OLD | NEW |
---|---|
1 //===- subzero/src/IceLoopAnalyzer.cpp - Loop Analysis --------------------===// | 1 //===- subzero/src/IceLoopAnalyzer.cpp - Loop Analysis --------------------===// |
2 // | 2 // |
3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
4 // | 4 // |
5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
7 // | 7 // |
8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
9 /// | 9 /// |
10 /// \file | 10 /// \file |
11 /// \brief Implements the loop analysis on the CFG. | 11 /// \brief Implements the loop analysis on the CFG. |
12 /// | 12 /// |
13 //===----------------------------------------------------------------------===// | 13 //===----------------------------------------------------------------------===// |
14 #include "IceLoopAnalyzer.h" | 14 #include "IceLoopAnalyzer.h" |
15 | 15 |
16 #include "IceCfg.h" | 16 #include "IceCfg.h" |
17 #include "IceCfgNode.h" | 17 #include "IceCfgNode.h" |
18 | 18 |
19 #include <algorithm> | |
20 | |
19 namespace Ice { | 21 namespace Ice { |
22 class LoopAnalyzer { | |
23 public: | |
24 LoopAnalyzer() = default; | |
Jim Stichnoth
2016/07/19 20:22:56
Also delete or "default" the default copy ctor and
| |
25 explicit LoopAnalyzer(Cfg *Func); | |
20 | 26 |
27 /// Use Tarjan's strongly connected components algorithm to identify outermost | |
28 /// to innermost loops. By deleting the head of the loop from the graph, inner | |
29 /// loops can be found. This assumes that the head node is not shared between | |
30 /// loops but instead all paths to the head come from 'continue' constructs. | |
31 /// | |
32 /// This only computes the loop nest depth within the function and does not | |
33 /// take into account whether the function was called from within a loop. | |
34 // TODO(ascull): this currently uses a extension of Tarjan's algorithm with | |
35 // is bounded linear. ncbray suggests another algorithm which is linear in | |
36 // practice but not bounded linear. I think it also finds dominators. | |
37 // http://lenx.100871.net/papers/loop-SAS.pdf | |
38 | |
39 CfgVector<CfgUnorderedSet<SizeT>> getLoopBodies() { return Loops; } | |
40 | |
41 private: | |
42 void computeLoopNestDepth(); | |
43 | |
44 using IndexT = uint32_t; | |
45 static constexpr IndexT UndefinedIndex = 0; | |
46 static constexpr IndexT FirstDefinedIndex = 1; | |
47 | |
48 // TODO(ascull): classify the other fields | |
49 class LoopNode { | |
50 LoopNode() = delete; | |
51 LoopNode operator=(const LoopNode &) = delete; | |
52 | |
53 public: | |
54 explicit LoopNode(CfgNode *BB) : BB(BB) { reset(); } | |
55 LoopNode(const LoopNode &) = default; | |
56 | |
57 void reset(); | |
58 | |
59 NodeList::const_iterator successorsEnd() const; | |
60 NodeList::const_iterator currentSuccessor() const { return Succ; } | |
61 void nextSuccessor() { ++Succ; } | |
62 | |
63 void visit(IndexT VisitIndex) { Index = LowLink = VisitIndex; } | |
64 bool isVisited() const { return Index != UndefinedIndex; } | |
65 IndexT getIndex() const { return Index; } | |
66 | |
67 void tryLink(IndexT NewLink) { | |
68 if (NewLink < LowLink) | |
69 LowLink = NewLink; | |
70 } | |
71 IndexT getLowLink() const { return LowLink; } | |
72 | |
73 void setOnStack(bool NewValue = true) { OnStack = NewValue; } | |
74 bool isOnStack() const { return OnStack; } | |
75 | |
76 void setDeleted() { Deleted = true; } | |
77 bool isDeleted() const { return Deleted; } | |
78 | |
79 void incrementLoopNestDepth(); | |
80 bool hasSelfEdge() const; | |
81 | |
82 CfgNode *getNode() { return BB; } | |
83 | |
84 private: | |
85 CfgNode *BB; | |
86 NodeList::const_iterator Succ; | |
87 IndexT Index; | |
88 IndexT LowLink; | |
89 bool OnStack; | |
90 bool Deleted = false; | |
91 }; | |
92 | |
93 using LoopNodeList = CfgVector<LoopNode>; | |
94 using LoopNodePtrList = CfgVector<LoopNode *>; | |
95 | |
96 /// Process the node as part as part of Tarjan's algorithm and return either a | |
97 /// node to recurse into or nullptr when the node has been fully processed. | |
98 LoopNode *processNode(LoopNode &Node); | |
99 | |
100 /// The function to analyze for loops. | |
101 Cfg *const Func; | |
102 /// A list of decorated nodes in the same order as Func->getNodes() which | |
103 /// means the node's index will also be valid in this list. | |
104 LoopNodeList AllNodes; | |
105 /// This is used as a replacement for the call stack. | |
106 LoopNodePtrList WorkStack; | |
107 /// Track which loop a node belongs to. | |
108 LoopNodePtrList LoopStack; | |
109 /// The index to assign to the next visited node. | |
110 IndexT NextIndex = FirstDefinedIndex; | |
111 /// The number of nodes which have been marked deleted. This is used to track | |
112 /// when the iteration should end. | |
113 LoopNodePtrList::size_type NumDeletedNodes = 0; | |
114 | |
115 /// All the Loops, in descending order of size | |
116 CfgVector<CfgUnorderedSet<SizeT>> Loops; | |
117 }; | |
21 void LoopAnalyzer::LoopNode::reset() { | 118 void LoopAnalyzer::LoopNode::reset() { |
22 if (Deleted) | 119 if (Deleted) |
23 return; | 120 return; |
24 Succ = BB->getOutEdges().begin(); | 121 Succ = BB->getOutEdges().begin(); |
25 Index = LowLink = UndefinedIndex; | 122 Index = LowLink = UndefinedIndex; |
26 OnStack = false; | 123 OnStack = false; |
27 } | 124 } |
28 | 125 |
29 NodeList::const_iterator LoopAnalyzer::LoopNode::successorsEnd() const { | 126 NodeList::const_iterator LoopAnalyzer::LoopNode::successorsEnd() const { |
30 return BB->getOutEdges().end(); | 127 return BB->getOutEdges().end(); |
(...skipping 104 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
135 // Reaching here means a loop has been found! It consists of the nodes on the | 232 // Reaching here means a loop has been found! It consists of the nodes on the |
136 // top of the stack, down until the current node being processed, Node, is | 233 // top of the stack, down until the current node being processed, Node, is |
137 // found. | 234 // found. |
138 for (auto It = LoopStack.rbegin(); It != LoopStack.rend(); ++It) { | 235 for (auto It = LoopStack.rbegin(); It != LoopStack.rend(); ++It) { |
139 (*It)->setOnStack(false); | 236 (*It)->setOnStack(false); |
140 (*It)->incrementLoopNestDepth(); | 237 (*It)->incrementLoopNestDepth(); |
141 // Remove the loop from the stack and delete the head node | 238 // Remove the loop from the stack and delete the head node |
142 if (*It == &Node) { | 239 if (*It == &Node) { |
143 (*It)->setDeleted(); | 240 (*It)->setDeleted(); |
144 ++NumDeletedNodes; | 241 ++NumDeletedNodes; |
145 CfgVector<SizeT> LoopNodes; | 242 CfgUnorderedSet<SizeT> LoopNodes; |
146 for (auto LoopIter = It.base() - 1; LoopIter != LoopStack.end(); | 243 for (auto LoopIter = It.base() - 1; LoopIter != LoopStack.end(); |
147 ++LoopIter) { | 244 ++LoopIter) { |
148 LoopNodes.push_back((*LoopIter)->getNode()->getIndex()); | 245 LoopNodes.insert((*LoopIter)->getNode()->getIndex()); |
149 } | 246 } |
150 Loops[(*It)->getNode()->getIndex()] = LoopNodes; | 247 Loops.push_back(LoopNodes); |
151 LoopStack.erase(It.base() - 1, LoopStack.end()); | 248 LoopStack.erase(It.base() - 1, LoopStack.end()); |
152 break; | 249 break; |
153 } | 250 } |
154 } | 251 } |
155 | 252 |
156 return nullptr; | 253 return nullptr; |
157 } | 254 } |
255 CfgVector<Loop> ComputeLoopInfo(Cfg *Func) { | |
256 auto LoopBodies = LoopAnalyzer(Func).getLoopBodies(); | |
257 | |
258 CfgVector<Loop> Loops; | |
259 Loops.reserve(LoopBodies.size()); | |
260 std::sort( | |
261 LoopBodies.begin(), LoopBodies.end(), | |
262 [](const CfgUnorderedSet<SizeT> &A, const CfgUnorderedSet<SizeT> &B) { | |
263 return A.size() > B.size(); | |
264 }); | |
265 for (auto &LoopBody : LoopBodies) { | |
266 CfgNode *Header = nullptr; | |
267 bool IsSimpleLoop = true; | |
268 for (auto NodeIndex : LoopBody) { | |
269 CfgNode *Cur = Func->getNodes()[NodeIndex]; | |
270 for (auto *Prev : Cur->getInEdges()) { | |
271 if (LoopBody.find(Prev->getIndex()) == | |
272 LoopBody.end()) { // coming from outside | |
273 if (Header == nullptr) { | |
274 Header = Cur; | |
275 } else { | |
276 Header = nullptr; | |
277 IsSimpleLoop = false; | |
278 break; | |
279 } | |
280 } | |
281 } | |
282 if (!IsSimpleLoop) { | |
283 break; | |
284 } | |
285 } | |
286 if (!IsSimpleLoop) | |
287 continue; // To next potential loop | |
288 | |
289 CfgNode *PreHeader = nullptr; | |
290 for (auto *Prev : Header->getInEdges()) { | |
291 if (LoopBody.find(Prev->getIndex()) == LoopBody.end()) { | |
292 if (PreHeader == nullptr) { | |
293 PreHeader = Prev; | |
294 } else { | |
295 PreHeader = nullptr; | |
296 break; | |
297 } | |
298 } | |
299 } | |
300 | |
301 Loops.emplace_back(Header, PreHeader, LoopBody); | |
302 } | |
303 return Loops; | |
304 } | |
158 | 305 |
159 } // end of namespace Ice | 306 } // end of namespace Ice |
OLD | NEW |