OLD | NEW |
(Empty) | |
| 1 // Copyright 2016 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "src/builtins/builtins.h" |
| 6 #include "src/builtins/builtins-utils.h" |
| 7 #include "src/elements.h" |
| 8 |
| 9 namespace v8 { |
| 10 namespace internal { |
| 11 |
| 12 namespace { |
| 13 |
| 14 inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) { |
| 15 // This is an extended version of ECMA-262 7.1.11 handling signed values |
| 16 // Try to convert object to a number and clamp values to [kMinInt, kMaxInt] |
| 17 if (object->IsSmi()) { |
| 18 *out = Smi::cast(object)->value(); |
| 19 return true; |
| 20 } else if (object->IsHeapNumber()) { |
| 21 double value = HeapNumber::cast(object)->value(); |
| 22 if (std::isnan(value)) { |
| 23 *out = 0; |
| 24 } else if (value > kMaxInt) { |
| 25 *out = kMaxInt; |
| 26 } else if (value < kMinInt) { |
| 27 *out = kMinInt; |
| 28 } else { |
| 29 *out = static_cast<int>(value); |
| 30 } |
| 31 return true; |
| 32 } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) { |
| 33 *out = 0; |
| 34 return true; |
| 35 } else if (object->IsBoolean()) { |
| 36 *out = object->IsTrue(isolate); |
| 37 return true; |
| 38 } |
| 39 return false; |
| 40 } |
| 41 |
| 42 inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object, |
| 43 int* out) { |
| 44 Context* context = *isolate->native_context(); |
| 45 Map* map = object->map(); |
| 46 if (map != context->sloppy_arguments_map() && |
| 47 map != context->strict_arguments_map() && |
| 48 map != context->fast_aliased_arguments_map()) { |
| 49 return false; |
| 50 } |
| 51 DCHECK(object->HasFastElements() || object->HasFastArgumentsElements()); |
| 52 Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex); |
| 53 if (!len_obj->IsSmi()) return false; |
| 54 *out = Max(0, Smi::cast(len_obj)->value()); |
| 55 return *out <= object->elements()->length(); |
| 56 } |
| 57 |
| 58 inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object) { |
| 59 DisallowHeapAllocation no_gc; |
| 60 HeapObject* prototype = HeapObject::cast(object->map()->prototype()); |
| 61 HeapObject* null = isolate->heap()->null_value(); |
| 62 HeapObject* empty = isolate->heap()->empty_fixed_array(); |
| 63 while (prototype != null) { |
| 64 Map* map = prototype->map(); |
| 65 if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false; |
| 66 if (JSObject::cast(prototype)->elements() != empty) return false; |
| 67 prototype = HeapObject::cast(map->prototype()); |
| 68 } |
| 69 return true; |
| 70 } |
| 71 |
| 72 inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate, |
| 73 JSArray* receiver) { |
| 74 return PrototypeHasNoElements(isolate, receiver); |
| 75 } |
| 76 |
| 77 inline bool HasSimpleElements(JSObject* current) { |
| 78 return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER && |
| 79 !current->GetElementsAccessor()->HasAccessors(current); |
| 80 } |
| 81 |
| 82 inline bool HasOnlySimpleReceiverElements(Isolate* isolate, |
| 83 JSObject* receiver) { |
| 84 // Check that we have no accessors on the receiver's elements. |
| 85 if (!HasSimpleElements(receiver)) return false; |
| 86 return PrototypeHasNoElements(isolate, receiver); |
| 87 } |
| 88 |
| 89 inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) { |
| 90 DisallowHeapAllocation no_gc; |
| 91 PrototypeIterator iter(isolate, receiver, kStartAtReceiver); |
| 92 for (; !iter.IsAtEnd(); iter.Advance()) { |
| 93 if (iter.GetCurrent()->IsJSProxy()) return false; |
| 94 JSObject* current = iter.GetCurrent<JSObject>(); |
| 95 if (!HasSimpleElements(current)) return false; |
| 96 } |
| 97 return true; |
| 98 } |
| 99 |
| 100 // Returns |false| if not applicable. |
| 101 MUST_USE_RESULT |
| 102 inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate, |
| 103 Handle<Object> receiver, |
| 104 BuiltinArguments* args, |
| 105 int first_added_arg) { |
| 106 if (!receiver->IsJSArray()) return false; |
| 107 Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
| 108 ElementsKind origin_kind = array->GetElementsKind(); |
| 109 if (IsDictionaryElementsKind(origin_kind)) return false; |
| 110 if (!array->map()->is_extensible()) return false; |
| 111 if (args == nullptr) return true; |
| 112 |
| 113 // If there may be elements accessors in the prototype chain, the fast path |
| 114 // cannot be used if there arguments to add to the array. |
| 115 if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false; |
| 116 |
| 117 // Adding elements to the array prototype would break code that makes sure |
| 118 // it has no elements. Handle that elsewhere. |
| 119 if (isolate->IsAnyInitialArrayPrototype(array)) return false; |
| 120 |
| 121 // Need to ensure that the arguments passed in args can be contained in |
| 122 // the array. |
| 123 int args_length = args->length(); |
| 124 if (first_added_arg >= args_length) return true; |
| 125 |
| 126 if (IsFastObjectElementsKind(origin_kind)) return true; |
| 127 ElementsKind target_kind = origin_kind; |
| 128 { |
| 129 DisallowHeapAllocation no_gc; |
| 130 for (int i = first_added_arg; i < args_length; i++) { |
| 131 Object* arg = (*args)[i]; |
| 132 if (arg->IsHeapObject()) { |
| 133 if (arg->IsHeapNumber()) { |
| 134 target_kind = FAST_DOUBLE_ELEMENTS; |
| 135 } else { |
| 136 target_kind = FAST_ELEMENTS; |
| 137 break; |
| 138 } |
| 139 } |
| 140 } |
| 141 } |
| 142 if (target_kind != origin_kind) { |
| 143 // Use a short-lived HandleScope to avoid creating several copies of the |
| 144 // elements handle which would cause issues when left-trimming later-on. |
| 145 HandleScope scope(isolate); |
| 146 JSObject::TransitionElementsKind(array, target_kind); |
| 147 } |
| 148 return true; |
| 149 } |
| 150 |
| 151 MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate, |
| 152 Handle<JSFunction> function, |
| 153 BuiltinArguments args) { |
| 154 HandleScope handleScope(isolate); |
| 155 int argc = args.length() - 1; |
| 156 ScopedVector<Handle<Object>> argv(argc); |
| 157 for (int i = 0; i < argc; ++i) { |
| 158 argv[i] = args.at<Object>(i + 1); |
| 159 } |
| 160 RETURN_RESULT_OR_FAILURE( |
| 161 isolate, |
| 162 Execution::Call(isolate, function, args.receiver(), argc, argv.start())); |
| 163 } |
| 164 |
| 165 Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) { |
| 166 HandleScope scope(isolate); |
| 167 Handle<Object> receiver = args.receiver(); |
| 168 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { |
| 169 return CallJsIntrinsic(isolate, isolate->array_push(), args); |
| 170 } |
| 171 // Fast Elements Path |
| 172 int to_add = args.length() - 1; |
| 173 Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
| 174 int len = Smi::cast(array->length())->value(); |
| 175 if (to_add == 0) return Smi::FromInt(len); |
| 176 |
| 177 // Currently fixed arrays cannot grow too big, so we should never hit this. |
| 178 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); |
| 179 |
| 180 if (JSArray::HasReadOnlyLength(array)) { |
| 181 return CallJsIntrinsic(isolate, isolate->array_push(), args); |
| 182 } |
| 183 |
| 184 ElementsAccessor* accessor = array->GetElementsAccessor(); |
| 185 int new_length = accessor->Push(array, &args, to_add); |
| 186 return Smi::FromInt(new_length); |
| 187 } |
| 188 } // namespace |
| 189 |
| 190 BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); } |
| 191 |
| 192 // TODO(verwaest): This is a temporary helper until the FastArrayPush stub can |
| 193 // tailcall to the builtin directly. |
| 194 RUNTIME_FUNCTION(Runtime_ArrayPush) { |
| 195 DCHECK_EQ(2, args.length()); |
| 196 Arguments* incoming = reinterpret_cast<Arguments*>(args[0]); |
| 197 // Rewrap the arguments as builtins arguments. |
| 198 int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver; |
| 199 BuiltinArguments caller_args(argc, incoming->arguments() + 1); |
| 200 return DoArrayPush(isolate, caller_args); |
| 201 } |
| 202 |
| 203 BUILTIN(ArrayPop) { |
| 204 HandleScope scope(isolate); |
| 205 Handle<Object> receiver = args.receiver(); |
| 206 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) { |
| 207 return CallJsIntrinsic(isolate, isolate->array_pop(), args); |
| 208 } |
| 209 |
| 210 Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
| 211 |
| 212 uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value()); |
| 213 if (len == 0) return isolate->heap()->undefined_value(); |
| 214 |
| 215 if (JSArray::HasReadOnlyLength(array)) { |
| 216 return CallJsIntrinsic(isolate, isolate->array_pop(), args); |
| 217 } |
| 218 |
| 219 Handle<Object> result; |
| 220 if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { |
| 221 // Fast Elements Path |
| 222 result = array->GetElementsAccessor()->Pop(array); |
| 223 } else { |
| 224 // Use Slow Lookup otherwise |
| 225 uint32_t new_length = len - 1; |
| 226 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 227 isolate, result, JSReceiver::GetElement(isolate, array, new_length)); |
| 228 JSArray::SetLength(array, new_length); |
| 229 } |
| 230 return *result; |
| 231 } |
| 232 |
| 233 BUILTIN(ArrayShift) { |
| 234 HandleScope scope(isolate); |
| 235 Heap* heap = isolate->heap(); |
| 236 Handle<Object> receiver = args.receiver(); |
| 237 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) || |
| 238 !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { |
| 239 return CallJsIntrinsic(isolate, isolate->array_shift(), args); |
| 240 } |
| 241 Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
| 242 |
| 243 int len = Smi::cast(array->length())->value(); |
| 244 if (len == 0) return heap->undefined_value(); |
| 245 |
| 246 if (JSArray::HasReadOnlyLength(array)) { |
| 247 return CallJsIntrinsic(isolate, isolate->array_shift(), args); |
| 248 } |
| 249 |
| 250 Handle<Object> first = array->GetElementsAccessor()->Shift(array); |
| 251 return *first; |
| 252 } |
| 253 |
| 254 BUILTIN(ArrayUnshift) { |
| 255 HandleScope scope(isolate); |
| 256 Handle<Object> receiver = args.receiver(); |
| 257 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { |
| 258 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); |
| 259 } |
| 260 Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
| 261 int to_add = args.length() - 1; |
| 262 if (to_add == 0) return array->length(); |
| 263 |
| 264 // Currently fixed arrays cannot grow too big, so we should never hit this. |
| 265 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); |
| 266 |
| 267 if (JSArray::HasReadOnlyLength(array)) { |
| 268 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); |
| 269 } |
| 270 |
| 271 ElementsAccessor* accessor = array->GetElementsAccessor(); |
| 272 int new_length = accessor->Unshift(array, &args, to_add); |
| 273 return Smi::FromInt(new_length); |
| 274 } |
| 275 |
| 276 BUILTIN(ArraySlice) { |
| 277 HandleScope scope(isolate); |
| 278 Handle<Object> receiver = args.receiver(); |
| 279 int len = -1; |
| 280 int relative_start = 0; |
| 281 int relative_end = 0; |
| 282 |
| 283 if (receiver->IsJSArray()) { |
| 284 DisallowHeapAllocation no_gc; |
| 285 JSArray* array = JSArray::cast(*receiver); |
| 286 if (V8_UNLIKELY(!array->HasFastElements() || |
| 287 !IsJSArrayFastElementMovingAllowed(isolate, array) || |
| 288 !isolate->IsArraySpeciesLookupChainIntact() || |
| 289 // If this is a subclass of Array, then call out to JS |
| 290 !array->HasArrayPrototype(isolate))) { |
| 291 AllowHeapAllocation allow_allocation; |
| 292 return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
| 293 } |
| 294 len = Smi::cast(array->length())->value(); |
| 295 } else if (receiver->IsJSObject() && |
| 296 GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver), |
| 297 &len)) { |
| 298 // Array.prototype.slice.call(arguments, ...) is quite a common idiom |
| 299 // (notably more than 50% of invocations in Web apps). |
| 300 // Treat it in C++ as well. |
| 301 DCHECK(JSObject::cast(*receiver)->HasFastElements() || |
| 302 JSObject::cast(*receiver)->HasFastArgumentsElements()); |
| 303 } else { |
| 304 AllowHeapAllocation allow_allocation; |
| 305 return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
| 306 } |
| 307 DCHECK_LE(0, len); |
| 308 int argument_count = args.length() - 1; |
| 309 // Note carefully chosen defaults---if argument is missing, |
| 310 // it's undefined which gets converted to 0 for relative_start |
| 311 // and to len for relative_end. |
| 312 relative_start = 0; |
| 313 relative_end = len; |
| 314 if (argument_count > 0) { |
| 315 DisallowHeapAllocation no_gc; |
| 316 if (!ClampedToInteger(isolate, args[1], &relative_start)) { |
| 317 AllowHeapAllocation allow_allocation; |
| 318 return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
| 319 } |
| 320 if (argument_count > 1) { |
| 321 Object* end_arg = args[2]; |
| 322 // slice handles the end_arg specially |
| 323 if (end_arg->IsUndefined(isolate)) { |
| 324 relative_end = len; |
| 325 } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) { |
| 326 AllowHeapAllocation allow_allocation; |
| 327 return CallJsIntrinsic(isolate, isolate->array_slice(), args); |
| 328 } |
| 329 } |
| 330 } |
| 331 |
| 332 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. |
| 333 uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0) |
| 334 : Min(relative_start, len); |
| 335 |
| 336 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. |
| 337 uint32_t actual_end = |
| 338 (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); |
| 339 |
| 340 Handle<JSObject> object = Handle<JSObject>::cast(receiver); |
| 341 ElementsAccessor* accessor = object->GetElementsAccessor(); |
| 342 return *accessor->Slice(object, actual_start, actual_end); |
| 343 } |
| 344 |
| 345 BUILTIN(ArraySplice) { |
| 346 HandleScope scope(isolate); |
| 347 Handle<Object> receiver = args.receiver(); |
| 348 if (V8_UNLIKELY( |
| 349 !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) || |
| 350 // If this is a subclass of Array, then call out to JS. |
| 351 !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) || |
| 352 // If anything with @@species has been messed with, call out to JS. |
| 353 !isolate->IsArraySpeciesLookupChainIntact())) { |
| 354 return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
| 355 } |
| 356 Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
| 357 |
| 358 int argument_count = args.length() - 1; |
| 359 int relative_start = 0; |
| 360 if (argument_count > 0) { |
| 361 DisallowHeapAllocation no_gc; |
| 362 if (!ClampedToInteger(isolate, args[1], &relative_start)) { |
| 363 AllowHeapAllocation allow_allocation; |
| 364 return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
| 365 } |
| 366 } |
| 367 int len = Smi::cast(array->length())->value(); |
| 368 // clip relative start to [0, len] |
| 369 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) |
| 370 : Min(relative_start, len); |
| 371 |
| 372 int actual_delete_count; |
| 373 if (argument_count == 1) { |
| 374 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is |
| 375 // given as a request to delete all the elements from the start. |
| 376 // And it differs from the case of undefined delete count. |
| 377 // This does not follow ECMA-262, but we do the same for compatibility. |
| 378 DCHECK(len - actual_start >= 0); |
| 379 actual_delete_count = len - actual_start; |
| 380 } else { |
| 381 int delete_count = 0; |
| 382 DisallowHeapAllocation no_gc; |
| 383 if (argument_count > 1) { |
| 384 if (!ClampedToInteger(isolate, args[2], &delete_count)) { |
| 385 AllowHeapAllocation allow_allocation; |
| 386 return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
| 387 } |
| 388 } |
| 389 actual_delete_count = Min(Max(delete_count, 0), len - actual_start); |
| 390 } |
| 391 |
| 392 int add_count = (argument_count > 1) ? (argument_count - 2) : 0; |
| 393 int new_length = len - actual_delete_count + add_count; |
| 394 |
| 395 if (new_length != len && JSArray::HasReadOnlyLength(array)) { |
| 396 AllowHeapAllocation allow_allocation; |
| 397 return CallJsIntrinsic(isolate, isolate->array_splice(), args); |
| 398 } |
| 399 ElementsAccessor* accessor = array->GetElementsAccessor(); |
| 400 Handle<JSArray> result_array = accessor->Splice( |
| 401 array, actual_start, actual_delete_count, &args, add_count); |
| 402 return *result_array; |
| 403 } |
| 404 |
| 405 // Array Concat ------------------------------------------------------------- |
| 406 |
| 407 namespace { |
| 408 |
| 409 /** |
| 410 * A simple visitor visits every element of Array's. |
| 411 * The backend storage can be a fixed array for fast elements case, |
| 412 * or a dictionary for sparse array. Since Dictionary is a subtype |
| 413 * of FixedArray, the class can be used by both fast and slow cases. |
| 414 * The second parameter of the constructor, fast_elements, specifies |
| 415 * whether the storage is a FixedArray or Dictionary. |
| 416 * |
| 417 * An index limit is used to deal with the situation that a result array |
| 418 * length overflows 32-bit non-negative integer. |
| 419 */ |
| 420 class ArrayConcatVisitor { |
| 421 public: |
| 422 ArrayConcatVisitor(Isolate* isolate, Handle<Object> storage, |
| 423 bool fast_elements) |
| 424 : isolate_(isolate), |
| 425 storage_(isolate->global_handles()->Create(*storage)), |
| 426 index_offset_(0u), |
| 427 bit_field_(FastElementsField::encode(fast_elements) | |
| 428 ExceedsLimitField::encode(false) | |
| 429 IsFixedArrayField::encode(storage->IsFixedArray())) { |
| 430 DCHECK(!(this->fast_elements() && !is_fixed_array())); |
| 431 } |
| 432 |
| 433 ~ArrayConcatVisitor() { clear_storage(); } |
| 434 |
| 435 MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) { |
| 436 uint32_t index = index_offset_ + i; |
| 437 |
| 438 if (i >= JSObject::kMaxElementCount - index_offset_) { |
| 439 set_exceeds_array_limit(true); |
| 440 // Exception hasn't been thrown at this point. Return true to |
| 441 // break out, and caller will throw. !visit would imply that |
| 442 // there is already a pending exception. |
| 443 return true; |
| 444 } |
| 445 |
| 446 if (!is_fixed_array()) { |
| 447 LookupIterator it(isolate_, storage_, index, LookupIterator::OWN); |
| 448 MAYBE_RETURN( |
| 449 JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR), |
| 450 false); |
| 451 return true; |
| 452 } |
| 453 |
| 454 if (fast_elements()) { |
| 455 if (index < static_cast<uint32_t>(storage_fixed_array()->length())) { |
| 456 storage_fixed_array()->set(index, *elm); |
| 457 return true; |
| 458 } |
| 459 // Our initial estimate of length was foiled, possibly by |
| 460 // getters on the arrays increasing the length of later arrays |
| 461 // during iteration. |
| 462 // This shouldn't happen in anything but pathological cases. |
| 463 SetDictionaryMode(); |
| 464 // Fall-through to dictionary mode. |
| 465 } |
| 466 DCHECK(!fast_elements()); |
| 467 Handle<SeededNumberDictionary> dict( |
| 468 SeededNumberDictionary::cast(*storage_)); |
| 469 // The object holding this backing store has just been allocated, so |
| 470 // it cannot yet be used as a prototype. |
| 471 Handle<SeededNumberDictionary> result = |
| 472 SeededNumberDictionary::AtNumberPut(dict, index, elm, false); |
| 473 if (!result.is_identical_to(dict)) { |
| 474 // Dictionary needed to grow. |
| 475 clear_storage(); |
| 476 set_storage(*result); |
| 477 } |
| 478 return true; |
| 479 } |
| 480 |
| 481 void increase_index_offset(uint32_t delta) { |
| 482 if (JSObject::kMaxElementCount - index_offset_ < delta) { |
| 483 index_offset_ = JSObject::kMaxElementCount; |
| 484 } else { |
| 485 index_offset_ += delta; |
| 486 } |
| 487 // If the initial length estimate was off (see special case in visit()), |
| 488 // but the array blowing the limit didn't contain elements beyond the |
| 489 // provided-for index range, go to dictionary mode now. |
| 490 if (fast_elements() && |
| 491 index_offset_ > |
| 492 static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { |
| 493 SetDictionaryMode(); |
| 494 } |
| 495 } |
| 496 |
| 497 bool exceeds_array_limit() const { |
| 498 return ExceedsLimitField::decode(bit_field_); |
| 499 } |
| 500 |
| 501 Handle<JSArray> ToArray() { |
| 502 DCHECK(is_fixed_array()); |
| 503 Handle<JSArray> array = isolate_->factory()->NewJSArray(0); |
| 504 Handle<Object> length = |
| 505 isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); |
| 506 Handle<Map> map = JSObject::GetElementsTransitionMap( |
| 507 array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); |
| 508 array->set_map(*map); |
| 509 array->set_length(*length); |
| 510 array->set_elements(*storage_fixed_array()); |
| 511 return array; |
| 512 } |
| 513 |
| 514 // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever |
| 515 // (otherwise) |
| 516 Handle<FixedArray> storage_fixed_array() { |
| 517 DCHECK(is_fixed_array()); |
| 518 return Handle<FixedArray>::cast(storage_); |
| 519 } |
| 520 Handle<JSReceiver> storage_jsreceiver() { |
| 521 DCHECK(!is_fixed_array()); |
| 522 return Handle<JSReceiver>::cast(storage_); |
| 523 } |
| 524 |
| 525 private: |
| 526 // Convert storage to dictionary mode. |
| 527 void SetDictionaryMode() { |
| 528 DCHECK(fast_elements() && is_fixed_array()); |
| 529 Handle<FixedArray> current_storage = storage_fixed_array(); |
| 530 Handle<SeededNumberDictionary> slow_storage( |
| 531 SeededNumberDictionary::New(isolate_, current_storage->length())); |
| 532 uint32_t current_length = static_cast<uint32_t>(current_storage->length()); |
| 533 FOR_WITH_HANDLE_SCOPE( |
| 534 isolate_, uint32_t, i = 0, i, i < current_length, i++, { |
| 535 Handle<Object> element(current_storage->get(i), isolate_); |
| 536 if (!element->IsTheHole(isolate_)) { |
| 537 // The object holding this backing store has just been allocated, so |
| 538 // it cannot yet be used as a prototype. |
| 539 Handle<SeededNumberDictionary> new_storage = |
| 540 SeededNumberDictionary::AtNumberPut(slow_storage, i, element, |
| 541 false); |
| 542 if (!new_storage.is_identical_to(slow_storage)) { |
| 543 slow_storage = loop_scope.CloseAndEscape(new_storage); |
| 544 } |
| 545 } |
| 546 }); |
| 547 clear_storage(); |
| 548 set_storage(*slow_storage); |
| 549 set_fast_elements(false); |
| 550 } |
| 551 |
| 552 inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); } |
| 553 |
| 554 inline void set_storage(FixedArray* storage) { |
| 555 DCHECK(is_fixed_array()); |
| 556 storage_ = isolate_->global_handles()->Create(storage); |
| 557 } |
| 558 |
| 559 class FastElementsField : public BitField<bool, 0, 1> {}; |
| 560 class ExceedsLimitField : public BitField<bool, 1, 1> {}; |
| 561 class IsFixedArrayField : public BitField<bool, 2, 1> {}; |
| 562 |
| 563 bool fast_elements() const { return FastElementsField::decode(bit_field_); } |
| 564 void set_fast_elements(bool fast) { |
| 565 bit_field_ = FastElementsField::update(bit_field_, fast); |
| 566 } |
| 567 void set_exceeds_array_limit(bool exceeds) { |
| 568 bit_field_ = ExceedsLimitField::update(bit_field_, exceeds); |
| 569 } |
| 570 bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); } |
| 571 |
| 572 Isolate* isolate_; |
| 573 Handle<Object> storage_; // Always a global handle. |
| 574 // Index after last seen index. Always less than or equal to |
| 575 // JSObject::kMaxElementCount. |
| 576 uint32_t index_offset_; |
| 577 uint32_t bit_field_; |
| 578 }; |
| 579 |
| 580 uint32_t EstimateElementCount(Handle<JSArray> array) { |
| 581 DisallowHeapAllocation no_gc; |
| 582 uint32_t length = static_cast<uint32_t>(array->length()->Number()); |
| 583 int element_count = 0; |
| 584 switch (array->GetElementsKind()) { |
| 585 case FAST_SMI_ELEMENTS: |
| 586 case FAST_HOLEY_SMI_ELEMENTS: |
| 587 case FAST_ELEMENTS: |
| 588 case FAST_HOLEY_ELEMENTS: { |
| 589 // Fast elements can't have lengths that are not representable by |
| 590 // a 32-bit signed integer. |
| 591 DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); |
| 592 int fast_length = static_cast<int>(length); |
| 593 Isolate* isolate = array->GetIsolate(); |
| 594 FixedArray* elements = FixedArray::cast(array->elements()); |
| 595 for (int i = 0; i < fast_length; i++) { |
| 596 if (!elements->get(i)->IsTheHole(isolate)) element_count++; |
| 597 } |
| 598 break; |
| 599 } |
| 600 case FAST_DOUBLE_ELEMENTS: |
| 601 case FAST_HOLEY_DOUBLE_ELEMENTS: { |
| 602 // Fast elements can't have lengths that are not representable by |
| 603 // a 32-bit signed integer. |
| 604 DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); |
| 605 int fast_length = static_cast<int>(length); |
| 606 if (array->elements()->IsFixedArray()) { |
| 607 DCHECK(FixedArray::cast(array->elements())->length() == 0); |
| 608 break; |
| 609 } |
| 610 FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); |
| 611 for (int i = 0; i < fast_length; i++) { |
| 612 if (!elements->is_the_hole(i)) element_count++; |
| 613 } |
| 614 break; |
| 615 } |
| 616 case DICTIONARY_ELEMENTS: { |
| 617 SeededNumberDictionary* dictionary = |
| 618 SeededNumberDictionary::cast(array->elements()); |
| 619 Isolate* isolate = dictionary->GetIsolate(); |
| 620 int capacity = dictionary->Capacity(); |
| 621 for (int i = 0; i < capacity; i++) { |
| 622 Object* key = dictionary->KeyAt(i); |
| 623 if (dictionary->IsKey(isolate, key)) { |
| 624 element_count++; |
| 625 } |
| 626 } |
| 627 break; |
| 628 } |
| 629 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: |
| 630 |
| 631 TYPED_ARRAYS(TYPED_ARRAY_CASE) |
| 632 #undef TYPED_ARRAY_CASE |
| 633 // External arrays are always dense. |
| 634 return length; |
| 635 case NO_ELEMENTS: |
| 636 return 0; |
| 637 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
| 638 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: |
| 639 case FAST_STRING_WRAPPER_ELEMENTS: |
| 640 case SLOW_STRING_WRAPPER_ELEMENTS: |
| 641 UNREACHABLE(); |
| 642 return 0; |
| 643 } |
| 644 // As an estimate, we assume that the prototype doesn't contain any |
| 645 // inherited elements. |
| 646 return element_count; |
| 647 } |
| 648 |
| 649 // Used for sorting indices in a List<uint32_t>. |
| 650 int compareUInt32(const uint32_t* ap, const uint32_t* bp) { |
| 651 uint32_t a = *ap; |
| 652 uint32_t b = *bp; |
| 653 return (a == b) ? 0 : (a < b) ? -1 : 1; |
| 654 } |
| 655 |
| 656 void CollectElementIndices(Handle<JSObject> object, uint32_t range, |
| 657 List<uint32_t>* indices) { |
| 658 Isolate* isolate = object->GetIsolate(); |
| 659 ElementsKind kind = object->GetElementsKind(); |
| 660 switch (kind) { |
| 661 case FAST_SMI_ELEMENTS: |
| 662 case FAST_ELEMENTS: |
| 663 case FAST_HOLEY_SMI_ELEMENTS: |
| 664 case FAST_HOLEY_ELEMENTS: { |
| 665 DisallowHeapAllocation no_gc; |
| 666 FixedArray* elements = FixedArray::cast(object->elements()); |
| 667 uint32_t length = static_cast<uint32_t>(elements->length()); |
| 668 if (range < length) length = range; |
| 669 for (uint32_t i = 0; i < length; i++) { |
| 670 if (!elements->get(i)->IsTheHole(isolate)) { |
| 671 indices->Add(i); |
| 672 } |
| 673 } |
| 674 break; |
| 675 } |
| 676 case FAST_HOLEY_DOUBLE_ELEMENTS: |
| 677 case FAST_DOUBLE_ELEMENTS: { |
| 678 if (object->elements()->IsFixedArray()) { |
| 679 DCHECK(object->elements()->length() == 0); |
| 680 break; |
| 681 } |
| 682 Handle<FixedDoubleArray> elements( |
| 683 FixedDoubleArray::cast(object->elements())); |
| 684 uint32_t length = static_cast<uint32_t>(elements->length()); |
| 685 if (range < length) length = range; |
| 686 for (uint32_t i = 0; i < length; i++) { |
| 687 if (!elements->is_the_hole(i)) { |
| 688 indices->Add(i); |
| 689 } |
| 690 } |
| 691 break; |
| 692 } |
| 693 case DICTIONARY_ELEMENTS: { |
| 694 DisallowHeapAllocation no_gc; |
| 695 SeededNumberDictionary* dict = |
| 696 SeededNumberDictionary::cast(object->elements()); |
| 697 uint32_t capacity = dict->Capacity(); |
| 698 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, { |
| 699 Object* k = dict->KeyAt(j); |
| 700 if (!dict->IsKey(isolate, k)) continue; |
| 701 DCHECK(k->IsNumber()); |
| 702 uint32_t index = static_cast<uint32_t>(k->Number()); |
| 703 if (index < range) { |
| 704 indices->Add(index); |
| 705 } |
| 706 }); |
| 707 break; |
| 708 } |
| 709 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: |
| 710 |
| 711 TYPED_ARRAYS(TYPED_ARRAY_CASE) |
| 712 #undef TYPED_ARRAY_CASE |
| 713 { |
| 714 uint32_t length = static_cast<uint32_t>( |
| 715 FixedArrayBase::cast(object->elements())->length()); |
| 716 if (range <= length) { |
| 717 length = range; |
| 718 // We will add all indices, so we might as well clear it first |
| 719 // and avoid duplicates. |
| 720 indices->Clear(); |
| 721 } |
| 722 for (uint32_t i = 0; i < length; i++) { |
| 723 indices->Add(i); |
| 724 } |
| 725 if (length == range) return; // All indices accounted for already. |
| 726 break; |
| 727 } |
| 728 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
| 729 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { |
| 730 ElementsAccessor* accessor = object->GetElementsAccessor(); |
| 731 for (uint32_t i = 0; i < range; i++) { |
| 732 if (accessor->HasElement(object, i)) { |
| 733 indices->Add(i); |
| 734 } |
| 735 } |
| 736 break; |
| 737 } |
| 738 case FAST_STRING_WRAPPER_ELEMENTS: |
| 739 case SLOW_STRING_WRAPPER_ELEMENTS: { |
| 740 DCHECK(object->IsJSValue()); |
| 741 Handle<JSValue> js_value = Handle<JSValue>::cast(object); |
| 742 DCHECK(js_value->value()->IsString()); |
| 743 Handle<String> string(String::cast(js_value->value()), isolate); |
| 744 uint32_t length = static_cast<uint32_t>(string->length()); |
| 745 uint32_t i = 0; |
| 746 uint32_t limit = Min(length, range); |
| 747 for (; i < limit; i++) { |
| 748 indices->Add(i); |
| 749 } |
| 750 ElementsAccessor* accessor = object->GetElementsAccessor(); |
| 751 for (; i < range; i++) { |
| 752 if (accessor->HasElement(object, i)) { |
| 753 indices->Add(i); |
| 754 } |
| 755 } |
| 756 break; |
| 757 } |
| 758 case NO_ELEMENTS: |
| 759 break; |
| 760 } |
| 761 |
| 762 PrototypeIterator iter(isolate, object); |
| 763 if (!iter.IsAtEnd()) { |
| 764 // The prototype will usually have no inherited element indices, |
| 765 // but we have to check. |
| 766 CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range, |
| 767 indices); |
| 768 } |
| 769 } |
| 770 |
| 771 bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver, |
| 772 uint32_t length, ArrayConcatVisitor* visitor) { |
| 773 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, { |
| 774 Maybe<bool> maybe = JSReceiver::HasElement(receiver, i); |
| 775 if (!maybe.IsJust()) return false; |
| 776 if (maybe.FromJust()) { |
| 777 Handle<Object> element_value; |
| 778 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 779 isolate, element_value, JSReceiver::GetElement(isolate, receiver, i), |
| 780 false); |
| 781 if (!visitor->visit(i, element_value)) return false; |
| 782 } |
| 783 }); |
| 784 visitor->increase_index_offset(length); |
| 785 return true; |
| 786 } |
| 787 |
| 788 /** |
| 789 * A helper function that visits "array" elements of a JSReceiver in numerical |
| 790 * order. |
| 791 * |
| 792 * The visitor argument called for each existing element in the array |
| 793 * with the element index and the element's value. |
| 794 * Afterwards it increments the base-index of the visitor by the array |
| 795 * length. |
| 796 * Returns false if any access threw an exception, otherwise true. |
| 797 */ |
| 798 bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver, |
| 799 ArrayConcatVisitor* visitor) { |
| 800 uint32_t length = 0; |
| 801 |
| 802 if (receiver->IsJSArray()) { |
| 803 Handle<JSArray> array = Handle<JSArray>::cast(receiver); |
| 804 length = static_cast<uint32_t>(array->length()->Number()); |
| 805 } else { |
| 806 Handle<Object> val; |
| 807 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 808 isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false); |
| 809 // TODO(caitp): Support larger element indexes (up to 2^53-1). |
| 810 if (!val->ToUint32(&length)) { |
| 811 length = 0; |
| 812 } |
| 813 // TODO(cbruni): handle other element kind as well |
| 814 return IterateElementsSlow(isolate, receiver, length, visitor); |
| 815 } |
| 816 |
| 817 if (!HasOnlySimpleElements(isolate, *receiver)) { |
| 818 return IterateElementsSlow(isolate, receiver, length, visitor); |
| 819 } |
| 820 Handle<JSObject> array = Handle<JSObject>::cast(receiver); |
| 821 |
| 822 switch (array->GetElementsKind()) { |
| 823 case FAST_SMI_ELEMENTS: |
| 824 case FAST_ELEMENTS: |
| 825 case FAST_HOLEY_SMI_ELEMENTS: |
| 826 case FAST_HOLEY_ELEMENTS: { |
| 827 // Run through the elements FixedArray and use HasElement and GetElement |
| 828 // to check the prototype for missing elements. |
| 829 Handle<FixedArray> elements(FixedArray::cast(array->elements())); |
| 830 int fast_length = static_cast<int>(length); |
| 831 DCHECK(fast_length <= elements->length()); |
| 832 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { |
| 833 Handle<Object> element_value(elements->get(j), isolate); |
| 834 if (!element_value->IsTheHole(isolate)) { |
| 835 if (!visitor->visit(j, element_value)) return false; |
| 836 } else { |
| 837 Maybe<bool> maybe = JSReceiver::HasElement(array, j); |
| 838 if (!maybe.IsJust()) return false; |
| 839 if (maybe.FromJust()) { |
| 840 // Call GetElement on array, not its prototype, or getters won't |
| 841 // have the correct receiver. |
| 842 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 843 isolate, element_value, |
| 844 JSReceiver::GetElement(isolate, array, j), false); |
| 845 if (!visitor->visit(j, element_value)) return false; |
| 846 } |
| 847 } |
| 848 }); |
| 849 break; |
| 850 } |
| 851 case FAST_HOLEY_DOUBLE_ELEMENTS: |
| 852 case FAST_DOUBLE_ELEMENTS: { |
| 853 // Empty array is FixedArray but not FixedDoubleArray. |
| 854 if (length == 0) break; |
| 855 // Run through the elements FixedArray and use HasElement and GetElement |
| 856 // to check the prototype for missing elements. |
| 857 if (array->elements()->IsFixedArray()) { |
| 858 DCHECK(array->elements()->length() == 0); |
| 859 break; |
| 860 } |
| 861 Handle<FixedDoubleArray> elements( |
| 862 FixedDoubleArray::cast(array->elements())); |
| 863 int fast_length = static_cast<int>(length); |
| 864 DCHECK(fast_length <= elements->length()); |
| 865 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { |
| 866 if (!elements->is_the_hole(j)) { |
| 867 double double_value = elements->get_scalar(j); |
| 868 Handle<Object> element_value = |
| 869 isolate->factory()->NewNumber(double_value); |
| 870 if (!visitor->visit(j, element_value)) return false; |
| 871 } else { |
| 872 Maybe<bool> maybe = JSReceiver::HasElement(array, j); |
| 873 if (!maybe.IsJust()) return false; |
| 874 if (maybe.FromJust()) { |
| 875 // Call GetElement on array, not its prototype, or getters won't |
| 876 // have the correct receiver. |
| 877 Handle<Object> element_value; |
| 878 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 879 isolate, element_value, |
| 880 JSReceiver::GetElement(isolate, array, j), false); |
| 881 if (!visitor->visit(j, element_value)) return false; |
| 882 } |
| 883 } |
| 884 }); |
| 885 break; |
| 886 } |
| 887 |
| 888 case DICTIONARY_ELEMENTS: { |
| 889 Handle<SeededNumberDictionary> dict(array->element_dictionary()); |
| 890 List<uint32_t> indices(dict->Capacity() / 2); |
| 891 // Collect all indices in the object and the prototypes less |
| 892 // than length. This might introduce duplicates in the indices list. |
| 893 CollectElementIndices(array, length, &indices); |
| 894 indices.Sort(&compareUInt32); |
| 895 int n = indices.length(); |
| 896 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, { |
| 897 uint32_t index = indices[j]; |
| 898 Handle<Object> element; |
| 899 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 900 isolate, element, JSReceiver::GetElement(isolate, array, index), |
| 901 false); |
| 902 if (!visitor->visit(index, element)) return false; |
| 903 // Skip to next different index (i.e., omit duplicates). |
| 904 do { |
| 905 j++; |
| 906 } while (j < n && indices[j] == index); |
| 907 }); |
| 908 break; |
| 909 } |
| 910 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: |
| 911 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { |
| 912 FOR_WITH_HANDLE_SCOPE( |
| 913 isolate, uint32_t, index = 0, index, index < length, index++, { |
| 914 Handle<Object> element; |
| 915 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 916 isolate, element, JSReceiver::GetElement(isolate, array, index), |
| 917 false); |
| 918 if (!visitor->visit(index, element)) return false; |
| 919 }); |
| 920 break; |
| 921 } |
| 922 case NO_ELEMENTS: |
| 923 break; |
| 924 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: |
| 925 TYPED_ARRAYS(TYPED_ARRAY_CASE) |
| 926 #undef TYPED_ARRAY_CASE |
| 927 return IterateElementsSlow(isolate, receiver, length, visitor); |
| 928 case FAST_STRING_WRAPPER_ELEMENTS: |
| 929 case SLOW_STRING_WRAPPER_ELEMENTS: |
| 930 // |array| is guaranteed to be an array or typed array. |
| 931 UNREACHABLE(); |
| 932 break; |
| 933 } |
| 934 visitor->increase_index_offset(length); |
| 935 return true; |
| 936 } |
| 937 |
| 938 static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) { |
| 939 HandleScope handle_scope(isolate); |
| 940 if (!obj->IsJSReceiver()) return Just(false); |
| 941 if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { |
| 942 // Slow path if @@isConcatSpreadable has been used. |
| 943 Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol()); |
| 944 Handle<Object> value; |
| 945 MaybeHandle<Object> maybeValue = |
| 946 i::Runtime::GetObjectProperty(isolate, obj, key); |
| 947 if (!maybeValue.ToHandle(&value)) return Nothing<bool>(); |
| 948 if (!value->IsUndefined(isolate)) return Just(value->BooleanValue()); |
| 949 } |
| 950 return Object::IsArray(obj); |
| 951 } |
| 952 |
| 953 Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species, |
| 954 Isolate* isolate) { |
| 955 int argument_count = args->length(); |
| 956 |
| 957 bool is_array_species = *species == isolate->context()->array_function(); |
| 958 |
| 959 // Pass 1: estimate the length and number of elements of the result. |
| 960 // The actual length can be larger if any of the arguments have getters |
| 961 // that mutate other arguments (but will otherwise be precise). |
| 962 // The number of elements is precise if there are no inherited elements. |
| 963 |
| 964 ElementsKind kind = FAST_SMI_ELEMENTS; |
| 965 |
| 966 uint32_t estimate_result_length = 0; |
| 967 uint32_t estimate_nof_elements = 0; |
| 968 FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { |
| 969 Handle<Object> obj((*args)[i], isolate); |
| 970 uint32_t length_estimate; |
| 971 uint32_t element_estimate; |
| 972 if (obj->IsJSArray()) { |
| 973 Handle<JSArray> array(Handle<JSArray>::cast(obj)); |
| 974 length_estimate = static_cast<uint32_t>(array->length()->Number()); |
| 975 if (length_estimate != 0) { |
| 976 ElementsKind array_kind = |
| 977 GetPackedElementsKind(array->GetElementsKind()); |
| 978 kind = GetMoreGeneralElementsKind(kind, array_kind); |
| 979 } |
| 980 element_estimate = EstimateElementCount(array); |
| 981 } else { |
| 982 if (obj->IsHeapObject()) { |
| 983 kind = GetMoreGeneralElementsKind( |
| 984 kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS); |
| 985 } |
| 986 length_estimate = 1; |
| 987 element_estimate = 1; |
| 988 } |
| 989 // Avoid overflows by capping at kMaxElementCount. |
| 990 if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { |
| 991 estimate_result_length = JSObject::kMaxElementCount; |
| 992 } else { |
| 993 estimate_result_length += length_estimate; |
| 994 } |
| 995 if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { |
| 996 estimate_nof_elements = JSObject::kMaxElementCount; |
| 997 } else { |
| 998 estimate_nof_elements += element_estimate; |
| 999 } |
| 1000 }); |
| 1001 |
| 1002 // If estimated number of elements is more than half of length, a |
| 1003 // fixed array (fast case) is more time and space-efficient than a |
| 1004 // dictionary. |
| 1005 bool fast_case = |
| 1006 is_array_species && (estimate_nof_elements * 2) >= estimate_result_length; |
| 1007 |
| 1008 if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { |
| 1009 Handle<FixedArrayBase> storage = |
| 1010 isolate->factory()->NewFixedDoubleArray(estimate_result_length); |
| 1011 int j = 0; |
| 1012 bool failure = false; |
| 1013 if (estimate_result_length > 0) { |
| 1014 Handle<FixedDoubleArray> double_storage = |
| 1015 Handle<FixedDoubleArray>::cast(storage); |
| 1016 for (int i = 0; i < argument_count; i++) { |
| 1017 Handle<Object> obj((*args)[i], isolate); |
| 1018 if (obj->IsSmi()) { |
| 1019 double_storage->set(j, Smi::cast(*obj)->value()); |
| 1020 j++; |
| 1021 } else if (obj->IsNumber()) { |
| 1022 double_storage->set(j, obj->Number()); |
| 1023 j++; |
| 1024 } else { |
| 1025 DisallowHeapAllocation no_gc; |
| 1026 JSArray* array = JSArray::cast(*obj); |
| 1027 uint32_t length = static_cast<uint32_t>(array->length()->Number()); |
| 1028 switch (array->GetElementsKind()) { |
| 1029 case FAST_HOLEY_DOUBLE_ELEMENTS: |
| 1030 case FAST_DOUBLE_ELEMENTS: { |
| 1031 // Empty array is FixedArray but not FixedDoubleArray. |
| 1032 if (length == 0) break; |
| 1033 FixedDoubleArray* elements = |
| 1034 FixedDoubleArray::cast(array->elements()); |
| 1035 for (uint32_t i = 0; i < length; i++) { |
| 1036 if (elements->is_the_hole(i)) { |
| 1037 // TODO(jkummerow/verwaest): We could be a bit more clever |
| 1038 // here: Check if there are no elements/getters on the |
| 1039 // prototype chain, and if so, allow creation of a holey |
| 1040 // result array. |
| 1041 // Same thing below (holey smi case). |
| 1042 failure = true; |
| 1043 break; |
| 1044 } |
| 1045 double double_value = elements->get_scalar(i); |
| 1046 double_storage->set(j, double_value); |
| 1047 j++; |
| 1048 } |
| 1049 break; |
| 1050 } |
| 1051 case FAST_HOLEY_SMI_ELEMENTS: |
| 1052 case FAST_SMI_ELEMENTS: { |
| 1053 Object* the_hole = isolate->heap()->the_hole_value(); |
| 1054 FixedArray* elements(FixedArray::cast(array->elements())); |
| 1055 for (uint32_t i = 0; i < length; i++) { |
| 1056 Object* element = elements->get(i); |
| 1057 if (element == the_hole) { |
| 1058 failure = true; |
| 1059 break; |
| 1060 } |
| 1061 int32_t int_value = Smi::cast(element)->value(); |
| 1062 double_storage->set(j, int_value); |
| 1063 j++; |
| 1064 } |
| 1065 break; |
| 1066 } |
| 1067 case FAST_HOLEY_ELEMENTS: |
| 1068 case FAST_ELEMENTS: |
| 1069 case DICTIONARY_ELEMENTS: |
| 1070 case NO_ELEMENTS: |
| 1071 DCHECK_EQ(0u, length); |
| 1072 break; |
| 1073 default: |
| 1074 UNREACHABLE(); |
| 1075 } |
| 1076 } |
| 1077 if (failure) break; |
| 1078 } |
| 1079 } |
| 1080 if (!failure) { |
| 1081 return *isolate->factory()->NewJSArrayWithElements(storage, kind, j); |
| 1082 } |
| 1083 // In case of failure, fall through. |
| 1084 } |
| 1085 |
| 1086 Handle<Object> storage; |
| 1087 if (fast_case) { |
| 1088 // The backing storage array must have non-existing elements to preserve |
| 1089 // holes across concat operations. |
| 1090 storage = |
| 1091 isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); |
| 1092 } else if (is_array_species) { |
| 1093 // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate |
| 1094 uint32_t at_least_space_for = |
| 1095 estimate_nof_elements + (estimate_nof_elements >> 2); |
| 1096 storage = SeededNumberDictionary::New(isolate, at_least_space_for); |
| 1097 } else { |
| 1098 DCHECK(species->IsConstructor()); |
| 1099 Handle<Object> length(Smi::FromInt(0), isolate); |
| 1100 Handle<Object> storage_object; |
| 1101 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 1102 isolate, storage_object, |
| 1103 Execution::New(isolate, species, species, 1, &length)); |
| 1104 storage = storage_object; |
| 1105 } |
| 1106 |
| 1107 ArrayConcatVisitor visitor(isolate, storage, fast_case); |
| 1108 |
| 1109 for (int i = 0; i < argument_count; i++) { |
| 1110 Handle<Object> obj((*args)[i], isolate); |
| 1111 Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj); |
| 1112 MAYBE_RETURN(spreadable, isolate->heap()->exception()); |
| 1113 if (spreadable.FromJust()) { |
| 1114 Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj); |
| 1115 if (!IterateElements(isolate, object, &visitor)) { |
| 1116 return isolate->heap()->exception(); |
| 1117 } |
| 1118 } else { |
| 1119 if (!visitor.visit(0, obj)) return isolate->heap()->exception(); |
| 1120 visitor.increase_index_offset(1); |
| 1121 } |
| 1122 } |
| 1123 |
| 1124 if (visitor.exceeds_array_limit()) { |
| 1125 THROW_NEW_ERROR_RETURN_FAILURE( |
| 1126 isolate, NewRangeError(MessageTemplate::kInvalidArrayLength)); |
| 1127 } |
| 1128 |
| 1129 if (is_array_species) { |
| 1130 return *visitor.ToArray(); |
| 1131 } else { |
| 1132 return *visitor.storage_jsreceiver(); |
| 1133 } |
| 1134 } |
| 1135 |
| 1136 bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) { |
| 1137 DisallowHeapAllocation no_gc; |
| 1138 Map* map = obj->map(); |
| 1139 // If there is only the 'length' property we are fine. |
| 1140 if (map->prototype() == |
| 1141 isolate->native_context()->initial_array_prototype() && |
| 1142 map->NumberOfOwnDescriptors() == 1) { |
| 1143 return true; |
| 1144 } |
| 1145 // TODO(cbruni): slower lookup for array subclasses and support slow |
| 1146 // @@IsConcatSpreadable lookup. |
| 1147 return false; |
| 1148 } |
| 1149 |
| 1150 MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, |
| 1151 BuiltinArguments* args) { |
| 1152 if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { |
| 1153 return MaybeHandle<JSArray>(); |
| 1154 } |
| 1155 // We shouldn't overflow when adding another len. |
| 1156 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); |
| 1157 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); |
| 1158 STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt); |
| 1159 USE(kHalfOfMaxInt); |
| 1160 |
| 1161 int n_arguments = args->length(); |
| 1162 int result_len = 0; |
| 1163 { |
| 1164 DisallowHeapAllocation no_gc; |
| 1165 // Iterate through all the arguments performing checks |
| 1166 // and calculating total length. |
| 1167 for (int i = 0; i < n_arguments; i++) { |
| 1168 Object* arg = (*args)[i]; |
| 1169 if (!arg->IsJSArray()) return MaybeHandle<JSArray>(); |
| 1170 if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { |
| 1171 return MaybeHandle<JSArray>(); |
| 1172 } |
| 1173 // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. |
| 1174 if (!JSObject::cast(arg)->HasFastElements()) { |
| 1175 return MaybeHandle<JSArray>(); |
| 1176 } |
| 1177 Handle<JSArray> array(JSArray::cast(arg), isolate); |
| 1178 if (!IsSimpleArray(isolate, array)) { |
| 1179 return MaybeHandle<JSArray>(); |
| 1180 } |
| 1181 // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't |
| 1182 // overflow. |
| 1183 result_len += Smi::cast(array->length())->value(); |
| 1184 DCHECK(result_len >= 0); |
| 1185 // Throw an Error if we overflow the FixedArray limits |
| 1186 if (FixedDoubleArray::kMaxLength < result_len || |
| 1187 FixedArray::kMaxLength < result_len) { |
| 1188 AllowHeapAllocation gc; |
| 1189 THROW_NEW_ERROR(isolate, |
| 1190 NewRangeError(MessageTemplate::kInvalidArrayLength), |
| 1191 JSArray); |
| 1192 } |
| 1193 } |
| 1194 } |
| 1195 return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); |
| 1196 } |
| 1197 |
| 1198 } // namespace |
| 1199 |
| 1200 // ES6 22.1.3.1 Array.prototype.concat |
| 1201 BUILTIN(ArrayConcat) { |
| 1202 HandleScope scope(isolate); |
| 1203 |
| 1204 Handle<Object> receiver = args.receiver(); |
| 1205 // TODO(bmeurer): Do we really care about the exact exception message here? |
| 1206 if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) { |
| 1207 THROW_NEW_ERROR_RETURN_FAILURE( |
| 1208 isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, |
| 1209 isolate->factory()->NewStringFromAsciiChecked( |
| 1210 "Array.prototype.concat"))); |
| 1211 } |
| 1212 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 1213 isolate, receiver, Object::ToObject(isolate, args.receiver())); |
| 1214 args[0] = *receiver; |
| 1215 |
| 1216 Handle<JSArray> result_array; |
| 1217 |
| 1218 // Avoid a real species read to avoid extra lookups to the array constructor |
| 1219 if (V8_LIKELY(receiver->IsJSArray() && |
| 1220 Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) && |
| 1221 isolate->IsArraySpeciesLookupChainIntact())) { |
| 1222 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { |
| 1223 return *result_array; |
| 1224 } |
| 1225 if (isolate->has_pending_exception()) return isolate->heap()->exception(); |
| 1226 } |
| 1227 // Reading @@species happens before anything else with a side effect, so |
| 1228 // we can do it here to determine whether to take the fast path. |
| 1229 Handle<Object> species; |
| 1230 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 1231 isolate, species, Object::ArraySpeciesConstructor(isolate, receiver)); |
| 1232 if (*species == *isolate->array_function()) { |
| 1233 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { |
| 1234 return *result_array; |
| 1235 } |
| 1236 if (isolate->has_pending_exception()) return isolate->heap()->exception(); |
| 1237 } |
| 1238 return Slow_ArrayConcat(&args, species, isolate); |
| 1239 } |
| 1240 |
| 1241 void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) { |
| 1242 typedef compiler::Node Node; |
| 1243 typedef CodeStubAssembler::Label Label; |
| 1244 |
| 1245 Node* object = assembler->Parameter(1); |
| 1246 Node* context = assembler->Parameter(4); |
| 1247 |
| 1248 Label call_runtime(assembler), return_true(assembler), |
| 1249 return_false(assembler); |
| 1250 |
| 1251 assembler->GotoIf(assembler->WordIsSmi(object), &return_false); |
| 1252 Node* instance_type = assembler->LoadInstanceType(object); |
| 1253 |
| 1254 assembler->GotoIf(assembler->Word32Equal( |
| 1255 instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)), |
| 1256 &return_true); |
| 1257 |
| 1258 // TODO(verwaest): Handle proxies in-place. |
| 1259 assembler->Branch(assembler->Word32Equal( |
| 1260 instance_type, assembler->Int32Constant(JS_PROXY_TYPE)), |
| 1261 &call_runtime, &return_false); |
| 1262 |
| 1263 assembler->Bind(&return_true); |
| 1264 assembler->Return(assembler->BooleanConstant(true)); |
| 1265 |
| 1266 assembler->Bind(&return_false); |
| 1267 assembler->Return(assembler->BooleanConstant(false)); |
| 1268 |
| 1269 assembler->Bind(&call_runtime); |
| 1270 assembler->Return( |
| 1271 assembler->CallRuntime(Runtime::kArrayIsArray, context, object)); |
| 1272 } |
| 1273 |
| 1274 } // namespace internal |
| 1275 } // namespace v8 |
OLD | NEW |