| Index: src/core/SkHalf.h
|
| diff --git a/src/core/SkHalf.h b/src/core/SkHalf.h
|
| index 5f5575ae1aeaede7f1fd6bde72c8df549f8557bf..2f2ed66c6a64016ee0ae512f92c2876298f2988e 100644
|
| --- a/src/core/SkHalf.h
|
| +++ b/src/core/SkHalf.h
|
| @@ -24,10 +24,10 @@ typedef uint16_t SkHalf;
|
| float SkHalfToFloat(SkHalf h);
|
| SkHalf SkFloatToHalf(float f);
|
|
|
| -// Convert between half and single precision floating point, but pull any dirty
|
| -// trick we can to make it faster as long as it's correct enough for values in [0,1].
|
| -static inline Sk4f SkHalfToFloat_01(uint64_t);
|
| -static inline uint64_t SkFloatToHalf_01(const Sk4f&);
|
| +// Convert between half and single precision floating point,
|
| +// assuming inputs and outputs are both finite.
|
| +static inline Sk4f SkHalfToFloat_finite(uint64_t);
|
| +static inline uint64_t SkFloatToHalf_finite(const Sk4f&);
|
|
|
| // ~~~~~~~~~~~ impl ~~~~~~~~~~~~~~ //
|
|
|
| @@ -36,7 +36,7 @@ static inline uint64_t SkFloatToHalf_01(const Sk4f&);
|
|
|
| // GCC 4.9 lacks the intrinsics to use ARMv8 f16<->f32 instructions, so we use inline assembly.
|
|
|
| -static inline Sk4f SkHalfToFloat_01(uint64_t hs) {
|
| +static inline Sk4f SkHalfToFloat_finite(uint64_t hs) {
|
| #if !defined(SKNX_NO_SIMD) && defined(SK_CPU_ARM64)
|
| float32x4_t fs;
|
| asm ("fmov %d[fs], %[hs] \n" // vcreate_f16(hs)
|
| @@ -44,53 +44,28 @@ static inline Sk4f SkHalfToFloat_01(uint64_t hs) {
|
| : [fs] "=w" (fs) // =w: write-only NEON register
|
| : [hs] "r" (hs)); // r: read-only 64-bit general register
|
| return fs;
|
| -
|
| -#elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON)
|
| - // NEON makes this pretty easy:
|
| - // - denormals are 10-bit * 2^-14 == 24-bit fixed point;
|
| - // - handle normals the same way as in SSE: align mantissa, then rebias exponent.
|
| - uint32x4_t h = vmovl_u16(vcreate_u16(hs)),
|
| - is_denorm = vcltq_u32(h, vdupq_n_u32(1<<10));
|
| - float32x4_t denorm = vcvtq_n_f32_u32(h, 24),
|
| - norm = vreinterpretq_f32_u32(vaddq_u32(vshlq_n_u32(h, 13),
|
| - vdupq_n_u32((127-15) << 23)));
|
| - return vbslq_f32(is_denorm, denorm, norm);
|
| -
|
| -#elif !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
| - // If our input is a normal 16-bit float, things are pretty easy:
|
| - // - shift left by 13 to put the mantissa in the right place;
|
| - // - the exponent is wrong, but it just needs to be rebiased;
|
| - // - re-bias the exponent from 15-bias to 127-bias by adding (127-15).
|
| -
|
| - // If our input is denormalized, we're going to do the same steps, plus a few more fix ups:
|
| - // - the input is h = K*2^-14, for some 10-bit fixed point K in [0,1);
|
| - // - by shifting left 13 and adding (127-15) to the exponent, we constructed the float value
|
| - // 2^-15*(1+K);
|
| - // - we'd need to subtract 2^-15 and multiply by 2 to get back to K*2^-14, or equivallently
|
| - // multiply by 2 then subtract 2^-14.
|
| - //
|
| - // - We'll work that multiply by 2 into the rebias, by adding 1 more to the exponent.
|
| - // - Conveniently, this leaves that rebias constant 2^-14, exactly what we want to subtract.
|
| -
|
| - __m128i h = _mm_unpacklo_epi16(_mm_loadl_epi64((const __m128i*)&hs), _mm_setzero_si128());
|
| - const __m128i is_denorm = _mm_cmplt_epi32(h, _mm_set1_epi32(1<<10));
|
| -
|
| - __m128i rebias = _mm_set1_epi32((127-15) << 23);
|
| - rebias = _mm_add_epi32(rebias, _mm_and_si128(is_denorm, _mm_set1_epi32(1<<23)));
|
| -
|
| - __m128i f = _mm_add_epi32(_mm_slli_epi32(h, 13), rebias);
|
| - return _mm_sub_ps(_mm_castsi128_ps(f),
|
| - _mm_castsi128_ps(_mm_and_si128(is_denorm, rebias)));
|
| #else
|
| - float fs[4];
|
| - for (int i = 0; i < 4; i++) {
|
| - fs[i] = SkHalfToFloat(hs >> (i*16));
|
| - }
|
| - return Sk4f::Load(fs);
|
| + Sk4i bits = SkNx_cast<int>(Sk4h::Load(&hs)), // Expand to 32 bit.
|
| + sign = bits & 0x00008000, // Save the sign bit for later...
|
| + positive = bits ^ sign, // ...but strip it off for now.
|
| + is_denorm = positive < (1<<10); // Exponent == 0?
|
| +
|
| + // For normal half floats, extend the mantissa by 13 zero bits,
|
| + // then adjust the exponent from 15 bias to 127 bias.
|
| + Sk4i norm = (positive << 13) + ((127 - 15) << 23);
|
| +
|
| + // For denorm half floats, mask in the exponent-only float K that turns our
|
| + // denorm value V*2^-14 into a normalized float K + V*2^-14. Then subtract off K.
|
| + const Sk4i K = ((127-15) + (23-10) + 1) << 23;
|
| + Sk4i mask_K = positive | K;
|
| + Sk4f denorm = Sk4f::Load(&mask_K) - Sk4f::Load(&K);
|
| +
|
| + Sk4i merged = (sign << 16) | is_denorm.thenElse(Sk4i::Load(&denorm), norm);
|
| + return Sk4f::Load(&merged);
|
| #endif
|
| }
|
|
|
| -static inline uint64_t SkFloatToHalf_01(const Sk4f& fs) {
|
| +static inline uint64_t SkFloatToHalf_finite(const Sk4f& fs) {
|
| uint64_t r;
|
| #if !defined(SKNX_NO_SIMD) && defined(SK_CPU_ARM64)
|
| float32x4_t vec = fs.fVec;
|
| @@ -98,25 +73,25 @@ static inline uint64_t SkFloatToHalf_01(const Sk4f& fs) {
|
| "fmov %[r], %d[vec] \n" // vst1_f16(&r, ...)
|
| : [r] "=r" (r) // =r: write-only 64-bit general register
|
| , [vec] "+w" (vec)); // +w: read-write NEON register
|
| -
|
| -// TODO: ARMv7 NEON float->half?
|
| -
|
| -#elif !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
| - // Scale down from 127-bias to 15-bias, then cut off bottom 13 mantissa bits.
|
| - // This doesn't round, so it can be 1 bit too small.
|
| - const __m128 rebias = _mm_castsi128_ps(_mm_set1_epi32((127 - (127-15)) << 23));
|
| - __m128i h = _mm_srli_epi32(_mm_castps_si128(_mm_mul_ps(fs.fVec, rebias)), 13);
|
| - _mm_storel_epi64((__m128i*)&r, _mm_packs_epi32(h,h));
|
| -
|
| #else
|
| - SkHalf hs[4];
|
| - for (int i = 0; i < 4; i++) {
|
| - hs[i] = SkFloatToHalf(fs[i]);
|
| - }
|
| - r = (uint64_t)hs[3] << 48
|
| - | (uint64_t)hs[2] << 32
|
| - | (uint64_t)hs[1] << 16
|
| - | (uint64_t)hs[0] << 0;
|
| + Sk4i bits = Sk4i::Load(&fs),
|
| + sign = bits & 0x80000000, // Save the sign bit for later...
|
| + positive = bits ^ sign, // ...but strip it off for now.
|
| + will_be_denorm = positive < ((127-15+1) << 23); // positve < smallest normal half?
|
| +
|
| + // For normal half floats, adjust the exponent from 127 bias to 15 bias,
|
| + // then drop the bottom 13 mantissa bits.
|
| + Sk4i norm = (positive - ((127 - 15) << 23)) >> 13;
|
| +
|
| + // This mechanically inverts the denorm half -> normal float conversion above.
|
| + // Knowning that and reading its explanation will leave you feeling more confident
|
| + // than reading my best attempt at explaining this directly.
|
| + const Sk4i K = ((127-15) + (23-10) + 1) << 23;
|
| + Sk4f plus_K = Sk4f::Load(&positive) + Sk4f::Load(&K);
|
| + Sk4i denorm = Sk4i::Load(&plus_K) ^ K;
|
| +
|
| + Sk4i merged = (sign >> 16) | will_be_denorm.thenElse(denorm, norm);
|
| + SkNx_cast<uint16_t>(merged).store(&r);
|
| #endif
|
| return r;
|
| }
|
|
|