OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #ifndef SkColorXform_opts_DEFINED | 8 #ifndef SkColorXform_opts_DEFINED |
9 #define SkColorXform_opts_DEFINED | 9 #define SkColorXform_opts_DEFINED |
10 | 10 |
11 #include "SkNx.h" | 11 #include "SkNx.h" |
12 #include "SkColorPriv.h" | 12 #include "SkColorPriv.h" |
| 13 #include "SkHalf.h" |
13 #include "SkSRGB.h" | 14 #include "SkSRGB.h" |
| 15 #include "SkTemplates.h" |
14 | 16 |
15 namespace SK_OPTS_NS { | 17 namespace SK_OPTS_NS { |
16 | 18 |
17 static Sk4f linear_to_2dot2(const Sk4f& x) { | 19 static Sk4f linear_to_2dot2(const Sk4f& x) { |
18 // x^(29/64) is a very good approximation of the true value, x^(1/2.2). | 20 // x^(29/64) is a very good approximation of the true value, x^(1/2.2). |
19 auto x2 = x.rsqrt(), // x^(-1/2) | 21 auto x2 = x.rsqrt(), // x^(-1/2) |
20 x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32) | 22 x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32) |
21 x64 = x32.rsqrt(); // x^(+1/64) | 23 x64 = x32.rsqrt(); // x^(+1/64) |
22 | 24 |
23 // 29 = 32 - 2 - 1 | 25 // 29 = 32 - 2 - 1 |
24 return 255.0f * x2.invert() * x32 * x64.invert(); | 26 return 255.0f * x2.invert() * x32 * x64.invert(); |
25 } | 27 } |
26 | 28 |
27 static Sk4f clamp_0_to_255(const Sk4f& x) { | 29 static Sk4f clamp_0_to_255(const Sk4f& x) { |
28 // The order of the arguments is important here. We want to make sure that
NaN | 30 // The order of the arguments is important here. We want to make sure that
NaN |
29 // clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN. | 31 // clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN. |
30 return Sk4f::Min(Sk4f::Max(x, 0.0f), 255.0f); | 32 return Sk4f::Min(Sk4f::Max(x, 0.0f), 255.0f); |
31 } | 33 } |
32 | 34 |
33 enum DstGamma { | 35 enum DstGamma { |
| 36 // 8888 |
34 kSRGB_DstGamma, | 37 kSRGB_DstGamma, |
35 k2Dot2_DstGamma, | 38 k2Dot2_DstGamma, |
36 kTable_DstGamma, | 39 kTable_DstGamma, |
| 40 |
| 41 // F16 |
| 42 kLinear_DstGamma, |
37 }; | 43 }; |
38 | 44 |
39 template <DstGamma kDstGamma> | 45 template <DstGamma kDstGamma> |
40 static void color_xform_RGB1(uint32_t* dst, const uint32_t* src, int len, | 46 static void color_xform_RGB1(void* dst, const uint32_t* src, int len, |
41 const float* const srcTables[3], const float matrix
[16], | 47 const float* const srcTables[3], const float matrix
[16], |
42 const uint8_t* const dstTables[3]) { | 48 const uint8_t* const dstTables[3]) { |
43 Sk4f rXgXbX = Sk4f::Load(matrix + 0), | 49 Sk4f rXgXbX = Sk4f::Load(matrix + 0), |
44 rYgYbY = Sk4f::Load(matrix + 4), | 50 rYgYbY = Sk4f::Load(matrix + 4), |
45 rZgZbZ = Sk4f::Load(matrix + 8); | 51 rZgZbZ = Sk4f::Load(matrix + 8); |
46 | 52 |
47 if (len >= 4) { | 53 if (len >= 4) { |
48 Sk4f reds, greens, blues; | 54 Sk4f reds, greens, blues; |
49 auto load_next_4 = [&reds, &greens, &blues, &src, &len, &srcTables] { | 55 auto load_next_4 = [&reds, &greens, &blues, &src, &len, &srcTables] { |
50 reds = Sk4f{srcTables[0][(src[0] >> 0) & 0xFF], | 56 reds = Sk4f{srcTables[0][(src[0] >> 0) & 0xFF], |
(...skipping 26 matching lines...) Expand all Loading... |
77 (kSRGB_DstGamma == kDstGamma) ? sk_linear_to_srgb : line
ar_to_2dot2; | 83 (kSRGB_DstGamma == kDstGamma) ? sk_linear_to_srgb : line
ar_to_2dot2; |
78 | 84 |
79 dstReds = linear_to_curve(dstReds); | 85 dstReds = linear_to_curve(dstReds); |
80 dstGreens = linear_to_curve(dstGreens); | 86 dstGreens = linear_to_curve(dstGreens); |
81 dstBlues = linear_to_curve(dstBlues); | 87 dstBlues = linear_to_curve(dstBlues); |
82 | 88 |
83 dstReds = clamp_0_to_255(dstReds); | 89 dstReds = clamp_0_to_255(dstReds); |
84 dstGreens = clamp_0_to_255(dstGreens); | 90 dstGreens = clamp_0_to_255(dstGreens); |
85 dstBlues = clamp_0_to_255(dstBlues); | 91 dstBlues = clamp_0_to_255(dstBlues); |
86 | 92 |
87 auto rgba = (Sk4f_round(dstReds) ) | 93 auto rgba = (Sk4f_round(dstReds) << SK_R32_SHIFT) |
88 | (Sk4f_round(dstGreens) << 8) | 94 | (Sk4f_round(dstGreens) << SK_G32_SHIFT) |
89 | (Sk4f_round(dstBlues) << 16) | 95 | (Sk4f_round(dstBlues) << SK_B32_SHIFT) |
90 | (Sk4i{ 0xFF << 24}); | 96 | (Sk4i{ 0xFF << SK_A32_SHIFT}); |
91 rgba.store(dst); | 97 rgba.store((uint32_t*) dst); |
92 } else { | 98 |
| 99 dst = SkTAddOffset<void>(dst, 4 * sizeof(uint32_t)); |
| 100 } else if (kTable_DstGamma == kDstGamma) { |
93 Sk4f scaledReds = Sk4f::Min(Sk4f::Max(1023.0f * dstReds, 0.0
f), 1023.0f); | 101 Sk4f scaledReds = Sk4f::Min(Sk4f::Max(1023.0f * dstReds, 0.0
f), 1023.0f); |
94 Sk4f scaledGreens = Sk4f::Min(Sk4f::Max(1023.0f * dstGreens, 0.0
f), 1023.0f); | 102 Sk4f scaledGreens = Sk4f::Min(Sk4f::Max(1023.0f * dstGreens, 0.0
f), 1023.0f); |
95 Sk4f scaledBlues = Sk4f::Min(Sk4f::Max(1023.0f * dstBlues, 0.0
f), 1023.0f); | 103 Sk4f scaledBlues = Sk4f::Min(Sk4f::Max(1023.0f * dstBlues, 0.0
f), 1023.0f); |
96 | 104 |
97 Sk4i indicesReds = Sk4f_round(scaledReds); | 105 Sk4i indicesReds = Sk4f_round(scaledReds); |
98 Sk4i indicesGreens = Sk4f_round(scaledGreens); | 106 Sk4i indicesGreens = Sk4f_round(scaledGreens); |
99 Sk4i indicesBlues = Sk4f_round(scaledBlues); | 107 Sk4i indicesBlues = Sk4f_round(scaledBlues); |
100 | 108 |
101 dst[0] = dstTables[0][indicesReds [0]] | 109 uint32_t* dst32 = (uint32_t*) dst; |
102 | dstTables[1][indicesGreens[0]] << 8 | 110 dst32[0] = dstTables[0][indicesReds [0]] << SK_R32_SHIFT |
103 | dstTables[2][indicesBlues [0]] << 16 | 111 | dstTables[1][indicesGreens[0]] << SK_G32_SHIFT |
104 | 0xFF << 24; | 112 | dstTables[2][indicesBlues [0]] << SK_B32_SHIFT |
105 dst[1] = dstTables[0][indicesReds [1]] | 113 | 0xFF << SK_A32_SHIFT; |
106 | dstTables[1][indicesGreens[1]] << 8 | 114 dst32[1] = dstTables[0][indicesReds [1]] << SK_R32_SHIFT |
107 | dstTables[2][indicesBlues [1]] << 16 | 115 | dstTables[1][indicesGreens[1]] << SK_G32_SHIFT |
108 | 0xFF << 24; | 116 | dstTables[2][indicesBlues [1]] << SK_B32_SHIFT |
109 dst[2] = dstTables[0][indicesReds [2]] | 117 | 0xFF << SK_A32_SHIFT; |
110 | dstTables[1][indicesGreens[2]] << 8 | 118 dst32[2] = dstTables[0][indicesReds [2]] << SK_R32_SHIFT |
111 | dstTables[2][indicesBlues [2]] << 16 | 119 | dstTables[1][indicesGreens[2]] << SK_G32_SHIFT |
112 | 0xFF << 24; | 120 | dstTables[2][indicesBlues [2]] << SK_B32_SHIFT |
113 dst[3] = dstTables[0][indicesReds [3]] | 121 | 0xFF << SK_A32_SHIFT; |
114 | dstTables[1][indicesGreens[3]] << 8 | 122 dst32[3] = dstTables[0][indicesReds [3]] << SK_R32_SHIFT |
115 | dstTables[2][indicesBlues [3]] << 16 | 123 | dstTables[1][indicesGreens[3]] << SK_G32_SHIFT |
116 | 0xFF << 24; | 124 | dstTables[2][indicesBlues [3]] << SK_B32_SHIFT |
| 125 | 0xFF << SK_A32_SHIFT; |
| 126 |
| 127 dst = SkTAddOffset<void>(dst, 4 * sizeof(uint32_t)); |
| 128 } else { |
| 129 // FIXME (msarett): |
| 130 // Can we do better here? Should we store half floats as planar
? |
| 131 // Should we write Intel/Arm specific code? Should we add a tra
nspose |
| 132 // function to SkNx? Should we rewrite the algorithm to be inte
rleaved? |
| 133 uint64_t* dst64 = (uint64_t*) dst; |
| 134 dst64[0] = SkFloatToHalf_finite(Sk4f(dstReds[0], dstGreens[0], d
stBlues[0], 1.0f)); |
| 135 dst64[1] = SkFloatToHalf_finite(Sk4f(dstReds[1], dstGreens[1], d
stBlues[1], 1.0f)); |
| 136 dst64[2] = SkFloatToHalf_finite(Sk4f(dstReds[2], dstGreens[2], d
stBlues[2], 1.0f)); |
| 137 dst64[3] = SkFloatToHalf_finite(Sk4f(dstReds[3], dstGreens[3], d
stBlues[3], 1.0f)); |
| 138 |
| 139 dst = SkTAddOffset<void>(dst, 4 * sizeof(uint64_t)); |
117 } | 140 } |
118 | |
119 dst += 4; | |
120 }; | 141 }; |
121 | 142 |
122 load_next_4(); | 143 load_next_4(); |
123 | 144 |
124 while (len >= 4) { | 145 while (len >= 4) { |
125 transform_4(); | 146 transform_4(); |
126 load_next_4(); | 147 load_next_4(); |
127 store_4(); | 148 store_4(); |
128 } | 149 } |
129 | 150 |
130 transform_4(); | 151 transform_4(); |
131 store_4(); | 152 store_4(); |
132 } | 153 } |
133 | 154 |
134 while (len > 0) { | 155 while (len > 0) { |
135 // Splat r,g,b across a register each. | 156 // Splat r,g,b across a register each. |
136 auto r = Sk4f{srcTables[0][(*src >> 0) & 0xFF]}, | 157 auto r = Sk4f{srcTables[0][(*src >> 0) & 0xFF]}, |
137 g = Sk4f{srcTables[1][(*src >> 8) & 0xFF]}, | 158 g = Sk4f{srcTables[1][(*src >> 8) & 0xFF]}, |
138 b = Sk4f{srcTables[2][(*src >> 16) & 0xFF]}; | 159 b = Sk4f{srcTables[2][(*src >> 16) & 0xFF]}; |
139 | 160 |
140 // Apply transformation matrix to dst gamut. | |
141 auto dstPixel = rXgXbX*r + rYgYbY*g + rZgZbZ*b; | 161 auto dstPixel = rXgXbX*r + rYgYbY*g + rZgZbZ*b; |
142 | 162 |
143 if (kSRGB_DstGamma == kDstGamma || k2Dot2_DstGamma == kDstGamma) { | 163 if (kSRGB_DstGamma == kDstGamma || k2Dot2_DstGamma == kDstGamma) { |
144 Sk4f (*linear_to_curve)(const Sk4f&) = | 164 Sk4f (*linear_to_curve)(const Sk4f&) = |
145 (kSRGB_DstGamma == kDstGamma) ? sk_linear_to_srgb : linear_t
o_2dot2; | 165 (kSRGB_DstGamma == kDstGamma) ? sk_linear_to_srgb : linear_t
o_2dot2; |
146 | 166 |
147 dstPixel = linear_to_curve(dstPixel); | 167 dstPixel = linear_to_curve(dstPixel); |
148 | 168 |
149 dstPixel = clamp_0_to_255(dstPixel); | 169 dstPixel = clamp_0_to_255(dstPixel); |
150 | 170 |
151 uint32_t rgba; | 171 uint32_t rgba; |
152 SkNx_cast<uint8_t>(Sk4f_round(dstPixel)).store(&rgba); | 172 SkNx_cast<uint8_t>(Sk4f_round(dstPixel)).store(&rgba); |
153 rgba |= 0xFF000000; | 173 rgba |= 0xFF000000; |
154 *dst = rgba; | 174 *((uint32_t*) dst) = SkSwizzle_RGBA_to_PMColor(rgba); |
155 } else { | 175 dst = SkTAddOffset<void>(dst, sizeof(uint32_t)); |
| 176 } else if (kTable_DstGamma == kDstGamma) { |
156 Sk4f scaledPixel = Sk4f::Min(Sk4f::Max(1023.0f * dstPixel, 0.0f), 10
23.0f); | 177 Sk4f scaledPixel = Sk4f::Min(Sk4f::Max(1023.0f * dstPixel, 0.0f), 10
23.0f); |
157 | 178 |
158 Sk4i indices = Sk4f_round(scaledPixel); | 179 Sk4i indices = Sk4f_round(scaledPixel); |
159 | 180 |
160 *dst = dstTables[0][indices[0]] | 181 *((uint32_t*) dst) = dstTables[0][indices[0]] << SK_R32_SHIFT |
161 | dstTables[1][indices[1]] << 8 | 182 | dstTables[1][indices[1]] << SK_G32_SHIFT |
162 | dstTables[2][indices[2]] << 16 | 183 | dstTables[2][indices[2]] << SK_B32_SHIFT |
163 | 0xFF << 24; | 184 | 0xFF << SK_A32_SHIFT; |
| 185 |
| 186 dst = SkTAddOffset<void>(dst, sizeof(uint32_t)); |
| 187 } else { |
| 188 uint64_t rgba = SkFloatToHalf_finite(dstPixel); |
| 189 |
| 190 // Set alpha to 1.0 |
| 191 rgba |= 0x3C00000000000000; |
| 192 *((uint64_t*) dst) = rgba; |
| 193 dst = SkTAddOffset<void>(dst, sizeof(uint64_t)); |
164 } | 194 } |
165 | 195 |
166 dst += 1; | |
167 src += 1; | 196 src += 1; |
168 len -= 1; | 197 len -= 1; |
169 } | 198 } |
170 } | 199 } |
171 | 200 |
172 static void color_xform_RGB1_to_2dot2(uint32_t* dst, const uint32_t* src, int le
n, | 201 static void color_xform_RGB1_to_2dot2(uint32_t* dst, const uint32_t* src, int le
n, |
173 const float* const srcTables[3], const flo
at matrix[16]) { | 202 const float* const srcTables[3], const flo
at matrix[12]) { |
174 color_xform_RGB1<k2Dot2_DstGamma>(dst, src, len, srcTables, matrix, nullptr)
; | 203 color_xform_RGB1<k2Dot2_DstGamma>(dst, src, len, srcTables, matrix, nullptr)
; |
175 } | 204 } |
176 | 205 |
177 static void color_xform_RGB1_to_srgb(uint32_t* dst, const uint32_t* src, int len
, | 206 static void color_xform_RGB1_to_srgb(uint32_t* dst, const uint32_t* src, int len
, |
178 const float* const srcTables[3], const floa
t matrix[16]) { | 207 const float* const srcTables[3], const floa
t matrix[12]) { |
179 color_xform_RGB1<kSRGB_DstGamma>(dst, src, len, srcTables, matrix, nullptr); | 208 color_xform_RGB1<kSRGB_DstGamma>(dst, src, len, srcTables, matrix, nullptr); |
180 } | 209 } |
181 | 210 |
182 static void color_xform_RGB1_to_table(uint32_t* dst, const uint32_t* src, int le
n, | 211 static void color_xform_RGB1_to_table(uint32_t* dst, const uint32_t* src, int le
n, |
183 const float* const srcTables[3], const flo
at matrix[16], | 212 const float* const srcTables[3], const flo
at matrix[12], |
184 const uint8_t* const dstTables[3]) { | 213 const uint8_t* const dstTables[3]) { |
185 color_xform_RGB1<kTable_DstGamma>(dst, src, len, srcTables, matrix, dstTable
s); | 214 color_xform_RGB1<kTable_DstGamma>(dst, src, len, srcTables, matrix, dstTable
s); |
186 } | 215 } |
187 | 216 |
| 217 static void color_xform_RGB1_to_linear(uint64_t* dst, const uint32_t* src, int l
en, |
| 218 const float* const srcTables[3], const fl
oat matrix[12]) { |
| 219 color_xform_RGB1<kLinear_DstGamma>(dst, src, len, srcTables, matrix, nullptr
); |
| 220 } |
| 221 |
188 } // namespace SK_OPTS_NS | 222 } // namespace SK_OPTS_NS |
189 | 223 |
190 #endif // SkColorXform_opts_DEFINED | 224 #endif // SkColorXform_opts_DEFINED |
OLD | NEW |