 330 assembler->Branch(assembler->Word32Equal( | |
| 331 instance_type, assembler->Int32Constant(JS_PROXY_TYPE)), | |
| 332 &call_runtime, &return_false); | |
| 333 | |
| 334 assembler->Bind(&return_true); | |
| 335 assembler->Return(assembler->BooleanConstant(true)); | |
| 336 | |
| 337 assembler->Bind(&return_false); | |
| 338 assembler->Return(assembler->BooleanConstant(false)); | |
| 339 | |
| 340 assembler->Bind(&call_runtime); | |
| 341 assembler->Return( | |
| 342 assembler->CallRuntime(Runtime::kArrayIsArray, context, object)); | |
| 343 } | |
| 344 | 46 |
| 345 void Builtins::Generate_ObjectHasOwnProperty(CodeStubAssembler* assembler) { | 47 void Builtins::Generate_ObjectHasOwnProperty(CodeStubAssembler* assembler) { |
| 346 typedef compiler::Node Node; | 48 typedef compiler::Node Node; |
| 347 typedef CodeStubAssembler::Label Label; | 49 typedef CodeStubAssembler::Label Label; |
| 348 typedef CodeStubAssembler::Variable Variable; | 50 typedef CodeStubAssembler::Variable Variable; |
| 349 | 51 |
| 350 Node* object = assembler->Parameter(0); | 52 Node* object = assembler->Parameter(0); |
| 351 Node* key = assembler->Parameter(1); | 53 Node* key = assembler->Parameter(1); |
| 352 Node* context = assembler->Parameter(4); | 54 Node* context = assembler->Parameter(4); |
| 353 | 55 |
| (...skipping 27 matching lines...) Expand all Loading... |
| 381 assembler->Return(assembler->BooleanConstant(true)); | 83 assembler->Return(assembler->BooleanConstant(true)); |
| 382 | 84 |
| 383 assembler->Bind(&return_false); | 85 assembler->Bind(&return_false); |
| 384 assembler->Return(assembler->BooleanConstant(false)); | 86 assembler->Return(assembler->BooleanConstant(false)); |
| 385 | 87 |
| 386 assembler->Bind(&call_runtime); | 88 assembler->Bind(&call_runtime); |
| 387 assembler->Return(assembler->CallRuntime(Runtime::kObjectHasOwnProperty, | 89 assembler->Return(assembler->CallRuntime(Runtime::kObjectHasOwnProperty, |
| 388 context, object, key)); | 90 context, object, key)); |
| 389 } | 91 } |
| 390 | 92 |
| 93 namespace { |
| 94 |
| 95 MUST_USE_RESULT Maybe<bool> FastAssign(Handle<JSReceiver> to, |
| 96 Handle<Object> next_source) { |
| 97 // Non-empty strings are the only non-JSReceivers that need to be handled |
| 98 // explicitly by Object.assign. |
| 99 if (!next_source->IsJSReceiver()) { |
| 100 return Just(!next_source->IsString() || |
| 101 String::cast(*next_source)->length() == 0); |
| 102 } |
| 103 |
| 104 // If the target is deprecated, the object will be updated on first store. If |
| 105 // the source for that store equals the target, this will invalidate the |
| 106 // cached representation of the source. Preventively upgrade the target. |
| 107 // Do this on each iteration since any property load could cause deprecation. |
| 108 if (to->map()->is_deprecated()) { |
| 109 JSObject::MigrateInstance(Handle<JSObject>::cast(to)); |
| 110 } |
| 111 |
| 112 Isolate* isolate = to->GetIsolate(); |
| 113 Handle<Map> map(JSReceiver::cast(*next_source)->map(), isolate); |
| 114 |
| 115 if (!map->IsJSObjectMap()) return Just(false); |
| 116 if (!map->OnlyHasSimpleProperties()) return Just(false); |
| 117 |
| 118 Handle<JSObject> from = Handle<JSObject>::cast(next_source); |
| 119 if (from->elements() != isolate->heap()->empty_fixed_array()) { |
| 120 return Just(false); |
| 121 } |
| 122 |
| 123 Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate); |
| 124 int length = map->NumberOfOwnDescriptors(); |
| 125 |
| 126 bool stable = true; |
| 127 |
| 128 for (int i = 0; i < length; i++) { |
| 129 Handle<Name> next_key(descriptors->GetKey(i), isolate); |
| 130 Handle<Object> prop_value; |
| 131 // Directly decode from the descriptor array if |from| did not change shape. |
| 132 if (stable) { |
| 133 PropertyDetails details = descriptors->GetDetails(i); |
| 134 if (!details.IsEnumerable()) continue; |
| 135 if (details.kind() == kData) { |
| 136 if (details.location() == kDescriptor) { |
| 137 prop_value = handle(descriptors->GetValue(i), isolate); |
| 138 } else { |
| 139 Representation representation = details.representation(); |
| 140 FieldIndex index = FieldIndex::ForDescriptor(*map, i); |
| 141 prop_value = JSObject::FastPropertyAt(from, representation, index); |
| 142 } |
| 143 } else { |
| 144 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 145 isolate, prop_value, JSReceiver::GetProperty(from, next_key), |
| 146 Nothing<bool>()); |
| 147 stable = from->map() == *map; |
| 148 } |
| 149 } else { |
| 150 // If the map did change, do a slower lookup. We are still guaranteed that |
| 151 // the object has a simple shape, and that the key is a name. |
| 152 LookupIterator it(from, next_key, from, |
| 153 LookupIterator::OWN_SKIP_INTERCEPTOR); |
| 154 if (!it.IsFound()) continue; |
| 155 DCHECK(it.state() == LookupIterator::DATA || |
| 156 it.state() == LookupIterator::ACCESSOR); |
| 157 if (!it.IsEnumerable()) continue; |
| 158 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 159 isolate, prop_value, Object::GetProperty(&it), Nothing<bool>()); |
| 160 } |
| 161 LookupIterator it(to, next_key, to); |
| 162 bool call_to_js = it.IsFound() && it.state() != LookupIterator::DATA; |
| 163 Maybe<bool> result = Object::SetProperty( |
| 164 &it, prop_value, STRICT, Object::CERTAINLY_NOT_STORE_FROM_KEYED); |
| 165 if (result.IsNothing()) return result; |
| 166 if (stable && call_to_js) stable = from->map() == *map; |
| 167 } |
| 168 |
| 169 return Just(true); |
| 170 } |
| 171 |
| 172 } // namespace |
| 173 |
| 174 // ES6 19.1.2.1 Object.assign |
| 175 BUILTIN(ObjectAssign) { |
| 176 HandleScope scope(isolate); |
| 177 Handle<Object> target = args.atOrUndefined(isolate, 1); |
| 178 |
| 179 // 1. Let to be ? ToObject(target). |
| 180 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target, |
| 181 Object::ToObject(isolate, target)); |
| 182 Handle<JSReceiver> to = Handle<JSReceiver>::cast(target); |
| 183 // 2. If only one argument was passed, return to. |
| 184 if (args.length() == 2) return *to; |
| 185 // 3. Let sources be the List of argument values starting with the |
| 186 // second argument. |
| 187 // 4. For each element nextSource of sources, in ascending index order, |
| 188 for (int i = 2; i < args.length(); ++i) { |
| 189 Handle<Object> next_source = args.at<Object>(i); |
| 190 Maybe<bool> fast_assign = FastAssign(to, next_source); |
| 191 if (fast_assign.IsNothing()) return isolate->heap()->exception(); |
| 192 if (fast_assign.FromJust()) continue; |
| 193 // 4a. If nextSource is undefined or null, let keys be an empty List. |
| 194 // 4b. Else, |
| 195 // 4b i. Let from be ToObject(nextSource). |
| 196 // Only non-empty strings and JSReceivers have enumerable properties. |
| 197 Handle<JSReceiver> from = |
| 198 Object::ToObject(isolate, next_source).ToHandleChecked(); |
| 199 // 4b ii. Let keys be ? from.[[OwnPropertyKeys]](). |
| 200 Handle<FixedArray> keys; |
| 201 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 202 isolate, keys, KeyAccumulator::GetKeys( |
| 203 from, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, |
| 204 GetKeysConversion::kKeepNumbers)); |
| 205 // 4c. Repeat for each element nextKey of keys in List order, |
| 206 for (int j = 0; j < keys->length(); ++j) { |
| 207 Handle<Object> next_key(keys->get(j), isolate); |
| 208 // 4c i. Let desc be ? from.[[GetOwnProperty]](nextKey). |
| 209 PropertyDescriptor desc; |
| 210 Maybe<bool> found = |
| 211 JSReceiver::GetOwnPropertyDescriptor(isolate, from, next_key, &desc); |
| 212 if (found.IsNothing()) return isolate->heap()->exception(); |
| 213 // 4c ii. If desc is not undefined and desc.[[Enumerable]] is true, then |
| 214 if (found.FromJust() && desc.enumerable()) { |
| 215 // 4c ii 1. Let propValue be ? Get(from, nextKey). |
| 216 Handle<Object> prop_value; |
| 217 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 218 isolate, prop_value, |
| 219 Runtime::GetObjectProperty(isolate, from, next_key)); |
| 220 // 4c ii 2. Let status be ? Set(to, nextKey, propValue, true). |
| 221 Handle<Object> status; |
| 222 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 223 isolate, status, Runtime::SetObjectProperty(isolate, to, next_key, |
| 224 prop_value, STRICT)); |
| 225 } |
| 226 } |
| 227 } |
| 228 // 5. Return to. |
| 229 return *to; |
| 230 } |
| 231 |
| 391 namespace { // anonymous namespace for ObjectProtoToString() | 232 namespace { // anonymous namespace for ObjectProtoToString() |
| 392 | 233 |
| 393 void IsString(CodeStubAssembler* assembler, compiler::Node* object, | 234 void IsString(CodeStubAssembler* assembler, compiler::Node* object, |
| 394 CodeStubAssembler::Label* if_string, | 235 CodeStubAssembler::Label* if_string, |
| 395 CodeStubAssembler::Label* if_notstring) { | 236 CodeStubAssembler::Label* if_notstring) { |
| 396 typedef compiler::Node Node; | 237 typedef compiler::Node Node; |
| 397 typedef CodeStubAssembler::Label Label; | 238 typedef CodeStubAssembler::Label Label; |
| 398 | 239 |
| 399 Label if_notsmi(assembler); | 240 Label if_notsmi(assembler); |
| 400 assembler->Branch(assembler->WordIsSmi(object), if_notstring, &if_notsmi); | 241 assembler->Branch(assembler->WordIsSmi(object), if_notstring, &if_notsmi); |
| (...skipping 228 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 629 &return_object, &return_function); | 470 &return_object, &return_function); |
| 630 } | 471 } |
| 631 | 472 |
| 632 // Default | 473 // Default |
| 633 assembler->Bind(&return_object); | 474 assembler->Bind(&return_object); |
| 634 assembler->Return(assembler->HeapConstant( | 475 assembler->Return(assembler->HeapConstant( |
| 635 assembler->isolate()->factory()->object_to_string())); | 476 assembler->isolate()->factory()->object_to_string())); |
| 636 } | 477 } |
| 637 } | 478 } |
| 638 | 479 |
| 639 namespace { | |
| 640 | |
| 641 Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) { | |
| 642 HandleScope scope(isolate); | |
| 643 Handle<Object> receiver = args.receiver(); | |
| 644 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { | |
| 645 return CallJsIntrinsic(isolate, isolate->array_push(), args); | |
| 646 } | |
| 647 // Fast Elements Path | |
| 648 int to_add = args.length() - 1; | |
| 649 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
| 650 int len = Smi::cast(array->length())->value(); | |
| 651 if (to_add == 0) return Smi::FromInt(len); | |
| 652 | |
| 653 // Currently fixed arrays cannot grow too big, so we should never hit this. | |
| 654 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); | |
| 655 | |
| 656 if (JSArray::HasReadOnlyLength(array)) { | |
| 657 return CallJsIntrinsic(isolate, isolate->array_push(), args); | |
| 658 } | |
| 659 | |
| 660 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
| 661 int new_length = accessor->Push(array, &args, to_add); | |
| 662 return Smi::FromInt(new_length); | |
| 663 } | |
| 664 | |
| 665 } // namespace | |
| 666 | |
| 667 BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); } | |
| 668 | |
| 669 // TODO(verwaest): This is a temporary helper until the FastArrayPush stub can | |
| 670 // tailcall to the builtin directly. | |
| 671 RUNTIME_FUNCTION(Runtime_ArrayPush) { | |
| 672 DCHECK_EQ(2, args.length()); | |
| 673 Arguments* incoming = reinterpret_cast<Arguments*>(args[0]); | |
| 674 // Rewrap the arguments as builtins arguments. | |
| 675 int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver; | |
| 676 BuiltinArguments caller_args(argc, incoming->arguments() + 1); | |
| 677 return DoArrayPush(isolate, caller_args); | |
| 678 } | |
| 679 | |
| 680 BUILTIN(ArrayPop) { | |
| 681 HandleScope scope(isolate); | |
| 682 Handle<Object> receiver = args.receiver(); | |
| 683 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) { | |
| 684 return CallJsIntrinsic(isolate, isolate->array_pop(), args); | |
| 685 } | |
| 686 | |
| 687 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
| 688 | |
| 689 uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value()); | |
| 690 if (len == 0) return isolate->heap()->undefined_value(); | |
| 691 | |
| 692 if (JSArray::HasReadOnlyLength(array)) { | |
| 693 return CallJsIntrinsic(isolate, isolate->array_pop(), args); | |
| 694 } | |
| 695 | |
| 696 Handle<Object> result; | |
| 697 if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { | |
| 698 // Fast Elements Path | |
| 699 result = array->GetElementsAccessor()->Pop(array); | |
| 700 } else { | |
| 701 // Use Slow Lookup otherwise | |
| 702 uint32_t new_length = len - 1; | |
| 703 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 704 isolate, result, JSReceiver::GetElement(isolate, array, new_length)); | |
| 705 JSArray::SetLength(array, new_length); | |
| 706 } | |
| 707 return *result; | |
| 708 } | |
| 709 | |
| 710 BUILTIN(ArrayShift) { | |
| 711 HandleScope scope(isolate); | |
| 712 Heap* heap = isolate->heap(); | |
| 713 Handle<Object> receiver = args.receiver(); | |
| 714 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) || | |
| 715 !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { | |
| 716 return CallJsIntrinsic(isolate, isolate->array_shift(), args); | |
| 717 } | |
| 718 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
| 719 | |
| 720 int len = Smi::cast(array->length())->value(); | |
| 721 if (len == 0) return heap->undefined_value(); | |
| 722 | |
| 723 if (JSArray::HasReadOnlyLength(array)) { | |
| 724 return CallJsIntrinsic(isolate, isolate->array_shift(), args); | |
| 725 } | |
| 726 | |
| 727 Handle<Object> first = array->GetElementsAccessor()->Shift(array); | |
| 728 return *first; | |
| 729 } | |
| 730 | |
| 731 BUILTIN(ArrayUnshift) { | |
| 732 HandleScope scope(isolate); | |
| 733 Handle<Object> receiver = args.receiver(); | |
| 734 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { | |
| 735 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); | |
| 736 } | |
| 737 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
| 738 int to_add = args.length() - 1; | |
| 739 if (to_add == 0) return array->length(); | |
| 740 | |
| 741 // Currently fixed arrays cannot grow too big, so we should never hit this. | |
| 742 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); | |
| 743 | |
| 744 if (JSArray::HasReadOnlyLength(array)) { | |
| 745 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); | |
| 746 } | |
| 747 | |
| 748 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
| 749 int new_length = accessor->Unshift(array, &args, to_add); | |
| 750 return Smi::FromInt(new_length); | |
| 751 } | |
| 752 | |
| 753 BUILTIN(ArraySlice) { | |
| 754 HandleScope scope(isolate); | |
| 755 Handle<Object> receiver = args.receiver(); | |
| 756 int len = -1; | |
| 757 int relative_start = 0; | |
| 758 int relative_end = 0; | |
| 759 | |
| 760 if (receiver->IsJSArray()) { | |
| 761 DisallowHeapAllocation no_gc; | |
| 762 JSArray* array = JSArray::cast(*receiver); | |
| 763 if (V8_UNLIKELY(!array->HasFastElements() || | |
| 764 !IsJSArrayFastElementMovingAllowed(isolate, array) || | |
| 765 !isolate->IsArraySpeciesLookupChainIntact() || | |
| 766 // If this is a subclass of Array, then call out to JS | |
| 767 !array->HasArrayPrototype(isolate))) { | |
| 768 AllowHeapAllocation allow_allocation; | |
| 769 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
| 770 } | |
| 771 len = Smi::cast(array->length())->value(); | |
| 772 } else if (receiver->IsJSObject() && | |
| 773 GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver), | |
| 774 &len)) { | |
| 775 // Array.prototype.slice.call(arguments, ...) is quite a common idiom | |
| 776 // (notably more than 50% of invocations in Web apps). | |
| 777 // Treat it in C++ as well. | |
| 778 DCHECK(JSObject::cast(*receiver)->HasFastElements() || | |
| 779 JSObject::cast(*receiver)->HasFastArgumentsElements()); | |
| 780 } else { | |
| 781 AllowHeapAllocation allow_allocation; | |
| 782 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
| 783 } | |
| 784 DCHECK_LE(0, len); | |
| 785 int argument_count = args.length() - 1; | |
| 786 // Note carefully chosen defaults---if argument is missing, | |
| 787 // it's undefined which gets converted to 0 for relative_start | |
| 788 // and to len for relative_end. | |
| 789 relative_start = 0; | |
| 790 relative_end = len; | |
| 791 if (argument_count > 0) { | |
| 792 DisallowHeapAllocation no_gc; | |
| 793 if (!ClampedToInteger(isolate, args[1], &relative_start)) { | |
| 794 AllowHeapAllocation allow_allocation; | |
| 795 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
| 796 } | |
| 797 if (argument_count > 1) { | |
| 798 Object* end_arg = args[2]; | |
| 799 // slice handles the end_arg specially | |
| 800 if (end_arg->IsUndefined(isolate)) { | |
| 801 relative_end = len; | |
| 802 } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) { | |
| 803 AllowHeapAllocation allow_allocation; | |
| 804 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
| 805 } | |
| 806 } | |
| 807 } | |
| 808 | |
| 809 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. | |
| 810 uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | |
| 811 : Min(relative_start, len); | |
| 812 | |
| 813 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. | |
| 814 uint32_t actual_end = | |
| 815 (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); | |
| 816 | |
| 817 Handle<JSObject> object = Handle<JSObject>::cast(receiver); | |
| 818 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
| 819 return *accessor->Slice(object, actual_start, actual_end); | |
| 820 } | |
| 821 | |
| 822 BUILTIN(ArraySplice) { | |
| 823 HandleScope scope(isolate); | |
| 824 Handle<Object> receiver = args.receiver(); | |
| 825 if (V8_UNLIKELY( | |
| 826 !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) || | |
| 827 // If this is a subclass of Array, then call out to JS. | |
| 828 !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) || | |
| 829 // If anything with @@species has been messed with, call out to JS. | |
| 830 !isolate->IsArraySpeciesLookupChainIntact())) { | |
| 831 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
| 832 } | |
| 833 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
| 834 | |
| 835 int argument_count = args.length() - 1; | |
| 836 int relative_start = 0; | |
| 837 if (argument_count > 0) { | |
| 838 DisallowHeapAllocation no_gc; | |
| 839 if (!ClampedToInteger(isolate, args[1], &relative_start)) { | |
| 840 AllowHeapAllocation allow_allocation; | |
| 841 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
| 842 } | |
| 843 } | |
| 844 int len = Smi::cast(array->length())->value(); | |
| 845 // clip relative start to [0, len] | |
| 846 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | |
| 847 : Min(relative_start, len); | |
| 848 | |
| 849 int actual_delete_count; | |
| 850 if (argument_count == 1) { | |
| 851 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is | |
| 852 // given as a request to delete all the elements from the start. | |
| 853 // And it differs from the case of undefined delete count. | |
| 854 // This does not follow ECMA-262, but we do the same for compatibility. | |
| 855 DCHECK(len - actual_start >= 0); | |
| 856 actual_delete_count = len - actual_start; | |
| 857 } else { | |
| 858 int delete_count = 0; | |
| 859 DisallowHeapAllocation no_gc; | |
| 860 if (argument_count > 1) { | |
| 861 if (!ClampedToInteger(isolate, args[2], &delete_count)) { | |
| 862 AllowHeapAllocation allow_allocation; | |
| 863 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
| 864 } | |
| 865 } | |
| 866 actual_delete_count = Min(Max(delete_count, 0), len - actual_start); | |
| 867 } | |
| 868 | |
| 869 int add_count = (argument_count > 1) ? (argument_count - 2) : 0; | |
| 870 int new_length = len - actual_delete_count + add_count; | |
| 871 | |
| 872 if (new_length != len && JSArray::HasReadOnlyLength(array)) { | |
| 873 AllowHeapAllocation allow_allocation; | |
| 874 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
| 875 } | |
| 876 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
| 877 Handle<JSArray> result_array = accessor->Splice( | |
| 878 array, actual_start, actual_delete_count, &args, add_count); | |
| 879 return *result_array; | |
| 880 } | |
| 881 | |
| 882 // Array Concat ------------------------------------------------------------- | |
| 883 | |
| 884 namespace { | |
| 885 | |
| 886 /** | |
| 887 * A simple visitor visits every element of Array's. | |
| 888 * The backend storage can be a fixed array for fast elements case, | |
| 889 * or a dictionary for sparse array. Since Dictionary is a subtype | |
| 890 * of FixedArray, the class can be used by both fast and slow cases. | |
| 891 * The second parameter of the constructor, fast_elements, specifies | |
| 892 * whether the storage is a FixedArray or Dictionary. | |
| 893 * | |
| 894 * An index limit is used to deal with the situation that a result array | |
| 895 * length overflows 32-bit non-negative integer. | |
| 896 */ | |
| 897 class ArrayConcatVisitor { | |
| 898 public: | |
| 899 ArrayConcatVisitor(Isolate* isolate, Handle<Object> storage, | |
| 900 bool fast_elements) | |
| 901 : isolate_(isolate), | |
| 902 storage_(isolate->global_handles()->Create(*storage)), | |
| 903 index_offset_(0u), | |
| 904 bit_field_(FastElementsField::encode(fast_elements) | | |
| 905 ExceedsLimitField::encode(false) | | |
| 906 IsFixedArrayField::encode(storage->IsFixedArray())) { | |
| 907 DCHECK(!(this->fast_elements() && !is_fixed_array())); | |
| 908 } | |
| 909 | |
| 910 ~ArrayConcatVisitor() { clear_storage(); } | |
| 911 | |
| 912 MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) { | |
| 913 uint32_t index = index_offset_ + i; | |
| 914 | |
| 915 if (i >= JSObject::kMaxElementCount - index_offset_) { | |
| 916 set_exceeds_array_limit(true); | |
| 917 // Exception hasn't been thrown at this point. Return true to | |
| 918 // break out, and caller will throw. !visit would imply that | |
| 919 // there is already a pending exception. | |
| 920 return true; | |
| 921 } | |
| 922 | |
| 923 if (!is_fixed_array()) { | |
| 924 LookupIterator it(isolate_, storage_, index, LookupIterator::OWN); | |
| 925 MAYBE_RETURN( | |
| 926 JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR), | |
| 927 false); | |
| 928 return true; | |
| 929 } | |
| 930 | |
| 931 if (fast_elements()) { | |
| 932 if (index < static_cast<uint32_t>(storage_fixed_array()->length())) { | |
| 933 storage_fixed_array()->set(index, *elm); | |
| 934 return true; | |
| 935 } | |
| 936 // Our initial estimate of length was foiled, possibly by | |
| 937 // getters on the arrays increasing the length of later arrays | |
| 938 // during iteration. | |
| 939 // This shouldn't happen in anything but pathological cases. | |
| 940 SetDictionaryMode(); | |
| 941 // Fall-through to dictionary mode. | |
| 942 } | |
| 943 DCHECK(!fast_elements()); | |
| 944 Handle<SeededNumberDictionary> dict( | |
| 945 SeededNumberDictionary::cast(*storage_)); | |
| 946 // The object holding this backing store has just been allocated, so | |
| 947 // it cannot yet be used as a prototype. | |
| 948 Handle<SeededNumberDictionary> result = | |
| 949 SeededNumberDictionary::AtNumberPut(dict, index, elm, false); | |
| 950 if (!result.is_identical_to(dict)) { | |
| 951 // Dictionary needed to grow. | |
| 952 clear_storage(); | |
| 953 set_storage(*result); | |
| 954 } | |
| 955 return true; | |
| 956 } | |
| 957 | |
| 958 void increase_index_offset(uint32_t delta) { | |
| 959 if (JSObject::kMaxElementCount - index_offset_ < delta) { | |
| 960 index_offset_ = JSObject::kMaxElementCount; | |
| 961 } else { | |
| 962 index_offset_ += delta; | |
| 963 } | |
| 964 // If the initial length estimate was off (see special case in visit()), | |
| 965 // but the array blowing the limit didn't contain elements beyond the | |
| 966 // provided-for index range, go to dictionary mode now. | |
| 967 if (fast_elements() && | |
| 968 index_offset_ > | |
| 969 static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { | |
| 970 SetDictionaryMode(); | |
| 971 } | |
| 972 } | |
| 973 | |
| 974 bool exceeds_array_limit() const { | |
| 975 return ExceedsLimitField::decode(bit_field_); | |
| 976 } | |
| 977 | |
| 978 Handle<JSArray> ToArray() { | |
| 979 DCHECK(is_fixed_array()); | |
| 980 Handle<JSArray> array = isolate_->factory()->NewJSArray(0); | |
| 981 Handle<Object> length = | |
| 982 isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); | |
| 983 Handle<Map> map = JSObject::GetElementsTransitionMap( | |
| 984 array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); | |
| 985 array->set_map(*map); | |
| 986 array->set_length(*length); | |
| 987 array->set_elements(*storage_fixed_array()); | |
| 988 return array; | |
| 989 } | |
| 990 | |
| 991 // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever | |
| 992 // (otherwise) | |
| 993 Handle<FixedArray> storage_fixed_array() { | |
| 994 DCHECK(is_fixed_array()); | |
| 995 return Handle<FixedArray>::cast(storage_); | |
| 996 } | |
| 997 Handle<JSReceiver> storage_jsreceiver() { | |
| 998 DCHECK(!is_fixed_array()); | |
| 999 return Handle<JSReceiver>::cast(storage_); | |
| 1000 } | |
| 1001 | |
| 1002 private: | |
| 1003 // Convert storage to dictionary mode. | |
| 1004 void SetDictionaryMode() { | |
| 1005 DCHECK(fast_elements() && is_fixed_array()); | |
| 1006 Handle<FixedArray> current_storage = storage_fixed_array(); | |
| 1007 Handle<SeededNumberDictionary> slow_storage( | |
| 1008 SeededNumberDictionary::New(isolate_, current_storage->length())); | |
| 1009 uint32_t current_length = static_cast<uint32_t>(current_storage->length()); | |
| 1010 FOR_WITH_HANDLE_SCOPE( | |
| 1011 isolate_, uint32_t, i = 0, i, i < current_length, i++, { | |
| 1012 Handle<Object> element(current_storage->get(i), isolate_); | |
| 1013 if (!element->IsTheHole(isolate_)) { | |
| 1014 // The object holding this backing store has just been allocated, so | |
| 1015 // it cannot yet be used as a prototype. | |
| 1016 Handle<SeededNumberDictionary> new_storage = | |
| 1017 SeededNumberDictionary::AtNumberPut(slow_storage, i, element, | |
| 1018 false); | |
| 1019 if (!new_storage.is_identical_to(slow_storage)) { | |
| 1020 slow_storage = loop_scope.CloseAndEscape(new_storage); | |
| 1021 } | |
| 1022 } | |
| 1023 }); | |
| 1024 clear_storage(); | |
| 1025 set_storage(*slow_storage); | |
| 1026 set_fast_elements(false); | |
| 1027 } | |
| 1028 | |
| 1029 inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); } | |
| 1030 | |
| 1031 inline void set_storage(FixedArray* storage) { | |
| 1032 DCHECK(is_fixed_array()); | |
| 1033 storage_ = isolate_->global_handles()->Create(storage); | |
| 1034 } | |
| 1035 | |
| 1036 class FastElementsField : public BitField<bool, 0, 1> {}; | |
| 1037 class ExceedsLimitField : public BitField<bool, 1, 1> {}; | |
| 1038 class IsFixedArrayField : public BitField<bool, 2, 1> {}; | |
| 1039 | |
| 1040 bool fast_elements() const { return FastElementsField::decode(bit_field_); } | |
| 1041 void set_fast_elements(bool fast) { | |
| 1042 bit_field_ = FastElementsField::update(bit_field_, fast); | |
| 1043 } | |
| 1044 void set_exceeds_array_limit(bool exceeds) { | |
| 1045 bit_field_ = ExceedsLimitField::update(bit_field_, exceeds); | |
| 1046 } | |
| 1047 bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); } | |
| 1048 | |
| 1049 Isolate* isolate_; | |
| 1050 Handle<Object> storage_; // Always a global handle. | |
| 1051 // Index after last seen index. Always less than or equal to | |
| 1052 // JSObject::kMaxElementCount. | |
| 1053 uint32_t index_offset_; | |
| 1054 uint32_t bit_field_; | |
| 1055 }; | |
| 1056 | |
| 1057 uint32_t EstimateElementCount(Handle<JSArray> array) { | |
| 1058 DisallowHeapAllocation no_gc; | |
| 1059 uint32_t length = static_cast<uint32_t>(array->length()->Number()); | |
| 1060 int element_count = 0; | |
| 1061 switch (array->GetElementsKind()) { | |
| 1062 case FAST_SMI_ELEMENTS: | |
| 1063 case FAST_HOLEY_SMI_ELEMENTS: | |
| 1064 case FAST_ELEMENTS: | |
| 1065 case FAST_HOLEY_ELEMENTS: { | |
| 1066 // Fast elements can't have lengths that are not representable by | |
| 1067 // a 32-bit signed integer. | |
| 1068 DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); | |
| 1069 int fast_length = static_cast<int>(length); | |
| 1070 Isolate* isolate = array->GetIsolate(); | |
| 1071 FixedArray* elements = FixedArray::cast(array->elements()); | |
| 1072 for (int i = 0; i < fast_length; i++) { | |
| 1073 if (!elements->get(i)->IsTheHole(isolate)) element_count++; | |
| 1074 } | |
| 1075 break; | |
| 1076 } | |
| 1077 case FAST_DOUBLE_ELEMENTS: | |
| 1078 case FAST_HOLEY_DOUBLE_ELEMENTS: { | |
| 1079 // Fast elements can't have lengths that are not representable by | |
| 1080 // a 32-bit signed integer. | |
| 1081 DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); | |
| 1082 int fast_length = static_cast<int>(length); | |
| 1083 if (array->elements()->IsFixedArray()) { | |
| 1084 DCHECK(FixedArray::cast(array->elements())->length() == 0); | |
| 1085 break; | |
| 1086 } | |
| 1087 FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); | |
| 1088 for (int i = 0; i < fast_length; i++) { | |
| 1089 if (!elements->is_the_hole(i)) element_count++; | |
| 1090 } | |
| 1091 break; | |
| 1092 } | |
| 1093 case DICTIONARY_ELEMENTS: { | |
| 1094 SeededNumberDictionary* dictionary = | |
| 1095 SeededNumberDictionary::cast(array->elements()); | |
| 1096 Isolate* isolate = dictionary->GetIsolate(); | |
| 1097 int capacity = dictionary->Capacity(); | |
| 1098 for (int i = 0; i < capacity; i++) { | |
| 1099 Object* key = dictionary->KeyAt(i); | |
| 1100 if (dictionary->IsKey(isolate, key)) { | |
| 1101 element_count++; | |
| 1102 } | |
| 1103 } | |
| 1104 break; | |
| 1105 } | |
| 1106 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
| 1107 | |
| 1108 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
| 1109 #undef TYPED_ARRAY_CASE | |
| 1110 // External arrays are always dense. | |
| 1111 return length; | |
| 1112 case NO_ELEMENTS: | |
| 1113 return 0; | |
| 1114 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
| 1115 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
| 1116 case FAST_STRING_WRAPPER_ELEMENTS: | |
| 1117 case SLOW_STRING_WRAPPER_ELEMENTS: | |
| 1118 UNREACHABLE(); | |
| 1119 return 0; | |
| 1120 } | |
| 1121 // As an estimate, we assume that the prototype doesn't contain any | |
| 1122 // inherited elements. | |
| 1123 return element_count; | |
| 1124 } | |
| 1125 | |
| 1126 // Used for sorting indices in a List<uint32_t>. | |
| 1127 int compareUInt32(const uint32_t* ap, const uint32_t* bp) { | |
| 1128 uint32_t a = *ap; | |
| 1129 uint32_t b = *bp; | |
| 1130 return (a == b) ? 0 : (a < b) ? -1 : 1; | |
| 1131 } | |
| 1132 | |
| 1133 void CollectElementIndices(Handle<JSObject> object, uint32_t range, | |
| 1134 List<uint32_t>* indices) { | |
| 1135 Isolate* isolate = object->GetIsolate(); | |
| 1136 ElementsKind kind = object->GetElementsKind(); | |
| 1137 switch (kind) { | |
| 1138 case FAST_SMI_ELEMENTS: | |
| 1139 case FAST_ELEMENTS: | |
| 1140 case FAST_HOLEY_SMI_ELEMENTS: | |
| 1141 case FAST_HOLEY_ELEMENTS: { | |
| 1142 DisallowHeapAllocation no_gc; | |
| 1143 FixedArray* elements = FixedArray::cast(object->elements()); | |
| 1144 uint32_t length = static_cast<uint32_t>(elements->length()); | |
| 1145 if (range < length) length = range; | |
| 1146 for (uint32_t i = 0; i < length; i++) { | |
| 1147 if (!elements->get(i)->IsTheHole(isolate)) { | |
| 1148 indices->Add(i); | |
| 1149 } | |
| 1150 } | |
| 1151 break; | |
| 1152 } | |
| 1153 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
| 1154 case FAST_DOUBLE_ELEMENTS: { | |
| 1155 if (object->elements()->IsFixedArray()) { | |
| 1156 DCHECK(object->elements()->length() == 0); | |
| 1157 break; | |
| 1158 } | |
| 1159 Handle<FixedDoubleArray> elements( | |
| 1160 FixedDoubleArray::cast(object->elements())); | |
| 1161 uint32_t length = static_cast<uint32_t>(elements->length()); | |
| 1162 if (range < length) length = range; | |
| 1163 for (uint32_t i = 0; i < length; i++) { | |
| 1164 if (!elements->is_the_hole(i)) { | |
| 1165 indices->Add(i); | |
| 1166 } | |
| 1167 } | |
| 1168 break; | |
| 1169 } | |
| 1170 case DICTIONARY_ELEMENTS: { | |
| 1171 DisallowHeapAllocation no_gc; | |
| 1172 SeededNumberDictionary* dict = | |
| 1173 SeededNumberDictionary::cast(object->elements()); | |
| 1174 uint32_t capacity = dict->Capacity(); | |
| 1175 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, { | |
| 1176 Object* k = dict->KeyAt(j); | |
| 1177 if (!dict->IsKey(isolate, k)) continue; | |
| 1178 DCHECK(k->IsNumber()); | |
| 1179 uint32_t index = static_cast<uint32_t>(k->Number()); | |
| 1180 if (index < range) { | |
| 1181 indices->Add(index); | |
| 1182 } | |
| 1183 }); | |
| 1184 break; | |
| 1185 } | |
| 1186 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
| 1187 | |
| 1188 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
| 1189 #undef TYPED_ARRAY_CASE | |
| 1190 { | |
| 1191 uint32_t length = static_cast<uint32_t>( | |
| 1192 FixedArrayBase::cast(object->elements())->length()); | |
| 1193 if (range <= length) { | |
| 1194 length = range; | |
| 1195 // We will add all indices, so we might as well clear it first | |
| 1196 // and avoid duplicates. | |
| 1197 indices->Clear(); | |
| 1198 } | |
| 1199 for (uint32_t i = 0; i < length; i++) { | |
| 1200 indices->Add(i); | |
| 1201 } | |
| 1202 if (length == range) return; // All indices accounted for already. | |
| 1203 break; | |
| 1204 } | |
| 1205 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
| 1206 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { | |
| 1207 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
| 1208 for (uint32_t i = 0; i < range; i++) { | |
| 1209 if (accessor->HasElement(object, i)) { | |
| 1210 indices->Add(i); | |
| 1211 } | |
| 1212 } | |
| 1213 break; | |
| 1214 } | |
| 1215 case FAST_STRING_WRAPPER_ELEMENTS: | |
| 1216 case SLOW_STRING_WRAPPER_ELEMENTS: { | |
| 1217 DCHECK(object->IsJSValue()); | |
| 1218 Handle<JSValue> js_value = Handle<JSValue>::cast(object); | |
| 1219 DCHECK(js_value->value()->IsString()); | |
| 1220 Handle<String> string(String::cast(js_value->value()), isolate); | |
| 1221 uint32_t length = static_cast<uint32_t>(string->length()); | |
| 1222 uint32_t i = 0; | |
| 1223 uint32_t limit = Min(length, range); | |
| 1224 for (; i < limit; i++) { | |
| 1225 indices->Add(i); | |
| 1226 } | |
| 1227 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
| 1228 for (; i < range; i++) { | |
| 1229 if (accessor->HasElement(object, i)) { | |
| 1230 indices->Add(i); | |
| 1231 } | |
| 1232 } | |
| 1233 break; | |
| 1234 } | |
| 1235 case NO_ELEMENTS: | |
| 1236 break; | |
| 1237 } | |
| 1238 | |
| 1239 PrototypeIterator iter(isolate, object); | |
| 1240 if (!iter.IsAtEnd()) { | |
| 1241 // The prototype will usually have no inherited element indices, | |
| 1242 // but we have to check. | |
| 1243 CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range, | |
| 1244 indices); | |
| 1245 } | |
| 1246 } | |
| 1247 | |
| 1248 bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver, | |
| 1249 uint32_t length, ArrayConcatVisitor* visitor) { | |
| 1250 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, { | |
| 1251 Maybe<bool> maybe = JSReceiver::HasElement(receiver, i); | |
| 1252 if (!maybe.IsJust()) return false; | |
| 1253 if (maybe.FromJust()) { | |
| 1254 Handle<Object> element_value; | |
| 1255 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1256 isolate, element_value, JSReceiver::GetElement(isolate, receiver, i), | |
| 1257 false); | |
| 1258 if (!visitor->visit(i, element_value)) return false; | |
| 1259 } | |
| 1260 }); | |
| 1261 visitor->increase_index_offset(length); | |
| 1262 return true; | |
| 1263 } | |
| 1264 | |
| 1265 /** | |
| 1266 * A helper function that visits "array" elements of a JSReceiver in numerical | |
| 1267 * order. | |
| 1268 * | |
| 1269 * The visitor argument called for each existing element in the array | |
| 1270 * with the element index and the element's value. | |
| 1271 * Afterwards it increments the base-index of the visitor by the array | |
| 1272 * length. | |
| 1273 * Returns false if any access threw an exception, otherwise true. | |
| 1274 */ | |
| 1275 bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver, | |
| 1276 ArrayConcatVisitor* visitor) { | |
| 1277 uint32_t length = 0; | |
| 1278 | |
| 1279 if (receiver->IsJSArray()) { | |
| 1280 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
| 1281 length = static_cast<uint32_t>(array->length()->Number()); | |
| 1282 } else { | |
| 1283 Handle<Object> val; | |
| 1284 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1285 isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false); | |
| 1286 // TODO(caitp): Support larger element indexes (up to 2^53-1). | |
| 1287 if (!val->ToUint32(&length)) { | |
| 1288 length = 0; | |
| 1289 } | |
| 1290 // TODO(cbruni): handle other element kind as well | |
| 1291 return IterateElementsSlow(isolate, receiver, length, visitor); | |
| 1292 } | |
| 1293 | |
| 1294 if (!HasOnlySimpleElements(isolate, *receiver)) { | |
| 1295 return IterateElementsSlow(isolate, receiver, length, visitor); | |
| 1296 } | |
| 1297 Handle<JSObject> array = Handle<JSObject>::cast(receiver); | |
| 1298 | |
| 1299 switch (array->GetElementsKind()) { | |
| 1300 case FAST_SMI_ELEMENTS: | |
| 1301 case FAST_ELEMENTS: | |
| 1302 case FAST_HOLEY_SMI_ELEMENTS: | |
| 1303 case FAST_HOLEY_ELEMENTS: { | |
| 1304 // Run through the elements FixedArray and use HasElement and GetElement | |
| 1305 // to check the prototype for missing elements. | |
| 1306 Handle<FixedArray> elements(FixedArray::cast(array->elements())); | |
| 1307 int fast_length = static_cast<int>(length); | |
| 1308 DCHECK(fast_length <= elements->length()); | |
| 1309 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { | |
| 1310 Handle<Object> element_value(elements->get(j), isolate); | |
| 1311 if (!element_value->IsTheHole(isolate)) { | |
| 1312 if (!visitor->visit(j, element_value)) return false; | |
| 1313 } else { | |
| 1314 Maybe<bool> maybe = JSReceiver::HasElement(array, j); | |
| 1315 if (!maybe.IsJust()) return false; | |
| 1316 if (maybe.FromJust()) { | |
| 1317 // Call GetElement on array, not its prototype, or getters won't | |
| 1318 // have the correct receiver. | |
| 1319 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1320 isolate, element_value, | |
| 1321 JSReceiver::GetElement(isolate, array, j), false); | |
| 1322 if (!visitor->visit(j, element_value)) return false; | |
| 1323 } | |
| 1324 } | |
| 1325 }); | |
| 1326 break; | |
| 1327 } | |
| 1328 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
| 1329 case FAST_DOUBLE_ELEMENTS: { | |
| 1330 // Empty array is FixedArray but not FixedDoubleArray. | |
| 1331 if (length == 0) break; | |
| 1332 // Run through the elements FixedArray and use HasElement and GetElement | |
| 1333 // to check the prototype for missing elements. | |
| 1334 if (array->elements()->IsFixedArray()) { | |
| 1335 DCHECK(array->elements()->length() == 0); | |
| 1336 break; | |
| 1337 } | |
| 1338 Handle<FixedDoubleArray> elements( | |
| 1339 FixedDoubleArray::cast(array->elements())); | |
| 1340 int fast_length = static_cast<int>(length); | |
| 1341 DCHECK(fast_length <= elements->length()); | |
| 1342 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { | |
| 1343 if (!elements->is_the_hole(j)) { | |
| 1344 double double_value = elements->get_scalar(j); | |
| 1345 Handle<Object> element_value = | |
| 1346 isolate->factory()->NewNumber(double_value); | |
| 1347 if (!visitor->visit(j, element_value)) return false; | |
| 1348 } else { | |
| 1349 Maybe<bool> maybe = JSReceiver::HasElement(array, j); | |
| 1350 if (!maybe.IsJust()) return false; | |
| 1351 if (maybe.FromJust()) { | |
| 1352 // Call GetElement on array, not its prototype, or getters won't | |
| 1353 // have the correct receiver. | |
| 1354 Handle<Object> element_value; | |
| 1355 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1356 isolate, element_value, | |
| 1357 JSReceiver::GetElement(isolate, array, j), false); | |
| 1358 if (!visitor->visit(j, element_value)) return false; | |
| 1359 } | |
| 1360 } | |
| 1361 }); | |
| 1362 break; | |
| 1363 } | |
| 1364 | |
| 1365 case DICTIONARY_ELEMENTS: { | |
| 1366 Handle<SeededNumberDictionary> dict(array->element_dictionary()); | |
| 1367 List<uint32_t> indices(dict->Capacity() / 2); | |
| 1368 // Collect all indices in the object and the prototypes less | |
| 1369 // than length. This might introduce duplicates in the indices list. | |
| 1370 CollectElementIndices(array, length, &indices); | |
| 1371 indices.Sort(&compareUInt32); | |
| 1372 int n = indices.length(); | |
| 1373 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, { | |
| 1374 uint32_t index = indices[j]; | |
| 1375 Handle<Object> element; | |
| 1376 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1377 isolate, element, JSReceiver::GetElement(isolate, array, index), | |
| 1378 false); | |
| 1379 if (!visitor->visit(index, element)) return false; | |
| 1380 // Skip to next different index (i.e., omit duplicates). | |
| 1381 do { | |
| 1382 j++; | |
| 1383 } while (j < n && indices[j] == index); | |
| 1384 }); | |
| 1385 break; | |
| 1386 } | |
| 1387 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
| 1388 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { | |
| 1389 FOR_WITH_HANDLE_SCOPE( | |
| 1390 isolate, uint32_t, index = 0, index, index < length, index++, { | |
| 1391 Handle<Object> element; | |
| 1392 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1393 isolate, element, JSReceiver::GetElement(isolate, array, index), | |
| 1394 false); | |
| 1395 if (!visitor->visit(index, element)) return false; | |
| 1396 }); | |
| 1397 break; | |
| 1398 } | |
| 1399 case NO_ELEMENTS: | |
| 1400 break; | |
| 1401 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
| 1402 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
| 1403 #undef TYPED_ARRAY_CASE | |
| 1404 return IterateElementsSlow(isolate, receiver, length, visitor); | |
| 1405 case FAST_STRING_WRAPPER_ELEMENTS: | |
| 1406 case SLOW_STRING_WRAPPER_ELEMENTS: | |
| 1407 // |array| is guaranteed to be an array or typed array. | |
| 1408 UNREACHABLE(); | |
| 1409 break; | |
| 1410 } | |
| 1411 visitor->increase_index_offset(length); | |
| 1412 return true; | |
| 1413 } | |
| 1414 | |
| 1415 static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) { | |
| 1416 HandleScope handle_scope(isolate); | |
| 1417 if (!obj->IsJSReceiver()) return Just(false); | |
| 1418 if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { | |
| 1419 // Slow path if @@isConcatSpreadable has been used. | |
| 1420 Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol()); | |
| 1421 Handle<Object> value; | |
| 1422 MaybeHandle<Object> maybeValue = | |
| 1423 i::Runtime::GetObjectProperty(isolate, obj, key); | |
| 1424 if (!maybeValue.ToHandle(&value)) return Nothing<bool>(); | |
| 1425 if (!value->IsUndefined(isolate)) return Just(value->BooleanValue()); | |
| 1426 } | |
| 1427 return Object::IsArray(obj); | |
| 1428 } | |
| 1429 | |
| 1430 Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species, | |
| 1431 Isolate* isolate) { | |
| 1432 int argument_count = args->length(); | |
| 1433 | |
| 1434 bool is_array_species = *species == isolate->context()->array_function(); | |
| 1435 | |
| 1436 // Pass 1: estimate the length and number of elements of the result. | |
| 1437 // The actual length can be larger if any of the arguments have getters | |
| 1438 // that mutate other arguments (but will otherwise be precise). | |
| 1439 // The number of elements is precise if there are no inherited elements. | |
| 1440 | |
| 1441 ElementsKind kind = FAST_SMI_ELEMENTS; | |
| 1442 | |
| 1443 uint32_t estimate_result_length = 0; | |
| 1444 uint32_t estimate_nof_elements = 0; | |
| 1445 FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { | |
| 1446 Handle<Object> obj((*args)[i], isolate); | |
| 1447 uint32_t length_estimate; | |
| 1448 uint32_t element_estimate; | |
| 1449 if (obj->IsJSArray()) { | |
| 1450 Handle<JSArray> array(Handle<JSArray>::cast(obj)); | |
| 1451 length_estimate = static_cast<uint32_t>(array->length()->Number()); | |
| 1452 if (length_estimate != 0) { | |
| 1453 ElementsKind array_kind = | |
| 1454 GetPackedElementsKind(array->GetElementsKind()); | |
| 1455 kind = GetMoreGeneralElementsKind(kind, array_kind); | |
| 1456 } | |
| 1457 element_estimate = EstimateElementCount(array); | |
| 1458 } else { | |
| 1459 if (obj->IsHeapObject()) { | |
| 1460 kind = GetMoreGeneralElementsKind( | |
| 1461 kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS); | |
| 1462 } | |
| 1463 length_estimate = 1; | |
| 1464 element_estimate = 1; | |
| 1465 } | |
| 1466 // Avoid overflows by capping at kMaxElementCount. | |
| 1467 if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { | |
| 1468 estimate_result_length = JSObject::kMaxElementCount; | |
| 1469 } else { | |
| 1470 estimate_result_length += length_estimate; | |
| 1471 } | |
| 1472 if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { | |
| 1473 estimate_nof_elements = JSObject::kMaxElementCount; | |
| 1474 } else { | |
| 1475 estimate_nof_elements += element_estimate; | |
| 1476 } | |
| 1477 }); | |
| 1478 | |
| 1479 // If estimated number of elements is more than half of length, a | |
| 1480 // fixed array (fast case) is more time and space-efficient than a | |
| 1481 // dictionary. | |
| 1482 bool fast_case = | |
| 1483 is_array_species && (estimate_nof_elements * 2) >= estimate_result_length; | |
| 1484 | |
| 1485 if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { | |
| 1486 Handle<FixedArrayBase> storage = | |
| 1487 isolate->factory()->NewFixedDoubleArray(estimate_result_length); | |
| 1488 int j = 0; | |
| 1489 bool failure = false; | |
| 1490 if (estimate_result_length > 0) { | |
| 1491 Handle<FixedDoubleArray> double_storage = | |
| 1492 Handle<FixedDoubleArray>::cast(storage); | |
| 1493 for (int i = 0; i < argument_count; i++) { | |
| 1494 Handle<Object> obj((*args)[i], isolate); | |
| 1495 if (obj->IsSmi()) { | |
| 1496 double_storage->set(j, Smi::cast(*obj)->value()); | |
| 1497 j++; | |
| 1498 } else if (obj->IsNumber()) { | |
| 1499 double_storage->set(j, obj->Number()); | |
| 1500 j++; | |
| 1501 } else { | |
| 1502 DisallowHeapAllocation no_gc; | |
| 1503 JSArray* array = JSArray::cast(*obj); | |
| 1504 uint32_t length = static_cast<uint32_t>(array->length()->Number()); | |
| 1505 switch (array->GetElementsKind()) { | |
| 1506 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
| 1507 case FAST_DOUBLE_ELEMENTS: { | |
| 1508 // Empty array is FixedArray but not FixedDoubleArray. | |
| 1509 if (length == 0) break; | |
| 1510 FixedDoubleArray* elements = | |
| 1511 FixedDoubleArray::cast(array->elements()); | |
| 1512 for (uint32_t i = 0; i < length; i++) { | |
| 1513 if (elements->is_the_hole(i)) { | |
| 1514 // TODO(jkummerow/verwaest): We could be a bit more clever | |
| 1515 // here: Check if there are no elements/getters on the | |
| 1516 // prototype chain, and if so, allow creation of a holey | |
| 1517 // result array. | |
| 1518 // Same thing below (holey smi case). | |
| 1519 failure = true; | |
| 1520 break; | |
| 1521 } | |
| 1522 double double_value = elements->get_scalar(i); | |
| 1523 double_storage->set(j, double_value); | |
| 1524 j++; | |
| 1525 } | |
| 1526 break; | |
| 1527 } | |
| 1528 case FAST_HOLEY_SMI_ELEMENTS: | |
| 1529 case FAST_SMI_ELEMENTS: { | |
| 1530 Object* the_hole = isolate->heap()->the_hole_value(); | |
| 1531 FixedArray* elements(FixedArray::cast(array->elements())); | |
| 1532 for (uint32_t i = 0; i < length; i++) { | |
| 1533 Object* element = elements->get(i); | |
| 1534 if (element == the_hole) { | |
| 1535 failure = true; | |
| 1536 break; | |
| 1537 } | |
| 1538 int32_t int_value = Smi::cast(element)->value(); | |
| 1539 double_storage->set(j, int_value); | |
| 1540 j++; | |
| 1541 } | |
| 1542 break; | |
| 1543 } | |
| 1544 case FAST_HOLEY_ELEMENTS: | |
| 1545 case FAST_ELEMENTS: | |
| 1546 case DICTIONARY_ELEMENTS: | |
| 1547 case NO_ELEMENTS: | |
| 1548 DCHECK_EQ(0u, length); | |
| 1549 break; | |
| 1550 default: | |
| 1551 UNREACHABLE(); | |
| 1552 } | |
| 1553 } | |
| 1554 if (failure) break; | |
| 1555 } | |
| 1556 } | |
| 1557 if (!failure) { | |
| 1558 return *isolate->factory()->NewJSArrayWithElements(storage, kind, j); | |
| 1559 } | |
| 1560 // In case of failure, fall through. | |
| 1561 } | |
| 1562 | |
| 1563 Handle<Object> storage; | |
| 1564 if (fast_case) { | |
| 1565 // The backing storage array must have non-existing elements to preserve | |
| 1566 // holes across concat operations. | |
| 1567 storage = | |
| 1568 isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); | |
| 1569 } else if (is_array_species) { | |
| 1570 // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate | |
| 1571 uint32_t at_least_space_for = | |
| 1572 estimate_nof_elements + (estimate_nof_elements >> 2); | |
| 1573 storage = SeededNumberDictionary::New(isolate, at_least_space_for); | |
| 1574 } else { | |
| 1575 DCHECK(species->IsConstructor()); | |
| 1576 Handle<Object> length(Smi::FromInt(0), isolate); | |
| 1577 Handle<Object> storage_object; | |
| 1578 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 1579 isolate, storage_object, | |
| 1580 Execution::New(isolate, species, species, 1, &length)); | |
| 1581 storage = storage_object; | |
| 1582 } | |
| 1583 | |
| 1584 ArrayConcatVisitor visitor(isolate, storage, fast_case); | |
| 1585 | |
| 1586 for (int i = 0; i < argument_count; i++) { | |
| 1587 Handle<Object> obj((*args)[i], isolate); | |
| 1588 Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj); | |
| 1589 MAYBE_RETURN(spreadable, isolate->heap()->exception()); | |
| 1590 if (spreadable.FromJust()) { | |
| 1591 Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj); | |
| 1592 if (!IterateElements(isolate, object, &visitor)) { | |
| 1593 return isolate->heap()->exception(); | |
| 1594 } | |
| 1595 } else { | |
| 1596 if (!visitor.visit(0, obj)) return isolate->heap()->exception(); | |
| 1597 visitor.increase_index_offset(1); | |
| 1598 } | |
| 1599 } | |
| 1600 | |
| 1601 if (visitor.exceeds_array_limit()) { | |
| 1602 THROW_NEW_ERROR_RETURN_FAILURE( | |
| 1603 isolate, NewRangeError(MessageTemplate::kInvalidArrayLength)); | |
| 1604 } | |
| 1605 | |
| 1606 if (is_array_species) { | |
| 1607 return *visitor.ToArray(); | |
| 1608 } else { | |
| 1609 return *visitor.storage_jsreceiver(); | |
| 1610 } | |
| 1611 } | |
| 1612 | |
| 1613 bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) { | |
| 1614 DisallowHeapAllocation no_gc; | |
| 1615 Map* map = obj->map(); | |
| 1616 // If there is only the 'length' property we are fine. | |
| 1617 if (map->prototype() == | |
| 1618 isolate->native_context()->initial_array_prototype() && | |
| 1619 map->NumberOfOwnDescriptors() == 1) { | |
| 1620 return true; | |
| 1621 } | |
| 1622 // TODO(cbruni): slower lookup for array subclasses and support slow | |
| 1623 // @@IsConcatSpreadable lookup. | |
| 1624 return false; | |
| 1625 } | |
| 1626 | |
| 1627 MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, | |
| 1628 BuiltinArguments* args) { | |
| 1629 if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { | |
| 1630 return MaybeHandle<JSArray>(); | |
| 1631 } | |
| 1632 // We shouldn't overflow when adding another len. | |
| 1633 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); | |
| 1634 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); | |
| 1635 STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt); | |
| 1636 USE(kHalfOfMaxInt); | |
| 1637 | |
| 1638 int n_arguments = args->length(); | |
| 1639 int result_len = 0; | |
| 1640 { | |
| 1641 DisallowHeapAllocation no_gc; | |
| 1642 // Iterate through all the arguments performing checks | |
| 1643 // and calculating total length. | |
| 1644 for (int i = 0; i < n_arguments; i++) { | |
| 1645 Object* arg = (*args)[i]; | |
| 1646 if (!arg->IsJSArray()) return MaybeHandle<JSArray>(); | |
| 1647 if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { | |
| 1648 return MaybeHandle<JSArray>(); | |
| 1649 } | |
| 1650 // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. | |
| 1651 if (!JSObject::cast(arg)->HasFastElements()) { | |
| 1652 return MaybeHandle<JSArray>(); | |
| 1653 } | |
| 1654 Handle<JSArray> array(JSArray::cast(arg), isolate); | |
| 1655 if (!IsSimpleArray(isolate, array)) { | |
| 1656 return MaybeHandle<JSArray>(); | |
| 1657 } | |
| 1658 // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't | |
| 1659 // overflow. | |
| 1660 result_len += Smi::cast(array->length())->value(); | |
| 1661 DCHECK(result_len >= 0); | |
| 1662 // Throw an Error if we overflow the FixedArray limits | |
| 1663 if (FixedDoubleArray::kMaxLength < result_len || | |
| 1664 FixedArray::kMaxLength < result_len) { | |
| 1665 AllowHeapAllocation gc; | |
| 1666 THROW_NEW_ERROR(isolate, | |
| 1667 NewRangeError(MessageTemplate::kInvalidArrayLength), | |
| 1668 JSArray); | |
| 1669 } | |
| 1670 } | |
| 1671 } | |
| 1672 return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); | |
| 1673 } | |
| 1674 | |
| 1675 } // namespace | |
| 1676 | |
| 1677 // ES6 22.1.3.1 Array.prototype.concat | |
| 1678 BUILTIN(ArrayConcat) { | |
| 1679 HandleScope scope(isolate); | |
| 1680 | |
| 1681 Handle<Object> receiver = args.receiver(); | |
| 1682 // TODO(bmeurer): Do we really care about the exact exception message here? | |
| 1683 if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) { | |
| 1684 THROW_NEW_ERROR_RETURN_FAILURE( | |
| 1685 isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, | |
| 1686 isolate->factory()->NewStringFromAsciiChecked( | |
| 1687 "Array.prototype.concat"))); | |
| 1688 } | |
| 1689 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 1690 isolate, receiver, Object::ToObject(isolate, args.receiver())); | |
| 1691 args[0] = *receiver; | |
| 1692 | |
| 1693 Handle<JSArray> result_array; | |
| 1694 | |
| 1695 // Avoid a real species read to avoid extra lookups to the array constructor | |
| 1696 if (V8_LIKELY(receiver->IsJSArray() && | |
| 1697 Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) && | |
| 1698 isolate->IsArraySpeciesLookupChainIntact())) { | |
| 1699 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { | |
| 1700 return *result_array; | |
| 1701 } | |
| 1702 if (isolate->has_pending_exception()) return isolate->heap()->exception(); | |
| 1703 } | |
| 1704 // Reading @@species happens before anything else with a side effect, so | |
| 1705 // we can do it here to determine whether to take the fast path. | |
| 1706 Handle<Object> species; | |
| 1707 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 1708 isolate, species, Object::ArraySpeciesConstructor(isolate, receiver)); | |
| 1709 if (*species == *isolate->array_function()) { | |
| 1710 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { | |
| 1711 return *result_array; | |
| 1712 } | |
| 1713 if (isolate->has_pending_exception()) return isolate->heap()->exception(); | |
| 1714 } | |
| 1715 return Slow_ArrayConcat(&args, species, isolate); | |
| 1716 } | |
| 1717 | |
| 1718 namespace { | |
| 1719 | |
| 1720 MUST_USE_RESULT Maybe<bool> FastAssign(Handle<JSReceiver> to, | |
| 1721 Handle<Object> next_source) { | |
| 1722 // Non-empty strings are the only non-JSReceivers that need to be handled | |
| 1723 // explicitly by Object.assign. | |
| 1724 if (!next_source->IsJSReceiver()) { | |
| 1725 return Just(!next_source->IsString() || | |
| 1726 String::cast(*next_source)->length() == 0); | |
| 1727 } | |
| 1728 | |
| 1729 // If the target is deprecated, the object will be updated on first store. If | |
| 1730 // the source for that store equals the target, this will invalidate the | |
| 1731 // cached representation of the source. Preventively upgrade the target. | |
| 1732 // Do this on each iteration since any property load could cause deprecation. | |
| 1733 if (to->map()->is_deprecated()) { | |
| 1734 JSObject::MigrateInstance(Handle<JSObject>::cast(to)); | |
| 1735 } | |
| 1736 | |
| 1737 Isolate* isolate = to->GetIsolate(); | |
| 1738 Handle<Map> map(JSReceiver::cast(*next_source)->map(), isolate); | |
| 1739 | |
| 1740 if (!map->IsJSObjectMap()) return Just(false); | |
| 1741 if (!map->OnlyHasSimpleProperties()) return Just(false); | |
| 1742 | |
| 1743 Handle<JSObject> from = Handle<JSObject>::cast(next_source); | |
| 1744 if (from->elements() != isolate->heap()->empty_fixed_array()) { | |
| 1745 return Just(false); | |
| 1746 } | |
| 1747 | |
| 1748 Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate); | |
| 1749 int length = map->NumberOfOwnDescriptors(); | |
| 1750 | |
| 1751 bool stable = true; | |
| 1752 | |
| 1753 for (int i = 0; i < length; i++) { | |
| 1754 Handle<Name> next_key(descriptors->GetKey(i), isolate); | |
| 1755 Handle<Object> prop_value; | |
| 1756 // Directly decode from the descriptor array if |from| did not change shape. | |
| 1757 if (stable) { | |
| 1758 PropertyDetails details = descriptors->GetDetails(i); | |
| 1759 if (!details.IsEnumerable()) continue; | |
| 1760 if (details.kind() == kData) { | |
| 1761 if (details.location() == kDescriptor) { | |
| 1762 prop_value = handle(descriptors->GetValue(i), isolate); | |
| 1763 } else { | |
| 1764 Representation representation = details.representation(); | |
| 1765 FieldIndex index = FieldIndex::ForDescriptor(*map, i); | |
| 1766 prop_value = JSObject::FastPropertyAt(from, representation, index); | |
| 1767 } | |
| 1768 } else { | |
| 1769 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1770 isolate, prop_value, JSReceiver::GetProperty(from, next_key), | |
| 1771 Nothing<bool>()); | |
| 1772 stable = from->map() == *map; | |
| 1773 } | |
| 1774 } else { | |
| 1775 // If the map did change, do a slower lookup. We are still guaranteed that | |
| 1776 // the object has a simple shape, and that the key is a name. | |
| 1777 LookupIterator it(from, next_key, from, | |
| 1778 LookupIterator::OWN_SKIP_INTERCEPTOR); | |
| 1779 if (!it.IsFound()) continue; | |
| 1780 DCHECK(it.state() == LookupIterator::DATA || | |
| 1781 it.state() == LookupIterator::ACCESSOR); | |
| 1782 if (!it.IsEnumerable()) continue; | |
| 1783 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
| 1784 isolate, prop_value, Object::GetProperty(&it), Nothing<bool>()); | |
| 1785 } | |
| 1786 LookupIterator it(to, next_key, to); | |
| 1787 bool call_to_js = it.IsFound() && it.state() != LookupIterator::DATA; | |
| 1788 Maybe<bool> result = Object::SetProperty( | |
| 1789 &it, prop_value, STRICT, Object::CERTAINLY_NOT_STORE_FROM_KEYED); | |
| 1790 if (result.IsNothing()) return result; | |
| 1791 if (stable && call_to_js) stable = from->map() == *map; | |
| 1792 } | |
| 1793 | |
| 1794 return Just(true); | |
| 1795 } | |
| 1796 | |
| 1797 } // namespace | |
| 1798 | |
| 1799 // ES6 19.1.2.1 Object.assign | |
| 1800 BUILTIN(ObjectAssign) { | |
| 1801 HandleScope scope(isolate); | |
| 1802 Handle<Object> target = args.atOrUndefined(isolate, 1); | |
| 1803 | |
| 1804 // 1. Let to be ? ToObject(target). | |
| 1805 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target, | |
| 1806 Object::ToObject(isolate, target)); | |
| 1807 Handle<JSReceiver> to = Handle<JSReceiver>::cast(target); | |
| 1808 // 2. If only one argument was passed, return to. | |
| 1809 if (args.length() == 2) return *to; | |
| 1810 // 3. Let sources be the List of argument values starting with the | |
| 1811 // second argument. | |
| 1812 // 4. For each element nextSource of sources, in ascending index order, | |
| 1813 for (int i = 2; i < args.length(); ++i) { | |
| 1814 Handle<Object> next_source = args.at<Object>(i); | |
| 1815 Maybe<bool> fast_assign = FastAssign(to, next_source); | |
| 1816 if (fast_assign.IsNothing()) return isolate->heap()->exception(); | |
| 1817 if (fast_assign.FromJust()) continue; | |
| 1818 // 4a. If nextSource is undefined or null, let keys be an empty List. | |
| 1819 // 4b. Else, | |
| 1820 // 4b i. Let from be ToObject(nextSource). | |
| 1821 // Only non-empty strings and JSReceivers have enumerable properties. | |
| 1822 Handle<JSReceiver> from = | |
| 1823 Object::ToObject(isolate, next_source).ToHandleChecked(); | |
| 1824 // 4b ii. Let keys be ? from.[[OwnPropertyKeys]](). | |
| 1825 Handle<FixedArray> keys; | |
| 1826 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 1827 isolate, keys, KeyAccumulator::GetKeys( | |
| 1828 from, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, | |
| 1829 GetKeysConversion::kKeepNumbers)); | |
| 1830 // 4c. Repeat for each element nextKey of keys in List order, | |
| 1831 for (int j = 0; j < keys->length(); ++j) { | |
| 1832 Handle<Object> next_key(keys->get(j), isolate); | |
| 1833 // 4c i. Let desc be ? from.[[GetOwnProperty]](nextKey). | |
| 1834 PropertyDescriptor desc; | |
| 1835 Maybe<bool> found = | |
| 1836 JSReceiver::GetOwnPropertyDescriptor(isolate, from, next_key, &desc); | |
| 1837 if (found.IsNothing()) return isolate->heap()->exception(); | |
| 1838 // 4c ii. If desc is not undefined and desc.[[Enumerable]] is true, then | |
| 1839 if (found.FromJust() && desc.enumerable()) { | |
| 1840 // 4c ii 1. Let propValue be ? Get(from, nextKey). | |
| 1841 Handle<Object> prop_value; | |
| 1842 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 1843 isolate, prop_value, | |
| 1844 Runtime::GetObjectProperty(isolate, from, next_key)); | |
| 1845 // 4c ii 2. Let status be ? Set(to, nextKey, propValue, true). | |
| 1846 Handle<Object> status; | |
| 1847 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 1848 isolate, status, Runtime::SetObjectProperty(isolate, to, next_key, | |
| 1849 prop_value, STRICT)); | |
| 1850 } | |
| 1851 } | |
| 1852 } | |
| 1853 // 5. Return to. | |
| 1854 return *to; | |
| 1855 } | |
| 1856 | |
| 1857 // ES6 section 19.1.2.2 Object.create ( O [ , Properties ] ) | 480 // ES6 section 19.1.2.2 Object.create ( O [ , Properties ] ) |
| 1858 // TODO(verwaest): Support the common cases with precached map directly in | 481 // TODO(verwaest): Support the common cases with precached map directly in |
| 1859 // an Object.create stub. | 482 // an Object.create stub. |
| 1860 BUILTIN(ObjectCreate) { | 483 BUILTIN(ObjectCreate) { |
| 1861 HandleScope scope(isolate); | 484 HandleScope scope(isolate); |
| 1862 Handle<Object> prototype = args.atOrUndefined(isolate, 1); | 485 Handle<Object> prototype = args.atOrUndefined(isolate, 1); |
| 1863 if (!prototype->IsNull(isolate) && !prototype->IsJSReceiver()) { | 486 if (!prototype->IsNull(isolate) && !prototype->IsJSReceiver()) { |
| 1864 THROW_NEW_ERROR_RETURN_FAILURE( | 487 THROW_NEW_ERROR_RETURN_FAILURE( |
| 1865 isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, prototype)); | 488 isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, prototype)); |
| 1866 } | 489 } |
| (...skipping 5317 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 7184 #define DEFINE_BUILTIN_ACCESSOR(Name, ...) \ | 5807 #define DEFINE_BUILTIN_ACCESSOR(Name, ...) \ |
| 7185 Handle<Code> Builtins::Name() { \ | 5808 Handle<Code> Builtins::Name() { \ |
| 7186 Code** code_address = reinterpret_cast<Code**>(builtin_address(k##Name)); \ | 5809 Code** code_address = reinterpret_cast<Code**>(builtin_address(k##Name)); \ |
| 7187 return Handle<Code>(code_address); \ | 5810 return Handle<Code>(code_address); \ |
| 7188 } | 5811 } |
| 7189 BUILTIN_LIST_ALL(DEFINE_BUILTIN_ACCESSOR) | 5812 BUILTIN_LIST_ALL(DEFINE_BUILTIN_ACCESSOR) |
| 7190 #undef DEFINE_BUILTIN_ACCESSOR | 5813 #undef DEFINE_BUILTIN_ACCESSOR |
| 7191 | 5814 |
| 7192 } // namespace internal | 5815 } // namespace internal |
| 7193 } // namespace v8 | 5816 } // namespace v8 |
| OLD | NEW |