OLD | NEW |
1 // Copyright 2012 Google Inc. All Rights Reserved. | 1 // Copyright 2012 Google Inc. All Rights Reserved. |
2 // | 2 // |
3 // Use of this source code is governed by a BSD-style license | 3 // Use of this source code is governed by a BSD-style license |
4 // that can be found in the COPYING file in the root of the source | 4 // that can be found in the COPYING file in the root of the source |
5 // tree. An additional intellectual property rights grant can be found | 5 // tree. An additional intellectual property rights grant can be found |
6 // in the file PATENTS. All contributing project authors may | 6 // in the file PATENTS. All contributing project authors may |
7 // be found in the AUTHORS file in the root of the source tree. | 7 // be found in the AUTHORS file in the root of the source tree. |
8 // ----------------------------------------------------------------------------- | 8 // ----------------------------------------------------------------------------- |
9 // | 9 // |
10 // Author: Jyrki Alakuijala (jyrki@google.com) | 10 // Author: Jyrki Alakuijala (jyrki@google.com) |
11 // | 11 // |
12 | 12 |
13 #include <assert.h> | 13 #include <assert.h> |
14 #include <math.h> | 14 #include <math.h> |
15 | 15 |
16 #include "./backward_references.h" | 16 #include "./backward_references.h" |
17 #include "./histogram.h" | 17 #include "./histogram.h" |
18 #include "../dsp/lossless.h" | 18 #include "../dsp/lossless.h" |
19 #include "../dsp/dsp.h" | 19 #include "../dsp/dsp.h" |
20 #include "../utils/color_cache.h" | 20 #include "../utils/color_cache.h" |
21 #include "../utils/utils.h" | 21 #include "../utils/utils.h" |
22 | 22 |
23 #define VALUES_IN_BYTE 256 | 23 #define VALUES_IN_BYTE 256 |
24 | 24 |
25 #define MIN_BLOCK_SIZE 256 // minimum block size for backward references | 25 #define MIN_BLOCK_SIZE 256 // minimum block size for backward references |
26 | 26 |
27 #define MAX_ENTROPY (1e30f) | 27 #define MAX_ENTROPY (1e30f) |
28 | 28 |
29 // 1M window (4M bytes) minus 120 special codes for short distances. | 29 // 1M window (4M bytes) minus 120 special codes for short distances. |
30 #define WINDOW_SIZE ((1 << 20) - 120) | 30 #define WINDOW_SIZE_BITS 20 |
| 31 #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120) |
31 | 32 |
32 // Bounds for the match length. | 33 // Bounds for the match length. |
33 #define MIN_LENGTH 2 | 34 #define MIN_LENGTH 2 |
34 #define MAX_LENGTH 4096 | 35 // If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it |
| 36 // is used in VP8LHashChain. |
| 37 #define MAX_LENGTH_BITS 12 |
| 38 // We want the max value to be attainable and stored in MAX_LENGTH_BITS bits. |
| 39 #define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1) |
| 40 #if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32 |
| 41 #error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32" |
| 42 #endif |
35 | 43 |
36 // ----------------------------------------------------------------------------- | 44 // ----------------------------------------------------------------------------- |
37 | 45 |
38 static const uint8_t plane_to_code_lut[128] = { | 46 static const uint8_t plane_to_code_lut[128] = { |
39 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, | 47 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, |
40 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, | 48 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, |
41 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, | 49 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, |
42 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, | 50 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, |
43 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, | 51 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, |
44 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, | 52 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, |
45 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, | 53 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, |
46 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 | 54 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 |
47 }; | 55 }; |
48 | 56 |
49 static int DistanceToPlaneCode(int xsize, int dist) { | 57 static int DistanceToPlaneCode(int xsize, int dist) { |
50 const int yoffset = dist / xsize; | 58 const int yoffset = dist / xsize; |
51 const int xoffset = dist - yoffset * xsize; | 59 const int xoffset = dist - yoffset * xsize; |
52 if (xoffset <= 8 && yoffset < 8) { | 60 if (xoffset <= 8 && yoffset < 8) { |
53 return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; | 61 return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; |
54 } else if (xoffset > xsize - 8 && yoffset < 7) { | 62 } else if (xoffset > xsize - 8 && yoffset < 7) { |
55 return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; | 63 return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; |
56 } | 64 } |
57 return dist + 120; | 65 return dist + 120; |
58 } | 66 } |
59 | 67 |
60 // Returns the exact index where array1 and array2 are different if this | 68 // Returns the exact index where array1 and array2 are different. For an index |
61 // index is strictly superior to best_len_match. Otherwise, it returns 0. | 69 // inferior or equal to best_len_match, the return value just has to be strictly |
| 70 // inferior to best_len_match. The current behavior is to return 0 if this index |
| 71 // is best_len_match, and the index itself otherwise. |
62 // If no two elements are the same, it returns max_limit. | 72 // If no two elements are the same, it returns max_limit. |
63 static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, | 73 static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, |
64 const uint32_t* const array2, | 74 const uint32_t* const array2, |
65 int best_len_match, | 75 int best_len_match, int max_limit) { |
66 int max_limit) { | |
67 int match_len; | |
68 | |
69 // Before 'expensive' linear match, check if the two arrays match at the | 76 // Before 'expensive' linear match, check if the two arrays match at the |
70 // current best length index. | 77 // current best length index. |
71 if (array1[best_len_match] != array2[best_len_match]) return 0; | 78 if (array1[best_len_match] != array2[best_len_match]) return 0; |
72 | 79 |
73 #if defined(WEBP_USE_SSE2) | 80 return VP8LVectorMismatch(array1, array2, max_limit); |
74 // Check if anything is different up to best_len_match excluded. | |
75 // memcmp seems to be slower on ARM so it is disabled for now. | |
76 if (memcmp(array1, array2, best_len_match * sizeof(*array1))) return 0; | |
77 match_len = best_len_match + 1; | |
78 #else | |
79 match_len = 0; | |
80 #endif | |
81 | |
82 while (match_len < max_limit && array1[match_len] == array2[match_len]) { | |
83 ++match_len; | |
84 } | |
85 return match_len; | |
86 } | 81 } |
87 | 82 |
88 // ----------------------------------------------------------------------------- | 83 // ----------------------------------------------------------------------------- |
89 // VP8LBackwardRefs | 84 // VP8LBackwardRefs |
90 | 85 |
91 struct PixOrCopyBlock { | 86 struct PixOrCopyBlock { |
92 PixOrCopyBlock* next_; // next block (or NULL) | 87 PixOrCopyBlock* next_; // next block (or NULL) |
93 PixOrCopy* start_; // data start | 88 PixOrCopy* start_; // data start |
94 int size_; // currently used size | 89 int size_; // currently used size |
95 }; | 90 }; |
(...skipping 91 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
187 memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_)); | 182 memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_)); |
188 new_b->size_ = b->size_; | 183 new_b->size_ = b->size_; |
189 b = b->next_; | 184 b = b->next_; |
190 } | 185 } |
191 return 1; | 186 return 1; |
192 } | 187 } |
193 | 188 |
194 // ----------------------------------------------------------------------------- | 189 // ----------------------------------------------------------------------------- |
195 // Hash chains | 190 // Hash chains |
196 | 191 |
197 // initialize as empty | |
198 static void HashChainReset(VP8LHashChain* const p) { | |
199 assert(p != NULL); | |
200 // Set the int32_t arrays to -1. | |
201 memset(p->chain_, 0xff, p->size_ * sizeof(*p->chain_)); | |
202 memset(p->hash_to_first_index_, 0xff, | |
203 HASH_SIZE * sizeof(*p->hash_to_first_index_)); | |
204 } | |
205 | |
206 int VP8LHashChainInit(VP8LHashChain* const p, int size) { | 192 int VP8LHashChainInit(VP8LHashChain* const p, int size) { |
207 assert(p->size_ == 0); | 193 assert(p->size_ == 0); |
208 assert(p->chain_ == NULL); | 194 assert(p->offset_length_ == NULL); |
209 assert(size > 0); | 195 assert(size > 0); |
210 p->chain_ = (int*)WebPSafeMalloc(size, sizeof(*p->chain_)); | 196 p->offset_length_ = |
211 if (p->chain_ == NULL) return 0; | 197 (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_)); |
| 198 if (p->offset_length_ == NULL) return 0; |
212 p->size_ = size; | 199 p->size_ = size; |
213 HashChainReset(p); | 200 |
214 return 1; | 201 return 1; |
215 } | 202 } |
216 | 203 |
217 void VP8LHashChainClear(VP8LHashChain* const p) { | 204 void VP8LHashChainClear(VP8LHashChain* const p) { |
218 assert(p != NULL); | 205 assert(p != NULL); |
219 WebPSafeFree(p->chain_); | 206 WebPSafeFree(p->offset_length_); |
| 207 |
220 p->size_ = 0; | 208 p->size_ = 0; |
221 p->chain_ = NULL; | 209 p->offset_length_ = NULL; |
222 } | 210 } |
223 | 211 |
224 // ----------------------------------------------------------------------------- | 212 // ----------------------------------------------------------------------------- |
225 | 213 |
226 #define HASH_MULTIPLIER_HI (0xc6a4a793U) | 214 #define HASH_MULTIPLIER_HI (0xc6a4a793U) |
227 #define HASH_MULTIPLIER_LO (0x5bd1e996U) | 215 #define HASH_MULTIPLIER_LO (0x5bd1e996U) |
228 | 216 |
229 static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) { | 217 static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) { |
230 uint32_t key; | 218 uint32_t key; |
231 key = argb[1] * HASH_MULTIPLIER_HI; | 219 key = argb[1] * HASH_MULTIPLIER_HI; |
232 key += argb[0] * HASH_MULTIPLIER_LO; | 220 key += argb[0] * HASH_MULTIPLIER_LO; |
233 key = key >> (32 - HASH_BITS); | 221 key = key >> (32 - HASH_BITS); |
234 return key; | 222 return key; |
235 } | 223 } |
236 | 224 |
237 // Insertion of two pixels at a time. | |
238 static void HashChainInsert(VP8LHashChain* const p, | |
239 const uint32_t* const argb, int pos) { | |
240 const uint32_t hash_code = GetPixPairHash64(argb); | |
241 p->chain_[pos] = p->hash_to_first_index_[hash_code]; | |
242 p->hash_to_first_index_[hash_code] = pos; | |
243 } | |
244 | |
245 // Returns the maximum number of hash chain lookups to do for a | 225 // Returns the maximum number of hash chain lookups to do for a |
246 // given compression quality. Return value in range [6, 86]. | 226 // given compression quality. Return value in range [8, 86]. |
247 static int GetMaxItersForQuality(int quality, int low_effort) { | 227 static int GetMaxItersForQuality(int quality) { |
248 return (low_effort ? 6 : 8) + (quality * quality) / 128; | 228 return 8 + (quality * quality) / 128; |
249 } | 229 } |
250 | 230 |
251 static int GetWindowSizeForHashChain(int quality, int xsize) { | 231 static int GetWindowSizeForHashChain(int quality, int xsize) { |
252 const int max_window_size = (quality > 75) ? WINDOW_SIZE | 232 const int max_window_size = (quality > 75) ? WINDOW_SIZE |
253 : (quality > 50) ? (xsize << 8) | 233 : (quality > 50) ? (xsize << 8) |
254 : (quality > 25) ? (xsize << 6) | 234 : (quality > 25) ? (xsize << 6) |
255 : (xsize << 4); | 235 : (xsize << 4); |
256 assert(xsize > 0); | 236 assert(xsize > 0); |
257 return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; | 237 return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; |
258 } | 238 } |
259 | 239 |
260 static WEBP_INLINE int MaxFindCopyLength(int len) { | 240 static WEBP_INLINE int MaxFindCopyLength(int len) { |
261 return (len < MAX_LENGTH) ? len : MAX_LENGTH; | 241 return (len < MAX_LENGTH) ? len : MAX_LENGTH; |
262 } | 242 } |
263 | 243 |
264 static void HashChainFindOffset(const VP8LHashChain* const p, int base_position, | 244 int VP8LHashChainFill(VP8LHashChain* const p, int quality, |
265 const uint32_t* const argb, int len, | 245 const uint32_t* const argb, int xsize, int ysize) { |
266 int window_size, int* const distance_ptr) { | 246 const int size = xsize * ysize; |
267 const uint32_t* const argb_start = argb + base_position; | 247 const int iter_max = GetMaxItersForQuality(quality); |
268 const int min_pos = | 248 const int iter_min = iter_max - quality / 10; |
269 (base_position > window_size) ? base_position - window_size : 0; | 249 const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize); |
270 int pos; | 250 int pos; |
271 assert(len <= MAX_LENGTH); | 251 uint32_t base_position; |
272 for (pos = p->hash_to_first_index_[GetPixPairHash64(argb_start)]; | 252 int32_t* hash_to_first_index; |
273 pos >= min_pos; | 253 // Temporarily use the p->offset_length_ as a hash chain. |
274 pos = p->chain_[pos]) { | 254 int32_t* chain = (int32_t*)p->offset_length_; |
275 const int curr_length = | 255 assert(p->size_ != 0); |
276 FindMatchLength(argb + pos, argb_start, len - 1, len); | 256 assert(p->offset_length_ != NULL); |
277 if (curr_length == len) break; | 257 |
| 258 hash_to_first_index = |
| 259 (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index)); |
| 260 if (hash_to_first_index == NULL) return 0; |
| 261 |
| 262 // Set the int32_t array to -1. |
| 263 memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index)); |
| 264 // Fill the chain linking pixels with the same hash. |
| 265 for (pos = 0; pos < size - 1; ++pos) { |
| 266 const uint32_t hash_code = GetPixPairHash64(argb + pos); |
| 267 chain[pos] = hash_to_first_index[hash_code]; |
| 268 hash_to_first_index[hash_code] = pos; |
278 } | 269 } |
279 *distance_ptr = base_position - pos; | 270 WebPSafeFree(hash_to_first_index); |
280 } | |
281 | 271 |
282 static int HashChainFindCopy(const VP8LHashChain* const p, | 272 // Find the best match interval at each pixel, defined by an offset to the |
283 int base_position, | 273 // pixel and a length. The right-most pixel cannot match anything to the right |
284 const uint32_t* const argb, int max_len, | 274 // (hence a best length of 0) and the left-most pixel nothing to the left |
285 int window_size, int iter_max, | 275 // (hence an offset of 0). |
286 int* const distance_ptr, | 276 p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
287 int* const length_ptr) { | 277 for (base_position = size - 2 < 0 ? 0 : size - 2; base_position > 0;) { |
288 const uint32_t* const argb_start = argb + base_position; | 278 const int max_len = MaxFindCopyLength(size - 1 - base_position); |
289 int iter = iter_max; | 279 const uint32_t* const argb_start = argb + base_position; |
290 int best_length = 0; | 280 int iter = iter_max; |
291 int best_distance = 0; | 281 int best_length = 0; |
292 const int min_pos = | 282 uint32_t best_distance = 0; |
293 (base_position > window_size) ? base_position - window_size : 0; | 283 const int min_pos = |
294 int pos; | 284 (base_position > window_size) ? base_position - window_size : 0; |
295 int length_max = 256; | 285 const int length_max = (max_len < 256) ? max_len : 256; |
296 if (max_len < length_max) { | 286 uint32_t max_base_position; |
297 length_max = max_len; | 287 |
298 } | 288 for (pos = chain[base_position]; pos >= min_pos; pos = chain[pos]) { |
299 for (pos = p->hash_to_first_index_[GetPixPairHash64(argb_start)]; | 289 int curr_length; |
300 pos >= min_pos; | 290 if (--iter < 0) { |
301 pos = p->chain_[pos]) { | 291 break; |
302 int curr_length; | 292 } |
303 int distance; | 293 assert(base_position > (uint32_t)pos); |
304 if (--iter < 0) { | 294 |
305 break; | 295 curr_length = |
| 296 FindMatchLength(argb + pos, argb_start, best_length, max_len); |
| 297 if (best_length < curr_length) { |
| 298 best_length = curr_length; |
| 299 best_distance = base_position - pos; |
| 300 // Stop if we have reached the maximum length. Otherwise, make sure |
| 301 // we have executed a minimum number of iterations depending on the |
| 302 // quality. |
| 303 if ((best_length == MAX_LENGTH) || |
| 304 (curr_length >= length_max && iter < iter_min)) { |
| 305 break; |
| 306 } |
| 307 } |
306 } | 308 } |
307 | 309 // We have the best match but in case the two intervals continue matching |
308 curr_length = FindMatchLength(argb + pos, argb_start, best_length, max_len); | 310 // to the left, we have the best matches for the left-extended pixels. |
309 if (best_length < curr_length) { | 311 max_base_position = base_position; |
310 distance = base_position - pos; | 312 while (1) { |
311 best_length = curr_length; | 313 assert(best_length <= MAX_LENGTH); |
312 best_distance = distance; | 314 assert(best_distance <= WINDOW_SIZE); |
313 if (curr_length >= length_max) { | 315 p->offset_length_[base_position] = |
| 316 (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length; |
| 317 --base_position; |
| 318 // Stop if we don't have a match or if we are out of bounds. |
| 319 if (best_distance == 0 || base_position == 0) break; |
| 320 // Stop if we cannot extend the matching intervals to the left. |
| 321 if (base_position < best_distance || |
| 322 argb[base_position - best_distance] != argb[base_position]) { |
314 break; | 323 break; |
315 } | 324 } |
| 325 // Stop if we are matching at its limit because there could be a closer |
| 326 // matching interval with the same maximum length. Then again, if the |
| 327 // matching interval is as close as possible (best_distance == 1), we will |
| 328 // never find anything better so let's continue. |
| 329 if (best_length == MAX_LENGTH && best_distance != 1 && |
| 330 base_position + MAX_LENGTH < max_base_position) { |
| 331 break; |
| 332 } |
| 333 if (best_length < MAX_LENGTH) { |
| 334 ++best_length; |
| 335 max_base_position = base_position; |
| 336 } |
316 } | 337 } |
317 } | 338 } |
318 *distance_ptr = best_distance; | 339 return 1; |
319 *length_ptr = best_length; | 340 } |
320 return (best_length >= MIN_LENGTH); | 341 |
| 342 static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p, |
| 343 const int base_position) { |
| 344 return p->offset_length_[base_position] >> MAX_LENGTH_BITS; |
| 345 } |
| 346 |
| 347 static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p, |
| 348 const int base_position) { |
| 349 return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1); |
| 350 } |
| 351 |
| 352 static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p, |
| 353 int base_position, |
| 354 int* const offset_ptr, |
| 355 int* const length_ptr) { |
| 356 *offset_ptr = HashChainFindOffset(p, base_position); |
| 357 *length_ptr = HashChainFindLength(p, base_position); |
321 } | 358 } |
322 | 359 |
323 static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache, | 360 static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache, |
324 VP8LColorCache* const hashers, | 361 VP8LColorCache* const hashers, |
325 VP8LBackwardRefs* const refs) { | 362 VP8LBackwardRefs* const refs) { |
326 PixOrCopy v; | 363 PixOrCopy v; |
327 if (use_color_cache) { | 364 if (use_color_cache) { |
328 const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel); | 365 const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel); |
329 if (VP8LColorCacheLookup(hashers, key) == pixel) { | 366 if (VP8LColorCacheLookup(hashers, key) == pixel) { |
330 v = PixOrCopyCreateCacheIdx(key); | 367 v = PixOrCopyCreateCacheIdx(key); |
(...skipping 46 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
377 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); | 414 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
378 i++; | 415 i++; |
379 } | 416 } |
380 } | 417 } |
381 if (use_color_cache) VP8LColorCacheClear(&hashers); | 418 if (use_color_cache) VP8LColorCacheClear(&hashers); |
382 return !refs->error_; | 419 return !refs->error_; |
383 } | 420 } |
384 | 421 |
385 static int BackwardReferencesLz77(int xsize, int ysize, | 422 static int BackwardReferencesLz77(int xsize, int ysize, |
386 const uint32_t* const argb, int cache_bits, | 423 const uint32_t* const argb, int cache_bits, |
387 int quality, int low_effort, | 424 const VP8LHashChain* const hash_chain, |
388 VP8LHashChain* const hash_chain, | |
389 VP8LBackwardRefs* const refs) { | 425 VP8LBackwardRefs* const refs) { |
390 int i; | 426 int i; |
| 427 int i_last_check = -1; |
391 int ok = 0; | 428 int ok = 0; |
392 int cc_init = 0; | 429 int cc_init = 0; |
393 const int use_color_cache = (cache_bits > 0); | 430 const int use_color_cache = (cache_bits > 0); |
394 const int pix_count = xsize * ysize; | 431 const int pix_count = xsize * ysize; |
395 VP8LColorCache hashers; | 432 VP8LColorCache hashers; |
396 int iter_max = GetMaxItersForQuality(quality, low_effort); | |
397 const int window_size = GetWindowSizeForHashChain(quality, xsize); | |
398 int min_matches = 32; | |
399 | 433 |
400 if (use_color_cache) { | 434 if (use_color_cache) { |
401 cc_init = VP8LColorCacheInit(&hashers, cache_bits); | 435 cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
402 if (!cc_init) goto Error; | 436 if (!cc_init) goto Error; |
403 } | 437 } |
404 ClearBackwardRefs(refs); | 438 ClearBackwardRefs(refs); |
405 HashChainReset(hash_chain); | 439 for (i = 0; i < pix_count;) { |
406 for (i = 0; i < pix_count - 2; ) { | |
407 // Alternative#1: Code the pixels starting at 'i' using backward reference. | 440 // Alternative#1: Code the pixels starting at 'i' using backward reference. |
408 int offset = 0; | 441 int offset = 0; |
409 int len = 0; | 442 int len = 0; |
410 const int max_len = MaxFindCopyLength(pix_count - i); | 443 int j; |
411 HashChainFindCopy(hash_chain, i, argb, max_len, window_size, | 444 HashChainFindCopy(hash_chain, i, &offset, &len); |
412 iter_max, &offset, &len); | 445 if (len > MIN_LENGTH + 1) { |
413 if (len > MIN_LENGTH || (len == MIN_LENGTH && offset <= 512)) { | 446 const int len_ini = len; |
414 int offset2 = 0; | 447 int max_reach = 0; |
415 int len2 = 0; | 448 assert(i + len < pix_count); |
416 int k; | 449 // Only start from what we have not checked already. |
417 min_matches = 8; | 450 i_last_check = (i > i_last_check) ? i : i_last_check; |
418 HashChainInsert(hash_chain, &argb[i], i); | 451 // We know the best match for the current pixel but we try to find the |
419 if ((len < (max_len >> 2)) && !low_effort) { | 452 // best matches for the current pixel AND the next one combined. |
420 // Evaluate Alternative#2: Insert the pixel at 'i' as literal, and code | 453 // The naive method would use the intervals: |
421 // the pixels starting at 'i + 1' using backward reference. | 454 // [i,i+len) + [i+len, length of best match at i+len) |
422 HashChainFindCopy(hash_chain, i + 1, argb, max_len - 1, | 455 // while we check if we can use: |
423 window_size, iter_max, &offset2, | 456 // [i,j) (where j<=i+len) + [j, length of best match at j) |
424 &len2); | 457 for (j = i_last_check + 1; j <= i + len_ini; ++j) { |
425 if (len2 > len + 1) { | 458 const int len_j = HashChainFindLength(hash_chain, j); |
426 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); | 459 const int reach = |
427 i++; // Backward reference to be done for next pixel. | 460 j + (len_j > MIN_LENGTH + 1 ? len_j : 1); // 1 for single literal. |
428 len = len2; | 461 if (reach > max_reach) { |
429 offset = offset2; | 462 len = j - i; |
| 463 max_reach = reach; |
430 } | 464 } |
431 } | 465 } |
| 466 } else { |
| 467 len = 1; |
| 468 } |
| 469 // Go with literal or backward reference. |
| 470 assert(len > 0); |
| 471 if (len == 1) { |
| 472 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
| 473 } else { |
432 BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); | 474 BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
433 if (use_color_cache) { | 475 if (use_color_cache) { |
434 for (k = 0; k < len; ++k) { | 476 for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]); |
435 VP8LColorCacheInsert(&hashers, argb[i + k]); | |
436 } | |
437 } | |
438 // Add to the hash_chain (but cannot add the last pixel). | |
439 if (offset >= 3 && offset != xsize) { | |
440 const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; | |
441 for (k = 2; k < last - 8; k += 2) { | |
442 HashChainInsert(hash_chain, &argb[i + k], i + k); | |
443 } | |
444 for (; k < last; ++k) { | |
445 HashChainInsert(hash_chain, &argb[i + k], i + k); | |
446 } | |
447 } | |
448 i += len; | |
449 } else { | |
450 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); | |
451 HashChainInsert(hash_chain, &argb[i], i); | |
452 ++i; | |
453 --min_matches; | |
454 if (min_matches <= 0) { | |
455 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); | |
456 HashChainInsert(hash_chain, &argb[i], i); | |
457 ++i; | |
458 } | 477 } |
459 } | 478 } |
460 } | 479 i += len; |
461 while (i < pix_count) { | |
462 // Handle the last pixel(s). | |
463 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); | |
464 ++i; | |
465 } | 480 } |
466 | 481 |
467 ok = !refs->error_; | 482 ok = !refs->error_; |
468 Error: | 483 Error: |
469 if (cc_init) VP8LColorCacheClear(&hashers); | 484 if (cc_init) VP8LColorCacheClear(&hashers); |
470 return ok; | 485 return ok; |
471 } | 486 } |
472 | 487 |
473 // ----------------------------------------------------------------------------- | 488 // ----------------------------------------------------------------------------- |
474 | 489 |
475 typedef struct { | 490 typedef struct { |
476 double alpha_[VALUES_IN_BYTE]; | 491 double alpha_[VALUES_IN_BYTE]; |
477 double red_[VALUES_IN_BYTE]; | 492 double red_[VALUES_IN_BYTE]; |
478 double blue_[VALUES_IN_BYTE]; | 493 double blue_[VALUES_IN_BYTE]; |
479 double distance_[NUM_DISTANCE_CODES]; | 494 double distance_[NUM_DISTANCE_CODES]; |
480 double* literal_; | 495 double* literal_; |
481 } CostModel; | 496 } CostModel; |
482 | 497 |
483 static int BackwardReferencesTraceBackwards( | 498 static int BackwardReferencesTraceBackwards( |
484 int xsize, int ysize, const uint32_t* const argb, int quality, | 499 int xsize, int ysize, const uint32_t* const argb, int quality, |
485 int cache_bits, VP8LHashChain* const hash_chain, | 500 int cache_bits, const VP8LHashChain* const hash_chain, |
486 VP8LBackwardRefs* const refs); | 501 VP8LBackwardRefs* const refs); |
487 | 502 |
488 static void ConvertPopulationCountTableToBitEstimates( | 503 static void ConvertPopulationCountTableToBitEstimates( |
489 int num_symbols, const uint32_t population_counts[], double output[]) { | 504 int num_symbols, const uint32_t population_counts[], double output[]) { |
490 uint32_t sum = 0; | 505 uint32_t sum = 0; |
491 int nonzeros = 0; | 506 int nonzeros = 0; |
492 int i; | 507 int i; |
493 for (i = 0; i < num_symbols; ++i) { | 508 for (i = 0; i < num_symbols; ++i) { |
494 sum += population_counts[i]; | 509 sum += population_counts[i]; |
495 if (population_counts[i] > 0) { | 510 if (population_counts[i] > 0) { |
(...skipping 55 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
551 return m->literal_[VALUES_IN_BYTE + code] + extra_bits; | 566 return m->literal_[VALUES_IN_BYTE + code] + extra_bits; |
552 } | 567 } |
553 | 568 |
554 static WEBP_INLINE double GetDistanceCost(const CostModel* const m, | 569 static WEBP_INLINE double GetDistanceCost(const CostModel* const m, |
555 uint32_t distance) { | 570 uint32_t distance) { |
556 int code, extra_bits; | 571 int code, extra_bits; |
557 VP8LPrefixEncodeBits(distance, &code, &extra_bits); | 572 VP8LPrefixEncodeBits(distance, &code, &extra_bits); |
558 return m->distance_[code] + extra_bits; | 573 return m->distance_[code] + extra_bits; |
559 } | 574 } |
560 | 575 |
561 static void AddSingleLiteralWithCostModel( | 576 static void AddSingleLiteralWithCostModel(const uint32_t* const argb, |
562 const uint32_t* const argb, VP8LHashChain* const hash_chain, | 577 VP8LColorCache* const hashers, |
563 VP8LColorCache* const hashers, const CostModel* const cost_model, int idx, | 578 const CostModel* const cost_model, |
564 int is_last, int use_color_cache, double prev_cost, float* const cost, | 579 int idx, int use_color_cache, |
565 uint16_t* const dist_array) { | 580 double prev_cost, float* const cost, |
| 581 uint16_t* const dist_array) { |
566 double cost_val = prev_cost; | 582 double cost_val = prev_cost; |
567 const uint32_t color = argb[0]; | 583 const uint32_t color = argb[0]; |
568 if (!is_last) { | |
569 HashChainInsert(hash_chain, argb, idx); | |
570 } | |
571 if (use_color_cache && VP8LColorCacheContains(hashers, color)) { | 584 if (use_color_cache && VP8LColorCacheContains(hashers, color)) { |
572 const double mul0 = 0.68; | 585 const double mul0 = 0.68; |
573 const int ix = VP8LColorCacheGetIndex(hashers, color); | 586 const int ix = VP8LColorCacheGetIndex(hashers, color); |
574 cost_val += GetCacheCost(cost_model, ix) * mul0; | 587 cost_val += GetCacheCost(cost_model, ix) * mul0; |
575 } else { | 588 } else { |
576 const double mul1 = 0.82; | 589 const double mul1 = 0.82; |
577 if (use_color_cache) VP8LColorCacheInsert(hashers, color); | 590 if (use_color_cache) VP8LColorCacheInsert(hashers, color); |
578 cost_val += GetLiteralCost(cost_model, color) * mul1; | 591 cost_val += GetLiteralCost(cost_model, color) * mul1; |
579 } | 592 } |
580 if (cost[idx] > cost_val) { | 593 if (cost[idx] > cost_val) { |
581 cost[idx] = (float)cost_val; | 594 cost[idx] = (float)cost_val; |
582 dist_array[idx] = 1; // only one is inserted. | 595 dist_array[idx] = 1; // only one is inserted. |
583 } | 596 } |
584 } | 597 } |
585 | 598 |
| 599 // ----------------------------------------------------------------------------- |
| 600 // CostManager and interval handling |
| 601 |
| 602 // Empirical value to avoid high memory consumption but good for performance. |
| 603 #define COST_CACHE_INTERVAL_SIZE_MAX 100 |
| 604 |
| 605 // To perform backward reference every pixel at index index_ is considered and |
| 606 // the cost for the MAX_LENGTH following pixels computed. Those following pixels |
| 607 // at index index_ + k (k from 0 to MAX_LENGTH) have a cost of: |
| 608 // distance_cost_ at index_ + GetLengthCost(cost_model, k) |
| 609 // (named cost) (named cached cost) |
| 610 // and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an |
| 611 // array of size MAX_LENGTH. |
| 612 // Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the |
| 613 // minimal values using intervals, for which lower_ and upper_ bounds are kept. |
| 614 // An interval is defined by the index_ of the pixel that generated it and |
| 615 // is only useful in a range of indices from start_ to end_ (exclusive), i.e. |
| 616 // it contains the minimum value for pixels between start_ and end_. |
| 617 // Intervals are stored in a linked list and ordered by start_. When a new |
| 618 // interval has a better minimum, old intervals are split or removed. |
| 619 typedef struct CostInterval CostInterval; |
| 620 struct CostInterval { |
| 621 double lower_; |
| 622 double upper_; |
| 623 int start_; |
| 624 int end_; |
| 625 double distance_cost_; |
| 626 int index_; |
| 627 CostInterval* previous_; |
| 628 CostInterval* next_; |
| 629 }; |
| 630 |
| 631 // The GetLengthCost(cost_model, k) part of the costs is also bounded for |
| 632 // efficiency in a set of intervals of a different type. |
| 633 // If those intervals are small enough, they are not used for comparison and |
| 634 // written into the costs right away. |
| 635 typedef struct { |
| 636 double lower_; // Lower bound of the interval. |
| 637 double upper_; // Upper bound of the interval. |
| 638 int start_; |
| 639 int end_; // Exclusive. |
| 640 int do_write_; // If !=0, the interval is saved to cost instead of being kept |
| 641 // for comparison. |
| 642 } CostCacheInterval; |
| 643 |
| 644 // This structure is in charge of managing intervals and costs. |
| 645 // It caches the different CostCacheInterval, caches the different |
| 646 // GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose |
| 647 // count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX). |
| 648 #define COST_MANAGER_MAX_FREE_LIST 10 |
| 649 typedef struct { |
| 650 CostInterval* head_; |
| 651 int count_; // The number of stored intervals. |
| 652 CostCacheInterval* cache_intervals_; |
| 653 size_t cache_intervals_size_; |
| 654 double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k). |
| 655 double min_cost_cache_; // The minimum value in cost_cache_[1:]. |
| 656 double max_cost_cache_; // The maximum value in cost_cache_[1:]. |
| 657 float* costs_; |
| 658 uint16_t* dist_array_; |
| 659 // Most of the time, we only need few intervals -> use a free-list, to avoid |
| 660 // fragmentation with small allocs in most common cases. |
| 661 CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST]; |
| 662 CostInterval* free_intervals_; |
| 663 // These are regularly malloc'd remains. This list can't grow larger than than |
| 664 // size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note. |
| 665 CostInterval* recycled_intervals_; |
| 666 // Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends |
| 667 // of the intervals that can have impacted the cost at a pixel. |
| 668 int* interval_ends_; |
| 669 int interval_ends_size_; |
| 670 } CostManager; |
| 671 |
| 672 static int IsCostCacheIntervalWritable(int start, int end) { |
| 673 // 100 is the length for which we consider an interval for comparison, and not |
| 674 // for writing. |
| 675 // The first intervals are very small and go in increasing size. This constant |
| 676 // helps merging them into one big interval (up to index 150/200 usually from |
| 677 // which intervals start getting much bigger). |
| 678 // This value is empirical. |
| 679 return (end - start + 1 < 100); |
| 680 } |
| 681 |
| 682 static void CostIntervalAddToFreeList(CostManager* const manager, |
| 683 CostInterval* const interval) { |
| 684 interval->next_ = manager->free_intervals_; |
| 685 manager->free_intervals_ = interval; |
| 686 } |
| 687 |
| 688 static int CostIntervalIsInFreeList(const CostManager* const manager, |
| 689 const CostInterval* const interval) { |
| 690 return (interval >= &manager->intervals_[0] && |
| 691 interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]); |
| 692 } |
| 693 |
| 694 static void CostManagerInitFreeList(CostManager* const manager) { |
| 695 int i; |
| 696 manager->free_intervals_ = NULL; |
| 697 for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) { |
| 698 CostIntervalAddToFreeList(manager, &manager->intervals_[i]); |
| 699 } |
| 700 } |
| 701 |
| 702 static void DeleteIntervalList(CostManager* const manager, |
| 703 const CostInterval* interval) { |
| 704 while (interval != NULL) { |
| 705 const CostInterval* const next = interval->next_; |
| 706 if (!CostIntervalIsInFreeList(manager, interval)) { |
| 707 WebPSafeFree((void*)interval); |
| 708 } // else: do nothing |
| 709 interval = next; |
| 710 } |
| 711 } |
| 712 |
| 713 static void CostManagerClear(CostManager* const manager) { |
| 714 if (manager == NULL) return; |
| 715 |
| 716 WebPSafeFree(manager->costs_); |
| 717 WebPSafeFree(manager->cache_intervals_); |
| 718 WebPSafeFree(manager->interval_ends_); |
| 719 |
| 720 // Clear the interval lists. |
| 721 DeleteIntervalList(manager, manager->head_); |
| 722 manager->head_ = NULL; |
| 723 DeleteIntervalList(manager, manager->recycled_intervals_); |
| 724 manager->recycled_intervals_ = NULL; |
| 725 |
| 726 // Reset pointers, count_ and cache_intervals_size_. |
| 727 memset(manager, 0, sizeof(*manager)); |
| 728 CostManagerInitFreeList(manager); |
| 729 } |
| 730 |
| 731 static int CostManagerInit(CostManager* const manager, |
| 732 uint16_t* const dist_array, int pix_count, |
| 733 const CostModel* const cost_model) { |
| 734 int i; |
| 735 const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count; |
| 736 // This constant is tied to the cost_model we use. |
| 737 // Empirically, differences between intervals is usually of more than 1. |
| 738 const double min_cost_diff = 0.1; |
| 739 |
| 740 manager->costs_ = NULL; |
| 741 manager->cache_intervals_ = NULL; |
| 742 manager->interval_ends_ = NULL; |
| 743 manager->head_ = NULL; |
| 744 manager->recycled_intervals_ = NULL; |
| 745 manager->count_ = 0; |
| 746 manager->dist_array_ = dist_array; |
| 747 CostManagerInitFreeList(manager); |
| 748 |
| 749 // Fill in the cost_cache_. |
| 750 manager->cache_intervals_size_ = 1; |
| 751 manager->cost_cache_[0] = 0; |
| 752 for (i = 1; i < cost_cache_size; ++i) { |
| 753 manager->cost_cache_[i] = GetLengthCost(cost_model, i); |
| 754 // Get an approximation of the number of bound intervals. |
| 755 if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) > |
| 756 min_cost_diff) { |
| 757 ++manager->cache_intervals_size_; |
| 758 } |
| 759 // Compute the minimum of cost_cache_. |
| 760 if (i == 1) { |
| 761 manager->min_cost_cache_ = manager->cost_cache_[1]; |
| 762 manager->max_cost_cache_ = manager->cost_cache_[1]; |
| 763 } else if (manager->cost_cache_[i] < manager->min_cost_cache_) { |
| 764 manager->min_cost_cache_ = manager->cost_cache_[i]; |
| 765 } else if (manager->cost_cache_[i] > manager->max_cost_cache_) { |
| 766 manager->max_cost_cache_ = manager->cost_cache_[i]; |
| 767 } |
| 768 } |
| 769 |
| 770 // With the current cost models, we have 15 intervals, so we are safe by |
| 771 // setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX. |
| 772 if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) { |
| 773 manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX; |
| 774 } |
| 775 manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc( |
| 776 manager->cache_intervals_size_, sizeof(*manager->cache_intervals_)); |
| 777 if (manager->cache_intervals_ == NULL) { |
| 778 CostManagerClear(manager); |
| 779 return 0; |
| 780 } |
| 781 |
| 782 // Fill in the cache_intervals_. |
| 783 { |
| 784 double cost_prev = -1e38f; // unprobably low initial value |
| 785 CostCacheInterval* prev = NULL; |
| 786 CostCacheInterval* cur = manager->cache_intervals_; |
| 787 const CostCacheInterval* const end = |
| 788 manager->cache_intervals_ + manager->cache_intervals_size_; |
| 789 |
| 790 // Consecutive values in cost_cache_ are compared and if a big enough |
| 791 // difference is found, a new interval is created and bounded. |
| 792 for (i = 0; i < cost_cache_size; ++i) { |
| 793 const double cost_val = manager->cost_cache_[i]; |
| 794 if (i == 0 || |
| 795 (fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) { |
| 796 if (i > 1) { |
| 797 const int is_writable = |
| 798 IsCostCacheIntervalWritable(cur->start_, cur->end_); |
| 799 // Merge with the previous interval if both are writable. |
| 800 if (is_writable && cur != manager->cache_intervals_ && |
| 801 prev->do_write_) { |
| 802 // Update the previous interval. |
| 803 prev->end_ = cur->end_; |
| 804 if (cur->lower_ < prev->lower_) { |
| 805 prev->lower_ = cur->lower_; |
| 806 } else if (cur->upper_ > prev->upper_) { |
| 807 prev->upper_ = cur->upper_; |
| 808 } |
| 809 } else { |
| 810 cur->do_write_ = is_writable; |
| 811 prev = cur; |
| 812 ++cur; |
| 813 } |
| 814 } |
| 815 // Initialize an interval. |
| 816 cur->start_ = i; |
| 817 cur->do_write_ = 0; |
| 818 cur->lower_ = cost_val; |
| 819 cur->upper_ = cost_val; |
| 820 } else { |
| 821 // Update the current interval bounds. |
| 822 if (cost_val < cur->lower_) { |
| 823 cur->lower_ = cost_val; |
| 824 } else if (cost_val > cur->upper_) { |
| 825 cur->upper_ = cost_val; |
| 826 } |
| 827 } |
| 828 cur->end_ = i + 1; |
| 829 cost_prev = cost_val; |
| 830 } |
| 831 manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_; |
| 832 } |
| 833 |
| 834 manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_)); |
| 835 if (manager->costs_ == NULL) { |
| 836 CostManagerClear(manager); |
| 837 return 0; |
| 838 } |
| 839 // Set the initial costs_ high for every pixel as we will keep the minimum. |
| 840 for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f; |
| 841 |
| 842 // The cost at pixel is influenced by the cost intervals from previous pixels. |
| 843 // Let us take the specific case where the offset is the same (which actually |
| 844 // happens a lot in case of uniform regions). |
| 845 // pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i] |
| 846 // pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1] |
| 847 // pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2] |
| 848 // and so on. |
| 849 // A pixel i influences the following length(j) < MAX_LENGTH pixels. What is |
| 850 // the value of j such that pixel i + j cannot influence any of those pixels? |
| 851 // This value is such that: |
| 852 // max of cost_cache_ < j*offset cost + min of cost_cache_ |
| 853 // (pixel i + j 's cost cannot beat the worst cost given by pixel i). |
| 854 // This value will be used to optimize the cost computation in |
| 855 // BackwardReferencesHashChainDistanceOnly. |
| 856 { |
| 857 // The offset cost is computed in GetDistanceCost and has a minimum value of |
| 858 // the minimum in cost_model->distance_. The case where the offset cost is 0 |
| 859 // will be dealt with differently later so we are only interested in the |
| 860 // minimum non-zero offset cost. |
| 861 double offset_cost_min = 0.; |
| 862 int size; |
| 863 for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
| 864 if (cost_model->distance_[i] != 0) { |
| 865 if (offset_cost_min == 0.) { |
| 866 offset_cost_min = cost_model->distance_[i]; |
| 867 } else if (cost_model->distance_[i] < offset_cost_min) { |
| 868 offset_cost_min = cost_model->distance_[i]; |
| 869 } |
| 870 } |
| 871 } |
| 872 // In case all the cost_model->distance_ is 0, the next non-zero cost we |
| 873 // can have is from the extra bit in GetDistanceCost, hence 1. |
| 874 if (offset_cost_min < 1.) offset_cost_min = 1.; |
| 875 |
| 876 size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) / |
| 877 offset_cost_min); |
| 878 // Empirically, we usually end up with a value below 100. |
| 879 if (size > MAX_LENGTH) size = MAX_LENGTH; |
| 880 |
| 881 manager->interval_ends_ = |
| 882 (int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_)); |
| 883 if (manager->interval_ends_ == NULL) { |
| 884 CostManagerClear(manager); |
| 885 return 0; |
| 886 } |
| 887 manager->interval_ends_size_ = size; |
| 888 } |
| 889 |
| 890 return 1; |
| 891 } |
| 892 |
| 893 // Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it |
| 894 // is smaller than the previously computed value. |
| 895 static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index, |
| 896 double distance_cost) { |
| 897 int k = i - index; |
| 898 double cost_tmp; |
| 899 assert(k >= 0 && k < MAX_LENGTH); |
| 900 cost_tmp = distance_cost + manager->cost_cache_[k]; |
| 901 |
| 902 if (manager->costs_[i] > cost_tmp) { |
| 903 manager->costs_[i] = (float)cost_tmp; |
| 904 manager->dist_array_[i] = k + 1; |
| 905 } |
| 906 } |
| 907 |
| 908 // Given the distance_cost for pixel 'index', update the cost for all the pixels |
| 909 // between 'start' and 'end' excluded. |
| 910 static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager, |
| 911 int start, int end, int index, |
| 912 double distance_cost) { |
| 913 int i; |
| 914 for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost); |
| 915 } |
| 916 |
| 917 // Given two intervals, make 'prev' be the previous one of 'next' in 'manager'. |
| 918 static WEBP_INLINE void ConnectIntervals(CostManager* const manager, |
| 919 CostInterval* const prev, |
| 920 CostInterval* const next) { |
| 921 if (prev != NULL) { |
| 922 prev->next_ = next; |
| 923 } else { |
| 924 manager->head_ = next; |
| 925 } |
| 926 |
| 927 if (next != NULL) next->previous_ = prev; |
| 928 } |
| 929 |
| 930 // Pop an interval in the manager. |
| 931 static WEBP_INLINE void PopInterval(CostManager* const manager, |
| 932 CostInterval* const interval) { |
| 933 CostInterval* const next = interval->next_; |
| 934 |
| 935 if (interval == NULL) return; |
| 936 |
| 937 ConnectIntervals(manager, interval->previous_, next); |
| 938 if (CostIntervalIsInFreeList(manager, interval)) { |
| 939 CostIntervalAddToFreeList(manager, interval); |
| 940 } else { // recycle regularly malloc'd intervals too |
| 941 interval->next_ = manager->recycled_intervals_; |
| 942 manager->recycled_intervals_ = interval; |
| 943 } |
| 944 --manager->count_; |
| 945 assert(manager->count_ >= 0); |
| 946 } |
| 947 |
| 948 // Update the cost at index i by going over all the stored intervals that |
| 949 // overlap with i. |
| 950 static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) { |
| 951 CostInterval* current = manager->head_; |
| 952 |
| 953 while (current != NULL && current->start_ <= i) { |
| 954 if (current->end_ <= i) { |
| 955 // We have an outdated interval, remove it. |
| 956 CostInterval* next = current->next_; |
| 957 PopInterval(manager, current); |
| 958 current = next; |
| 959 } else { |
| 960 UpdateCost(manager, i, current->index_, current->distance_cost_); |
| 961 current = current->next_; |
| 962 } |
| 963 } |
| 964 } |
| 965 |
| 966 // Given a current orphan interval and its previous interval, before |
| 967 // it was orphaned (which can be NULL), set it at the right place in the list |
| 968 // of intervals using the start_ ordering and the previous interval as a hint. |
| 969 static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager, |
| 970 CostInterval* const current, |
| 971 CostInterval* previous) { |
| 972 assert(current != NULL); |
| 973 |
| 974 if (previous == NULL) previous = manager->head_; |
| 975 while (previous != NULL && current->start_ < previous->start_) { |
| 976 previous = previous->previous_; |
| 977 } |
| 978 while (previous != NULL && previous->next_ != NULL && |
| 979 previous->next_->start_ < current->start_) { |
| 980 previous = previous->next_; |
| 981 } |
| 982 |
| 983 if (previous != NULL) { |
| 984 ConnectIntervals(manager, current, previous->next_); |
| 985 } else { |
| 986 ConnectIntervals(manager, current, manager->head_); |
| 987 } |
| 988 ConnectIntervals(manager, previous, current); |
| 989 } |
| 990 |
| 991 // Insert an interval in the list contained in the manager by starting at |
| 992 // interval_in as a hint. The intervals are sorted by start_ value. |
| 993 static WEBP_INLINE void InsertInterval(CostManager* const manager, |
| 994 CostInterval* const interval_in, |
| 995 double distance_cost, double lower, |
| 996 double upper, int index, int start, |
| 997 int end) { |
| 998 CostInterval* interval_new; |
| 999 |
| 1000 if (IsCostCacheIntervalWritable(start, end) || |
| 1001 manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) { |
| 1002 // Write down the interval if it is too small. |
| 1003 UpdateCostPerInterval(manager, start, end, index, distance_cost); |
| 1004 return; |
| 1005 } |
| 1006 if (manager->free_intervals_ != NULL) { |
| 1007 interval_new = manager->free_intervals_; |
| 1008 manager->free_intervals_ = interval_new->next_; |
| 1009 } else if (manager->recycled_intervals_ != NULL) { |
| 1010 interval_new = manager->recycled_intervals_; |
| 1011 manager->recycled_intervals_ = interval_new->next_; |
| 1012 } else { // malloc for good |
| 1013 interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new)); |
| 1014 if (interval_new == NULL) { |
| 1015 // Write down the interval if we cannot create it. |
| 1016 UpdateCostPerInterval(manager, start, end, index, distance_cost); |
| 1017 return; |
| 1018 } |
| 1019 } |
| 1020 |
| 1021 interval_new->distance_cost_ = distance_cost; |
| 1022 interval_new->lower_ = lower; |
| 1023 interval_new->upper_ = upper; |
| 1024 interval_new->index_ = index; |
| 1025 interval_new->start_ = start; |
| 1026 interval_new->end_ = end; |
| 1027 PositionOrphanInterval(manager, interval_new, interval_in); |
| 1028 |
| 1029 ++manager->count_; |
| 1030 } |
| 1031 |
| 1032 // When an interval has its start_ or end_ modified, it needs to be |
| 1033 // repositioned in the linked list. |
| 1034 static WEBP_INLINE void RepositionInterval(CostManager* const manager, |
| 1035 CostInterval* const interval) { |
| 1036 if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) { |
| 1037 // Maybe interval has been resized and is small enough to be removed. |
| 1038 UpdateCostPerInterval(manager, interval->start_, interval->end_, |
| 1039 interval->index_, interval->distance_cost_); |
| 1040 PopInterval(manager, interval); |
| 1041 return; |
| 1042 } |
| 1043 |
| 1044 // Early exit if interval is at the right spot. |
| 1045 if ((interval->previous_ == NULL || |
| 1046 interval->previous_->start_ <= interval->start_) && |
| 1047 (interval->next_ == NULL || |
| 1048 interval->start_ <= interval->next_->start_)) { |
| 1049 return; |
| 1050 } |
| 1051 |
| 1052 ConnectIntervals(manager, interval->previous_, interval->next_); |
| 1053 PositionOrphanInterval(manager, interval, interval->previous_); |
| 1054 } |
| 1055 |
| 1056 // Given a new cost interval defined by its start at index, its last value and |
| 1057 // distance_cost, add its contributions to the previous intervals and costs. |
| 1058 // If handling the interval or one of its subintervals becomes to heavy, its |
| 1059 // contribution is added to the costs right away. |
| 1060 static WEBP_INLINE void PushInterval(CostManager* const manager, |
| 1061 double distance_cost, int index, |
| 1062 int last) { |
| 1063 size_t i; |
| 1064 CostInterval* interval = manager->head_; |
| 1065 CostInterval* interval_next; |
| 1066 const CostCacheInterval* const cost_cache_intervals = |
| 1067 manager->cache_intervals_; |
| 1068 |
| 1069 for (i = 0; i < manager->cache_intervals_size_ && |
| 1070 cost_cache_intervals[i].start_ < last; |
| 1071 ++i) { |
| 1072 // Define the intersection of the ith interval with the new one. |
| 1073 int start = index + cost_cache_intervals[i].start_; |
| 1074 const int end = index + (cost_cache_intervals[i].end_ > last |
| 1075 ? last |
| 1076 : cost_cache_intervals[i].end_); |
| 1077 const double lower_in = cost_cache_intervals[i].lower_; |
| 1078 const double upper_in = cost_cache_intervals[i].upper_; |
| 1079 const double lower_full_in = distance_cost + lower_in; |
| 1080 const double upper_full_in = distance_cost + upper_in; |
| 1081 |
| 1082 if (cost_cache_intervals[i].do_write_) { |
| 1083 UpdateCostPerInterval(manager, start, end, index, distance_cost); |
| 1084 continue; |
| 1085 } |
| 1086 |
| 1087 for (; interval != NULL && interval->start_ < end && start < end; |
| 1088 interval = interval_next) { |
| 1089 const double lower_full_interval = |
| 1090 interval->distance_cost_ + interval->lower_; |
| 1091 const double upper_full_interval = |
| 1092 interval->distance_cost_ + interval->upper_; |
| 1093 |
| 1094 interval_next = interval->next_; |
| 1095 |
| 1096 // Make sure we have some overlap |
| 1097 if (start >= interval->end_) continue; |
| 1098 |
| 1099 if (lower_full_in >= upper_full_interval) { |
| 1100 // When intervals are represented, the lower, the better. |
| 1101 // [**********************************************************] |
| 1102 // start end |
| 1103 // [----------------------------------] |
| 1104 // interval->start_ interval->end_ |
| 1105 // If we are worse than what we already have, add whatever we have so |
| 1106 // far up to interval. |
| 1107 const int start_new = interval->end_; |
| 1108 InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
| 1109 index, start, interval->start_); |
| 1110 start = start_new; |
| 1111 continue; |
| 1112 } |
| 1113 |
| 1114 // We know the two intervals intersect. |
| 1115 if (upper_full_in >= lower_full_interval) { |
| 1116 // There is no clear cut on which is best, so let's keep both. |
| 1117 // [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********] |
| 1118 // start interval->start_ interval->end_ end |
| 1119 // OR |
| 1120 // [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------] |
| 1121 // start interval->start_ end interval->end_ |
| 1122 const int end_new = (interval->end_ <= end) ? interval->end_ : end; |
| 1123 InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
| 1124 index, start, end_new); |
| 1125 start = end_new; |
| 1126 } else if (start <= interval->start_ && interval->end_ <= end) { |
| 1127 // [----------------------------------] |
| 1128 // interval->start_ interval->end_ |
| 1129 // [**************************************************************] |
| 1130 // start end |
| 1131 // We can safely remove the old interval as it is fully included. |
| 1132 PopInterval(manager, interval); |
| 1133 } else { |
| 1134 if (interval->start_ <= start && end <= interval->end_) { |
| 1135 // [--------------------------------------------------------------] |
| 1136 // interval->start_ interval->end_ |
| 1137 // [*****************************] |
| 1138 // start end |
| 1139 // We have to split the old interval as it fully contains the new one. |
| 1140 const int end_original = interval->end_; |
| 1141 interval->end_ = start; |
| 1142 InsertInterval(manager, interval, interval->distance_cost_, |
| 1143 interval->lower_, interval->upper_, interval->index_, |
| 1144 end, end_original); |
| 1145 } else if (interval->start_ < start) { |
| 1146 // [------------------------------------] |
| 1147 // interval->start_ interval->end_ |
| 1148 // [*****************************] |
| 1149 // start end |
| 1150 interval->end_ = start; |
| 1151 } else { |
| 1152 // [------------------------------------] |
| 1153 // interval->start_ interval->end_ |
| 1154 // [*****************************] |
| 1155 // start end |
| 1156 interval->start_ = end; |
| 1157 } |
| 1158 |
| 1159 // The interval has been modified, we need to reposition it or write it. |
| 1160 RepositionInterval(manager, interval); |
| 1161 } |
| 1162 } |
| 1163 // Insert the remaining interval from start to end. |
| 1164 InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index, |
| 1165 start, end); |
| 1166 } |
| 1167 } |
| 1168 |
586 static int BackwardReferencesHashChainDistanceOnly( | 1169 static int BackwardReferencesHashChainDistanceOnly( |
587 int xsize, int ysize, const uint32_t* const argb, | 1170 int xsize, int ysize, const uint32_t* const argb, int quality, |
588 int quality, int cache_bits, VP8LHashChain* const hash_chain, | 1171 int cache_bits, const VP8LHashChain* const hash_chain, |
589 VP8LBackwardRefs* const refs, uint16_t* const dist_array) { | 1172 VP8LBackwardRefs* const refs, uint16_t* const dist_array) { |
590 int i; | 1173 int i; |
591 int ok = 0; | 1174 int ok = 0; |
592 int cc_init = 0; | 1175 int cc_init = 0; |
593 const int pix_count = xsize * ysize; | 1176 const int pix_count = xsize * ysize; |
594 const int use_color_cache = (cache_bits > 0); | 1177 const int use_color_cache = (cache_bits > 0); |
595 float* const cost = | |
596 (float*)WebPSafeMalloc(pix_count, sizeof(*cost)); | |
597 const size_t literal_array_size = sizeof(double) * | 1178 const size_t literal_array_size = sizeof(double) * |
598 (NUM_LITERAL_CODES + NUM_LENGTH_CODES + | 1179 (NUM_LITERAL_CODES + NUM_LENGTH_CODES + |
599 ((cache_bits > 0) ? (1 << cache_bits) : 0)); | 1180 ((cache_bits > 0) ? (1 << cache_bits) : 0)); |
600 const size_t cost_model_size = sizeof(CostModel) + literal_array_size; | 1181 const size_t cost_model_size = sizeof(CostModel) + literal_array_size; |
601 CostModel* const cost_model = | 1182 CostModel* const cost_model = |
602 (CostModel*)WebPSafeMalloc(1ULL, cost_model_size); | 1183 (CostModel*)WebPSafeCalloc(1ULL, cost_model_size); |
603 VP8LColorCache hashers; | 1184 VP8LColorCache hashers; |
604 const int skip_length = 32 + quality; | 1185 const int skip_length = 32 + quality; |
605 const int skip_min_distance_code = 2; | 1186 const int skip_min_distance_code = 2; |
606 int iter_max = GetMaxItersForQuality(quality, 0); | 1187 CostManager* cost_manager = |
607 const int window_size = GetWindowSizeForHashChain(quality, xsize); | 1188 (CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager)); |
608 | 1189 |
609 if (cost == NULL || cost_model == NULL) goto Error; | 1190 if (cost_model == NULL || cost_manager == NULL) goto Error; |
610 | 1191 |
611 cost_model->literal_ = (double*)(cost_model + 1); | 1192 cost_model->literal_ = (double*)(cost_model + 1); |
612 if (use_color_cache) { | 1193 if (use_color_cache) { |
613 cc_init = VP8LColorCacheInit(&hashers, cache_bits); | 1194 cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
614 if (!cc_init) goto Error; | 1195 if (!cc_init) goto Error; |
615 } | 1196 } |
616 | 1197 |
617 if (!CostModelBuild(cost_model, cache_bits, refs)) { | 1198 if (!CostModelBuild(cost_model, cache_bits, refs)) { |
618 goto Error; | 1199 goto Error; |
619 } | 1200 } |
620 | 1201 |
621 for (i = 0; i < pix_count; ++i) cost[i] = 1e38f; | 1202 if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) { |
| 1203 goto Error; |
| 1204 } |
622 | 1205 |
623 // We loop one pixel at a time, but store all currently best points to | 1206 // We loop one pixel at a time, but store all currently best points to |
624 // non-processed locations from this point. | 1207 // non-processed locations from this point. |
625 dist_array[0] = 0; | 1208 dist_array[0] = 0; |
626 HashChainReset(hash_chain); | |
627 // Add first pixel as literal. | 1209 // Add first pixel as literal. |
628 AddSingleLiteralWithCostModel(argb + 0, hash_chain, &hashers, cost_model, 0, | 1210 AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0, |
629 0, use_color_cache, 0.0, cost, dist_array); | 1211 use_color_cache, 0.0, cost_manager->costs_, |
| 1212 dist_array); |
| 1213 |
630 for (i = 1; i < pix_count - 1; ++i) { | 1214 for (i = 1; i < pix_count - 1; ++i) { |
631 int offset = 0; | 1215 int offset = 0, len = 0; |
632 int len = 0; | 1216 double prev_cost = cost_manager->costs_[i - 1]; |
633 double prev_cost = cost[i - 1]; | 1217 HashChainFindCopy(hash_chain, i, &offset, &len); |
634 const int max_len = MaxFindCopyLength(pix_count - i); | |
635 HashChainFindCopy(hash_chain, i, argb, max_len, window_size, | |
636 iter_max, &offset, &len); | |
637 if (len >= MIN_LENGTH) { | 1218 if (len >= MIN_LENGTH) { |
638 const int code = DistanceToPlaneCode(xsize, offset); | 1219 const int code = DistanceToPlaneCode(xsize, offset); |
639 const double distance_cost = | 1220 const double offset_cost = GetDistanceCost(cost_model, code); |
640 prev_cost + GetDistanceCost(cost_model, code); | 1221 const int first_i = i; |
641 int k; | 1222 int j_max = 0, interval_ends_index = 0; |
642 for (k = 1; k < len; ++k) { | 1223 const int is_offset_zero = (offset_cost == 0.); |
643 const double cost_val = distance_cost + GetLengthCost(cost_model, k); | 1224 |
644 if (cost[i + k] > cost_val) { | 1225 if (!is_offset_zero) { |
645 cost[i + k] = (float)cost_val; | 1226 j_max = (int)ceil( |
646 dist_array[i + k] = k + 1; | 1227 (cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) / |
| 1228 offset_cost); |
| 1229 if (j_max < 1) { |
| 1230 j_max = 1; |
| 1231 } else if (j_max > cost_manager->interval_ends_size_ - 1) { |
| 1232 // This could only happen in the case of MAX_LENGTH. |
| 1233 j_max = cost_manager->interval_ends_size_ - 1; |
647 } | 1234 } |
| 1235 } // else j_max is unused anyway. |
| 1236 |
| 1237 // Instead of considering all contributions from a pixel i by calling: |
| 1238 // PushInterval(cost_manager, prev_cost + offset_cost, i, len); |
| 1239 // we optimize these contributions in case offset_cost stays the same for |
| 1240 // consecutive pixels. This describes a set of pixels similar to a |
| 1241 // previous set (e.g. constant color regions). |
| 1242 for (; i < pix_count - 1; ++i) { |
| 1243 int offset_next, len_next; |
| 1244 prev_cost = cost_manager->costs_[i - 1]; |
| 1245 |
| 1246 if (is_offset_zero) { |
| 1247 // No optimization can be made so we just push all of the |
| 1248 // contributions from i. |
| 1249 PushInterval(cost_manager, prev_cost, i, len); |
| 1250 } else { |
| 1251 // j_max is chosen as the smallest j such that: |
| 1252 // max of cost_cache_ < j*offset cost + min of cost_cache_ |
| 1253 // Therefore, the pixel influenced by i-j_max, cannot be influenced |
| 1254 // by i. Only the costs after the end of what i contributed need to be |
| 1255 // updated. cost_manager->interval_ends_ is a circular buffer that |
| 1256 // stores those ends. |
| 1257 const double distance_cost = prev_cost + offset_cost; |
| 1258 int j = cost_manager->interval_ends_[interval_ends_index]; |
| 1259 if (i - first_i <= j_max || |
| 1260 !IsCostCacheIntervalWritable(j, i + len)) { |
| 1261 PushInterval(cost_manager, distance_cost, i, len); |
| 1262 } else { |
| 1263 for (; j < i + len; ++j) { |
| 1264 UpdateCost(cost_manager, j, i, distance_cost); |
| 1265 } |
| 1266 } |
| 1267 // Store the new end in the circular buffer. |
| 1268 assert(interval_ends_index < cost_manager->interval_ends_size_); |
| 1269 cost_manager->interval_ends_[interval_ends_index] = i + len; |
| 1270 if (++interval_ends_index > j_max) interval_ends_index = 0; |
| 1271 } |
| 1272 |
| 1273 // Check whether i is the last pixel to consider, as it is handled |
| 1274 // differently. |
| 1275 if (i + 1 >= pix_count - 1) break; |
| 1276 HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next); |
| 1277 if (offset_next != offset) break; |
| 1278 len = len_next; |
| 1279 UpdateCostPerIndex(cost_manager, i); |
| 1280 AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
| 1281 use_color_cache, prev_cost, |
| 1282 cost_manager->costs_, dist_array); |
648 } | 1283 } |
| 1284 // Submit the last pixel. |
| 1285 UpdateCostPerIndex(cost_manager, i + 1); |
| 1286 |
649 // This if is for speedup only. It roughly doubles the speed, and | 1287 // This if is for speedup only. It roughly doubles the speed, and |
650 // makes compression worse by .1 %. | 1288 // makes compression worse by .1 %. |
651 if (len >= skip_length && code <= skip_min_distance_code) { | 1289 if (len >= skip_length && code <= skip_min_distance_code) { |
652 // Long copy for short distances, let's skip the middle | 1290 // Long copy for short distances, let's skip the middle |
653 // lookups for better copies. | 1291 // lookups for better copies. |
654 // 1) insert the hashes. | 1292 // 1) insert the hashes. |
655 if (use_color_cache) { | 1293 if (use_color_cache) { |
| 1294 int k; |
656 for (k = 0; k < len; ++k) { | 1295 for (k = 0; k < len; ++k) { |
657 VP8LColorCacheInsert(&hashers, argb[i + k]); | 1296 VP8LColorCacheInsert(&hashers, argb[i + k]); |
658 } | 1297 } |
659 } | 1298 } |
660 // 2) Add to the hash_chain (but cannot add the last pixel) | 1299 // 2) jump. |
661 { | 1300 { |
662 const int last = (len + i < pix_count - 1) ? len + i | 1301 const int i_next = i + len - 1; // for loop does ++i, thus -1 here. |
663 : pix_count - 1; | 1302 for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1); |
664 for (k = i; k < last; ++k) { | 1303 i = i_next; |
665 HashChainInsert(hash_chain, &argb[k], k); | |
666 } | |
667 } | 1304 } |
668 // 3) jump. | |
669 i += len - 1; // for loop does ++i, thus -1 here. | |
670 goto next_symbol; | 1305 goto next_symbol; |
671 } | 1306 } |
672 if (len != MIN_LENGTH) { | 1307 if (len > MIN_LENGTH) { |
673 int code_min_length; | 1308 int code_min_length; |
674 double cost_total; | 1309 double cost_total; |
675 HashChainFindOffset(hash_chain, i, argb, MIN_LENGTH, window_size, | 1310 offset = HashChainFindOffset(hash_chain, i); |
676 &offset); | |
677 code_min_length = DistanceToPlaneCode(xsize, offset); | 1311 code_min_length = DistanceToPlaneCode(xsize, offset); |
678 cost_total = prev_cost + | 1312 cost_total = prev_cost + |
679 GetDistanceCost(cost_model, code_min_length) + | 1313 GetDistanceCost(cost_model, code_min_length) + |
680 GetLengthCost(cost_model, 1); | 1314 GetLengthCost(cost_model, 1); |
681 if (cost[i + 1] > cost_total) { | 1315 if (cost_manager->costs_[i + 1] > cost_total) { |
682 cost[i + 1] = (float)cost_total; | 1316 cost_manager->costs_[i + 1] = (float)cost_total; |
683 dist_array[i + 1] = 2; | 1317 dist_array[i + 1] = 2; |
684 } | 1318 } |
685 } | 1319 } |
| 1320 } else { // len < MIN_LENGTH |
| 1321 UpdateCostPerIndex(cost_manager, i + 1); |
686 } | 1322 } |
687 AddSingleLiteralWithCostModel(argb + i, hash_chain, &hashers, cost_model, i, | 1323 |
688 0, use_color_cache, prev_cost, cost, | 1324 AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
689 dist_array); | 1325 use_color_cache, prev_cost, |
| 1326 cost_manager->costs_, dist_array); |
| 1327 |
690 next_symbol: ; | 1328 next_symbol: ; |
691 } | 1329 } |
692 // Handle the last pixel. | 1330 // Handle the last pixel. |
693 if (i == (pix_count - 1)) { | 1331 if (i == (pix_count - 1)) { |
694 AddSingleLiteralWithCostModel(argb + i, hash_chain, &hashers, cost_model, i, | 1332 AddSingleLiteralWithCostModel( |
695 1, use_color_cache, cost[pix_count - 2], cost, | 1333 argb + i, &hashers, cost_model, i, use_color_cache, |
696 dist_array); | 1334 cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array); |
697 } | 1335 } |
| 1336 |
698 ok = !refs->error_; | 1337 ok = !refs->error_; |
699 Error: | 1338 Error: |
700 if (cc_init) VP8LColorCacheClear(&hashers); | 1339 if (cc_init) VP8LColorCacheClear(&hashers); |
| 1340 CostManagerClear(cost_manager); |
701 WebPSafeFree(cost_model); | 1341 WebPSafeFree(cost_model); |
702 WebPSafeFree(cost); | 1342 WebPSafeFree(cost_manager); |
703 return ok; | 1343 return ok; |
704 } | 1344 } |
705 | 1345 |
706 // We pack the path at the end of *dist_array and return | 1346 // We pack the path at the end of *dist_array and return |
707 // a pointer to this part of the array. Example: | 1347 // a pointer to this part of the array. Example: |
708 // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] | 1348 // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] |
709 static void TraceBackwards(uint16_t* const dist_array, | 1349 static void TraceBackwards(uint16_t* const dist_array, |
710 int dist_array_size, | 1350 int dist_array_size, |
711 uint16_t** const chosen_path, | 1351 uint16_t** const chosen_path, |
712 int* const chosen_path_size) { | 1352 int* const chosen_path_size) { |
713 uint16_t* path = dist_array + dist_array_size; | 1353 uint16_t* path = dist_array + dist_array_size; |
714 uint16_t* cur = dist_array + dist_array_size - 1; | 1354 uint16_t* cur = dist_array + dist_array_size - 1; |
715 while (cur >= dist_array) { | 1355 while (cur >= dist_array) { |
716 const int k = *cur; | 1356 const int k = *cur; |
717 --path; | 1357 --path; |
718 *path = k; | 1358 *path = k; |
719 cur -= k; | 1359 cur -= k; |
720 } | 1360 } |
721 *chosen_path = path; | 1361 *chosen_path = path; |
722 *chosen_path_size = (int)(dist_array + dist_array_size - path); | 1362 *chosen_path_size = (int)(dist_array + dist_array_size - path); |
723 } | 1363 } |
724 | 1364 |
725 static int BackwardReferencesHashChainFollowChosenPath( | 1365 static int BackwardReferencesHashChainFollowChosenPath( |
726 int xsize, int ysize, const uint32_t* const argb, | 1366 const uint32_t* const argb, int cache_bits, |
727 int quality, int cache_bits, | |
728 const uint16_t* const chosen_path, int chosen_path_size, | 1367 const uint16_t* const chosen_path, int chosen_path_size, |
729 VP8LHashChain* const hash_chain, | 1368 const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { |
730 VP8LBackwardRefs* const refs) { | |
731 const int pix_count = xsize * ysize; | |
732 const int use_color_cache = (cache_bits > 0); | 1369 const int use_color_cache = (cache_bits > 0); |
733 int ix; | 1370 int ix; |
734 int i = 0; | 1371 int i = 0; |
735 int ok = 0; | 1372 int ok = 0; |
736 int cc_init = 0; | 1373 int cc_init = 0; |
737 const int window_size = GetWindowSizeForHashChain(quality, xsize); | |
738 VP8LColorCache hashers; | 1374 VP8LColorCache hashers; |
739 | 1375 |
740 if (use_color_cache) { | 1376 if (use_color_cache) { |
741 cc_init = VP8LColorCacheInit(&hashers, cache_bits); | 1377 cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
742 if (!cc_init) goto Error; | 1378 if (!cc_init) goto Error; |
743 } | 1379 } |
744 | 1380 |
745 ClearBackwardRefs(refs); | 1381 ClearBackwardRefs(refs); |
746 HashChainReset(hash_chain); | |
747 for (ix = 0; ix < chosen_path_size; ++ix) { | 1382 for (ix = 0; ix < chosen_path_size; ++ix) { |
748 int offset = 0; | |
749 const int len = chosen_path[ix]; | 1383 const int len = chosen_path[ix]; |
750 if (len != 1) { | 1384 if (len != 1) { |
751 int k; | 1385 int k; |
752 HashChainFindOffset(hash_chain, i, argb, len, window_size, &offset); | 1386 const int offset = HashChainFindOffset(hash_chain, i); |
753 BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); | 1387 BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
754 if (use_color_cache) { | 1388 if (use_color_cache) { |
755 for (k = 0; k < len; ++k) { | 1389 for (k = 0; k < len; ++k) { |
756 VP8LColorCacheInsert(&hashers, argb[i + k]); | 1390 VP8LColorCacheInsert(&hashers, argb[i + k]); |
757 } | 1391 } |
758 } | 1392 } |
759 { | |
760 const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; | |
761 for (k = 0; k < last; ++k) { | |
762 HashChainInsert(hash_chain, &argb[i + k], i + k); | |
763 } | |
764 } | |
765 i += len; | 1393 i += len; |
766 } else { | 1394 } else { |
767 PixOrCopy v; | 1395 PixOrCopy v; |
768 if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) { | 1396 if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) { |
769 // push pixel as a color cache index | 1397 // push pixel as a color cache index |
770 const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]); | 1398 const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]); |
771 v = PixOrCopyCreateCacheIdx(idx); | 1399 v = PixOrCopyCreateCacheIdx(idx); |
772 } else { | 1400 } else { |
773 if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); | 1401 if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); |
774 v = PixOrCopyCreateLiteral(argb[i]); | 1402 v = PixOrCopyCreateLiteral(argb[i]); |
775 } | 1403 } |
776 BackwardRefsCursorAdd(refs, v); | 1404 BackwardRefsCursorAdd(refs, v); |
777 if (i + 1 < pix_count) { | |
778 HashChainInsert(hash_chain, &argb[i], i); | |
779 } | |
780 ++i; | 1405 ++i; |
781 } | 1406 } |
782 } | 1407 } |
783 ok = !refs->error_; | 1408 ok = !refs->error_; |
784 Error: | 1409 Error: |
785 if (cc_init) VP8LColorCacheClear(&hashers); | 1410 if (cc_init) VP8LColorCacheClear(&hashers); |
786 return ok; | 1411 return ok; |
787 } | 1412 } |
788 | 1413 |
789 // Returns 1 on success. | 1414 // Returns 1 on success. |
790 static int BackwardReferencesTraceBackwards(int xsize, int ysize, | 1415 static int BackwardReferencesTraceBackwards( |
791 const uint32_t* const argb, | 1416 int xsize, int ysize, const uint32_t* const argb, int quality, |
792 int quality, int cache_bits, | 1417 int cache_bits, const VP8LHashChain* const hash_chain, |
793 VP8LHashChain* const hash_chain, | 1418 VP8LBackwardRefs* const refs) { |
794 VP8LBackwardRefs* const refs) { | |
795 int ok = 0; | 1419 int ok = 0; |
796 const int dist_array_size = xsize * ysize; | 1420 const int dist_array_size = xsize * ysize; |
797 uint16_t* chosen_path = NULL; | 1421 uint16_t* chosen_path = NULL; |
798 int chosen_path_size = 0; | 1422 int chosen_path_size = 0; |
799 uint16_t* dist_array = | 1423 uint16_t* dist_array = |
800 (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array)); | 1424 (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array)); |
801 | 1425 |
802 if (dist_array == NULL) goto Error; | 1426 if (dist_array == NULL) goto Error; |
803 | 1427 |
804 if (!BackwardReferencesHashChainDistanceOnly( | 1428 if (!BackwardReferencesHashChainDistanceOnly( |
805 xsize, ysize, argb, quality, cache_bits, hash_chain, | 1429 xsize, ysize, argb, quality, cache_bits, hash_chain, |
806 refs, dist_array)) { | 1430 refs, dist_array)) { |
807 goto Error; | 1431 goto Error; |
808 } | 1432 } |
809 TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); | 1433 TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); |
810 if (!BackwardReferencesHashChainFollowChosenPath( | 1434 if (!BackwardReferencesHashChainFollowChosenPath( |
811 xsize, ysize, argb, quality, cache_bits, chosen_path, chosen_path_size, | 1435 argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) { |
812 hash_chain, refs)) { | |
813 goto Error; | 1436 goto Error; |
814 } | 1437 } |
815 ok = 1; | 1438 ok = 1; |
816 Error: | 1439 Error: |
817 WebPSafeFree(dist_array); | 1440 WebPSafeFree(dist_array); |
818 return ok; | 1441 return ok; |
819 } | 1442 } |
820 | 1443 |
821 static void BackwardReferences2DLocality(int xsize, | 1444 static void BackwardReferences2DLocality(int xsize, |
822 const VP8LBackwardRefs* const refs) { | 1445 const VP8LBackwardRefs* const refs) { |
(...skipping 67 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
890 return entropy; | 1513 return entropy; |
891 } | 1514 } |
892 | 1515 |
893 // Evaluate optimal cache bits for the local color cache. | 1516 // Evaluate optimal cache bits for the local color cache. |
894 // The input *best_cache_bits sets the maximum cache bits to use (passing 0 | 1517 // The input *best_cache_bits sets the maximum cache bits to use (passing 0 |
895 // implies disabling the local color cache). The local color cache is also | 1518 // implies disabling the local color cache). The local color cache is also |
896 // disabled for the lower (<= 25) quality. | 1519 // disabled for the lower (<= 25) quality. |
897 // Returns 0 in case of memory error. | 1520 // Returns 0 in case of memory error. |
898 static int CalculateBestCacheSize(const uint32_t* const argb, | 1521 static int CalculateBestCacheSize(const uint32_t* const argb, |
899 int xsize, int ysize, int quality, | 1522 int xsize, int ysize, int quality, |
900 VP8LHashChain* const hash_chain, | 1523 const VP8LHashChain* const hash_chain, |
901 VP8LBackwardRefs* const refs, | 1524 VP8LBackwardRefs* const refs, |
902 int* const lz77_computed, | 1525 int* const lz77_computed, |
903 int* const best_cache_bits) { | 1526 int* const best_cache_bits) { |
904 int eval_low = 1; | 1527 int eval_low = 1; |
905 int eval_high = 1; | 1528 int eval_high = 1; |
906 double entropy_low = MAX_ENTROPY; | 1529 double entropy_low = MAX_ENTROPY; |
907 double entropy_high = MAX_ENTROPY; | 1530 double entropy_high = MAX_ENTROPY; |
908 const double cost_mul = 5e-4; | 1531 const double cost_mul = 5e-4; |
909 int cache_bits_low = 0; | 1532 int cache_bits_low = 0; |
910 int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits; | 1533 int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits; |
911 | 1534 |
912 assert(cache_bits_high <= MAX_COLOR_CACHE_BITS); | 1535 assert(cache_bits_high <= MAX_COLOR_CACHE_BITS); |
913 | 1536 |
914 *lz77_computed = 0; | 1537 *lz77_computed = 0; |
915 if (cache_bits_high == 0) { | 1538 if (cache_bits_high == 0) { |
916 *best_cache_bits = 0; | 1539 *best_cache_bits = 0; |
917 // Local color cache is disabled. | 1540 // Local color cache is disabled. |
918 return 1; | 1541 return 1; |
919 } | 1542 } |
920 if (!BackwardReferencesLz77(xsize, ysize, argb, cache_bits_low, quality, 0, | 1543 if (!BackwardReferencesLz77(xsize, ysize, argb, cache_bits_low, hash_chain, |
921 hash_chain, refs)) { | 1544 refs)) { |
922 return 0; | 1545 return 0; |
923 } | 1546 } |
924 // Do a binary search to find the optimal entropy for cache_bits. | 1547 // Do a binary search to find the optimal entropy for cache_bits. |
925 while (eval_low || eval_high) { | 1548 while (eval_low || eval_high) { |
926 if (eval_low) { | 1549 if (eval_low) { |
927 entropy_low = ComputeCacheEntropy(argb, refs, cache_bits_low); | 1550 entropy_low = ComputeCacheEntropy(argb, refs, cache_bits_low); |
928 entropy_low += entropy_low * cache_bits_low * cost_mul; | 1551 entropy_low += entropy_low * cache_bits_low * cost_mul; |
929 eval_low = 0; | 1552 eval_low = 0; |
930 } | 1553 } |
931 if (eval_high) { | 1554 if (eval_high) { |
(...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
976 VP8LColorCacheInsert(&hashers, argb[pixel_index++]); | 1599 VP8LColorCacheInsert(&hashers, argb[pixel_index++]); |
977 } | 1600 } |
978 } | 1601 } |
979 VP8LRefsCursorNext(&c); | 1602 VP8LRefsCursorNext(&c); |
980 } | 1603 } |
981 VP8LColorCacheClear(&hashers); | 1604 VP8LColorCacheClear(&hashers); |
982 return 1; | 1605 return 1; |
983 } | 1606 } |
984 | 1607 |
985 static VP8LBackwardRefs* GetBackwardReferencesLowEffort( | 1608 static VP8LBackwardRefs* GetBackwardReferencesLowEffort( |
986 int width, int height, const uint32_t* const argb, int quality, | 1609 int width, int height, const uint32_t* const argb, |
987 int* const cache_bits, VP8LHashChain* const hash_chain, | 1610 int* const cache_bits, const VP8LHashChain* const hash_chain, |
988 VP8LBackwardRefs refs_array[2]) { | 1611 VP8LBackwardRefs refs_array[2]) { |
989 VP8LBackwardRefs* refs_lz77 = &refs_array[0]; | 1612 VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
990 *cache_bits = 0; | 1613 *cache_bits = 0; |
991 if (!BackwardReferencesLz77(width, height, argb, 0, quality, | 1614 if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) { |
992 1 /* Low effort. */, hash_chain, refs_lz77)) { | |
993 return NULL; | 1615 return NULL; |
994 } | 1616 } |
995 BackwardReferences2DLocality(width, refs_lz77); | 1617 BackwardReferences2DLocality(width, refs_lz77); |
996 return refs_lz77; | 1618 return refs_lz77; |
997 } | 1619 } |
998 | 1620 |
999 static VP8LBackwardRefs* GetBackwardReferences( | 1621 static VP8LBackwardRefs* GetBackwardReferences( |
1000 int width, int height, const uint32_t* const argb, int quality, | 1622 int width, int height, const uint32_t* const argb, int quality, |
1001 int* const cache_bits, VP8LHashChain* const hash_chain, | 1623 int* const cache_bits, const VP8LHashChain* const hash_chain, |
1002 VP8LBackwardRefs refs_array[2]) { | 1624 VP8LBackwardRefs refs_array[2]) { |
1003 int lz77_is_useful; | 1625 int lz77_is_useful; |
1004 int lz77_computed; | 1626 int lz77_computed; |
1005 double bit_cost_lz77, bit_cost_rle; | 1627 double bit_cost_lz77, bit_cost_rle; |
1006 VP8LBackwardRefs* best = NULL; | 1628 VP8LBackwardRefs* best = NULL; |
1007 VP8LBackwardRefs* refs_lz77 = &refs_array[0]; | 1629 VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
1008 VP8LBackwardRefs* refs_rle = &refs_array[1]; | 1630 VP8LBackwardRefs* refs_rle = &refs_array[1]; |
1009 VP8LHistogram* histo = NULL; | 1631 VP8LHistogram* histo = NULL; |
1010 | 1632 |
1011 if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain, | 1633 if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain, |
1012 refs_lz77, &lz77_computed, cache_bits)) { | 1634 refs_lz77, &lz77_computed, cache_bits)) { |
1013 goto Error; | 1635 goto Error; |
1014 } | 1636 } |
1015 | 1637 |
1016 if (lz77_computed) { | 1638 if (lz77_computed) { |
1017 // Transform refs_lz77 for the optimized cache_bits. | 1639 // Transform refs_lz77 for the optimized cache_bits. |
1018 if (*cache_bits > 0) { | 1640 if (*cache_bits > 0) { |
1019 if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) { | 1641 if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) { |
1020 goto Error; | 1642 goto Error; |
1021 } | 1643 } |
1022 } | 1644 } |
1023 } else { | 1645 } else { |
1024 if (!BackwardReferencesLz77(width, height, argb, *cache_bits, quality, | 1646 if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain, |
1025 0 /* Low effort. */, hash_chain, refs_lz77)) { | 1647 refs_lz77)) { |
1026 goto Error; | 1648 goto Error; |
1027 } | 1649 } |
1028 } | 1650 } |
1029 | 1651 |
1030 if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) { | 1652 if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) { |
1031 goto Error; | 1653 goto Error; |
1032 } | 1654 } |
1033 | 1655 |
1034 histo = VP8LAllocateHistogram(*cache_bits); | 1656 histo = VP8LAllocateHistogram(*cache_bits); |
1035 if (histo == NULL) goto Error; | 1657 if (histo == NULL) goto Error; |
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1074 | 1696 |
1075 BackwardReferences2DLocality(width, best); | 1697 BackwardReferences2DLocality(width, best); |
1076 | 1698 |
1077 Error: | 1699 Error: |
1078 VP8LFreeHistogram(histo); | 1700 VP8LFreeHistogram(histo); |
1079 return best; | 1701 return best; |
1080 } | 1702 } |
1081 | 1703 |
1082 VP8LBackwardRefs* VP8LGetBackwardReferences( | 1704 VP8LBackwardRefs* VP8LGetBackwardReferences( |
1083 int width, int height, const uint32_t* const argb, int quality, | 1705 int width, int height, const uint32_t* const argb, int quality, |
1084 int low_effort, int* const cache_bits, VP8LHashChain* const hash_chain, | 1706 int low_effort, int* const cache_bits, |
1085 VP8LBackwardRefs refs_array[2]) { | 1707 const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { |
1086 if (low_effort) { | 1708 if (low_effort) { |
1087 return GetBackwardReferencesLowEffort(width, height, argb, quality, | 1709 return GetBackwardReferencesLowEffort(width, height, argb, cache_bits, |
1088 cache_bits, hash_chain, refs_array); | 1710 hash_chain, refs_array); |
1089 } else { | 1711 } else { |
1090 return GetBackwardReferences(width, height, argb, quality, cache_bits, | 1712 return GetBackwardReferences(width, height, argb, quality, cache_bits, |
1091 hash_chain, refs_array); | 1713 hash_chain, refs_array); |
1092 } | 1714 } |
1093 } | 1715 } |
OLD | NEW |