OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/builtins.h" | |
6 | |
7 #include "src/api-arguments.h" | |
8 #include "src/api-natives.h" | |
9 #include "src/api.h" | |
10 #include "src/base/ieee754.h" | |
11 #include "src/base/once.h" | |
12 #include "src/bootstrapper.h" | |
13 #include "src/code-factory.h" | |
14 #include "src/code-stub-assembler.h" | |
15 #include "src/dateparser-inl.h" | |
16 #include "src/elements.h" | |
17 #include "src/frames-inl.h" | |
18 #include "src/gdb-jit.h" | |
19 #include "src/globals.h" | |
20 #include "src/ic/handler-compiler.h" | |
21 #include "src/ic/ic.h" | |
22 #include "src/isolate-inl.h" | |
23 #include "src/json-parser.h" | |
24 #include "src/json-stringifier.h" | |
25 #include "src/messages.h" | |
26 #include "src/property-descriptor.h" | |
27 #include "src/prototype.h" | |
28 #include "src/string-builder.h" | |
29 #include "src/uri.h" | |
30 #include "src/vm-state-inl.h" | |
31 | |
32 namespace v8 { | |
33 namespace internal { | |
34 | |
35 namespace { | |
36 | |
37 // Arguments object passed to C++ builtins. | |
38 class BuiltinArguments : public Arguments { | |
39 public: | |
40 BuiltinArguments(int length, Object** arguments) | |
41 : Arguments(length, arguments) { | |
42 // Check we have at least the receiver. | |
43 DCHECK_LE(1, this->length()); | |
44 } | |
45 | |
46 Object*& operator[] (int index) { | |
47 DCHECK_LT(index, length()); | |
48 return Arguments::operator[](index); | |
49 } | |
50 | |
51 template <class S> Handle<S> at(int index) { | |
52 DCHECK_LT(index, length()); | |
53 return Arguments::at<S>(index); | |
54 } | |
55 | |
56 Handle<Object> atOrUndefined(Isolate* isolate, int index) { | |
57 if (index >= length()) { | |
58 return isolate->factory()->undefined_value(); | |
59 } | |
60 return at<Object>(index); | |
61 } | |
62 | |
63 Handle<Object> receiver() { | |
64 return Arguments::at<Object>(0); | |
65 } | |
66 | |
67 static const int kNewTargetOffset = 0; | |
68 static const int kTargetOffset = 1; | |
69 static const int kArgcOffset = 2; | |
70 static const int kNumExtraArgs = 3; | |
71 static const int kNumExtraArgsWithReceiver = 4; | |
72 | |
73 template <class S> | |
74 Handle<S> target() { | |
75 return Arguments::at<S>(Arguments::length() - 1 - kTargetOffset); | |
76 } | |
77 Handle<HeapObject> new_target() { | |
78 return Arguments::at<HeapObject>(Arguments::length() - 1 - | |
79 kNewTargetOffset); | |
80 } | |
81 | |
82 // Gets the total number of arguments including the receiver (but | |
83 // excluding extra arguments). | |
84 int length() const { return Arguments::length() - kNumExtraArgs; } | |
85 }; | |
86 | |
87 | |
88 // ---------------------------------------------------------------------------- | |
89 // Support macro for defining builtins in C++. | |
90 // ---------------------------------------------------------------------------- | |
91 // | |
92 // A builtin function is defined by writing: | |
93 // | |
94 // BUILTIN(name) { | |
95 // ... | |
96 // } | |
97 // | |
98 // In the body of the builtin function the arguments can be accessed | |
99 // through the BuiltinArguments object args. | |
100 // TODO(cbruni): add global flag to check whether any tracing events have been | |
101 // enabled. | |
102 #define BUILTIN(name) \ | |
103 MUST_USE_RESULT static Object* Builtin_Impl_##name(BuiltinArguments args, \ | |
104 Isolate* isolate); \ | |
105 \ | |
106 V8_NOINLINE static Object* Builtin_Impl_Stats_##name( \ | |
107 int args_length, Object** args_object, Isolate* isolate) { \ | |
108 BuiltinArguments args(args_length, args_object); \ | |
109 RuntimeCallTimerScope timer(isolate, &RuntimeCallStats::Builtin_##name); \ | |
110 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.runtime"), \ | |
111 "V8.Builtin_" #name); \ | |
112 return Builtin_Impl_##name(args, isolate); \ | |
113 } \ | |
114 \ | |
115 MUST_USE_RESULT static Object* Builtin_##name( \ | |
116 int args_length, Object** args_object, Isolate* isolate) { \ | |
117 if (FLAG_runtime_call_stats) { \ | |
118 return Builtin_Impl_Stats_##name(args_length, args_object, isolate); \ | |
119 } \ | |
120 BuiltinArguments args(args_length, args_object); \ | |
121 return Builtin_Impl_##name(args, isolate); \ | |
122 } \ | |
123 \ | |
124 MUST_USE_RESULT static Object* Builtin_Impl_##name(BuiltinArguments args, \ | |
125 Isolate* isolate) | |
126 | |
127 // ---------------------------------------------------------------------------- | |
128 | |
129 #define CHECK_RECEIVER(Type, name, method) \ | |
130 if (!args.receiver()->Is##Type()) { \ | |
131 THROW_NEW_ERROR_RETURN_FAILURE( \ | |
132 isolate, \ | |
133 NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, \ | |
134 isolate->factory()->NewStringFromAsciiChecked(method), \ | |
135 args.receiver())); \ | |
136 } \ | |
137 Handle<Type> name = Handle<Type>::cast(args.receiver()) | |
138 | |
139 // Throws a TypeError for {method} if the receiver is not coercible to Object, | |
140 // or converts the receiver to a String otherwise and assigns it to a new var | |
141 // with the given {name}. | |
142 #define TO_THIS_STRING(name, method) \ | |
143 if (args.receiver()->IsNull(isolate) || \ | |
144 args.receiver()->IsUndefined(isolate)) { \ | |
145 THROW_NEW_ERROR_RETURN_FAILURE( \ | |
146 isolate, \ | |
147 NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, \ | |
148 isolate->factory()->NewStringFromAsciiChecked(method))); \ | |
149 } \ | |
150 Handle<String> name; \ | |
151 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( \ | |
152 isolate, name, Object::ToString(isolate, args.receiver())) | |
153 | |
154 inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) { | |
155 // This is an extended version of ECMA-262 7.1.11 handling signed values | |
156 // Try to convert object to a number and clamp values to [kMinInt, kMaxInt] | |
157 if (object->IsSmi()) { | |
158 *out = Smi::cast(object)->value(); | |
159 return true; | |
160 } else if (object->IsHeapNumber()) { | |
161 double value = HeapNumber::cast(object)->value(); | |
162 if (std::isnan(value)) { | |
163 *out = 0; | |
164 } else if (value > kMaxInt) { | |
165 *out = kMaxInt; | |
166 } else if (value < kMinInt) { | |
167 *out = kMinInt; | |
168 } else { | |
169 *out = static_cast<int>(value); | |
170 } | |
171 return true; | |
172 } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) { | |
173 *out = 0; | |
174 return true; | |
175 } else if (object->IsBoolean()) { | |
176 *out = object->IsTrue(isolate); | |
177 return true; | |
178 } | |
179 return false; | |
180 } | |
181 | |
182 | |
183 inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object, | |
184 int* out) { | |
185 Context* context = *isolate->native_context(); | |
186 Map* map = object->map(); | |
187 if (map != context->sloppy_arguments_map() && | |
188 map != context->strict_arguments_map() && | |
189 map != context->fast_aliased_arguments_map()) { | |
190 return false; | |
191 } | |
192 DCHECK(object->HasFastElements() || object->HasFastArgumentsElements()); | |
193 Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex); | |
194 if (!len_obj->IsSmi()) return false; | |
195 *out = Max(0, Smi::cast(len_obj)->value()); | |
196 return *out <= object->elements()->length(); | |
197 } | |
198 | |
199 inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object) { | |
200 DisallowHeapAllocation no_gc; | |
201 HeapObject* prototype = HeapObject::cast(object->map()->prototype()); | |
202 HeapObject* null = isolate->heap()->null_value(); | |
203 HeapObject* empty = isolate->heap()->empty_fixed_array(); | |
204 while (prototype != null) { | |
205 Map* map = prototype->map(); | |
206 if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false; | |
207 if (JSObject::cast(prototype)->elements() != empty) return false; | |
208 prototype = HeapObject::cast(map->prototype()); | |
209 } | |
210 return true; | |
211 } | |
212 | |
213 inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate, | |
214 JSArray* receiver) { | |
215 return PrototypeHasNoElements(isolate, receiver); | |
216 } | |
217 | |
218 inline bool HasSimpleElements(JSObject* current) { | |
219 return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER && | |
220 !current->GetElementsAccessor()->HasAccessors(current); | |
221 } | |
222 | |
223 inline bool HasOnlySimpleReceiverElements(Isolate* isolate, | |
224 JSObject* receiver) { | |
225 // Check that we have no accessors on the receiver's elements. | |
226 if (!HasSimpleElements(receiver)) return false; | |
227 return PrototypeHasNoElements(isolate, receiver); | |
228 } | |
229 | |
230 inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) { | |
231 DisallowHeapAllocation no_gc; | |
232 PrototypeIterator iter(isolate, receiver, kStartAtReceiver); | |
233 for (; !iter.IsAtEnd(); iter.Advance()) { | |
234 if (iter.GetCurrent()->IsJSProxy()) return false; | |
235 JSObject* current = iter.GetCurrent<JSObject>(); | |
236 if (!HasSimpleElements(current)) return false; | |
237 } | |
238 return true; | |
239 } | |
240 | |
241 // Returns |false| if not applicable. | |
242 MUST_USE_RESULT | |
243 inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate, | |
244 Handle<Object> receiver, | |
245 BuiltinArguments* args, | |
246 int first_added_arg) { | |
247 if (!receiver->IsJSArray()) return false; | |
248 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
249 ElementsKind origin_kind = array->GetElementsKind(); | |
250 if (IsDictionaryElementsKind(origin_kind)) return false; | |
251 if (!array->map()->is_extensible()) return false; | |
252 if (args == nullptr) return true; | |
253 | |
254 // If there may be elements accessors in the prototype chain, the fast path | |
255 // cannot be used if there arguments to add to the array. | |
256 if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false; | |
257 | |
258 // Adding elements to the array prototype would break code that makes sure | |
259 // it has no elements. Handle that elsewhere. | |
260 if (isolate->IsAnyInitialArrayPrototype(array)) return false; | |
261 | |
262 // Need to ensure that the arguments passed in args can be contained in | |
263 // the array. | |
264 int args_length = args->length(); | |
265 if (first_added_arg >= args_length) return true; | |
266 | |
267 if (IsFastObjectElementsKind(origin_kind)) return true; | |
268 ElementsKind target_kind = origin_kind; | |
269 { | |
270 DisallowHeapAllocation no_gc; | |
271 for (int i = first_added_arg; i < args_length; i++) { | |
272 Object* arg = (*args)[i]; | |
273 if (arg->IsHeapObject()) { | |
274 if (arg->IsHeapNumber()) { | |
275 target_kind = FAST_DOUBLE_ELEMENTS; | |
276 } else { | |
277 target_kind = FAST_ELEMENTS; | |
278 break; | |
279 } | |
280 } | |
281 } | |
282 } | |
283 if (target_kind != origin_kind) { | |
284 // Use a short-lived HandleScope to avoid creating several copies of the | |
285 // elements handle which would cause issues when left-trimming later-on. | |
286 HandleScope scope(isolate); | |
287 JSObject::TransitionElementsKind(array, target_kind); | |
288 } | |
289 return true; | |
290 } | |
291 | |
292 MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate, | |
293 Handle<JSFunction> function, | |
294 BuiltinArguments args) { | |
295 HandleScope handleScope(isolate); | |
296 int argc = args.length() - 1; | |
297 ScopedVector<Handle<Object> > argv(argc); | |
298 for (int i = 0; i < argc; ++i) { | |
299 argv[i] = args.at<Object>(i + 1); | |
300 } | |
301 RETURN_RESULT_OR_FAILURE( | |
302 isolate, | |
303 Execution::Call(isolate, function, args.receiver(), argc, argv.start())); | |
304 } | |
305 | |
306 | |
307 } // namespace | |
308 | |
309 | |
310 BUILTIN(Illegal) { | |
311 UNREACHABLE(); | |
312 return isolate->heap()->undefined_value(); // Make compiler happy. | |
313 } | |
314 | |
315 | |
316 BUILTIN(EmptyFunction) { return isolate->heap()->undefined_value(); } | |
317 | |
318 void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) { | |
319 typedef compiler::Node Node; | |
320 typedef CodeStubAssembler::Label Label; | |
321 | |
322 Node* object = assembler->Parameter(1); | |
323 Node* context = assembler->Parameter(4); | |
324 | |
325 Label call_runtime(assembler), return_true(assembler), | |
326 return_false(assembler); | |
327 | |
328 assembler->GotoIf(assembler->WordIsSmi(object), &return_false); | |
329 Node* instance_type = assembler->LoadInstanceType(object); | |
330 | |
331 assembler->GotoIf(assembler->Word32Equal( | |
332 instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)), | |
333 &return_true); | |
334 | |
335 // TODO(verwaest): Handle proxies in-place. | |
336 assembler->Branch(assembler->Word32Equal( | |
337 instance_type, assembler->Int32Constant(JS_PROXY_TYPE)), | |
338 &call_runtime, &return_false); | |
339 | |
340 assembler->Bind(&return_true); | |
341 assembler->Return(assembler->BooleanConstant(true)); | |
342 | |
343 assembler->Bind(&return_false); | |
344 assembler->Return(assembler->BooleanConstant(false)); | |
345 | |
346 assembler->Bind(&call_runtime); | |
347 assembler->Return( | |
348 assembler->CallRuntime(Runtime::kArrayIsArray, context, object)); | |
349 } | |
350 | |
351 void Builtins::Generate_ObjectHasOwnProperty(CodeStubAssembler* assembler) { | |
352 typedef compiler::Node Node; | |
353 typedef CodeStubAssembler::Label Label; | |
354 typedef CodeStubAssembler::Variable Variable; | |
355 | |
356 Node* object = assembler->Parameter(0); | |
357 Node* key = assembler->Parameter(1); | |
358 Node* context = assembler->Parameter(4); | |
359 | |
360 Label call_runtime(assembler), return_true(assembler), | |
361 return_false(assembler); | |
362 | |
363 // Smi receivers do not have own properties. | |
364 Label if_objectisnotsmi(assembler); | |
365 assembler->Branch(assembler->WordIsSmi(object), &return_false, | |
366 &if_objectisnotsmi); | |
367 assembler->Bind(&if_objectisnotsmi); | |
368 | |
369 Node* map = assembler->LoadMap(object); | |
370 Node* instance_type = assembler->LoadMapInstanceType(map); | |
371 | |
372 Variable var_index(assembler, MachineRepresentation::kWord32); | |
373 | |
374 Label keyisindex(assembler), if_iskeyunique(assembler); | |
375 assembler->TryToName(key, &keyisindex, &var_index, &if_iskeyunique, | |
376 &call_runtime); | |
377 | |
378 assembler->Bind(&if_iskeyunique); | |
379 assembler->TryHasOwnProperty(object, map, instance_type, key, &return_true, | |
380 &return_false, &call_runtime); | |
381 | |
382 assembler->Bind(&keyisindex); | |
383 assembler->TryLookupElement(object, map, instance_type, var_index.value(), | |
384 &return_true, &return_false, &call_runtime); | |
385 | |
386 assembler->Bind(&return_true); | |
387 assembler->Return(assembler->BooleanConstant(true)); | |
388 | |
389 assembler->Bind(&return_false); | |
390 assembler->Return(assembler->BooleanConstant(false)); | |
391 | |
392 assembler->Bind(&call_runtime); | |
393 assembler->Return(assembler->CallRuntime(Runtime::kObjectHasOwnProperty, | |
394 context, object, key)); | |
395 } | |
396 | |
397 namespace { | |
398 | |
399 Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) { | |
400 HandleScope scope(isolate); | |
401 Handle<Object> receiver = args.receiver(); | |
402 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { | |
403 return CallJsIntrinsic(isolate, isolate->array_push(), args); | |
404 } | |
405 // Fast Elements Path | |
406 int to_add = args.length() - 1; | |
407 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
408 int len = Smi::cast(array->length())->value(); | |
409 if (to_add == 0) return Smi::FromInt(len); | |
410 | |
411 // Currently fixed arrays cannot grow too big, so we should never hit this. | |
412 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); | |
413 | |
414 if (JSArray::HasReadOnlyLength(array)) { | |
415 return CallJsIntrinsic(isolate, isolate->array_push(), args); | |
416 } | |
417 | |
418 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
419 int new_length = accessor->Push(array, &args, to_add); | |
420 return Smi::FromInt(new_length); | |
421 } | |
422 | |
423 } // namespace | |
424 | |
425 BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); } | |
426 | |
427 // TODO(verwaest): This is a temporary helper until the FastArrayPush stub can | |
428 // tailcall to the builtin directly. | |
429 RUNTIME_FUNCTION(Runtime_ArrayPush) { | |
430 DCHECK_EQ(2, args.length()); | |
431 Arguments* incoming = reinterpret_cast<Arguments*>(args[0]); | |
432 // Rewrap the arguments as builtins arguments. | |
433 int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver; | |
434 BuiltinArguments caller_args(argc, incoming->arguments() + 1); | |
435 return DoArrayPush(isolate, caller_args); | |
436 } | |
437 | |
438 BUILTIN(ArrayPop) { | |
439 HandleScope scope(isolate); | |
440 Handle<Object> receiver = args.receiver(); | |
441 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) { | |
442 return CallJsIntrinsic(isolate, isolate->array_pop(), args); | |
443 } | |
444 | |
445 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
446 | |
447 uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value()); | |
448 if (len == 0) return isolate->heap()->undefined_value(); | |
449 | |
450 if (JSArray::HasReadOnlyLength(array)) { | |
451 return CallJsIntrinsic(isolate, isolate->array_pop(), args); | |
452 } | |
453 | |
454 Handle<Object> result; | |
455 if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { | |
456 // Fast Elements Path | |
457 result = array->GetElementsAccessor()->Pop(array); | |
458 } else { | |
459 // Use Slow Lookup otherwise | |
460 uint32_t new_length = len - 1; | |
461 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
462 isolate, result, JSReceiver::GetElement(isolate, array, new_length)); | |
463 JSArray::SetLength(array, new_length); | |
464 } | |
465 return *result; | |
466 } | |
467 | |
468 | |
469 BUILTIN(ArrayShift) { | |
470 HandleScope scope(isolate); | |
471 Heap* heap = isolate->heap(); | |
472 Handle<Object> receiver = args.receiver(); | |
473 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) || | |
474 !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { | |
475 return CallJsIntrinsic(isolate, isolate->array_shift(), args); | |
476 } | |
477 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
478 | |
479 int len = Smi::cast(array->length())->value(); | |
480 if (len == 0) return heap->undefined_value(); | |
481 | |
482 if (JSArray::HasReadOnlyLength(array)) { | |
483 return CallJsIntrinsic(isolate, isolate->array_shift(), args); | |
484 } | |
485 | |
486 Handle<Object> first = array->GetElementsAccessor()->Shift(array); | |
487 return *first; | |
488 } | |
489 | |
490 | |
491 BUILTIN(ArrayUnshift) { | |
492 HandleScope scope(isolate); | |
493 Handle<Object> receiver = args.receiver(); | |
494 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { | |
495 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); | |
496 } | |
497 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
498 int to_add = args.length() - 1; | |
499 if (to_add == 0) return array->length(); | |
500 | |
501 // Currently fixed arrays cannot grow too big, so we should never hit this. | |
502 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); | |
503 | |
504 if (JSArray::HasReadOnlyLength(array)) { | |
505 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); | |
506 } | |
507 | |
508 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
509 int new_length = accessor->Unshift(array, &args, to_add); | |
510 return Smi::FromInt(new_length); | |
511 } | |
512 | |
513 | |
514 BUILTIN(ArraySlice) { | |
515 HandleScope scope(isolate); | |
516 Handle<Object> receiver = args.receiver(); | |
517 int len = -1; | |
518 int relative_start = 0; | |
519 int relative_end = 0; | |
520 | |
521 if (receiver->IsJSArray()) { | |
522 DisallowHeapAllocation no_gc; | |
523 JSArray* array = JSArray::cast(*receiver); | |
524 if (V8_UNLIKELY(!array->HasFastElements() || | |
525 !IsJSArrayFastElementMovingAllowed(isolate, array) || | |
526 !isolate->IsArraySpeciesLookupChainIntact() || | |
527 // If this is a subclass of Array, then call out to JS | |
528 !array->HasArrayPrototype(isolate))) { | |
529 AllowHeapAllocation allow_allocation; | |
530 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
531 } | |
532 len = Smi::cast(array->length())->value(); | |
533 } else if (receiver->IsJSObject() && | |
534 GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver), | |
535 &len)) { | |
536 // Array.prototype.slice.call(arguments, ...) is quite a common idiom | |
537 // (notably more than 50% of invocations in Web apps). | |
538 // Treat it in C++ as well. | |
539 DCHECK(JSObject::cast(*receiver)->HasFastElements() || | |
540 JSObject::cast(*receiver)->HasFastArgumentsElements()); | |
541 } else { | |
542 AllowHeapAllocation allow_allocation; | |
543 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
544 } | |
545 DCHECK_LE(0, len); | |
546 int argument_count = args.length() - 1; | |
547 // Note carefully chosen defaults---if argument is missing, | |
548 // it's undefined which gets converted to 0 for relative_start | |
549 // and to len for relative_end. | |
550 relative_start = 0; | |
551 relative_end = len; | |
552 if (argument_count > 0) { | |
553 DisallowHeapAllocation no_gc; | |
554 if (!ClampedToInteger(isolate, args[1], &relative_start)) { | |
555 AllowHeapAllocation allow_allocation; | |
556 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
557 } | |
558 if (argument_count > 1) { | |
559 Object* end_arg = args[2]; | |
560 // slice handles the end_arg specially | |
561 if (end_arg->IsUndefined(isolate)) { | |
562 relative_end = len; | |
563 } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) { | |
564 AllowHeapAllocation allow_allocation; | |
565 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
566 } | |
567 } | |
568 } | |
569 | |
570 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. | |
571 uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | |
572 : Min(relative_start, len); | |
573 | |
574 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. | |
575 uint32_t actual_end = | |
576 (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); | |
577 | |
578 Handle<JSObject> object = Handle<JSObject>::cast(receiver); | |
579 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
580 return *accessor->Slice(object, actual_start, actual_end); | |
581 } | |
582 | |
583 | |
584 BUILTIN(ArraySplice) { | |
585 HandleScope scope(isolate); | |
586 Handle<Object> receiver = args.receiver(); | |
587 if (V8_UNLIKELY( | |
588 !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) || | |
589 // If this is a subclass of Array, then call out to JS. | |
590 !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) || | |
591 // If anything with @@species has been messed with, call out to JS. | |
592 !isolate->IsArraySpeciesLookupChainIntact())) { | |
593 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
594 } | |
595 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
596 | |
597 int argument_count = args.length() - 1; | |
598 int relative_start = 0; | |
599 if (argument_count > 0) { | |
600 DisallowHeapAllocation no_gc; | |
601 if (!ClampedToInteger(isolate, args[1], &relative_start)) { | |
602 AllowHeapAllocation allow_allocation; | |
603 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
604 } | |
605 } | |
606 int len = Smi::cast(array->length())->value(); | |
607 // clip relative start to [0, len] | |
608 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | |
609 : Min(relative_start, len); | |
610 | |
611 int actual_delete_count; | |
612 if (argument_count == 1) { | |
613 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is | |
614 // given as a request to delete all the elements from the start. | |
615 // And it differs from the case of undefined delete count. | |
616 // This does not follow ECMA-262, but we do the same for compatibility. | |
617 DCHECK(len - actual_start >= 0); | |
618 actual_delete_count = len - actual_start; | |
619 } else { | |
620 int delete_count = 0; | |
621 DisallowHeapAllocation no_gc; | |
622 if (argument_count > 1) { | |
623 if (!ClampedToInteger(isolate, args[2], &delete_count)) { | |
624 AllowHeapAllocation allow_allocation; | |
625 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
626 } | |
627 } | |
628 actual_delete_count = Min(Max(delete_count, 0), len - actual_start); | |
629 } | |
630 | |
631 int add_count = (argument_count > 1) ? (argument_count - 2) : 0; | |
632 int new_length = len - actual_delete_count + add_count; | |
633 | |
634 if (new_length != len && JSArray::HasReadOnlyLength(array)) { | |
635 AllowHeapAllocation allow_allocation; | |
636 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
637 } | |
638 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
639 Handle<JSArray> result_array = accessor->Splice( | |
640 array, actual_start, actual_delete_count, &args, add_count); | |
641 return *result_array; | |
642 } | |
643 | |
644 | |
645 // Array Concat ------------------------------------------------------------- | |
646 | |
647 namespace { | |
648 | |
649 /** | |
650 * A simple visitor visits every element of Array's. | |
651 * The backend storage can be a fixed array for fast elements case, | |
652 * or a dictionary for sparse array. Since Dictionary is a subtype | |
653 * of FixedArray, the class can be used by both fast and slow cases. | |
654 * The second parameter of the constructor, fast_elements, specifies | |
655 * whether the storage is a FixedArray or Dictionary. | |
656 * | |
657 * An index limit is used to deal with the situation that a result array | |
658 * length overflows 32-bit non-negative integer. | |
659 */ | |
660 class ArrayConcatVisitor { | |
661 public: | |
662 ArrayConcatVisitor(Isolate* isolate, Handle<Object> storage, | |
663 bool fast_elements) | |
664 : isolate_(isolate), | |
665 storage_(isolate->global_handles()->Create(*storage)), | |
666 index_offset_(0u), | |
667 bit_field_(FastElementsField::encode(fast_elements) | | |
668 ExceedsLimitField::encode(false) | | |
669 IsFixedArrayField::encode(storage->IsFixedArray())) { | |
670 DCHECK(!(this->fast_elements() && !is_fixed_array())); | |
671 } | |
672 | |
673 ~ArrayConcatVisitor() { clear_storage(); } | |
674 | |
675 MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) { | |
676 uint32_t index = index_offset_ + i; | |
677 | |
678 if (i >= JSObject::kMaxElementCount - index_offset_) { | |
679 set_exceeds_array_limit(true); | |
680 // Exception hasn't been thrown at this point. Return true to | |
681 // break out, and caller will throw. !visit would imply that | |
682 // there is already a pending exception. | |
683 return true; | |
684 } | |
685 | |
686 if (!is_fixed_array()) { | |
687 LookupIterator it(isolate_, storage_, index, LookupIterator::OWN); | |
688 MAYBE_RETURN( | |
689 JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR), | |
690 false); | |
691 return true; | |
692 } | |
693 | |
694 if (fast_elements()) { | |
695 if (index < static_cast<uint32_t>(storage_fixed_array()->length())) { | |
696 storage_fixed_array()->set(index, *elm); | |
697 return true; | |
698 } | |
699 // Our initial estimate of length was foiled, possibly by | |
700 // getters on the arrays increasing the length of later arrays | |
701 // during iteration. | |
702 // This shouldn't happen in anything but pathological cases. | |
703 SetDictionaryMode(); | |
704 // Fall-through to dictionary mode. | |
705 } | |
706 DCHECK(!fast_elements()); | |
707 Handle<SeededNumberDictionary> dict( | |
708 SeededNumberDictionary::cast(*storage_)); | |
709 // The object holding this backing store has just been allocated, so | |
710 // it cannot yet be used as a prototype. | |
711 Handle<SeededNumberDictionary> result = | |
712 SeededNumberDictionary::AtNumberPut(dict, index, elm, false); | |
713 if (!result.is_identical_to(dict)) { | |
714 // Dictionary needed to grow. | |
715 clear_storage(); | |
716 set_storage(*result); | |
717 } | |
718 return true; | |
719 } | |
720 | |
721 void increase_index_offset(uint32_t delta) { | |
722 if (JSObject::kMaxElementCount - index_offset_ < delta) { | |
723 index_offset_ = JSObject::kMaxElementCount; | |
724 } else { | |
725 index_offset_ += delta; | |
726 } | |
727 // If the initial length estimate was off (see special case in visit()), | |
728 // but the array blowing the limit didn't contain elements beyond the | |
729 // provided-for index range, go to dictionary mode now. | |
730 if (fast_elements() && | |
731 index_offset_ > | |
732 static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { | |
733 SetDictionaryMode(); | |
734 } | |
735 } | |
736 | |
737 bool exceeds_array_limit() const { | |
738 return ExceedsLimitField::decode(bit_field_); | |
739 } | |
740 | |
741 Handle<JSArray> ToArray() { | |
742 DCHECK(is_fixed_array()); | |
743 Handle<JSArray> array = isolate_->factory()->NewJSArray(0); | |
744 Handle<Object> length = | |
745 isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); | |
746 Handle<Map> map = JSObject::GetElementsTransitionMap( | |
747 array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); | |
748 array->set_map(*map); | |
749 array->set_length(*length); | |
750 array->set_elements(*storage_fixed_array()); | |
751 return array; | |
752 } | |
753 | |
754 // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever | |
755 // (otherwise) | |
756 Handle<FixedArray> storage_fixed_array() { | |
757 DCHECK(is_fixed_array()); | |
758 return Handle<FixedArray>::cast(storage_); | |
759 } | |
760 Handle<JSReceiver> storage_jsreceiver() { | |
761 DCHECK(!is_fixed_array()); | |
762 return Handle<JSReceiver>::cast(storage_); | |
763 } | |
764 | |
765 private: | |
766 // Convert storage to dictionary mode. | |
767 void SetDictionaryMode() { | |
768 DCHECK(fast_elements() && is_fixed_array()); | |
769 Handle<FixedArray> current_storage = storage_fixed_array(); | |
770 Handle<SeededNumberDictionary> slow_storage( | |
771 SeededNumberDictionary::New(isolate_, current_storage->length())); | |
772 uint32_t current_length = static_cast<uint32_t>(current_storage->length()); | |
773 FOR_WITH_HANDLE_SCOPE( | |
774 isolate_, uint32_t, i = 0, i, i < current_length, i++, { | |
775 Handle<Object> element(current_storage->get(i), isolate_); | |
776 if (!element->IsTheHole(isolate_)) { | |
777 // The object holding this backing store has just been allocated, so | |
778 // it cannot yet be used as a prototype. | |
779 Handle<SeededNumberDictionary> new_storage = | |
780 SeededNumberDictionary::AtNumberPut(slow_storage, i, element, | |
781 false); | |
782 if (!new_storage.is_identical_to(slow_storage)) { | |
783 slow_storage = loop_scope.CloseAndEscape(new_storage); | |
784 } | |
785 } | |
786 }); | |
787 clear_storage(); | |
788 set_storage(*slow_storage); | |
789 set_fast_elements(false); | |
790 } | |
791 | |
792 inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); } | |
793 | |
794 inline void set_storage(FixedArray* storage) { | |
795 DCHECK(is_fixed_array()); | |
796 storage_ = isolate_->global_handles()->Create(storage); | |
797 } | |
798 | |
799 class FastElementsField : public BitField<bool, 0, 1> {}; | |
800 class ExceedsLimitField : public BitField<bool, 1, 1> {}; | |
801 class IsFixedArrayField : public BitField<bool, 2, 1> {}; | |
802 | |
803 bool fast_elements() const { return FastElementsField::decode(bit_field_); } | |
804 void set_fast_elements(bool fast) { | |
805 bit_field_ = FastElementsField::update(bit_field_, fast); | |
806 } | |
807 void set_exceeds_array_limit(bool exceeds) { | |
808 bit_field_ = ExceedsLimitField::update(bit_field_, exceeds); | |
809 } | |
810 bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); } | |
811 | |
812 Isolate* isolate_; | |
813 Handle<Object> storage_; // Always a global handle. | |
814 // Index after last seen index. Always less than or equal to | |
815 // JSObject::kMaxElementCount. | |
816 uint32_t index_offset_; | |
817 uint32_t bit_field_; | |
818 }; | |
819 | |
820 | |
821 uint32_t EstimateElementCount(Handle<JSArray> array) { | |
822 DisallowHeapAllocation no_gc; | |
823 uint32_t length = static_cast<uint32_t>(array->length()->Number()); | |
824 int element_count = 0; | |
825 switch (array->GetElementsKind()) { | |
826 case FAST_SMI_ELEMENTS: | |
827 case FAST_HOLEY_SMI_ELEMENTS: | |
828 case FAST_ELEMENTS: | |
829 case FAST_HOLEY_ELEMENTS: { | |
830 // Fast elements can't have lengths that are not representable by | |
831 // a 32-bit signed integer. | |
832 DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); | |
833 int fast_length = static_cast<int>(length); | |
834 Isolate* isolate = array->GetIsolate(); | |
835 FixedArray* elements = FixedArray::cast(array->elements()); | |
836 for (int i = 0; i < fast_length; i++) { | |
837 if (!elements->get(i)->IsTheHole(isolate)) element_count++; | |
838 } | |
839 break; | |
840 } | |
841 case FAST_DOUBLE_ELEMENTS: | |
842 case FAST_HOLEY_DOUBLE_ELEMENTS: { | |
843 // Fast elements can't have lengths that are not representable by | |
844 // a 32-bit signed integer. | |
845 DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); | |
846 int fast_length = static_cast<int>(length); | |
847 if (array->elements()->IsFixedArray()) { | |
848 DCHECK(FixedArray::cast(array->elements())->length() == 0); | |
849 break; | |
850 } | |
851 FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); | |
852 for (int i = 0; i < fast_length; i++) { | |
853 if (!elements->is_the_hole(i)) element_count++; | |
854 } | |
855 break; | |
856 } | |
857 case DICTIONARY_ELEMENTS: { | |
858 SeededNumberDictionary* dictionary = | |
859 SeededNumberDictionary::cast(array->elements()); | |
860 Isolate* isolate = dictionary->GetIsolate(); | |
861 int capacity = dictionary->Capacity(); | |
862 for (int i = 0; i < capacity; i++) { | |
863 Object* key = dictionary->KeyAt(i); | |
864 if (dictionary->IsKey(isolate, key)) { | |
865 element_count++; | |
866 } | |
867 } | |
868 break; | |
869 } | |
870 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
871 | |
872 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
873 #undef TYPED_ARRAY_CASE | |
874 // External arrays are always dense. | |
875 return length; | |
876 case NO_ELEMENTS: | |
877 return 0; | |
878 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
879 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
880 case FAST_STRING_WRAPPER_ELEMENTS: | |
881 case SLOW_STRING_WRAPPER_ELEMENTS: | |
882 UNREACHABLE(); | |
883 return 0; | |
884 } | |
885 // As an estimate, we assume that the prototype doesn't contain any | |
886 // inherited elements. | |
887 return element_count; | |
888 } | |
889 | |
890 | |
891 // Used for sorting indices in a List<uint32_t>. | |
892 int compareUInt32(const uint32_t* ap, const uint32_t* bp) { | |
893 uint32_t a = *ap; | |
894 uint32_t b = *bp; | |
895 return (a == b) ? 0 : (a < b) ? -1 : 1; | |
896 } | |
897 | |
898 | |
899 void CollectElementIndices(Handle<JSObject> object, uint32_t range, | |
900 List<uint32_t>* indices) { | |
901 Isolate* isolate = object->GetIsolate(); | |
902 ElementsKind kind = object->GetElementsKind(); | |
903 switch (kind) { | |
904 case FAST_SMI_ELEMENTS: | |
905 case FAST_ELEMENTS: | |
906 case FAST_HOLEY_SMI_ELEMENTS: | |
907 case FAST_HOLEY_ELEMENTS: { | |
908 DisallowHeapAllocation no_gc; | |
909 FixedArray* elements = FixedArray::cast(object->elements()); | |
910 uint32_t length = static_cast<uint32_t>(elements->length()); | |
911 if (range < length) length = range; | |
912 for (uint32_t i = 0; i < length; i++) { | |
913 if (!elements->get(i)->IsTheHole(isolate)) { | |
914 indices->Add(i); | |
915 } | |
916 } | |
917 break; | |
918 } | |
919 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
920 case FAST_DOUBLE_ELEMENTS: { | |
921 if (object->elements()->IsFixedArray()) { | |
922 DCHECK(object->elements()->length() == 0); | |
923 break; | |
924 } | |
925 Handle<FixedDoubleArray> elements( | |
926 FixedDoubleArray::cast(object->elements())); | |
927 uint32_t length = static_cast<uint32_t>(elements->length()); | |
928 if (range < length) length = range; | |
929 for (uint32_t i = 0; i < length; i++) { | |
930 if (!elements->is_the_hole(i)) { | |
931 indices->Add(i); | |
932 } | |
933 } | |
934 break; | |
935 } | |
936 case DICTIONARY_ELEMENTS: { | |
937 DisallowHeapAllocation no_gc; | |
938 SeededNumberDictionary* dict = | |
939 SeededNumberDictionary::cast(object->elements()); | |
940 uint32_t capacity = dict->Capacity(); | |
941 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, { | |
942 Object* k = dict->KeyAt(j); | |
943 if (!dict->IsKey(isolate, k)) continue; | |
944 DCHECK(k->IsNumber()); | |
945 uint32_t index = static_cast<uint32_t>(k->Number()); | |
946 if (index < range) { | |
947 indices->Add(index); | |
948 } | |
949 }); | |
950 break; | |
951 } | |
952 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
953 | |
954 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
955 #undef TYPED_ARRAY_CASE | |
956 { | |
957 uint32_t length = static_cast<uint32_t>( | |
958 FixedArrayBase::cast(object->elements())->length()); | |
959 if (range <= length) { | |
960 length = range; | |
961 // We will add all indices, so we might as well clear it first | |
962 // and avoid duplicates. | |
963 indices->Clear(); | |
964 } | |
965 for (uint32_t i = 0; i < length; i++) { | |
966 indices->Add(i); | |
967 } | |
968 if (length == range) return; // All indices accounted for already. | |
969 break; | |
970 } | |
971 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
972 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { | |
973 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
974 for (uint32_t i = 0; i < range; i++) { | |
975 if (accessor->HasElement(object, i)) { | |
976 indices->Add(i); | |
977 } | |
978 } | |
979 break; | |
980 } | |
981 case FAST_STRING_WRAPPER_ELEMENTS: | |
982 case SLOW_STRING_WRAPPER_ELEMENTS: { | |
983 DCHECK(object->IsJSValue()); | |
984 Handle<JSValue> js_value = Handle<JSValue>::cast(object); | |
985 DCHECK(js_value->value()->IsString()); | |
986 Handle<String> string(String::cast(js_value->value()), isolate); | |
987 uint32_t length = static_cast<uint32_t>(string->length()); | |
988 uint32_t i = 0; | |
989 uint32_t limit = Min(length, range); | |
990 for (; i < limit; i++) { | |
991 indices->Add(i); | |
992 } | |
993 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
994 for (; i < range; i++) { | |
995 if (accessor->HasElement(object, i)) { | |
996 indices->Add(i); | |
997 } | |
998 } | |
999 break; | |
1000 } | |
1001 case NO_ELEMENTS: | |
1002 break; | |
1003 } | |
1004 | |
1005 PrototypeIterator iter(isolate, object); | |
1006 if (!iter.IsAtEnd()) { | |
1007 // The prototype will usually have no inherited element indices, | |
1008 // but we have to check. | |
1009 CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range, | |
1010 indices); | |
1011 } | |
1012 } | |
1013 | |
1014 | |
1015 bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver, | |
1016 uint32_t length, ArrayConcatVisitor* visitor) { | |
1017 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, { | |
1018 Maybe<bool> maybe = JSReceiver::HasElement(receiver, i); | |
1019 if (!maybe.IsJust()) return false; | |
1020 if (maybe.FromJust()) { | |
1021 Handle<Object> element_value; | |
1022 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1023 isolate, element_value, JSReceiver::GetElement(isolate, receiver, i), | |
1024 false); | |
1025 if (!visitor->visit(i, element_value)) return false; | |
1026 } | |
1027 }); | |
1028 visitor->increase_index_offset(length); | |
1029 return true; | |
1030 } | |
1031 | |
1032 | |
1033 /** | |
1034 * A helper function that visits "array" elements of a JSReceiver in numerical | |
1035 * order. | |
1036 * | |
1037 * The visitor argument called for each existing element in the array | |
1038 * with the element index and the element's value. | |
1039 * Afterwards it increments the base-index of the visitor by the array | |
1040 * length. | |
1041 * Returns false if any access threw an exception, otherwise true. | |
1042 */ | |
1043 bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver, | |
1044 ArrayConcatVisitor* visitor) { | |
1045 uint32_t length = 0; | |
1046 | |
1047 if (receiver->IsJSArray()) { | |
1048 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
1049 length = static_cast<uint32_t>(array->length()->Number()); | |
1050 } else { | |
1051 Handle<Object> val; | |
1052 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1053 isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false); | |
1054 // TODO(caitp): Support larger element indexes (up to 2^53-1). | |
1055 if (!val->ToUint32(&length)) { | |
1056 length = 0; | |
1057 } | |
1058 // TODO(cbruni): handle other element kind as well | |
1059 return IterateElementsSlow(isolate, receiver, length, visitor); | |
1060 } | |
1061 | |
1062 if (!HasOnlySimpleElements(isolate, *receiver)) { | |
1063 return IterateElementsSlow(isolate, receiver, length, visitor); | |
1064 } | |
1065 Handle<JSObject> array = Handle<JSObject>::cast(receiver); | |
1066 | |
1067 switch (array->GetElementsKind()) { | |
1068 case FAST_SMI_ELEMENTS: | |
1069 case FAST_ELEMENTS: | |
1070 case FAST_HOLEY_SMI_ELEMENTS: | |
1071 case FAST_HOLEY_ELEMENTS: { | |
1072 // Run through the elements FixedArray and use HasElement and GetElement | |
1073 // to check the prototype for missing elements. | |
1074 Handle<FixedArray> elements(FixedArray::cast(array->elements())); | |
1075 int fast_length = static_cast<int>(length); | |
1076 DCHECK(fast_length <= elements->length()); | |
1077 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { | |
1078 Handle<Object> element_value(elements->get(j), isolate); | |
1079 if (!element_value->IsTheHole(isolate)) { | |
1080 if (!visitor->visit(j, element_value)) return false; | |
1081 } else { | |
1082 Maybe<bool> maybe = JSReceiver::HasElement(array, j); | |
1083 if (!maybe.IsJust()) return false; | |
1084 if (maybe.FromJust()) { | |
1085 // Call GetElement on array, not its prototype, or getters won't | |
1086 // have the correct receiver. | |
1087 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1088 isolate, element_value, | |
1089 JSReceiver::GetElement(isolate, array, j), false); | |
1090 if (!visitor->visit(j, element_value)) return false; | |
1091 } | |
1092 } | |
1093 }); | |
1094 break; | |
1095 } | |
1096 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
1097 case FAST_DOUBLE_ELEMENTS: { | |
1098 // Empty array is FixedArray but not FixedDoubleArray. | |
1099 if (length == 0) break; | |
1100 // Run through the elements FixedArray and use HasElement and GetElement | |
1101 // to check the prototype for missing elements. | |
1102 if (array->elements()->IsFixedArray()) { | |
1103 DCHECK(array->elements()->length() == 0); | |
1104 break; | |
1105 } | |
1106 Handle<FixedDoubleArray> elements( | |
1107 FixedDoubleArray::cast(array->elements())); | |
1108 int fast_length = static_cast<int>(length); | |
1109 DCHECK(fast_length <= elements->length()); | |
1110 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { | |
1111 if (!elements->is_the_hole(j)) { | |
1112 double double_value = elements->get_scalar(j); | |
1113 Handle<Object> element_value = | |
1114 isolate->factory()->NewNumber(double_value); | |
1115 if (!visitor->visit(j, element_value)) return false; | |
1116 } else { | |
1117 Maybe<bool> maybe = JSReceiver::HasElement(array, j); | |
1118 if (!maybe.IsJust()) return false; | |
1119 if (maybe.FromJust()) { | |
1120 // Call GetElement on array, not its prototype, or getters won't | |
1121 // have the correct receiver. | |
1122 Handle<Object> element_value; | |
1123 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1124 isolate, element_value, | |
1125 JSReceiver::GetElement(isolate, array, j), false); | |
1126 if (!visitor->visit(j, element_value)) return false; | |
1127 } | |
1128 } | |
1129 }); | |
1130 break; | |
1131 } | |
1132 | |
1133 case DICTIONARY_ELEMENTS: { | |
1134 Handle<SeededNumberDictionary> dict(array->element_dictionary()); | |
1135 List<uint32_t> indices(dict->Capacity() / 2); | |
1136 // Collect all indices in the object and the prototypes less | |
1137 // than length. This might introduce duplicates in the indices list. | |
1138 CollectElementIndices(array, length, &indices); | |
1139 indices.Sort(&compareUInt32); | |
1140 int n = indices.length(); | |
1141 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, { | |
1142 uint32_t index = indices[j]; | |
1143 Handle<Object> element; | |
1144 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1145 isolate, element, JSReceiver::GetElement(isolate, array, index), | |
1146 false); | |
1147 if (!visitor->visit(index, element)) return false; | |
1148 // Skip to next different index (i.e., omit duplicates). | |
1149 do { | |
1150 j++; | |
1151 } while (j < n && indices[j] == index); | |
1152 }); | |
1153 break; | |
1154 } | |
1155 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
1156 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { | |
1157 FOR_WITH_HANDLE_SCOPE( | |
1158 isolate, uint32_t, index = 0, index, index < length, index++, { | |
1159 Handle<Object> element; | |
1160 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1161 isolate, element, JSReceiver::GetElement(isolate, array, index), | |
1162 false); | |
1163 if (!visitor->visit(index, element)) return false; | |
1164 }); | |
1165 break; | |
1166 } | |
1167 case NO_ELEMENTS: | |
1168 break; | |
1169 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
1170 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
1171 #undef TYPED_ARRAY_CASE | |
1172 return IterateElementsSlow(isolate, receiver, length, visitor); | |
1173 case FAST_STRING_WRAPPER_ELEMENTS: | |
1174 case SLOW_STRING_WRAPPER_ELEMENTS: | |
1175 // |array| is guaranteed to be an array or typed array. | |
1176 UNREACHABLE(); | |
1177 break; | |
1178 } | |
1179 visitor->increase_index_offset(length); | |
1180 return true; | |
1181 } | |
1182 | |
1183 static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) { | |
1184 HandleScope handle_scope(isolate); | |
1185 if (!obj->IsJSReceiver()) return Just(false); | |
1186 if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { | |
1187 // Slow path if @@isConcatSpreadable has been used. | |
1188 Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol()); | |
1189 Handle<Object> value; | |
1190 MaybeHandle<Object> maybeValue = | |
1191 i::Runtime::GetObjectProperty(isolate, obj, key); | |
1192 if (!maybeValue.ToHandle(&value)) return Nothing<bool>(); | |
1193 if (!value->IsUndefined(isolate)) return Just(value->BooleanValue()); | |
1194 } | |
1195 return Object::IsArray(obj); | |
1196 } | |
1197 | |
1198 Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species, | |
1199 Isolate* isolate) { | |
1200 int argument_count = args->length(); | |
1201 | |
1202 bool is_array_species = *species == isolate->context()->array_function(); | |
1203 | |
1204 // Pass 1: estimate the length and number of elements of the result. | |
1205 // The actual length can be larger if any of the arguments have getters | |
1206 // that mutate other arguments (but will otherwise be precise). | |
1207 // The number of elements is precise if there are no inherited elements. | |
1208 | |
1209 ElementsKind kind = FAST_SMI_ELEMENTS; | |
1210 | |
1211 uint32_t estimate_result_length = 0; | |
1212 uint32_t estimate_nof_elements = 0; | |
1213 FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { | |
1214 Handle<Object> obj((*args)[i], isolate); | |
1215 uint32_t length_estimate; | |
1216 uint32_t element_estimate; | |
1217 if (obj->IsJSArray()) { | |
1218 Handle<JSArray> array(Handle<JSArray>::cast(obj)); | |
1219 length_estimate = static_cast<uint32_t>(array->length()->Number()); | |
1220 if (length_estimate != 0) { | |
1221 ElementsKind array_kind = | |
1222 GetPackedElementsKind(array->GetElementsKind()); | |
1223 kind = GetMoreGeneralElementsKind(kind, array_kind); | |
1224 } | |
1225 element_estimate = EstimateElementCount(array); | |
1226 } else { | |
1227 if (obj->IsHeapObject()) { | |
1228 kind = GetMoreGeneralElementsKind( | |
1229 kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS); | |
1230 } | |
1231 length_estimate = 1; | |
1232 element_estimate = 1; | |
1233 } | |
1234 // Avoid overflows by capping at kMaxElementCount. | |
1235 if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { | |
1236 estimate_result_length = JSObject::kMaxElementCount; | |
1237 } else { | |
1238 estimate_result_length += length_estimate; | |
1239 } | |
1240 if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { | |
1241 estimate_nof_elements = JSObject::kMaxElementCount; | |
1242 } else { | |
1243 estimate_nof_elements += element_estimate; | |
1244 } | |
1245 }); | |
1246 | |
1247 // If estimated number of elements is more than half of length, a | |
1248 // fixed array (fast case) is more time and space-efficient than a | |
1249 // dictionary. | |
1250 bool fast_case = | |
1251 is_array_species && (estimate_nof_elements * 2) >= estimate_result_length; | |
1252 | |
1253 if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { | |
1254 Handle<FixedArrayBase> storage = | |
1255 isolate->factory()->NewFixedDoubleArray(estimate_result_length); | |
1256 int j = 0; | |
1257 bool failure = false; | |
1258 if (estimate_result_length > 0) { | |
1259 Handle<FixedDoubleArray> double_storage = | |
1260 Handle<FixedDoubleArray>::cast(storage); | |
1261 for (int i = 0; i < argument_count; i++) { | |
1262 Handle<Object> obj((*args)[i], isolate); | |
1263 if (obj->IsSmi()) { | |
1264 double_storage->set(j, Smi::cast(*obj)->value()); | |
1265 j++; | |
1266 } else if (obj->IsNumber()) { | |
1267 double_storage->set(j, obj->Number()); | |
1268 j++; | |
1269 } else { | |
1270 DisallowHeapAllocation no_gc; | |
1271 JSArray* array = JSArray::cast(*obj); | |
1272 uint32_t length = static_cast<uint32_t>(array->length()->Number()); | |
1273 switch (array->GetElementsKind()) { | |
1274 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
1275 case FAST_DOUBLE_ELEMENTS: { | |
1276 // Empty array is FixedArray but not FixedDoubleArray. | |
1277 if (length == 0) break; | |
1278 FixedDoubleArray* elements = | |
1279 FixedDoubleArray::cast(array->elements()); | |
1280 for (uint32_t i = 0; i < length; i++) { | |
1281 if (elements->is_the_hole(i)) { | |
1282 // TODO(jkummerow/verwaest): We could be a bit more clever | |
1283 // here: Check if there are no elements/getters on the | |
1284 // prototype chain, and if so, allow creation of a holey | |
1285 // result array. | |
1286 // Same thing below (holey smi case). | |
1287 failure = true; | |
1288 break; | |
1289 } | |
1290 double double_value = elements->get_scalar(i); | |
1291 double_storage->set(j, double_value); | |
1292 j++; | |
1293 } | |
1294 break; | |
1295 } | |
1296 case FAST_HOLEY_SMI_ELEMENTS: | |
1297 case FAST_SMI_ELEMENTS: { | |
1298 Object* the_hole = isolate->heap()->the_hole_value(); | |
1299 FixedArray* elements(FixedArray::cast(array->elements())); | |
1300 for (uint32_t i = 0; i < length; i++) { | |
1301 Object* element = elements->get(i); | |
1302 if (element == the_hole) { | |
1303 failure = true; | |
1304 break; | |
1305 } | |
1306 int32_t int_value = Smi::cast(element)->value(); | |
1307 double_storage->set(j, int_value); | |
1308 j++; | |
1309 } | |
1310 break; | |
1311 } | |
1312 case FAST_HOLEY_ELEMENTS: | |
1313 case FAST_ELEMENTS: | |
1314 case DICTIONARY_ELEMENTS: | |
1315 case NO_ELEMENTS: | |
1316 DCHECK_EQ(0u, length); | |
1317 break; | |
1318 default: | |
1319 UNREACHABLE(); | |
1320 } | |
1321 } | |
1322 if (failure) break; | |
1323 } | |
1324 } | |
1325 if (!failure) { | |
1326 return *isolate->factory()->NewJSArrayWithElements(storage, kind, j); | |
1327 } | |
1328 // In case of failure, fall through. | |
1329 } | |
1330 | |
1331 Handle<Object> storage; | |
1332 if (fast_case) { | |
1333 // The backing storage array must have non-existing elements to preserve | |
1334 // holes across concat operations. | |
1335 storage = | |
1336 isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); | |
1337 } else if (is_array_species) { | |
1338 // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate | |
1339 uint32_t at_least_space_for = | |
1340 estimate_nof_elements + (estimate_nof_elements >> 2); | |
1341 storage = SeededNumberDictionary::New(isolate, at_least_space_for); | |
1342 } else { | |
1343 DCHECK(species->IsConstructor()); | |
1344 Handle<Object> length(Smi::FromInt(0), isolate); | |
1345 Handle<Object> storage_object; | |
1346 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1347 isolate, storage_object, | |
1348 Execution::New(isolate, species, species, 1, &length)); | |
1349 storage = storage_object; | |
1350 } | |
1351 | |
1352 ArrayConcatVisitor visitor(isolate, storage, fast_case); | |
1353 | |
1354 for (int i = 0; i < argument_count; i++) { | |
1355 Handle<Object> obj((*args)[i], isolate); | |
1356 Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj); | |
1357 MAYBE_RETURN(spreadable, isolate->heap()->exception()); | |
1358 if (spreadable.FromJust()) { | |
1359 Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj); | |
1360 if (!IterateElements(isolate, object, &visitor)) { | |
1361 return isolate->heap()->exception(); | |
1362 } | |
1363 } else { | |
1364 if (!visitor.visit(0, obj)) return isolate->heap()->exception(); | |
1365 visitor.increase_index_offset(1); | |
1366 } | |
1367 } | |
1368 | |
1369 if (visitor.exceeds_array_limit()) { | |
1370 THROW_NEW_ERROR_RETURN_FAILURE( | |
1371 isolate, NewRangeError(MessageTemplate::kInvalidArrayLength)); | |
1372 } | |
1373 | |
1374 if (is_array_species) { | |
1375 return *visitor.ToArray(); | |
1376 } else { | |
1377 return *visitor.storage_jsreceiver(); | |
1378 } | |
1379 } | |
1380 | |
1381 bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) { | |
1382 DisallowHeapAllocation no_gc; | |
1383 Map* map = obj->map(); | |
1384 // If there is only the 'length' property we are fine. | |
1385 if (map->prototype() == | |
1386 isolate->native_context()->initial_array_prototype() && | |
1387 map->NumberOfOwnDescriptors() == 1) { | |
1388 return true; | |
1389 } | |
1390 // TODO(cbruni): slower lookup for array subclasses and support slow | |
1391 // @@IsConcatSpreadable lookup. | |
1392 return false; | |
1393 } | |
1394 | |
1395 MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, | |
1396 BuiltinArguments* args) { | |
1397 if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { | |
1398 return MaybeHandle<JSArray>(); | |
1399 } | |
1400 // We shouldn't overflow when adding another len. | |
1401 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); | |
1402 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); | |
1403 STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt); | |
1404 USE(kHalfOfMaxInt); | |
1405 | |
1406 int n_arguments = args->length(); | |
1407 int result_len = 0; | |
1408 { | |
1409 DisallowHeapAllocation no_gc; | |
1410 // Iterate through all the arguments performing checks | |
1411 // and calculating total length. | |
1412 for (int i = 0; i < n_arguments; i++) { | |
1413 Object* arg = (*args)[i]; | |
1414 if (!arg->IsJSArray()) return MaybeHandle<JSArray>(); | |
1415 if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { | |
1416 return MaybeHandle<JSArray>(); | |
1417 } | |
1418 // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. | |
1419 if (!JSObject::cast(arg)->HasFastElements()) { | |
1420 return MaybeHandle<JSArray>(); | |
1421 } | |
1422 Handle<JSArray> array(JSArray::cast(arg), isolate); | |
1423 if (!IsSimpleArray(isolate, array)) { | |
1424 return MaybeHandle<JSArray>(); | |
1425 } | |
1426 // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't | |
1427 // overflow. | |
1428 result_len += Smi::cast(array->length())->value(); | |
1429 DCHECK(result_len >= 0); | |
1430 // Throw an Error if we overflow the FixedArray limits | |
1431 if (FixedDoubleArray::kMaxLength < result_len || | |
1432 FixedArray::kMaxLength < result_len) { | |
1433 AllowHeapAllocation gc; | |
1434 THROW_NEW_ERROR(isolate, | |
1435 NewRangeError(MessageTemplate::kInvalidArrayLength), | |
1436 JSArray); | |
1437 } | |
1438 } | |
1439 } | |
1440 return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); | |
1441 } | |
1442 | |
1443 } // namespace | |
1444 | |
1445 | |
1446 // ES6 22.1.3.1 Array.prototype.concat | |
1447 BUILTIN(ArrayConcat) { | |
1448 HandleScope scope(isolate); | |
1449 | |
1450 Handle<Object> receiver = args.receiver(); | |
1451 // TODO(bmeurer): Do we really care about the exact exception message here? | |
1452 if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) { | |
1453 THROW_NEW_ERROR_RETURN_FAILURE( | |
1454 isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, | |
1455 isolate->factory()->NewStringFromAsciiChecked( | |
1456 "Array.prototype.concat"))); | |
1457 } | |
1458 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1459 isolate, receiver, Object::ToObject(isolate, args.receiver())); | |
1460 args[0] = *receiver; | |
1461 | |
1462 Handle<JSArray> result_array; | |
1463 | |
1464 // Avoid a real species read to avoid extra lookups to the array constructor | |
1465 if (V8_LIKELY(receiver->IsJSArray() && | |
1466 Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) && | |
1467 isolate->IsArraySpeciesLookupChainIntact())) { | |
1468 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { | |
1469 return *result_array; | |
1470 } | |
1471 if (isolate->has_pending_exception()) return isolate->heap()->exception(); | |
1472 } | |
1473 // Reading @@species happens before anything else with a side effect, so | |
1474 // we can do it here to determine whether to take the fast path. | |
1475 Handle<Object> species; | |
1476 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1477 isolate, species, Object::ArraySpeciesConstructor(isolate, receiver)); | |
1478 if (*species == *isolate->array_function()) { | |
1479 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { | |
1480 return *result_array; | |
1481 } | |
1482 if (isolate->has_pending_exception()) return isolate->heap()->exception(); | |
1483 } | |
1484 return Slow_ArrayConcat(&args, species, isolate); | |
1485 } | |
1486 | |
1487 | |
1488 namespace { | |
1489 | |
1490 MUST_USE_RESULT Maybe<bool> FastAssign(Handle<JSReceiver> to, | |
1491 Handle<Object> next_source) { | |
1492 // Non-empty strings are the only non-JSReceivers that need to be handled | |
1493 // explicitly by Object.assign. | |
1494 if (!next_source->IsJSReceiver()) { | |
1495 return Just(!next_source->IsString() || | |
1496 String::cast(*next_source)->length() == 0); | |
1497 } | |
1498 | |
1499 // If the target is deprecated, the object will be updated on first store. If | |
1500 // the source for that store equals the target, this will invalidate the | |
1501 // cached representation of the source. Preventively upgrade the target. | |
1502 // Do this on each iteration since any property load could cause deprecation. | |
1503 if (to->map()->is_deprecated()) { | |
1504 JSObject::MigrateInstance(Handle<JSObject>::cast(to)); | |
1505 } | |
1506 | |
1507 Isolate* isolate = to->GetIsolate(); | |
1508 Handle<Map> map(JSReceiver::cast(*next_source)->map(), isolate); | |
1509 | |
1510 if (!map->IsJSObjectMap()) return Just(false); | |
1511 if (!map->OnlyHasSimpleProperties()) return Just(false); | |
1512 | |
1513 Handle<JSObject> from = Handle<JSObject>::cast(next_source); | |
1514 if (from->elements() != isolate->heap()->empty_fixed_array()) { | |
1515 return Just(false); | |
1516 } | |
1517 | |
1518 Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate); | |
1519 int length = map->NumberOfOwnDescriptors(); | |
1520 | |
1521 bool stable = true; | |
1522 | |
1523 for (int i = 0; i < length; i++) { | |
1524 Handle<Name> next_key(descriptors->GetKey(i), isolate); | |
1525 Handle<Object> prop_value; | |
1526 // Directly decode from the descriptor array if |from| did not change shape. | |
1527 if (stable) { | |
1528 PropertyDetails details = descriptors->GetDetails(i); | |
1529 if (!details.IsEnumerable()) continue; | |
1530 if (details.kind() == kData) { | |
1531 if (details.location() == kDescriptor) { | |
1532 prop_value = handle(descriptors->GetValue(i), isolate); | |
1533 } else { | |
1534 Representation representation = details.representation(); | |
1535 FieldIndex index = FieldIndex::ForDescriptor(*map, i); | |
1536 prop_value = JSObject::FastPropertyAt(from, representation, index); | |
1537 } | |
1538 } else { | |
1539 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1540 isolate, prop_value, JSReceiver::GetProperty(from, next_key), | |
1541 Nothing<bool>()); | |
1542 stable = from->map() == *map; | |
1543 } | |
1544 } else { | |
1545 // If the map did change, do a slower lookup. We are still guaranteed that | |
1546 // the object has a simple shape, and that the key is a name. | |
1547 LookupIterator it(from, next_key, from, | |
1548 LookupIterator::OWN_SKIP_INTERCEPTOR); | |
1549 if (!it.IsFound()) continue; | |
1550 DCHECK(it.state() == LookupIterator::DATA || | |
1551 it.state() == LookupIterator::ACCESSOR); | |
1552 if (!it.IsEnumerable()) continue; | |
1553 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1554 isolate, prop_value, Object::GetProperty(&it), Nothing<bool>()); | |
1555 } | |
1556 LookupIterator it(to, next_key, to); | |
1557 bool call_to_js = it.IsFound() && it.state() != LookupIterator::DATA; | |
1558 Maybe<bool> result = Object::SetProperty( | |
1559 &it, prop_value, STRICT, Object::CERTAINLY_NOT_STORE_FROM_KEYED); | |
1560 if (result.IsNothing()) return result; | |
1561 if (stable && call_to_js) stable = from->map() == *map; | |
1562 } | |
1563 | |
1564 return Just(true); | |
1565 } | |
1566 | |
1567 } // namespace | |
1568 | |
1569 // ES6 19.1.2.1 Object.assign | |
1570 BUILTIN(ObjectAssign) { | |
1571 HandleScope scope(isolate); | |
1572 Handle<Object> target = args.atOrUndefined(isolate, 1); | |
1573 | |
1574 // 1. Let to be ? ToObject(target). | |
1575 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target, | |
1576 Object::ToObject(isolate, target)); | |
1577 Handle<JSReceiver> to = Handle<JSReceiver>::cast(target); | |
1578 // 2. If only one argument was passed, return to. | |
1579 if (args.length() == 2) return *to; | |
1580 // 3. Let sources be the List of argument values starting with the | |
1581 // second argument. | |
1582 // 4. For each element nextSource of sources, in ascending index order, | |
1583 for (int i = 2; i < args.length(); ++i) { | |
1584 Handle<Object> next_source = args.at<Object>(i); | |
1585 Maybe<bool> fast_assign = FastAssign(to, next_source); | |
1586 if (fast_assign.IsNothing()) return isolate->heap()->exception(); | |
1587 if (fast_assign.FromJust()) continue; | |
1588 // 4a. If nextSource is undefined or null, let keys be an empty List. | |
1589 // 4b. Else, | |
1590 // 4b i. Let from be ToObject(nextSource). | |
1591 // Only non-empty strings and JSReceivers have enumerable properties. | |
1592 Handle<JSReceiver> from = | |
1593 Object::ToObject(isolate, next_source).ToHandleChecked(); | |
1594 // 4b ii. Let keys be ? from.[[OwnPropertyKeys]](). | |
1595 Handle<FixedArray> keys; | |
1596 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1597 isolate, keys, KeyAccumulator::GetKeys( | |
1598 from, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, | |
1599 GetKeysConversion::kKeepNumbers)); | |
1600 // 4c. Repeat for each element nextKey of keys in List order, | |
1601 for (int j = 0; j < keys->length(); ++j) { | |
1602 Handle<Object> next_key(keys->get(j), isolate); | |
1603 // 4c i. Let desc be ? from.[[GetOwnProperty]](nextKey). | |
1604 PropertyDescriptor desc; | |
1605 Maybe<bool> found = | |
1606 JSReceiver::GetOwnPropertyDescriptor(isolate, from, next_key, &desc); | |
1607 if (found.IsNothing()) return isolate->heap()->exception(); | |
1608 // 4c ii. If desc is not undefined and desc.[[Enumerable]] is true, then | |
1609 if (found.FromJust() && desc.enumerable()) { | |
1610 // 4c ii 1. Let propValue be ? Get(from, nextKey). | |
1611 Handle<Object> prop_value; | |
1612 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1613 isolate, prop_value, | |
1614 Runtime::GetObjectProperty(isolate, from, next_key)); | |
1615 // 4c ii 2. Let status be ? Set(to, nextKey, propValue, true). | |
1616 Handle<Object> status; | |
1617 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1618 isolate, status, Runtime::SetObjectProperty(isolate, to, next_key, | |
1619 prop_value, STRICT)); | |
1620 } | |
1621 } | |
1622 } | |
1623 // 5. Return to. | |
1624 return *to; | |
1625 } | |
1626 | |
1627 | |
1628 // ES6 section 19.1.2.2 Object.create ( O [ , Properties ] ) | |
1629 // TODO(verwaest): Support the common cases with precached map directly in | |
1630 // an Object.create stub. | |
1631 BUILTIN(ObjectCreate) { | |
1632 HandleScope scope(isolate); | |
1633 Handle<Object> prototype = args.atOrUndefined(isolate, 1); | |
1634 if (!prototype->IsNull(isolate) && !prototype->IsJSReceiver()) { | |
1635 THROW_NEW_ERROR_RETURN_FAILURE( | |
1636 isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, prototype)); | |
1637 } | |
1638 | |
1639 // Generate the map with the specified {prototype} based on the Object | |
1640 // function's initial map from the current native context. | |
1641 // TODO(bmeurer): Use a dedicated cache for Object.create; think about | |
1642 // slack tracking for Object.create. | |
1643 Handle<Map> map(isolate->native_context()->object_function()->initial_map(), | |
1644 isolate); | |
1645 if (map->prototype() != *prototype) { | |
1646 if (prototype->IsNull(isolate)) { | |
1647 map = isolate->object_with_null_prototype_map(); | |
1648 } else if (prototype->IsJSObject()) { | |
1649 Handle<JSObject> js_prototype = Handle<JSObject>::cast(prototype); | |
1650 if (!js_prototype->map()->is_prototype_map()) { | |
1651 JSObject::OptimizeAsPrototype(js_prototype, FAST_PROTOTYPE); | |
1652 } | |
1653 Handle<PrototypeInfo> info = | |
1654 Map::GetOrCreatePrototypeInfo(js_prototype, isolate); | |
1655 // TODO(verwaest): Use inobject slack tracking for this map. | |
1656 if (info->HasObjectCreateMap()) { | |
1657 map = handle(info->ObjectCreateMap(), isolate); | |
1658 } else { | |
1659 map = Map::CopyInitialMap(map); | |
1660 Map::SetPrototype(map, prototype, FAST_PROTOTYPE); | |
1661 PrototypeInfo::SetObjectCreateMap(info, map); | |
1662 } | |
1663 } else { | |
1664 map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE); | |
1665 } | |
1666 } | |
1667 | |
1668 // Actually allocate the object. | |
1669 Handle<JSObject> object = isolate->factory()->NewJSObjectFromMap(map); | |
1670 | |
1671 // Define the properties if properties was specified and is not undefined. | |
1672 Handle<Object> properties = args.atOrUndefined(isolate, 2); | |
1673 if (!properties->IsUndefined(isolate)) { | |
1674 RETURN_FAILURE_ON_EXCEPTION( | |
1675 isolate, JSReceiver::DefineProperties(isolate, object, properties)); | |
1676 } | |
1677 | |
1678 return *object; | |
1679 } | |
1680 | |
1681 // ES6 section 19.1.2.3 Object.defineProperties | |
1682 BUILTIN(ObjectDefineProperties) { | |
1683 HandleScope scope(isolate); | |
1684 DCHECK_EQ(3, args.length()); | |
1685 Handle<Object> target = args.at<Object>(1); | |
1686 Handle<Object> properties = args.at<Object>(2); | |
1687 | |
1688 RETURN_RESULT_OR_FAILURE( | |
1689 isolate, JSReceiver::DefineProperties(isolate, target, properties)); | |
1690 } | |
1691 | |
1692 // ES6 section 19.1.2.4 Object.defineProperty | |
1693 BUILTIN(ObjectDefineProperty) { | |
1694 HandleScope scope(isolate); | |
1695 DCHECK_EQ(4, args.length()); | |
1696 Handle<Object> target = args.at<Object>(1); | |
1697 Handle<Object> key = args.at<Object>(2); | |
1698 Handle<Object> attributes = args.at<Object>(3); | |
1699 | |
1700 return JSReceiver::DefineProperty(isolate, target, key, attributes); | |
1701 } | |
1702 | |
1703 namespace { | |
1704 | |
1705 template <AccessorComponent which_accessor> | |
1706 Object* ObjectDefineAccessor(Isolate* isolate, Handle<Object> object, | |
1707 Handle<Object> name, Handle<Object> accessor) { | |
1708 // 1. Let O be ? ToObject(this value). | |
1709 Handle<JSReceiver> receiver; | |
1710 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver, | |
1711 Object::ConvertReceiver(isolate, object)); | |
1712 // 2. If IsCallable(getter) is false, throw a TypeError exception. | |
1713 if (!accessor->IsCallable()) { | |
1714 MessageTemplate::Template message = | |
1715 which_accessor == ACCESSOR_GETTER | |
1716 ? MessageTemplate::kObjectGetterExpectingFunction | |
1717 : MessageTemplate::kObjectSetterExpectingFunction; | |
1718 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError(message)); | |
1719 } | |
1720 // 3. Let desc be PropertyDescriptor{[[Get]]: getter, [[Enumerable]]: true, | |
1721 // [[Configurable]]: true}. | |
1722 PropertyDescriptor desc; | |
1723 if (which_accessor == ACCESSOR_GETTER) { | |
1724 desc.set_get(accessor); | |
1725 } else { | |
1726 DCHECK(which_accessor == ACCESSOR_SETTER); | |
1727 desc.set_set(accessor); | |
1728 } | |
1729 desc.set_enumerable(true); | |
1730 desc.set_configurable(true); | |
1731 // 4. Let key be ? ToPropertyKey(P). | |
1732 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name, | |
1733 Object::ToPropertyKey(isolate, name)); | |
1734 // 5. Perform ? DefinePropertyOrThrow(O, key, desc). | |
1735 // To preserve legacy behavior, we ignore errors silently rather than | |
1736 // throwing an exception. | |
1737 Maybe<bool> success = JSReceiver::DefineOwnProperty( | |
1738 isolate, receiver, name, &desc, Object::DONT_THROW); | |
1739 MAYBE_RETURN(success, isolate->heap()->exception()); | |
1740 if (!success.FromJust()) { | |
1741 isolate->CountUsage(v8::Isolate::kDefineGetterOrSetterWouldThrow); | |
1742 } | |
1743 // 6. Return undefined. | |
1744 return isolate->heap()->undefined_value(); | |
1745 } | |
1746 | |
1747 Object* ObjectLookupAccessor(Isolate* isolate, Handle<Object> object, | |
1748 Handle<Object> key, AccessorComponent component) { | |
1749 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, object, | |
1750 Object::ConvertReceiver(isolate, object)); | |
1751 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, | |
1752 Object::ToPropertyKey(isolate, key)); | |
1753 bool success = false; | |
1754 LookupIterator it = LookupIterator::PropertyOrElement( | |
1755 isolate, object, key, &success, | |
1756 LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); | |
1757 DCHECK(success); | |
1758 | |
1759 for (; it.IsFound(); it.Next()) { | |
1760 switch (it.state()) { | |
1761 case LookupIterator::INTERCEPTOR: | |
1762 case LookupIterator::NOT_FOUND: | |
1763 case LookupIterator::TRANSITION: | |
1764 UNREACHABLE(); | |
1765 | |
1766 case LookupIterator::ACCESS_CHECK: | |
1767 if (it.HasAccess()) continue; | |
1768 isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>()); | |
1769 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); | |
1770 return isolate->heap()->undefined_value(); | |
1771 | |
1772 case LookupIterator::JSPROXY: | |
1773 return isolate->heap()->undefined_value(); | |
1774 | |
1775 case LookupIterator::INTEGER_INDEXED_EXOTIC: | |
1776 return isolate->heap()->undefined_value(); | |
1777 case LookupIterator::DATA: | |
1778 continue; | |
1779 case LookupIterator::ACCESSOR: { | |
1780 Handle<Object> maybe_pair = it.GetAccessors(); | |
1781 if (maybe_pair->IsAccessorPair()) { | |
1782 return *AccessorPair::GetComponent( | |
1783 Handle<AccessorPair>::cast(maybe_pair), component); | |
1784 } | |
1785 } | |
1786 } | |
1787 } | |
1788 | |
1789 return isolate->heap()->undefined_value(); | |
1790 } | |
1791 | |
1792 } // namespace | |
1793 | |
1794 // ES6 B.2.2.2 a.k.a. | |
1795 // https://tc39.github.io/ecma262/#sec-object.prototype.__defineGetter__ | |
1796 BUILTIN(ObjectDefineGetter) { | |
1797 HandleScope scope(isolate); | |
1798 Handle<Object> object = args.at<Object>(0); // Receiver. | |
1799 Handle<Object> name = args.at<Object>(1); | |
1800 Handle<Object> getter = args.at<Object>(2); | |
1801 return ObjectDefineAccessor<ACCESSOR_GETTER>(isolate, object, name, getter); | |
1802 } | |
1803 | |
1804 // ES6 B.2.2.3 a.k.a. | |
1805 // https://tc39.github.io/ecma262/#sec-object.prototype.__defineSetter__ | |
1806 BUILTIN(ObjectDefineSetter) { | |
1807 HandleScope scope(isolate); | |
1808 Handle<Object> object = args.at<Object>(0); // Receiver. | |
1809 Handle<Object> name = args.at<Object>(1); | |
1810 Handle<Object> setter = args.at<Object>(2); | |
1811 return ObjectDefineAccessor<ACCESSOR_SETTER>(isolate, object, name, setter); | |
1812 } | |
1813 | |
1814 // ES6 B.2.2.4 a.k.a. | |
1815 // https://tc39.github.io/ecma262/#sec-object.prototype.__lookupGetter__ | |
1816 BUILTIN(ObjectLookupGetter) { | |
1817 HandleScope scope(isolate); | |
1818 Handle<Object> object = args.at<Object>(0); | |
1819 Handle<Object> name = args.at<Object>(1); | |
1820 return ObjectLookupAccessor(isolate, object, name, ACCESSOR_GETTER); | |
1821 } | |
1822 | |
1823 // ES6 B.2.2.5 a.k.a. | |
1824 // https://tc39.github.io/ecma262/#sec-object.prototype.__lookupSetter__ | |
1825 BUILTIN(ObjectLookupSetter) { | |
1826 HandleScope scope(isolate); | |
1827 Handle<Object> object = args.at<Object>(0); | |
1828 Handle<Object> name = args.at<Object>(1); | |
1829 return ObjectLookupAccessor(isolate, object, name, ACCESSOR_SETTER); | |
1830 } | |
1831 | |
1832 // ES6 section 19.1.2.5 Object.freeze ( O ) | |
1833 BUILTIN(ObjectFreeze) { | |
1834 HandleScope scope(isolate); | |
1835 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1836 if (object->IsJSReceiver()) { | |
1837 MAYBE_RETURN(JSReceiver::SetIntegrityLevel(Handle<JSReceiver>::cast(object), | |
1838 FROZEN, Object::THROW_ON_ERROR), | |
1839 isolate->heap()->exception()); | |
1840 } | |
1841 return *object; | |
1842 } | |
1843 | |
1844 | |
1845 // ES section 19.1.2.9 Object.getPrototypeOf ( O ) | |
1846 BUILTIN(ObjectGetPrototypeOf) { | |
1847 HandleScope scope(isolate); | |
1848 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1849 | |
1850 Handle<JSReceiver> receiver; | |
1851 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1852 isolate, receiver, Object::ToObject(isolate, object)); | |
1853 | |
1854 RETURN_RESULT_OR_FAILURE(isolate, | |
1855 JSReceiver::GetPrototype(isolate, receiver)); | |
1856 } | |
1857 | |
1858 | |
1859 // ES6 section 19.1.2.6 Object.getOwnPropertyDescriptor ( O, P ) | |
1860 BUILTIN(ObjectGetOwnPropertyDescriptor) { | |
1861 HandleScope scope(isolate); | |
1862 // 1. Let obj be ? ToObject(O). | |
1863 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1864 Handle<JSReceiver> receiver; | |
1865 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver, | |
1866 Object::ToObject(isolate, object)); | |
1867 // 2. Let key be ? ToPropertyKey(P). | |
1868 Handle<Object> property = args.atOrUndefined(isolate, 2); | |
1869 Handle<Name> key; | |
1870 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, | |
1871 Object::ToName(isolate, property)); | |
1872 // 3. Let desc be ? obj.[[GetOwnProperty]](key). | |
1873 PropertyDescriptor desc; | |
1874 Maybe<bool> found = | |
1875 JSReceiver::GetOwnPropertyDescriptor(isolate, receiver, key, &desc); | |
1876 MAYBE_RETURN(found, isolate->heap()->exception()); | |
1877 // 4. Return FromPropertyDescriptor(desc). | |
1878 if (!found.FromJust()) return isolate->heap()->undefined_value(); | |
1879 return *desc.ToObject(isolate); | |
1880 } | |
1881 | |
1882 | |
1883 namespace { | |
1884 | |
1885 Object* GetOwnPropertyKeys(Isolate* isolate, BuiltinArguments args, | |
1886 PropertyFilter filter) { | |
1887 HandleScope scope(isolate); | |
1888 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1889 Handle<JSReceiver> receiver; | |
1890 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver, | |
1891 Object::ToObject(isolate, object)); | |
1892 Handle<FixedArray> keys; | |
1893 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1894 isolate, keys, | |
1895 KeyAccumulator::GetKeys(receiver, KeyCollectionMode::kOwnOnly, filter, | |
1896 GetKeysConversion::kConvertToString)); | |
1897 return *isolate->factory()->NewJSArrayWithElements(keys); | |
1898 } | |
1899 | |
1900 } // namespace | |
1901 | |
1902 | |
1903 // ES6 section 19.1.2.7 Object.getOwnPropertyNames ( O ) | |
1904 BUILTIN(ObjectGetOwnPropertyNames) { | |
1905 return GetOwnPropertyKeys(isolate, args, SKIP_SYMBOLS); | |
1906 } | |
1907 | |
1908 | |
1909 // ES6 section 19.1.2.8 Object.getOwnPropertySymbols ( O ) | |
1910 BUILTIN(ObjectGetOwnPropertySymbols) { | |
1911 return GetOwnPropertyKeys(isolate, args, SKIP_STRINGS); | |
1912 } | |
1913 | |
1914 | |
1915 // ES#sec-object.is Object.is ( value1, value2 ) | |
1916 BUILTIN(ObjectIs) { | |
1917 SealHandleScope shs(isolate); | |
1918 DCHECK_EQ(3, args.length()); | |
1919 Handle<Object> value1 = args.at<Object>(1); | |
1920 Handle<Object> value2 = args.at<Object>(2); | |
1921 return isolate->heap()->ToBoolean(value1->SameValue(*value2)); | |
1922 } | |
1923 | |
1924 | |
1925 // ES6 section 19.1.2.11 Object.isExtensible ( O ) | |
1926 BUILTIN(ObjectIsExtensible) { | |
1927 HandleScope scope(isolate); | |
1928 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1929 Maybe<bool> result = | |
1930 object->IsJSReceiver() | |
1931 ? JSReceiver::IsExtensible(Handle<JSReceiver>::cast(object)) | |
1932 : Just(false); | |
1933 MAYBE_RETURN(result, isolate->heap()->exception()); | |
1934 return isolate->heap()->ToBoolean(result.FromJust()); | |
1935 } | |
1936 | |
1937 | |
1938 // ES6 section 19.1.2.12 Object.isFrozen ( O ) | |
1939 BUILTIN(ObjectIsFrozen) { | |
1940 HandleScope scope(isolate); | |
1941 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1942 Maybe<bool> result = object->IsJSReceiver() | |
1943 ? JSReceiver::TestIntegrityLevel( | |
1944 Handle<JSReceiver>::cast(object), FROZEN) | |
1945 : Just(true); | |
1946 MAYBE_RETURN(result, isolate->heap()->exception()); | |
1947 return isolate->heap()->ToBoolean(result.FromJust()); | |
1948 } | |
1949 | |
1950 | |
1951 // ES6 section 19.1.2.13 Object.isSealed ( O ) | |
1952 BUILTIN(ObjectIsSealed) { | |
1953 HandleScope scope(isolate); | |
1954 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1955 Maybe<bool> result = object->IsJSReceiver() | |
1956 ? JSReceiver::TestIntegrityLevel( | |
1957 Handle<JSReceiver>::cast(object), SEALED) | |
1958 : Just(true); | |
1959 MAYBE_RETURN(result, isolate->heap()->exception()); | |
1960 return isolate->heap()->ToBoolean(result.FromJust()); | |
1961 } | |
1962 | |
1963 | |
1964 // ES6 section 19.1.2.14 Object.keys ( O ) | |
1965 BUILTIN(ObjectKeys) { | |
1966 HandleScope scope(isolate); | |
1967 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
1968 Handle<JSReceiver> receiver; | |
1969 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver, | |
1970 Object::ToObject(isolate, object)); | |
1971 | |
1972 Handle<FixedArray> keys; | |
1973 int enum_length = receiver->map()->EnumLength(); | |
1974 if (enum_length != kInvalidEnumCacheSentinel && | |
1975 JSObject::cast(*receiver)->elements() == | |
1976 isolate->heap()->empty_fixed_array()) { | |
1977 DCHECK(receiver->IsJSObject()); | |
1978 DCHECK(!JSObject::cast(*receiver)->HasNamedInterceptor()); | |
1979 DCHECK(!JSObject::cast(*receiver)->IsAccessCheckNeeded()); | |
1980 DCHECK(!receiver->map()->has_hidden_prototype()); | |
1981 DCHECK(JSObject::cast(*receiver)->HasFastProperties()); | |
1982 if (enum_length == 0) { | |
1983 keys = isolate->factory()->empty_fixed_array(); | |
1984 } else { | |
1985 Handle<FixedArray> cache( | |
1986 receiver->map()->instance_descriptors()->GetEnumCache()); | |
1987 keys = isolate->factory()->CopyFixedArrayUpTo(cache, enum_length); | |
1988 } | |
1989 } else { | |
1990 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1991 isolate, keys, | |
1992 KeyAccumulator::GetKeys(receiver, KeyCollectionMode::kOwnOnly, | |
1993 ENUMERABLE_STRINGS, | |
1994 GetKeysConversion::kConvertToString)); | |
1995 } | |
1996 return *isolate->factory()->NewJSArrayWithElements(keys, FAST_ELEMENTS); | |
1997 } | |
1998 | |
1999 BUILTIN(ObjectValues) { | |
2000 HandleScope scope(isolate); | |
2001 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
2002 Handle<JSReceiver> receiver; | |
2003 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver, | |
2004 Object::ToObject(isolate, object)); | |
2005 Handle<FixedArray> values; | |
2006 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2007 isolate, values, JSReceiver::GetOwnValues(receiver, ENUMERABLE_STRINGS)); | |
2008 return *isolate->factory()->NewJSArrayWithElements(values); | |
2009 } | |
2010 | |
2011 | |
2012 BUILTIN(ObjectEntries) { | |
2013 HandleScope scope(isolate); | |
2014 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
2015 Handle<JSReceiver> receiver; | |
2016 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver, | |
2017 Object::ToObject(isolate, object)); | |
2018 Handle<FixedArray> entries; | |
2019 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2020 isolate, entries, | |
2021 JSReceiver::GetOwnEntries(receiver, ENUMERABLE_STRINGS)); | |
2022 return *isolate->factory()->NewJSArrayWithElements(entries); | |
2023 } | |
2024 | |
2025 BUILTIN(ObjectGetOwnPropertyDescriptors) { | |
2026 HandleScope scope(isolate); | |
2027 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
2028 | |
2029 Handle<JSReceiver> receiver; | |
2030 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver, | |
2031 Object::ToObject(isolate, object)); | |
2032 | |
2033 Handle<FixedArray> keys; | |
2034 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2035 isolate, keys, KeyAccumulator::GetKeys( | |
2036 receiver, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, | |
2037 GetKeysConversion::kConvertToString)); | |
2038 | |
2039 Handle<JSObject> descriptors = | |
2040 isolate->factory()->NewJSObject(isolate->object_function()); | |
2041 | |
2042 for (int i = 0; i < keys->length(); ++i) { | |
2043 Handle<Name> key = Handle<Name>::cast(FixedArray::get(*keys, i, isolate)); | |
2044 PropertyDescriptor descriptor; | |
2045 Maybe<bool> did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor( | |
2046 isolate, receiver, key, &descriptor); | |
2047 MAYBE_RETURN(did_get_descriptor, isolate->heap()->exception()); | |
2048 | |
2049 if (!did_get_descriptor.FromJust()) continue; | |
2050 Handle<Object> from_descriptor = descriptor.ToObject(isolate); | |
2051 | |
2052 LookupIterator it = LookupIterator::PropertyOrElement( | |
2053 isolate, descriptors, key, descriptors, LookupIterator::OWN); | |
2054 Maybe<bool> success = JSReceiver::CreateDataProperty(&it, from_descriptor, | |
2055 Object::DONT_THROW); | |
2056 CHECK(success.FromJust()); | |
2057 } | |
2058 | |
2059 return *descriptors; | |
2060 } | |
2061 | |
2062 // ES6 section 19.1.2.15 Object.preventExtensions ( O ) | |
2063 BUILTIN(ObjectPreventExtensions) { | |
2064 HandleScope scope(isolate); | |
2065 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
2066 if (object->IsJSReceiver()) { | |
2067 MAYBE_RETURN(JSReceiver::PreventExtensions(Handle<JSReceiver>::cast(object), | |
2068 Object::THROW_ON_ERROR), | |
2069 isolate->heap()->exception()); | |
2070 } | |
2071 return *object; | |
2072 } | |
2073 | |
2074 | |
2075 // ES6 section 19.1.2.17 Object.seal ( O ) | |
2076 BUILTIN(ObjectSeal) { | |
2077 HandleScope scope(isolate); | |
2078 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
2079 if (object->IsJSReceiver()) { | |
2080 MAYBE_RETURN(JSReceiver::SetIntegrityLevel(Handle<JSReceiver>::cast(object), | |
2081 SEALED, Object::THROW_ON_ERROR), | |
2082 isolate->heap()->exception()); | |
2083 } | |
2084 return *object; | |
2085 } | |
2086 | |
2087 // ES6 section 18.2.6.2 decodeURI (encodedURI) | |
2088 BUILTIN(GlobalDecodeURI) { | |
2089 HandleScope scope(isolate); | |
2090 Handle<String> encoded_uri; | |
2091 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2092 isolate, encoded_uri, | |
2093 Object::ToString(isolate, args.atOrUndefined(isolate, 1))); | |
2094 | |
2095 RETURN_RESULT_OR_FAILURE(isolate, Uri::DecodeUri(isolate, encoded_uri)); | |
2096 } | |
2097 | |
2098 // ES6 section 18.2.6.3 decodeURIComponent (encodedURIComponent) | |
2099 BUILTIN(GlobalDecodeURIComponent) { | |
2100 HandleScope scope(isolate); | |
2101 Handle<String> encoded_uri_component; | |
2102 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2103 isolate, encoded_uri_component, | |
2104 Object::ToString(isolate, args.atOrUndefined(isolate, 1))); | |
2105 | |
2106 RETURN_RESULT_OR_FAILURE( | |
2107 isolate, Uri::DecodeUriComponent(isolate, encoded_uri_component)); | |
2108 } | |
2109 | |
2110 // ES6 section 18.2.6.4 encodeURI (uri) | |
2111 BUILTIN(GlobalEncodeURI) { | |
2112 HandleScope scope(isolate); | |
2113 Handle<String> uri; | |
2114 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2115 isolate, uri, Object::ToString(isolate, args.atOrUndefined(isolate, 1))); | |
2116 | |
2117 RETURN_RESULT_OR_FAILURE(isolate, Uri::EncodeUri(isolate, uri)); | |
2118 } | |
2119 | |
2120 // ES6 section 18.2.6.5 encodeURIComponenet (uriComponent) | |
2121 BUILTIN(GlobalEncodeURIComponent) { | |
2122 HandleScope scope(isolate); | |
2123 Handle<String> uri_component; | |
2124 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2125 isolate, uri_component, | |
2126 Object::ToString(isolate, args.atOrUndefined(isolate, 1))); | |
2127 | |
2128 RETURN_RESULT_OR_FAILURE(isolate, | |
2129 Uri::EncodeUriComponent(isolate, uri_component)); | |
2130 } | |
2131 | |
2132 // ES6 section B.2.1.1 escape (string) | |
2133 BUILTIN(GlobalEscape) { | |
2134 HandleScope scope(isolate); | |
2135 Handle<String> string; | |
2136 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2137 isolate, string, | |
2138 Object::ToString(isolate, args.atOrUndefined(isolate, 1))); | |
2139 | |
2140 RETURN_RESULT_OR_FAILURE(isolate, Uri::Escape(isolate, string)); | |
2141 } | |
2142 | |
2143 // ES6 section B.2.1.2 unescape (string) | |
2144 BUILTIN(GlobalUnescape) { | |
2145 HandleScope scope(isolate); | |
2146 Handle<String> string; | |
2147 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2148 isolate, string, | |
2149 Object::ToString(isolate, args.atOrUndefined(isolate, 1))); | |
2150 | |
2151 RETURN_RESULT_OR_FAILURE(isolate, Uri::Unescape(isolate, string)); | |
2152 } | |
2153 | |
2154 namespace { | |
2155 | |
2156 bool CodeGenerationFromStringsAllowed(Isolate* isolate, | |
2157 Handle<Context> context) { | |
2158 DCHECK(context->allow_code_gen_from_strings()->IsFalse(isolate)); | |
2159 // Check with callback if set. | |
2160 AllowCodeGenerationFromStringsCallback callback = | |
2161 isolate->allow_code_gen_callback(); | |
2162 if (callback == NULL) { | |
2163 // No callback set and code generation disallowed. | |
2164 return false; | |
2165 } else { | |
2166 // Callback set. Let it decide if code generation is allowed. | |
2167 VMState<EXTERNAL> state(isolate); | |
2168 return callback(v8::Utils::ToLocal(context)); | |
2169 } | |
2170 } | |
2171 | |
2172 | |
2173 MaybeHandle<JSFunction> CompileString(Handle<Context> context, | |
2174 Handle<String> source, | |
2175 ParseRestriction restriction) { | |
2176 Isolate* const isolate = context->GetIsolate(); | |
2177 Handle<Context> native_context(context->native_context(), isolate); | |
2178 | |
2179 // Check if native context allows code generation from | |
2180 // strings. Throw an exception if it doesn't. | |
2181 if (native_context->allow_code_gen_from_strings()->IsFalse(isolate) && | |
2182 !CodeGenerationFromStringsAllowed(isolate, native_context)) { | |
2183 Handle<Object> error_message = | |
2184 native_context->ErrorMessageForCodeGenerationFromStrings(); | |
2185 THROW_NEW_ERROR(isolate, NewEvalError(MessageTemplate::kCodeGenFromStrings, | |
2186 error_message), | |
2187 JSFunction); | |
2188 } | |
2189 | |
2190 // Compile source string in the native context. | |
2191 int eval_scope_position = 0; | |
2192 int eval_position = kNoSourcePosition; | |
2193 Handle<SharedFunctionInfo> outer_info(native_context->closure()->shared()); | |
2194 return Compiler::GetFunctionFromEval(source, outer_info, native_context, | |
2195 SLOPPY, restriction, eval_scope_position, | |
2196 eval_position); | |
2197 } | |
2198 | |
2199 } // namespace | |
2200 | |
2201 | |
2202 // ES6 section 18.2.1 eval (x) | |
2203 BUILTIN(GlobalEval) { | |
2204 HandleScope scope(isolate); | |
2205 Handle<Object> x = args.atOrUndefined(isolate, 1); | |
2206 Handle<JSFunction> target = args.target<JSFunction>(); | |
2207 Handle<JSObject> target_global_proxy(target->global_proxy(), isolate); | |
2208 if (!x->IsString()) return *x; | |
2209 Handle<JSFunction> function; | |
2210 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2211 isolate, function, | |
2212 CompileString(handle(target->native_context(), isolate), | |
2213 Handle<String>::cast(x), NO_PARSE_RESTRICTION)); | |
2214 RETURN_RESULT_OR_FAILURE( | |
2215 isolate, | |
2216 Execution::Call(isolate, function, target_global_proxy, 0, nullptr)); | |
2217 } | |
2218 | |
2219 // ES6 section 24.3.1 JSON.parse. | |
2220 BUILTIN(JsonParse) { | |
2221 HandleScope scope(isolate); | |
2222 Handle<Object> source = args.atOrUndefined(isolate, 1); | |
2223 Handle<Object> reviver = args.atOrUndefined(isolate, 2); | |
2224 Handle<String> string; | |
2225 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, string, | |
2226 Object::ToString(isolate, source)); | |
2227 string = String::Flatten(string); | |
2228 RETURN_RESULT_OR_FAILURE( | |
2229 isolate, string->IsSeqOneByteString() | |
2230 ? JsonParser<true>::Parse(isolate, string, reviver) | |
2231 : JsonParser<false>::Parse(isolate, string, reviver)); | |
2232 } | |
2233 | |
2234 // ES6 section 24.3.2 JSON.stringify. | |
2235 BUILTIN(JsonStringify) { | |
2236 HandleScope scope(isolate); | |
2237 JsonStringifier stringifier(isolate); | |
2238 Handle<Object> object = args.atOrUndefined(isolate, 1); | |
2239 Handle<Object> replacer = args.atOrUndefined(isolate, 2); | |
2240 Handle<Object> indent = args.atOrUndefined(isolate, 3); | |
2241 RETURN_RESULT_OR_FAILURE(isolate, | |
2242 stringifier.Stringify(object, replacer, indent)); | |
2243 } | |
2244 | |
2245 // ----------------------------------------------------------------------------- | |
2246 // ES6 section 20.1 Number Objects | |
2247 | |
2248 // ES6 section 20.1.3.2 Number.prototype.toExponential ( fractionDigits ) | |
2249 BUILTIN(NumberPrototypeToExponential) { | |
2250 HandleScope scope(isolate); | |
2251 Handle<Object> value = args.at<Object>(0); | |
2252 Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1); | |
2253 | |
2254 // Unwrap the receiver {value}. | |
2255 if (value->IsJSValue()) { | |
2256 value = handle(Handle<JSValue>::cast(value)->value(), isolate); | |
2257 } | |
2258 if (!value->IsNumber()) { | |
2259 THROW_NEW_ERROR_RETURN_FAILURE( | |
2260 isolate, NewTypeError(MessageTemplate::kNotGeneric, | |
2261 isolate->factory()->NewStringFromAsciiChecked( | |
2262 "Number.prototype.toExponential"))); | |
2263 } | |
2264 double const value_number = value->Number(); | |
2265 | |
2266 // Convert the {fraction_digits} to an integer first. | |
2267 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2268 isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits)); | |
2269 double const fraction_digits_number = fraction_digits->Number(); | |
2270 | |
2271 if (std::isnan(value_number)) return isolate->heap()->nan_string(); | |
2272 if (std::isinf(value_number)) { | |
2273 return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() | |
2274 : isolate->heap()->infinity_string(); | |
2275 } | |
2276 if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) { | |
2277 THROW_NEW_ERROR_RETURN_FAILURE( | |
2278 isolate, NewRangeError(MessageTemplate::kNumberFormatRange, | |
2279 isolate->factory()->NewStringFromAsciiChecked( | |
2280 "toExponential()"))); | |
2281 } | |
2282 int const f = args.atOrUndefined(isolate, 1)->IsUndefined(isolate) | |
2283 ? -1 | |
2284 : static_cast<int>(fraction_digits_number); | |
2285 char* const str = DoubleToExponentialCString(value_number, f); | |
2286 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); | |
2287 DeleteArray(str); | |
2288 return *result; | |
2289 } | |
2290 | |
2291 // ES6 section 20.1.3.3 Number.prototype.toFixed ( fractionDigits ) | |
2292 BUILTIN(NumberPrototypeToFixed) { | |
2293 HandleScope scope(isolate); | |
2294 Handle<Object> value = args.at<Object>(0); | |
2295 Handle<Object> fraction_digits = args.atOrUndefined(isolate, 1); | |
2296 | |
2297 // Unwrap the receiver {value}. | |
2298 if (value->IsJSValue()) { | |
2299 value = handle(Handle<JSValue>::cast(value)->value(), isolate); | |
2300 } | |
2301 if (!value->IsNumber()) { | |
2302 THROW_NEW_ERROR_RETURN_FAILURE( | |
2303 isolate, NewTypeError(MessageTemplate::kNotGeneric, | |
2304 isolate->factory()->NewStringFromAsciiChecked( | |
2305 "Number.prototype.toFixed"))); | |
2306 } | |
2307 double const value_number = value->Number(); | |
2308 | |
2309 // Convert the {fraction_digits} to an integer first. | |
2310 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2311 isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits)); | |
2312 double const fraction_digits_number = fraction_digits->Number(); | |
2313 | |
2314 // Check if the {fraction_digits} are in the supported range. | |
2315 if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) { | |
2316 THROW_NEW_ERROR_RETURN_FAILURE( | |
2317 isolate, NewRangeError(MessageTemplate::kNumberFormatRange, | |
2318 isolate->factory()->NewStringFromAsciiChecked( | |
2319 "toFixed() digits"))); | |
2320 } | |
2321 | |
2322 if (std::isnan(value_number)) return isolate->heap()->nan_string(); | |
2323 if (std::isinf(value_number)) { | |
2324 return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() | |
2325 : isolate->heap()->infinity_string(); | |
2326 } | |
2327 char* const str = DoubleToFixedCString( | |
2328 value_number, static_cast<int>(fraction_digits_number)); | |
2329 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); | |
2330 DeleteArray(str); | |
2331 return *result; | |
2332 } | |
2333 | |
2334 // ES6 section 20.1.3.4 Number.prototype.toLocaleString ( [ r1 [ , r2 ] ] ) | |
2335 BUILTIN(NumberPrototypeToLocaleString) { | |
2336 HandleScope scope(isolate); | |
2337 Handle<Object> value = args.at<Object>(0); | |
2338 | |
2339 // Unwrap the receiver {value}. | |
2340 if (value->IsJSValue()) { | |
2341 value = handle(Handle<JSValue>::cast(value)->value(), isolate); | |
2342 } | |
2343 if (!value->IsNumber()) { | |
2344 THROW_NEW_ERROR_RETURN_FAILURE( | |
2345 isolate, NewTypeError(MessageTemplate::kNotGeneric, | |
2346 isolate->factory()->NewStringFromAsciiChecked( | |
2347 "Number.prototype.toLocaleString"))); | |
2348 } | |
2349 | |
2350 // Turn the {value} into a String. | |
2351 return *isolate->factory()->NumberToString(value); | |
2352 } | |
2353 | |
2354 // ES6 section 20.1.3.5 Number.prototype.toPrecision ( precision ) | |
2355 BUILTIN(NumberPrototypeToPrecision) { | |
2356 HandleScope scope(isolate); | |
2357 Handle<Object> value = args.at<Object>(0); | |
2358 Handle<Object> precision = args.atOrUndefined(isolate, 1); | |
2359 | |
2360 // Unwrap the receiver {value}. | |
2361 if (value->IsJSValue()) { | |
2362 value = handle(Handle<JSValue>::cast(value)->value(), isolate); | |
2363 } | |
2364 if (!value->IsNumber()) { | |
2365 THROW_NEW_ERROR_RETURN_FAILURE( | |
2366 isolate, NewTypeError(MessageTemplate::kNotGeneric, | |
2367 isolate->factory()->NewStringFromAsciiChecked( | |
2368 "Number.prototype.toPrecision"))); | |
2369 } | |
2370 double const value_number = value->Number(); | |
2371 | |
2372 // If no {precision} was specified, just return ToString of {value}. | |
2373 if (precision->IsUndefined(isolate)) { | |
2374 return *isolate->factory()->NumberToString(value); | |
2375 } | |
2376 | |
2377 // Convert the {precision} to an integer first. | |
2378 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, precision, | |
2379 Object::ToInteger(isolate, precision)); | |
2380 double const precision_number = precision->Number(); | |
2381 | |
2382 if (std::isnan(value_number)) return isolate->heap()->nan_string(); | |
2383 if (std::isinf(value_number)) { | |
2384 return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() | |
2385 : isolate->heap()->infinity_string(); | |
2386 } | |
2387 if (precision_number < 1.0 || precision_number > 21.0) { | |
2388 THROW_NEW_ERROR_RETURN_FAILURE( | |
2389 isolate, NewRangeError(MessageTemplate::kToPrecisionFormatRange)); | |
2390 } | |
2391 char* const str = DoubleToPrecisionCString( | |
2392 value_number, static_cast<int>(precision_number)); | |
2393 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); | |
2394 DeleteArray(str); | |
2395 return *result; | |
2396 } | |
2397 | |
2398 // ES6 section 20.1.3.6 Number.prototype.toString ( [ radix ] ) | |
2399 BUILTIN(NumberPrototypeToString) { | |
2400 HandleScope scope(isolate); | |
2401 Handle<Object> value = args.at<Object>(0); | |
2402 Handle<Object> radix = args.atOrUndefined(isolate, 1); | |
2403 | |
2404 // Unwrap the receiver {value}. | |
2405 if (value->IsJSValue()) { | |
2406 value = handle(Handle<JSValue>::cast(value)->value(), isolate); | |
2407 } | |
2408 if (!value->IsNumber()) { | |
2409 THROW_NEW_ERROR_RETURN_FAILURE( | |
2410 isolate, NewTypeError(MessageTemplate::kNotGeneric, | |
2411 isolate->factory()->NewStringFromAsciiChecked( | |
2412 "Number.prototype.toString"))); | |
2413 } | |
2414 double const value_number = value->Number(); | |
2415 | |
2416 // If no {radix} was specified, just return ToString of {value}. | |
2417 if (radix->IsUndefined(isolate)) { | |
2418 return *isolate->factory()->NumberToString(value); | |
2419 } | |
2420 | |
2421 // Convert the {radix} to an integer first. | |
2422 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix, | |
2423 Object::ToInteger(isolate, radix)); | |
2424 double const radix_number = radix->Number(); | |
2425 | |
2426 // If {radix} is 10, just return ToString of {value}. | |
2427 if (radix_number == 10.0) return *isolate->factory()->NumberToString(value); | |
2428 | |
2429 // Make sure the {radix} is within the valid range. | |
2430 if (radix_number < 2.0 || radix_number > 36.0) { | |
2431 THROW_NEW_ERROR_RETURN_FAILURE( | |
2432 isolate, NewRangeError(MessageTemplate::kToRadixFormatRange)); | |
2433 } | |
2434 | |
2435 // Fast case where the result is a one character string. | |
2436 if (IsUint32Double(value_number) && value_number < radix_number) { | |
2437 // Character array used for conversion. | |
2438 static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; | |
2439 return *isolate->factory()->LookupSingleCharacterStringFromCode( | |
2440 kCharTable[static_cast<uint32_t>(value_number)]); | |
2441 } | |
2442 | |
2443 // Slow case. | |
2444 if (std::isnan(value_number)) return isolate->heap()->nan_string(); | |
2445 if (std::isinf(value_number)) { | |
2446 return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() | |
2447 : isolate->heap()->infinity_string(); | |
2448 } | |
2449 char* const str = | |
2450 DoubleToRadixCString(value_number, static_cast<int>(radix_number)); | |
2451 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); | |
2452 DeleteArray(str); | |
2453 return *result; | |
2454 } | |
2455 | |
2456 // ES6 section 20.1.3.7 Number.prototype.valueOf ( ) | |
2457 void Builtins::Generate_NumberPrototypeValueOf(CodeStubAssembler* assembler) { | |
2458 typedef compiler::Node Node; | |
2459 | |
2460 Node* receiver = assembler->Parameter(0); | |
2461 Node* context = assembler->Parameter(3); | |
2462 | |
2463 Node* result = assembler->ToThisValue( | |
2464 context, receiver, PrimitiveType::kNumber, "Number.prototype.valueOf"); | |
2465 assembler->Return(result); | |
2466 } | |
2467 | |
2468 // ----------------------------------------------------------------------------- | |
2469 // ES6 section 20.2.2 Function Properties of the Math Object | |
2470 | |
2471 // ES6 section - 20.2.2.1 Math.abs ( x ) | |
2472 void Builtins::Generate_MathAbs(CodeStubAssembler* assembler) { | |
2473 using compiler::Node; | |
2474 Node* x = assembler->Parameter(1); | |
2475 Node* context = assembler->Parameter(4); | |
2476 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2477 Node* value = assembler->Float64Abs(x_value); | |
2478 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2479 assembler->Return(result); | |
2480 } | |
2481 | |
2482 // ES6 section 20.2.2.2 Math.acos ( x ) | |
2483 void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) { | |
2484 using compiler::Node; | |
2485 | |
2486 Node* x = assembler->Parameter(1); | |
2487 Node* context = assembler->Parameter(4); | |
2488 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2489 Node* value = assembler->Float64Acos(x_value); | |
2490 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2491 assembler->Return(result); | |
2492 } | |
2493 | |
2494 // ES6 section 20.2.2.3 Math.acosh ( x ) | |
2495 void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) { | |
2496 using compiler::Node; | |
2497 | |
2498 Node* x = assembler->Parameter(1); | |
2499 Node* context = assembler->Parameter(4); | |
2500 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2501 Node* value = assembler->Float64Acosh(x_value); | |
2502 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2503 assembler->Return(result); | |
2504 } | |
2505 | |
2506 // ES6 section 20.2.2.4 Math.asin ( x ) | |
2507 void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) { | |
2508 using compiler::Node; | |
2509 | |
2510 Node* x = assembler->Parameter(1); | |
2511 Node* context = assembler->Parameter(4); | |
2512 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2513 Node* value = assembler->Float64Asin(x_value); | |
2514 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2515 assembler->Return(result); | |
2516 } | |
2517 | |
2518 // ES6 section 20.2.2.5 Math.asinh ( x ) | |
2519 void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) { | |
2520 using compiler::Node; | |
2521 | |
2522 Node* x = assembler->Parameter(1); | |
2523 Node* context = assembler->Parameter(4); | |
2524 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2525 Node* value = assembler->Float64Asinh(x_value); | |
2526 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2527 assembler->Return(result); | |
2528 } | |
2529 | |
2530 // ES6 section 20.2.2.6 Math.atan ( x ) | |
2531 void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) { | |
2532 using compiler::Node; | |
2533 | |
2534 Node* x = assembler->Parameter(1); | |
2535 Node* context = assembler->Parameter(4); | |
2536 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2537 Node* value = assembler->Float64Atan(x_value); | |
2538 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2539 assembler->Return(result); | |
2540 } | |
2541 | |
2542 // ES6 section 20.2.2.7 Math.atanh ( x ) | |
2543 void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) { | |
2544 using compiler::Node; | |
2545 | |
2546 Node* x = assembler->Parameter(1); | |
2547 Node* context = assembler->Parameter(4); | |
2548 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2549 Node* value = assembler->Float64Atanh(x_value); | |
2550 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2551 assembler->Return(result); | |
2552 } | |
2553 | |
2554 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) | |
2555 void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) { | |
2556 using compiler::Node; | |
2557 | |
2558 Node* y = assembler->Parameter(1); | |
2559 Node* x = assembler->Parameter(2); | |
2560 Node* context = assembler->Parameter(5); | |
2561 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); | |
2562 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2563 Node* value = assembler->Float64Atan2(y_value, x_value); | |
2564 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2565 assembler->Return(result); | |
2566 } | |
2567 | |
2568 namespace { | |
2569 | |
2570 void Generate_MathRoundingOperation( | |
2571 CodeStubAssembler* assembler, | |
2572 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { | |
2573 typedef CodeStubAssembler::Label Label; | |
2574 typedef compiler::Node Node; | |
2575 typedef CodeStubAssembler::Variable Variable; | |
2576 | |
2577 Node* context = assembler->Parameter(4); | |
2578 | |
2579 // We might need to loop once for ToNumber conversion. | |
2580 Variable var_x(assembler, MachineRepresentation::kTagged); | |
2581 Label loop(assembler, &var_x); | |
2582 var_x.Bind(assembler->Parameter(1)); | |
2583 assembler->Goto(&loop); | |
2584 assembler->Bind(&loop); | |
2585 { | |
2586 // Load the current {x} value. | |
2587 Node* x = var_x.value(); | |
2588 | |
2589 // Check if {x} is a Smi or a HeapObject. | |
2590 Label if_xissmi(assembler), if_xisnotsmi(assembler); | |
2591 assembler->Branch(assembler->WordIsSmi(x), &if_xissmi, &if_xisnotsmi); | |
2592 | |
2593 assembler->Bind(&if_xissmi); | |
2594 { | |
2595 // Nothing to do when {x} is a Smi. | |
2596 assembler->Return(x); | |
2597 } | |
2598 | |
2599 assembler->Bind(&if_xisnotsmi); | |
2600 { | |
2601 // Check if {x} is a HeapNumber. | |
2602 Label if_xisheapnumber(assembler), | |
2603 if_xisnotheapnumber(assembler, Label::kDeferred); | |
2604 assembler->Branch( | |
2605 assembler->WordEqual(assembler->LoadMap(x), | |
2606 assembler->HeapNumberMapConstant()), | |
2607 &if_xisheapnumber, &if_xisnotheapnumber); | |
2608 | |
2609 assembler->Bind(&if_xisheapnumber); | |
2610 { | |
2611 Node* x_value = assembler->LoadHeapNumberValue(x); | |
2612 Node* value = (assembler->*float64op)(x_value); | |
2613 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2614 assembler->Return(result); | |
2615 } | |
2616 | |
2617 assembler->Bind(&if_xisnotheapnumber); | |
2618 { | |
2619 // Need to convert {x} to a Number first. | |
2620 Callable callable = | |
2621 CodeFactory::NonNumberToNumber(assembler->isolate()); | |
2622 var_x.Bind(assembler->CallStub(callable, context, x)); | |
2623 assembler->Goto(&loop); | |
2624 } | |
2625 } | |
2626 } | |
2627 } | |
2628 | |
2629 } // namespace | |
2630 | |
2631 // ES6 section 20.2.2.10 Math.ceil ( x ) | |
2632 void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) { | |
2633 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil); | |
2634 } | |
2635 | |
2636 // ES6 section 20.2.2.9 Math.cbrt ( x ) | |
2637 void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) { | |
2638 using compiler::Node; | |
2639 | |
2640 Node* x = assembler->Parameter(1); | |
2641 Node* context = assembler->Parameter(4); | |
2642 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2643 Node* value = assembler->Float64Cbrt(x_value); | |
2644 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2645 assembler->Return(result); | |
2646 } | |
2647 | |
2648 // ES6 section 20.2.2.11 Math.clz32 ( x ) | |
2649 void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) { | |
2650 typedef CodeStubAssembler::Label Label; | |
2651 typedef compiler::Node Node; | |
2652 typedef CodeStubAssembler::Variable Variable; | |
2653 | |
2654 Node* context = assembler->Parameter(4); | |
2655 | |
2656 // Shared entry point for the clz32 operation. | |
2657 Variable var_clz32_x(assembler, MachineRepresentation::kWord32); | |
2658 Label do_clz32(assembler); | |
2659 | |
2660 // We might need to loop once for ToNumber conversion. | |
2661 Variable var_x(assembler, MachineRepresentation::kTagged); | |
2662 Label loop(assembler, &var_x); | |
2663 var_x.Bind(assembler->Parameter(1)); | |
2664 assembler->Goto(&loop); | |
2665 assembler->Bind(&loop); | |
2666 { | |
2667 // Load the current {x} value. | |
2668 Node* x = var_x.value(); | |
2669 | |
2670 // Check if {x} is a Smi or a HeapObject. | |
2671 Label if_xissmi(assembler), if_xisnotsmi(assembler); | |
2672 assembler->Branch(assembler->WordIsSmi(x), &if_xissmi, &if_xisnotsmi); | |
2673 | |
2674 assembler->Bind(&if_xissmi); | |
2675 { | |
2676 var_clz32_x.Bind(assembler->SmiToWord32(x)); | |
2677 assembler->Goto(&do_clz32); | |
2678 } | |
2679 | |
2680 assembler->Bind(&if_xisnotsmi); | |
2681 { | |
2682 // Check if {x} is a HeapNumber. | |
2683 Label if_xisheapnumber(assembler), | |
2684 if_xisnotheapnumber(assembler, Label::kDeferred); | |
2685 assembler->Branch( | |
2686 assembler->WordEqual(assembler->LoadMap(x), | |
2687 assembler->HeapNumberMapConstant()), | |
2688 &if_xisheapnumber, &if_xisnotheapnumber); | |
2689 | |
2690 assembler->Bind(&if_xisheapnumber); | |
2691 { | |
2692 var_clz32_x.Bind(assembler->TruncateHeapNumberValueToWord32(x)); | |
2693 assembler->Goto(&do_clz32); | |
2694 } | |
2695 | |
2696 assembler->Bind(&if_xisnotheapnumber); | |
2697 { | |
2698 // Need to convert {x} to a Number first. | |
2699 Callable callable = | |
2700 CodeFactory::NonNumberToNumber(assembler->isolate()); | |
2701 var_x.Bind(assembler->CallStub(callable, context, x)); | |
2702 assembler->Goto(&loop); | |
2703 } | |
2704 } | |
2705 } | |
2706 | |
2707 assembler->Bind(&do_clz32); | |
2708 { | |
2709 Node* x_value = var_clz32_x.value(); | |
2710 Node* value = assembler->Word32Clz(x_value); | |
2711 Node* result = assembler->ChangeInt32ToTagged(value); | |
2712 assembler->Return(result); | |
2713 } | |
2714 } | |
2715 | |
2716 // ES6 section 20.2.2.12 Math.cos ( x ) | |
2717 void Builtins::Generate_MathCos(CodeStubAssembler* assembler) { | |
2718 using compiler::Node; | |
2719 | |
2720 Node* x = assembler->Parameter(1); | |
2721 Node* context = assembler->Parameter(4); | |
2722 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2723 Node* value = assembler->Float64Cos(x_value); | |
2724 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2725 assembler->Return(result); | |
2726 } | |
2727 | |
2728 // ES6 section 20.2.2.13 Math.cosh ( x ) | |
2729 void Builtins::Generate_MathCosh(CodeStubAssembler* assembler) { | |
2730 using compiler::Node; | |
2731 | |
2732 Node* x = assembler->Parameter(1); | |
2733 Node* context = assembler->Parameter(4); | |
2734 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2735 Node* value = assembler->Float64Cosh(x_value); | |
2736 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2737 assembler->Return(result); | |
2738 } | |
2739 | |
2740 // ES6 section 20.2.2.14 Math.exp ( x ) | |
2741 void Builtins::Generate_MathExp(CodeStubAssembler* assembler) { | |
2742 using compiler::Node; | |
2743 | |
2744 Node* x = assembler->Parameter(1); | |
2745 Node* context = assembler->Parameter(4); | |
2746 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2747 Node* value = assembler->Float64Exp(x_value); | |
2748 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2749 assembler->Return(result); | |
2750 } | |
2751 | |
2752 // ES6 section 20.2.2.16 Math.floor ( x ) | |
2753 void Builtins::Generate_MathFloor(CodeStubAssembler* assembler) { | |
2754 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Floor); | |
2755 } | |
2756 | |
2757 // ES6 section 20.2.2.17 Math.fround ( x ) | |
2758 void Builtins::Generate_MathFround(CodeStubAssembler* assembler) { | |
2759 using compiler::Node; | |
2760 | |
2761 Node* x = assembler->Parameter(1); | |
2762 Node* context = assembler->Parameter(4); | |
2763 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2764 Node* value32 = assembler->TruncateFloat64ToFloat32(x_value); | |
2765 Node* value = assembler->ChangeFloat32ToFloat64(value32); | |
2766 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2767 assembler->Return(result); | |
2768 } | |
2769 | |
2770 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) | |
2771 BUILTIN(MathHypot) { | |
2772 HandleScope scope(isolate); | |
2773 int const length = args.length() - 1; | |
2774 if (length == 0) return Smi::FromInt(0); | |
2775 DCHECK_LT(0, length); | |
2776 double max = 0; | |
2777 bool one_arg_is_nan = false; | |
2778 List<double> abs_values(length); | |
2779 for (int i = 0; i < length; i++) { | |
2780 Handle<Object> x = args.at<Object>(i + 1); | |
2781 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x)); | |
2782 double abs_value = std::abs(x->Number()); | |
2783 | |
2784 if (std::isnan(abs_value)) { | |
2785 one_arg_is_nan = true; | |
2786 } else { | |
2787 abs_values.Add(abs_value); | |
2788 if (max < abs_value) { | |
2789 max = abs_value; | |
2790 } | |
2791 } | |
2792 } | |
2793 | |
2794 if (max == V8_INFINITY) { | |
2795 return *isolate->factory()->NewNumber(V8_INFINITY); | |
2796 } | |
2797 | |
2798 if (one_arg_is_nan) { | |
2799 return *isolate->factory()->nan_value(); | |
2800 } | |
2801 | |
2802 if (max == 0) { | |
2803 return Smi::FromInt(0); | |
2804 } | |
2805 DCHECK_GT(max, 0); | |
2806 | |
2807 // Kahan summation to avoid rounding errors. | |
2808 // Normalize the numbers to the largest one to avoid overflow. | |
2809 double sum = 0; | |
2810 double compensation = 0; | |
2811 for (int i = 0; i < length; i++) { | |
2812 double n = abs_values.at(i) / max; | |
2813 double summand = n * n - compensation; | |
2814 double preliminary = sum + summand; | |
2815 compensation = (preliminary - sum) - summand; | |
2816 sum = preliminary; | |
2817 } | |
2818 | |
2819 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); | |
2820 } | |
2821 | |
2822 // ES6 section 20.2.2.19 Math.imul ( x, y ) | |
2823 void Builtins::Generate_MathImul(CodeStubAssembler* assembler) { | |
2824 using compiler::Node; | |
2825 | |
2826 Node* x = assembler->Parameter(1); | |
2827 Node* y = assembler->Parameter(2); | |
2828 Node* context = assembler->Parameter(5); | |
2829 Node* x_value = assembler->TruncateTaggedToWord32(context, x); | |
2830 Node* y_value = assembler->TruncateTaggedToWord32(context, y); | |
2831 Node* value = assembler->Int32Mul(x_value, y_value); | |
2832 Node* result = assembler->ChangeInt32ToTagged(value); | |
2833 assembler->Return(result); | |
2834 } | |
2835 | |
2836 // ES6 section 20.2.2.20 Math.log ( x ) | |
2837 void Builtins::Generate_MathLog(CodeStubAssembler* assembler) { | |
2838 using compiler::Node; | |
2839 | |
2840 Node* x = assembler->Parameter(1); | |
2841 Node* context = assembler->Parameter(4); | |
2842 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2843 Node* value = assembler->Float64Log(x_value); | |
2844 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2845 assembler->Return(result); | |
2846 } | |
2847 | |
2848 // ES6 section 20.2.2.21 Math.log1p ( x ) | |
2849 void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) { | |
2850 using compiler::Node; | |
2851 | |
2852 Node* x = assembler->Parameter(1); | |
2853 Node* context = assembler->Parameter(4); | |
2854 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2855 Node* value = assembler->Float64Log1p(x_value); | |
2856 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2857 assembler->Return(result); | |
2858 } | |
2859 | |
2860 // ES6 section 20.2.2.22 Math.log10 ( x ) | |
2861 void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) { | |
2862 using compiler::Node; | |
2863 | |
2864 Node* x = assembler->Parameter(1); | |
2865 Node* context = assembler->Parameter(4); | |
2866 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2867 Node* value = assembler->Float64Log10(x_value); | |
2868 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2869 assembler->Return(result); | |
2870 } | |
2871 | |
2872 // ES6 section 20.2.2.23 Math.log2 ( x ) | |
2873 void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) { | |
2874 using compiler::Node; | |
2875 | |
2876 Node* x = assembler->Parameter(1); | |
2877 Node* context = assembler->Parameter(4); | |
2878 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2879 Node* value = assembler->Float64Log2(x_value); | |
2880 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2881 assembler->Return(result); | |
2882 } | |
2883 | |
2884 // ES6 section 20.2.2.15 Math.expm1 ( x ) | |
2885 void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) { | |
2886 using compiler::Node; | |
2887 | |
2888 Node* x = assembler->Parameter(1); | |
2889 Node* context = assembler->Parameter(4); | |
2890 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2891 Node* value = assembler->Float64Expm1(x_value); | |
2892 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2893 assembler->Return(result); | |
2894 } | |
2895 | |
2896 // ES6 section 20.2.2.26 Math.pow ( x, y ) | |
2897 void Builtins::Generate_MathPow(CodeStubAssembler* assembler) { | |
2898 using compiler::Node; | |
2899 | |
2900 Node* x = assembler->Parameter(1); | |
2901 Node* y = assembler->Parameter(2); | |
2902 Node* context = assembler->Parameter(5); | |
2903 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2904 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); | |
2905 Node* value = assembler->Float64Pow(x_value, y_value); | |
2906 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2907 assembler->Return(result); | |
2908 } | |
2909 | |
2910 // ES6 section 20.2.2.28 Math.round ( x ) | |
2911 void Builtins::Generate_MathRound(CodeStubAssembler* assembler) { | |
2912 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Round); | |
2913 } | |
2914 | |
2915 // ES6 section 20.2.2.29 Math.sign ( x ) | |
2916 void Builtins::Generate_MathSign(CodeStubAssembler* assembler) { | |
2917 typedef CodeStubAssembler::Label Label; | |
2918 using compiler::Node; | |
2919 | |
2920 // Convert the {x} value to a Number. | |
2921 Node* x = assembler->Parameter(1); | |
2922 Node* context = assembler->Parameter(4); | |
2923 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2924 | |
2925 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. | |
2926 Label if_xisnegative(assembler), if_xispositive(assembler); | |
2927 assembler->GotoIf( | |
2928 assembler->Float64LessThan(x_value, assembler->Float64Constant(0.0)), | |
2929 &if_xisnegative); | |
2930 assembler->GotoIf( | |
2931 assembler->Float64LessThan(assembler->Float64Constant(0.0), x_value), | |
2932 &if_xispositive); | |
2933 assembler->Return(assembler->ChangeFloat64ToTagged(x_value)); | |
2934 | |
2935 assembler->Bind(&if_xisnegative); | |
2936 assembler->Return(assembler->SmiConstant(Smi::FromInt(-1))); | |
2937 | |
2938 assembler->Bind(&if_xispositive); | |
2939 assembler->Return(assembler->SmiConstant(Smi::FromInt(1))); | |
2940 } | |
2941 | |
2942 // ES6 section 20.2.2.30 Math.sin ( x ) | |
2943 void Builtins::Generate_MathSin(CodeStubAssembler* assembler) { | |
2944 using compiler::Node; | |
2945 | |
2946 Node* x = assembler->Parameter(1); | |
2947 Node* context = assembler->Parameter(4); | |
2948 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2949 Node* value = assembler->Float64Sin(x_value); | |
2950 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2951 assembler->Return(result); | |
2952 } | |
2953 | |
2954 // ES6 section 20.2.2.31 Math.sinh ( x ) | |
2955 void Builtins::Generate_MathSinh(CodeStubAssembler* assembler) { | |
2956 using compiler::Node; | |
2957 | |
2958 Node* x = assembler->Parameter(1); | |
2959 Node* context = assembler->Parameter(4); | |
2960 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2961 Node* value = assembler->Float64Sinh(x_value); | |
2962 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2963 assembler->Return(result); | |
2964 } | |
2965 | |
2966 // ES6 section 20.2.2.32 Math.sqrt ( x ) | |
2967 void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) { | |
2968 using compiler::Node; | |
2969 | |
2970 Node* x = assembler->Parameter(1); | |
2971 Node* context = assembler->Parameter(4); | |
2972 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2973 Node* value = assembler->Float64Sqrt(x_value); | |
2974 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2975 assembler->Return(result); | |
2976 } | |
2977 | |
2978 // ES6 section 20.2.2.33 Math.tan ( x ) | |
2979 void Builtins::Generate_MathTan(CodeStubAssembler* assembler) { | |
2980 using compiler::Node; | |
2981 | |
2982 Node* x = assembler->Parameter(1); | |
2983 Node* context = assembler->Parameter(4); | |
2984 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2985 Node* value = assembler->Float64Tan(x_value); | |
2986 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2987 assembler->Return(result); | |
2988 } | |
2989 | |
2990 // ES6 section 20.2.2.34 Math.tanh ( x ) | |
2991 void Builtins::Generate_MathTanh(CodeStubAssembler* assembler) { | |
2992 using compiler::Node; | |
2993 | |
2994 Node* x = assembler->Parameter(1); | |
2995 Node* context = assembler->Parameter(4); | |
2996 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | |
2997 Node* value = assembler->Float64Tanh(x_value); | |
2998 Node* result = assembler->ChangeFloat64ToTagged(value); | |
2999 assembler->Return(result); | |
3000 } | |
3001 | |
3002 // ES6 section 20.2.2.35 Math.trunc ( x ) | |
3003 void Builtins::Generate_MathTrunc(CodeStubAssembler* assembler) { | |
3004 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Trunc); | |
3005 } | |
3006 | |
3007 // ----------------------------------------------------------------------------- | |
3008 // ES6 section 19.2 Function Objects | |
3009 | |
3010 // ES6 section 19.2.3.6 Function.prototype [ @@hasInstance ] ( V ) | |
3011 void Builtins::Generate_FunctionPrototypeHasInstance( | |
3012 CodeStubAssembler* assembler) { | |
3013 using compiler::Node; | |
3014 | |
3015 Node* f = assembler->Parameter(0); | |
3016 Node* v = assembler->Parameter(1); | |
3017 Node* context = assembler->Parameter(4); | |
3018 Node* result = assembler->OrdinaryHasInstance(context, f, v); | |
3019 assembler->Return(result); | |
3020 } | |
3021 | |
3022 // ----------------------------------------------------------------------------- | |
3023 // ES6 section 25.3 Generator Objects | |
3024 | |
3025 namespace { | |
3026 | |
3027 void Generate_GeneratorPrototypeResume( | |
3028 CodeStubAssembler* assembler, JSGeneratorObject::ResumeMode resume_mode, | |
3029 char const* const method_name) { | |
3030 typedef CodeStubAssembler::Label Label; | |
3031 typedef compiler::Node Node; | |
3032 | |
3033 Node* receiver = assembler->Parameter(0); | |
3034 Node* value = assembler->Parameter(1); | |
3035 Node* context = assembler->Parameter(4); | |
3036 Node* closed = assembler->SmiConstant( | |
3037 Smi::FromInt(JSGeneratorObject::kGeneratorClosed)); | |
3038 | |
3039 // Check if the {receiver} is actually a JSGeneratorObject. | |
3040 Label if_receiverisincompatible(assembler, Label::kDeferred); | |
3041 assembler->GotoIf(assembler->WordIsSmi(receiver), &if_receiverisincompatible); | |
3042 Node* receiver_instance_type = assembler->LoadInstanceType(receiver); | |
3043 assembler->GotoUnless(assembler->Word32Equal( | |
3044 receiver_instance_type, | |
3045 assembler->Int32Constant(JS_GENERATOR_OBJECT_TYPE)), | |
3046 &if_receiverisincompatible); | |
3047 | |
3048 // Check if the {receiver} is running or already closed. | |
3049 Node* receiver_continuation = assembler->LoadObjectField( | |
3050 receiver, JSGeneratorObject::kContinuationOffset); | |
3051 Label if_receiverisclosed(assembler, Label::kDeferred), | |
3052 if_receiverisrunning(assembler, Label::kDeferred); | |
3053 assembler->GotoIf(assembler->SmiEqual(receiver_continuation, closed), | |
3054 &if_receiverisclosed); | |
3055 DCHECK_LT(JSGeneratorObject::kGeneratorExecuting, | |
3056 JSGeneratorObject::kGeneratorClosed); | |
3057 assembler->GotoIf(assembler->SmiLessThan(receiver_continuation, closed), | |
3058 &if_receiverisrunning); | |
3059 | |
3060 // Resume the {receiver} using our trampoline. | |
3061 Node* result = assembler->CallStub( | |
3062 CodeFactory::ResumeGenerator(assembler->isolate()), context, value, | |
3063 receiver, assembler->SmiConstant(Smi::FromInt(resume_mode))); | |
3064 assembler->Return(result); | |
3065 | |
3066 assembler->Bind(&if_receiverisincompatible); | |
3067 { | |
3068 // The {receiver} is not a valid JSGeneratorObject. | |
3069 Node* result = assembler->CallRuntime( | |
3070 Runtime::kThrowIncompatibleMethodReceiver, context, | |
3071 assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked( | |
3072 method_name, TENURED)), | |
3073 receiver); | |
3074 assembler->Return(result); // Never reached. | |
3075 } | |
3076 | |
3077 assembler->Bind(&if_receiverisclosed); | |
3078 { | |
3079 // The {receiver} is closed already. | |
3080 Node* result = nullptr; | |
3081 switch (resume_mode) { | |
3082 case JSGeneratorObject::kNext: | |
3083 result = assembler->CallRuntime(Runtime::kCreateIterResultObject, | |
3084 context, assembler->UndefinedConstant(), | |
3085 assembler->BooleanConstant(true)); | |
3086 break; | |
3087 case JSGeneratorObject::kReturn: | |
3088 result = | |
3089 assembler->CallRuntime(Runtime::kCreateIterResultObject, context, | |
3090 value, assembler->BooleanConstant(true)); | |
3091 break; | |
3092 case JSGeneratorObject::kThrow: | |
3093 result = assembler->CallRuntime(Runtime::kThrow, context, value); | |
3094 break; | |
3095 } | |
3096 assembler->Return(result); | |
3097 } | |
3098 | |
3099 assembler->Bind(&if_receiverisrunning); | |
3100 { | |
3101 Node* result = | |
3102 assembler->CallRuntime(Runtime::kThrowGeneratorRunning, context); | |
3103 assembler->Return(result); // Never reached. | |
3104 } | |
3105 } | |
3106 | |
3107 } // namespace | |
3108 | |
3109 // ES6 section 25.3.1.2 Generator.prototype.next ( value ) | |
3110 void Builtins::Generate_GeneratorPrototypeNext(CodeStubAssembler* assembler) { | |
3111 Generate_GeneratorPrototypeResume(assembler, JSGeneratorObject::kNext, | |
3112 "[Generator].prototype.next"); | |
3113 } | |
3114 | |
3115 // ES6 section 25.3.1.3 Generator.prototype.return ( value ) | |
3116 void Builtins::Generate_GeneratorPrototypeReturn(CodeStubAssembler* assembler) { | |
3117 Generate_GeneratorPrototypeResume(assembler, JSGeneratorObject::kReturn, | |
3118 "[Generator].prototype.return"); | |
3119 } | |
3120 | |
3121 // ES6 section 25.3.1.4 Generator.prototype.throw ( exception ) | |
3122 void Builtins::Generate_GeneratorPrototypeThrow(CodeStubAssembler* assembler) { | |
3123 Generate_GeneratorPrototypeResume(assembler, JSGeneratorObject::kThrow, | |
3124 "[Generator].prototype.throw"); | |
3125 } | |
3126 | |
3127 // ----------------------------------------------------------------------------- | |
3128 // ES6 section 26.1 The Reflect Object | |
3129 | |
3130 // ES6 section 26.1.3 Reflect.defineProperty | |
3131 BUILTIN(ReflectDefineProperty) { | |
3132 HandleScope scope(isolate); | |
3133 DCHECK_EQ(4, args.length()); | |
3134 Handle<Object> target = args.at<Object>(1); | |
3135 Handle<Object> key = args.at<Object>(2); | |
3136 Handle<Object> attributes = args.at<Object>(3); | |
3137 | |
3138 if (!target->IsJSReceiver()) { | |
3139 THROW_NEW_ERROR_RETURN_FAILURE( | |
3140 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3141 isolate->factory()->NewStringFromAsciiChecked( | |
3142 "Reflect.defineProperty"))); | |
3143 } | |
3144 | |
3145 Handle<Name> name; | |
3146 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name, | |
3147 Object::ToName(isolate, key)); | |
3148 | |
3149 PropertyDescriptor desc; | |
3150 if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) { | |
3151 return isolate->heap()->exception(); | |
3152 } | |
3153 | |
3154 Maybe<bool> result = | |
3155 JSReceiver::DefineOwnProperty(isolate, Handle<JSReceiver>::cast(target), | |
3156 name, &desc, Object::DONT_THROW); | |
3157 MAYBE_RETURN(result, isolate->heap()->exception()); | |
3158 return *isolate->factory()->ToBoolean(result.FromJust()); | |
3159 } | |
3160 | |
3161 | |
3162 // ES6 section 26.1.4 Reflect.deleteProperty | |
3163 BUILTIN(ReflectDeleteProperty) { | |
3164 HandleScope scope(isolate); | |
3165 DCHECK_EQ(3, args.length()); | |
3166 Handle<Object> target = args.at<Object>(1); | |
3167 Handle<Object> key = args.at<Object>(2); | |
3168 | |
3169 if (!target->IsJSReceiver()) { | |
3170 THROW_NEW_ERROR_RETURN_FAILURE( | |
3171 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3172 isolate->factory()->NewStringFromAsciiChecked( | |
3173 "Reflect.deleteProperty"))); | |
3174 } | |
3175 | |
3176 Handle<Name> name; | |
3177 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name, | |
3178 Object::ToName(isolate, key)); | |
3179 | |
3180 Maybe<bool> result = JSReceiver::DeletePropertyOrElement( | |
3181 Handle<JSReceiver>::cast(target), name, SLOPPY); | |
3182 MAYBE_RETURN(result, isolate->heap()->exception()); | |
3183 return *isolate->factory()->ToBoolean(result.FromJust()); | |
3184 } | |
3185 | |
3186 | |
3187 // ES6 section 26.1.6 Reflect.get | |
3188 BUILTIN(ReflectGet) { | |
3189 HandleScope scope(isolate); | |
3190 Handle<Object> target = args.atOrUndefined(isolate, 1); | |
3191 Handle<Object> key = args.atOrUndefined(isolate, 2); | |
3192 Handle<Object> receiver = args.length() > 3 ? args.at<Object>(3) : target; | |
3193 | |
3194 if (!target->IsJSReceiver()) { | |
3195 THROW_NEW_ERROR_RETURN_FAILURE( | |
3196 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3197 isolate->factory()->NewStringFromAsciiChecked( | |
3198 "Reflect.get"))); | |
3199 } | |
3200 | |
3201 Handle<Name> name; | |
3202 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name, | |
3203 Object::ToName(isolate, key)); | |
3204 | |
3205 RETURN_RESULT_OR_FAILURE( | |
3206 isolate, Object::GetPropertyOrElement(receiver, name, | |
3207 Handle<JSReceiver>::cast(target))); | |
3208 } | |
3209 | |
3210 | |
3211 // ES6 section 26.1.7 Reflect.getOwnPropertyDescriptor | |
3212 BUILTIN(ReflectGetOwnPropertyDescriptor) { | |
3213 HandleScope scope(isolate); | |
3214 DCHECK_EQ(3, args.length()); | |
3215 Handle<Object> target = args.at<Object>(1); | |
3216 Handle<Object> key = args.at<Object>(2); | |
3217 | |
3218 if (!target->IsJSReceiver()) { | |
3219 THROW_NEW_ERROR_RETURN_FAILURE( | |
3220 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3221 isolate->factory()->NewStringFromAsciiChecked( | |
3222 "Reflect.getOwnPropertyDescriptor"))); | |
3223 } | |
3224 | |
3225 Handle<Name> name; | |
3226 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name, | |
3227 Object::ToName(isolate, key)); | |
3228 | |
3229 PropertyDescriptor desc; | |
3230 Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor( | |
3231 isolate, Handle<JSReceiver>::cast(target), name, &desc); | |
3232 MAYBE_RETURN(found, isolate->heap()->exception()); | |
3233 if (!found.FromJust()) return isolate->heap()->undefined_value(); | |
3234 return *desc.ToObject(isolate); | |
3235 } | |
3236 | |
3237 | |
3238 // ES6 section 26.1.8 Reflect.getPrototypeOf | |
3239 BUILTIN(ReflectGetPrototypeOf) { | |
3240 HandleScope scope(isolate); | |
3241 DCHECK_EQ(2, args.length()); | |
3242 Handle<Object> target = args.at<Object>(1); | |
3243 | |
3244 if (!target->IsJSReceiver()) { | |
3245 THROW_NEW_ERROR_RETURN_FAILURE( | |
3246 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3247 isolate->factory()->NewStringFromAsciiChecked( | |
3248 "Reflect.getPrototypeOf"))); | |
3249 } | |
3250 Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(target); | |
3251 RETURN_RESULT_OR_FAILURE(isolate, | |
3252 JSReceiver::GetPrototype(isolate, receiver)); | |
3253 } | |
3254 | |
3255 | |
3256 // ES6 section 26.1.9 Reflect.has | |
3257 BUILTIN(ReflectHas) { | |
3258 HandleScope scope(isolate); | |
3259 DCHECK_EQ(3, args.length()); | |
3260 Handle<Object> target = args.at<Object>(1); | |
3261 Handle<Object> key = args.at<Object>(2); | |
3262 | |
3263 if (!target->IsJSReceiver()) { | |
3264 THROW_NEW_ERROR_RETURN_FAILURE( | |
3265 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3266 isolate->factory()->NewStringFromAsciiChecked( | |
3267 "Reflect.has"))); | |
3268 } | |
3269 | |
3270 Handle<Name> name; | |
3271 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name, | |
3272 Object::ToName(isolate, key)); | |
3273 | |
3274 Maybe<bool> result = | |
3275 JSReceiver::HasProperty(Handle<JSReceiver>::cast(target), name); | |
3276 return result.IsJust() ? *isolate->factory()->ToBoolean(result.FromJust()) | |
3277 : isolate->heap()->exception(); | |
3278 } | |
3279 | |
3280 | |
3281 // ES6 section 26.1.10 Reflect.isExtensible | |
3282 BUILTIN(ReflectIsExtensible) { | |
3283 HandleScope scope(isolate); | |
3284 DCHECK_EQ(2, args.length()); | |
3285 Handle<Object> target = args.at<Object>(1); | |
3286 | |
3287 if (!target->IsJSReceiver()) { | |
3288 THROW_NEW_ERROR_RETURN_FAILURE( | |
3289 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3290 isolate->factory()->NewStringFromAsciiChecked( | |
3291 "Reflect.isExtensible"))); | |
3292 } | |
3293 | |
3294 Maybe<bool> result = | |
3295 JSReceiver::IsExtensible(Handle<JSReceiver>::cast(target)); | |
3296 MAYBE_RETURN(result, isolate->heap()->exception()); | |
3297 return *isolate->factory()->ToBoolean(result.FromJust()); | |
3298 } | |
3299 | |
3300 | |
3301 // ES6 section 26.1.11 Reflect.ownKeys | |
3302 BUILTIN(ReflectOwnKeys) { | |
3303 HandleScope scope(isolate); | |
3304 DCHECK_EQ(2, args.length()); | |
3305 Handle<Object> target = args.at<Object>(1); | |
3306 | |
3307 if (!target->IsJSReceiver()) { | |
3308 THROW_NEW_ERROR_RETURN_FAILURE( | |
3309 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3310 isolate->factory()->NewStringFromAsciiChecked( | |
3311 "Reflect.ownKeys"))); | |
3312 } | |
3313 | |
3314 Handle<FixedArray> keys; | |
3315 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3316 isolate, keys, | |
3317 KeyAccumulator::GetKeys(Handle<JSReceiver>::cast(target), | |
3318 KeyCollectionMode::kOwnOnly, ALL_PROPERTIES, | |
3319 GetKeysConversion::kConvertToString)); | |
3320 return *isolate->factory()->NewJSArrayWithElements(keys); | |
3321 } | |
3322 | |
3323 | |
3324 // ES6 section 26.1.12 Reflect.preventExtensions | |
3325 BUILTIN(ReflectPreventExtensions) { | |
3326 HandleScope scope(isolate); | |
3327 DCHECK_EQ(2, args.length()); | |
3328 Handle<Object> target = args.at<Object>(1); | |
3329 | |
3330 if (!target->IsJSReceiver()) { | |
3331 THROW_NEW_ERROR_RETURN_FAILURE( | |
3332 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3333 isolate->factory()->NewStringFromAsciiChecked( | |
3334 "Reflect.preventExtensions"))); | |
3335 } | |
3336 | |
3337 Maybe<bool> result = JSReceiver::PreventExtensions( | |
3338 Handle<JSReceiver>::cast(target), Object::DONT_THROW); | |
3339 MAYBE_RETURN(result, isolate->heap()->exception()); | |
3340 return *isolate->factory()->ToBoolean(result.FromJust()); | |
3341 } | |
3342 | |
3343 | |
3344 // ES6 section 26.1.13 Reflect.set | |
3345 BUILTIN(ReflectSet) { | |
3346 HandleScope scope(isolate); | |
3347 Handle<Object> target = args.atOrUndefined(isolate, 1); | |
3348 Handle<Object> key = args.atOrUndefined(isolate, 2); | |
3349 Handle<Object> value = args.atOrUndefined(isolate, 3); | |
3350 Handle<Object> receiver = args.length() > 4 ? args.at<Object>(4) : target; | |
3351 | |
3352 if (!target->IsJSReceiver()) { | |
3353 THROW_NEW_ERROR_RETURN_FAILURE( | |
3354 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3355 isolate->factory()->NewStringFromAsciiChecked( | |
3356 "Reflect.set"))); | |
3357 } | |
3358 | |
3359 Handle<Name> name; | |
3360 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name, | |
3361 Object::ToName(isolate, key)); | |
3362 | |
3363 LookupIterator it = LookupIterator::PropertyOrElement( | |
3364 isolate, receiver, name, Handle<JSReceiver>::cast(target)); | |
3365 Maybe<bool> result = Object::SetSuperProperty( | |
3366 &it, value, SLOPPY, Object::MAY_BE_STORE_FROM_KEYED); | |
3367 MAYBE_RETURN(result, isolate->heap()->exception()); | |
3368 return *isolate->factory()->ToBoolean(result.FromJust()); | |
3369 } | |
3370 | |
3371 | |
3372 // ES6 section 26.1.14 Reflect.setPrototypeOf | |
3373 BUILTIN(ReflectSetPrototypeOf) { | |
3374 HandleScope scope(isolate); | |
3375 DCHECK_EQ(3, args.length()); | |
3376 Handle<Object> target = args.at<Object>(1); | |
3377 Handle<Object> proto = args.at<Object>(2); | |
3378 | |
3379 if (!target->IsJSReceiver()) { | |
3380 THROW_NEW_ERROR_RETURN_FAILURE( | |
3381 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, | |
3382 isolate->factory()->NewStringFromAsciiChecked( | |
3383 "Reflect.setPrototypeOf"))); | |
3384 } | |
3385 | |
3386 if (!proto->IsJSReceiver() && !proto->IsNull(isolate)) { | |
3387 THROW_NEW_ERROR_RETURN_FAILURE( | |
3388 isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, proto)); | |
3389 } | |
3390 | |
3391 Maybe<bool> result = JSReceiver::SetPrototype( | |
3392 Handle<JSReceiver>::cast(target), proto, true, Object::DONT_THROW); | |
3393 MAYBE_RETURN(result, isolate->heap()->exception()); | |
3394 return *isolate->factory()->ToBoolean(result.FromJust()); | |
3395 } | |
3396 | |
3397 | |
3398 // ----------------------------------------------------------------------------- | |
3399 // ES6 section 19.3 Boolean Objects | |
3400 | |
3401 | |
3402 // ES6 section 19.3.1.1 Boolean ( value ) for the [[Call]] case. | |
3403 BUILTIN(BooleanConstructor) { | |
3404 HandleScope scope(isolate); | |
3405 Handle<Object> value = args.atOrUndefined(isolate, 1); | |
3406 return isolate->heap()->ToBoolean(value->BooleanValue()); | |
3407 } | |
3408 | |
3409 | |
3410 // ES6 section 19.3.1.1 Boolean ( value ) for the [[Construct]] case. | |
3411 BUILTIN(BooleanConstructor_ConstructStub) { | |
3412 HandleScope scope(isolate); | |
3413 Handle<Object> value = args.atOrUndefined(isolate, 1); | |
3414 Handle<JSFunction> target = args.target<JSFunction>(); | |
3415 Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target()); | |
3416 DCHECK(*target == target->native_context()->boolean_function()); | |
3417 Handle<JSObject> result; | |
3418 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, | |
3419 JSObject::New(target, new_target)); | |
3420 Handle<JSValue>::cast(result)->set_value( | |
3421 isolate->heap()->ToBoolean(value->BooleanValue())); | |
3422 return *result; | |
3423 } | |
3424 | |
3425 | |
3426 // ES6 section 19.3.3.2 Boolean.prototype.toString ( ) | |
3427 void Builtins::Generate_BooleanPrototypeToString(CodeStubAssembler* assembler) { | |
3428 typedef compiler::Node Node; | |
3429 | |
3430 Node* receiver = assembler->Parameter(0); | |
3431 Node* context = assembler->Parameter(3); | |
3432 | |
3433 Node* value = assembler->ToThisValue( | |
3434 context, receiver, PrimitiveType::kBoolean, "Boolean.prototype.toString"); | |
3435 Node* result = assembler->LoadObjectField(value, Oddball::kToStringOffset); | |
3436 assembler->Return(result); | |
3437 } | |
3438 | |
3439 // ES6 section 19.3.3.3 Boolean.prototype.valueOf ( ) | |
3440 void Builtins::Generate_BooleanPrototypeValueOf(CodeStubAssembler* assembler) { | |
3441 typedef compiler::Node Node; | |
3442 | |
3443 Node* receiver = assembler->Parameter(0); | |
3444 Node* context = assembler->Parameter(3); | |
3445 | |
3446 Node* result = assembler->ToThisValue( | |
3447 context, receiver, PrimitiveType::kBoolean, "Boolean.prototype.valueOf"); | |
3448 assembler->Return(result); | |
3449 } | |
3450 | |
3451 // ----------------------------------------------------------------------------- | |
3452 // ES6 section 24.2 DataView Objects | |
3453 | |
3454 | |
3455 // ES6 section 24.2.2 The DataView Constructor for the [[Call]] case. | |
3456 BUILTIN(DataViewConstructor) { | |
3457 HandleScope scope(isolate); | |
3458 THROW_NEW_ERROR_RETURN_FAILURE( | |
3459 isolate, | |
3460 NewTypeError(MessageTemplate::kConstructorNotFunction, | |
3461 isolate->factory()->NewStringFromAsciiChecked("DataView"))); | |
3462 } | |
3463 | |
3464 | |
3465 // ES6 section 24.2.2 The DataView Constructor for the [[Construct]] case. | |
3466 BUILTIN(DataViewConstructor_ConstructStub) { | |
3467 HandleScope scope(isolate); | |
3468 Handle<JSFunction> target = args.target<JSFunction>(); | |
3469 Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target()); | |
3470 Handle<Object> buffer = args.atOrUndefined(isolate, 1); | |
3471 Handle<Object> byte_offset = args.atOrUndefined(isolate, 2); | |
3472 Handle<Object> byte_length = args.atOrUndefined(isolate, 3); | |
3473 | |
3474 // 2. If Type(buffer) is not Object, throw a TypeError exception. | |
3475 // 3. If buffer does not have an [[ArrayBufferData]] internal slot, throw a | |
3476 // TypeError exception. | |
3477 if (!buffer->IsJSArrayBuffer()) { | |
3478 THROW_NEW_ERROR_RETURN_FAILURE( | |
3479 isolate, NewTypeError(MessageTemplate::kDataViewNotArrayBuffer)); | |
3480 } | |
3481 Handle<JSArrayBuffer> array_buffer = Handle<JSArrayBuffer>::cast(buffer); | |
3482 | |
3483 // 4. Let numberOffset be ? ToNumber(byteOffset). | |
3484 Handle<Object> number_offset; | |
3485 if (byte_offset->IsUndefined(isolate)) { | |
3486 // We intentionally violate the specification at this point to allow | |
3487 // for new DataView(buffer) invocations to be equivalent to the full | |
3488 // new DataView(buffer, 0) invocation. | |
3489 number_offset = handle(Smi::FromInt(0), isolate); | |
3490 } else { | |
3491 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_offset, | |
3492 Object::ToNumber(byte_offset)); | |
3493 } | |
3494 | |
3495 // 5. Let offset be ToInteger(numberOffset). | |
3496 Handle<Object> offset; | |
3497 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, offset, | |
3498 Object::ToInteger(isolate, number_offset)); | |
3499 | |
3500 // 6. If numberOffset ≠offset or offset < 0, throw a RangeError exception. | |
3501 if (number_offset->Number() != offset->Number() || offset->Number() < 0.0) { | |
3502 THROW_NEW_ERROR_RETURN_FAILURE( | |
3503 isolate, NewRangeError(MessageTemplate::kInvalidDataViewOffset)); | |
3504 } | |
3505 | |
3506 // 7. If IsDetachedBuffer(buffer) is true, throw a TypeError exception. | |
3507 // We currently violate the specification at this point. | |
3508 | |
3509 // 8. Let bufferByteLength be the value of buffer's [[ArrayBufferByteLength]] | |
3510 // internal slot. | |
3511 double const buffer_byte_length = array_buffer->byte_length()->Number(); | |
3512 | |
3513 // 9. If offset > bufferByteLength, throw a RangeError exception | |
3514 if (offset->Number() > buffer_byte_length) { | |
3515 THROW_NEW_ERROR_RETURN_FAILURE( | |
3516 isolate, NewRangeError(MessageTemplate::kInvalidDataViewOffset)); | |
3517 } | |
3518 | |
3519 Handle<Object> view_byte_length; | |
3520 if (byte_length->IsUndefined(isolate)) { | |
3521 // 10. If byteLength is undefined, then | |
3522 // a. Let viewByteLength be bufferByteLength - offset. | |
3523 view_byte_length = | |
3524 isolate->factory()->NewNumber(buffer_byte_length - offset->Number()); | |
3525 } else { | |
3526 // 11. Else, | |
3527 // a. Let viewByteLength be ? ToLength(byteLength). | |
3528 // b. If offset+viewByteLength > bufferByteLength, throw a RangeError | |
3529 // exception | |
3530 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3531 isolate, view_byte_length, Object::ToLength(isolate, byte_length)); | |
3532 if (offset->Number() + view_byte_length->Number() > buffer_byte_length) { | |
3533 THROW_NEW_ERROR_RETURN_FAILURE( | |
3534 isolate, NewRangeError(MessageTemplate::kInvalidDataViewLength)); | |
3535 } | |
3536 } | |
3537 | |
3538 // 12. Let O be ? OrdinaryCreateFromConstructor(NewTarget, | |
3539 // "%DataViewPrototype%", «[[DataView]], [[ViewedArrayBuffer]], | |
3540 // [[ByteLength]], [[ByteOffset]]»). | |
3541 // 13. Set O's [[DataView]] internal slot to true. | |
3542 Handle<JSObject> result; | |
3543 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, | |
3544 JSObject::New(target, new_target)); | |
3545 for (int i = 0; i < ArrayBufferView::kInternalFieldCount; ++i) { | |
3546 Handle<JSDataView>::cast(result)->SetInternalField(i, Smi::FromInt(0)); | |
3547 } | |
3548 | |
3549 // 14. Set O's [[ViewedArrayBuffer]] internal slot to buffer. | |
3550 Handle<JSDataView>::cast(result)->set_buffer(*array_buffer); | |
3551 | |
3552 // 15. Set O's [[ByteLength]] internal slot to viewByteLength. | |
3553 Handle<JSDataView>::cast(result)->set_byte_length(*view_byte_length); | |
3554 | |
3555 // 16. Set O's [[ByteOffset]] internal slot to offset. | |
3556 Handle<JSDataView>::cast(result)->set_byte_offset(*offset); | |
3557 | |
3558 // 17. Return O. | |
3559 return *result; | |
3560 } | |
3561 | |
3562 // ES6 section 24.2.4.1 get DataView.prototype.buffer | |
3563 BUILTIN(DataViewPrototypeGetBuffer) { | |
3564 HandleScope scope(isolate); | |
3565 CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.buffer"); | |
3566 return data_view->buffer(); | |
3567 } | |
3568 | |
3569 // ES6 section 24.2.4.2 get DataView.prototype.byteLength | |
3570 BUILTIN(DataViewPrototypeGetByteLength) { | |
3571 HandleScope scope(isolate); | |
3572 CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.byteLength"); | |
3573 // TODO(bmeurer): According to the ES6 spec, we should throw a TypeError | |
3574 // here if the JSArrayBuffer of the {data_view} was neutered. | |
3575 return data_view->byte_length(); | |
3576 } | |
3577 | |
3578 // ES6 section 24.2.4.3 get DataView.prototype.byteOffset | |
3579 BUILTIN(DataViewPrototypeGetByteOffset) { | |
3580 HandleScope scope(isolate); | |
3581 CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.byteOffset"); | |
3582 // TODO(bmeurer): According to the ES6 spec, we should throw a TypeError | |
3583 // here if the JSArrayBuffer of the {data_view} was neutered. | |
3584 return data_view->byte_offset(); | |
3585 } | |
3586 | |
3587 // ----------------------------------------------------------------------------- | |
3588 // ES6 section 22.2 TypedArray Objects | |
3589 | |
3590 // ES6 section 22.2.3.1 get %TypedArray%.prototype.buffer | |
3591 BUILTIN(TypedArrayPrototypeBuffer) { | |
3592 HandleScope scope(isolate); | |
3593 CHECK_RECEIVER(JSTypedArray, typed_array, "get TypedArray.prototype.buffer"); | |
3594 return *typed_array->GetBuffer(); | |
3595 } | |
3596 | |
3597 namespace { | |
3598 | |
3599 void Generate_TypedArrayProtoypeGetter(CodeStubAssembler* assembler, | |
3600 const char* method_name, | |
3601 int object_offset) { | |
3602 typedef CodeStubAssembler::Label Label; | |
3603 typedef compiler::Node Node; | |
3604 | |
3605 Node* receiver = assembler->Parameter(0); | |
3606 Node* context = assembler->Parameter(3); | |
3607 | |
3608 // Check if the {receiver} is actually a JSTypedArray. | |
3609 Label if_receiverisincompatible(assembler, Label::kDeferred); | |
3610 assembler->GotoIf(assembler->WordIsSmi(receiver), &if_receiverisincompatible); | |
3611 Node* receiver_instance_type = assembler->LoadInstanceType(receiver); | |
3612 assembler->GotoUnless( | |
3613 assembler->Word32Equal(receiver_instance_type, | |
3614 assembler->Int32Constant(JS_TYPED_ARRAY_TYPE)), | |
3615 &if_receiverisincompatible); | |
3616 | |
3617 // Check if the {receiver}'s JSArrayBuffer was neutered. | |
3618 Node* receiver_buffer = | |
3619 assembler->LoadObjectField(receiver, JSTypedArray::kBufferOffset); | |
3620 Node* receiver_buffer_bit_field = assembler->LoadObjectField( | |
3621 receiver_buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32()); | |
3622 Label if_receiverisneutered(assembler, Label::kDeferred); | |
3623 assembler->GotoUnless( | |
3624 assembler->Word32Equal( | |
3625 assembler->Word32And( | |
3626 receiver_buffer_bit_field, | |
3627 assembler->Int32Constant(JSArrayBuffer::WasNeutered::kMask)), | |
3628 assembler->Int32Constant(0)), | |
3629 &if_receiverisneutered); | |
3630 assembler->Return(assembler->LoadObjectField(receiver, object_offset)); | |
3631 | |
3632 assembler->Bind(&if_receiverisneutered); | |
3633 { | |
3634 // The {receiver}s buffer was neutered, default to zero. | |
3635 assembler->Return(assembler->SmiConstant(0)); | |
3636 } | |
3637 | |
3638 assembler->Bind(&if_receiverisincompatible); | |
3639 { | |
3640 // The {receiver} is not a valid JSGeneratorObject. | |
3641 Node* result = assembler->CallRuntime( | |
3642 Runtime::kThrowIncompatibleMethodReceiver, context, | |
3643 assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked( | |
3644 method_name, TENURED)), | |
3645 receiver); | |
3646 assembler->Return(result); // Never reached. | |
3647 } | |
3648 } | |
3649 | |
3650 } // namespace | |
3651 | |
3652 // ES6 section 22.2.3.2 get %TypedArray%.prototype.byteLength | |
3653 void Builtins::Generate_TypedArrayPrototypeByteLength( | |
3654 CodeStubAssembler* assembler) { | |
3655 Generate_TypedArrayProtoypeGetter(assembler, | |
3656 "get TypedArray.prototype.byteLength", | |
3657 JSTypedArray::kByteLengthOffset); | |
3658 } | |
3659 | |
3660 // ES6 section 22.2.3.3 get %TypedArray%.prototype.byteOffset | |
3661 void Builtins::Generate_TypedArrayPrototypeByteOffset( | |
3662 CodeStubAssembler* assembler) { | |
3663 Generate_TypedArrayProtoypeGetter(assembler, | |
3664 "get TypedArray.prototype.byteOffset", | |
3665 JSTypedArray::kByteOffsetOffset); | |
3666 } | |
3667 | |
3668 // ES6 section 22.2.3.18 get %TypedArray%.prototype.length | |
3669 void Builtins::Generate_TypedArrayPrototypeLength( | |
3670 CodeStubAssembler* assembler) { | |
3671 Generate_TypedArrayProtoypeGetter(assembler, | |
3672 "get TypedArray.prototype.length", | |
3673 JSTypedArray::kLengthOffset); | |
3674 } | |
3675 | |
3676 // ----------------------------------------------------------------------------- | |
3677 // ES6 section 20.3 Date Objects | |
3678 | |
3679 | |
3680 namespace { | |
3681 | |
3682 // ES6 section 20.3.1.1 Time Values and Time Range | |
3683 const double kMinYear = -1000000.0; | |
3684 const double kMaxYear = -kMinYear; | |
3685 const double kMinMonth = -10000000.0; | |
3686 const double kMaxMonth = -kMinMonth; | |
3687 | |
3688 | |
3689 // 20.3.1.2 Day Number and Time within Day | |
3690 const double kMsPerDay = 86400000.0; | |
3691 | |
3692 | |
3693 // ES6 section 20.3.1.11 Hours, Minutes, Second, and Milliseconds | |
3694 const double kMsPerSecond = 1000.0; | |
3695 const double kMsPerMinute = 60000.0; | |
3696 const double kMsPerHour = 3600000.0; | |
3697 | |
3698 | |
3699 // ES6 section 20.3.1.14 MakeDate (day, time) | |
3700 double MakeDate(double day, double time) { | |
3701 if (std::isfinite(day) && std::isfinite(time)) { | |
3702 return time + day * kMsPerDay; | |
3703 } | |
3704 return std::numeric_limits<double>::quiet_NaN(); | |
3705 } | |
3706 | |
3707 | |
3708 // ES6 section 20.3.1.13 MakeDay (year, month, date) | |
3709 double MakeDay(double year, double month, double date) { | |
3710 if ((kMinYear <= year && year <= kMaxYear) && | |
3711 (kMinMonth <= month && month <= kMaxMonth) && std::isfinite(date)) { | |
3712 int y = FastD2I(year); | |
3713 int m = FastD2I(month); | |
3714 y += m / 12; | |
3715 m %= 12; | |
3716 if (m < 0) { | |
3717 m += 12; | |
3718 y -= 1; | |
3719 } | |
3720 DCHECK_LE(0, m); | |
3721 DCHECK_LT(m, 12); | |
3722 | |
3723 // kYearDelta is an arbitrary number such that: | |
3724 // a) kYearDelta = -1 (mod 400) | |
3725 // b) year + kYearDelta > 0 for years in the range defined by | |
3726 // ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of | |
3727 // Jan 1 1970. This is required so that we don't run into integer | |
3728 // division of negative numbers. | |
3729 // c) there shouldn't be an overflow for 32-bit integers in the following | |
3730 // operations. | |
3731 static const int kYearDelta = 399999; | |
3732 static const int kBaseDay = | |
3733 365 * (1970 + kYearDelta) + (1970 + kYearDelta) / 4 - | |
3734 (1970 + kYearDelta) / 100 + (1970 + kYearDelta) / 400; | |
3735 int day_from_year = 365 * (y + kYearDelta) + (y + kYearDelta) / 4 - | |
3736 (y + kYearDelta) / 100 + (y + kYearDelta) / 400 - | |
3737 kBaseDay; | |
3738 if ((y % 4 != 0) || (y % 100 == 0 && y % 400 != 0)) { | |
3739 static const int kDayFromMonth[] = {0, 31, 59, 90, 120, 151, | |
3740 181, 212, 243, 273, 304, 334}; | |
3741 day_from_year += kDayFromMonth[m]; | |
3742 } else { | |
3743 static const int kDayFromMonth[] = {0, 31, 60, 91, 121, 152, | |
3744 182, 213, 244, 274, 305, 335}; | |
3745 day_from_year += kDayFromMonth[m]; | |
3746 } | |
3747 return static_cast<double>(day_from_year - 1) + date; | |
3748 } | |
3749 return std::numeric_limits<double>::quiet_NaN(); | |
3750 } | |
3751 | |
3752 | |
3753 // ES6 section 20.3.1.12 MakeTime (hour, min, sec, ms) | |
3754 double MakeTime(double hour, double min, double sec, double ms) { | |
3755 if (std::isfinite(hour) && std::isfinite(min) && std::isfinite(sec) && | |
3756 std::isfinite(ms)) { | |
3757 double const h = DoubleToInteger(hour); | |
3758 double const m = DoubleToInteger(min); | |
3759 double const s = DoubleToInteger(sec); | |
3760 double const milli = DoubleToInteger(ms); | |
3761 return h * kMsPerHour + m * kMsPerMinute + s * kMsPerSecond + milli; | |
3762 } | |
3763 return std::numeric_limits<double>::quiet_NaN(); | |
3764 } | |
3765 | |
3766 | |
3767 // ES6 section 20.3.1.15 TimeClip (time) | |
3768 double TimeClip(double time) { | |
3769 if (-DateCache::kMaxTimeInMs <= time && time <= DateCache::kMaxTimeInMs) { | |
3770 return DoubleToInteger(time) + 0.0; | |
3771 } | |
3772 return std::numeric_limits<double>::quiet_NaN(); | |
3773 } | |
3774 | |
3775 | |
3776 const char* kShortWeekDays[] = {"Sun", "Mon", "Tue", "Wed", | |
3777 "Thu", "Fri", "Sat"}; | |
3778 const char* kShortMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", | |
3779 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; | |
3780 | |
3781 | |
3782 // ES6 section 20.3.1.16 Date Time String Format | |
3783 double ParseDateTimeString(Handle<String> str) { | |
3784 Isolate* const isolate = str->GetIsolate(); | |
3785 str = String::Flatten(str); | |
3786 // TODO(bmeurer): Change DateParser to not use the FixedArray. | |
3787 Handle<FixedArray> tmp = | |
3788 isolate->factory()->NewFixedArray(DateParser::OUTPUT_SIZE); | |
3789 DisallowHeapAllocation no_gc; | |
3790 String::FlatContent str_content = str->GetFlatContent(); | |
3791 bool result; | |
3792 if (str_content.IsOneByte()) { | |
3793 result = DateParser::Parse(isolate, str_content.ToOneByteVector(), *tmp); | |
3794 } else { | |
3795 result = DateParser::Parse(isolate, str_content.ToUC16Vector(), *tmp); | |
3796 } | |
3797 if (!result) return std::numeric_limits<double>::quiet_NaN(); | |
3798 double const day = MakeDay(tmp->get(0)->Number(), tmp->get(1)->Number(), | |
3799 tmp->get(2)->Number()); | |
3800 double const time = MakeTime(tmp->get(3)->Number(), tmp->get(4)->Number(), | |
3801 tmp->get(5)->Number(), tmp->get(6)->Number()); | |
3802 double date = MakeDate(day, time); | |
3803 if (tmp->get(7)->IsNull(isolate)) { | |
3804 if (!std::isnan(date)) { | |
3805 date = isolate->date_cache()->ToUTC(static_cast<int64_t>(date)); | |
3806 } | |
3807 } else { | |
3808 date -= tmp->get(7)->Number() * 1000.0; | |
3809 } | |
3810 return date; | |
3811 } | |
3812 | |
3813 | |
3814 enum ToDateStringMode { kDateOnly, kTimeOnly, kDateAndTime }; | |
3815 | |
3816 | |
3817 // ES6 section 20.3.4.41.1 ToDateString(tv) | |
3818 void ToDateString(double time_val, Vector<char> str, DateCache* date_cache, | |
3819 ToDateStringMode mode = kDateAndTime) { | |
3820 if (std::isnan(time_val)) { | |
3821 SNPrintF(str, "Invalid Date"); | |
3822 return; | |
3823 } | |
3824 int64_t time_ms = static_cast<int64_t>(time_val); | |
3825 int64_t local_time_ms = date_cache->ToLocal(time_ms); | |
3826 int year, month, day, weekday, hour, min, sec, ms; | |
3827 date_cache->BreakDownTime(local_time_ms, &year, &month, &day, &weekday, &hour, | |
3828 &min, &sec, &ms); | |
3829 int timezone_offset = -date_cache->TimezoneOffset(time_ms); | |
3830 int timezone_hour = std::abs(timezone_offset) / 60; | |
3831 int timezone_min = std::abs(timezone_offset) % 60; | |
3832 const char* local_timezone = date_cache->LocalTimezone(time_ms); | |
3833 switch (mode) { | |
3834 case kDateOnly: | |
3835 SNPrintF(str, "%s %s %02d %4d", kShortWeekDays[weekday], | |
3836 kShortMonths[month], day, year); | |
3837 return; | |
3838 case kTimeOnly: | |
3839 SNPrintF(str, "%02d:%02d:%02d GMT%c%02d%02d (%s)", hour, min, sec, | |
3840 (timezone_offset < 0) ? '-' : '+', timezone_hour, timezone_min, | |
3841 local_timezone); | |
3842 return; | |
3843 case kDateAndTime: | |
3844 SNPrintF(str, "%s %s %02d %4d %02d:%02d:%02d GMT%c%02d%02d (%s)", | |
3845 kShortWeekDays[weekday], kShortMonths[month], day, year, hour, | |
3846 min, sec, (timezone_offset < 0) ? '-' : '+', timezone_hour, | |
3847 timezone_min, local_timezone); | |
3848 return; | |
3849 } | |
3850 UNREACHABLE(); | |
3851 } | |
3852 | |
3853 | |
3854 Object* SetLocalDateValue(Handle<JSDate> date, double time_val) { | |
3855 if (time_val >= -DateCache::kMaxTimeBeforeUTCInMs && | |
3856 time_val <= DateCache::kMaxTimeBeforeUTCInMs) { | |
3857 Isolate* const isolate = date->GetIsolate(); | |
3858 time_val = isolate->date_cache()->ToUTC(static_cast<int64_t>(time_val)); | |
3859 } else { | |
3860 time_val = std::numeric_limits<double>::quiet_NaN(); | |
3861 } | |
3862 return *JSDate::SetValue(date, TimeClip(time_val)); | |
3863 } | |
3864 | |
3865 } // namespace | |
3866 | |
3867 | |
3868 // ES6 section 20.3.2 The Date Constructor for the [[Call]] case. | |
3869 BUILTIN(DateConstructor) { | |
3870 HandleScope scope(isolate); | |
3871 double const time_val = JSDate::CurrentTimeValue(isolate); | |
3872 char buffer[128]; | |
3873 ToDateString(time_val, ArrayVector(buffer), isolate->date_cache()); | |
3874 RETURN_RESULT_OR_FAILURE( | |
3875 isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer))); | |
3876 } | |
3877 | |
3878 | |
3879 // ES6 section 20.3.2 The Date Constructor for the [[Construct]] case. | |
3880 BUILTIN(DateConstructor_ConstructStub) { | |
3881 HandleScope scope(isolate); | |
3882 int const argc = args.length() - 1; | |
3883 Handle<JSFunction> target = args.target<JSFunction>(); | |
3884 Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target()); | |
3885 double time_val; | |
3886 if (argc == 0) { | |
3887 time_val = JSDate::CurrentTimeValue(isolate); | |
3888 } else if (argc == 1) { | |
3889 Handle<Object> value = args.at<Object>(1); | |
3890 if (value->IsJSDate()) { | |
3891 time_val = Handle<JSDate>::cast(value)->value()->Number(); | |
3892 } else { | |
3893 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, | |
3894 Object::ToPrimitive(value)); | |
3895 if (value->IsString()) { | |
3896 time_val = ParseDateTimeString(Handle<String>::cast(value)); | |
3897 } else { | |
3898 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, | |
3899 Object::ToNumber(value)); | |
3900 time_val = value->Number(); | |
3901 } | |
3902 } | |
3903 } else { | |
3904 Handle<Object> year_object; | |
3905 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year_object, | |
3906 Object::ToNumber(args.at<Object>(1))); | |
3907 Handle<Object> month_object; | |
3908 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month_object, | |
3909 Object::ToNumber(args.at<Object>(2))); | |
3910 double year = year_object->Number(); | |
3911 double month = month_object->Number(); | |
3912 double date = 1.0, hours = 0.0, minutes = 0.0, seconds = 0.0, ms = 0.0; | |
3913 if (argc >= 3) { | |
3914 Handle<Object> date_object; | |
3915 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date_object, | |
3916 Object::ToNumber(args.at<Object>(3))); | |
3917 date = date_object->Number(); | |
3918 if (argc >= 4) { | |
3919 Handle<Object> hours_object; | |
3920 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3921 isolate, hours_object, Object::ToNumber(args.at<Object>(4))); | |
3922 hours = hours_object->Number(); | |
3923 if (argc >= 5) { | |
3924 Handle<Object> minutes_object; | |
3925 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3926 isolate, minutes_object, Object::ToNumber(args.at<Object>(5))); | |
3927 minutes = minutes_object->Number(); | |
3928 if (argc >= 6) { | |
3929 Handle<Object> seconds_object; | |
3930 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3931 isolate, seconds_object, Object::ToNumber(args.at<Object>(6))); | |
3932 seconds = seconds_object->Number(); | |
3933 if (argc >= 7) { | |
3934 Handle<Object> ms_object; | |
3935 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3936 isolate, ms_object, Object::ToNumber(args.at<Object>(7))); | |
3937 ms = ms_object->Number(); | |
3938 } | |
3939 } | |
3940 } | |
3941 } | |
3942 } | |
3943 if (!std::isnan(year)) { | |
3944 double const y = DoubleToInteger(year); | |
3945 if (0.0 <= y && y <= 99) year = 1900 + y; | |
3946 } | |
3947 double const day = MakeDay(year, month, date); | |
3948 double const time = MakeTime(hours, minutes, seconds, ms); | |
3949 time_val = MakeDate(day, time); | |
3950 if (time_val >= -DateCache::kMaxTimeBeforeUTCInMs && | |
3951 time_val <= DateCache::kMaxTimeBeforeUTCInMs) { | |
3952 time_val = isolate->date_cache()->ToUTC(static_cast<int64_t>(time_val)); | |
3953 } else { | |
3954 time_val = std::numeric_limits<double>::quiet_NaN(); | |
3955 } | |
3956 } | |
3957 RETURN_RESULT_OR_FAILURE(isolate, JSDate::New(target, new_target, time_val)); | |
3958 } | |
3959 | |
3960 | |
3961 // ES6 section 20.3.3.1 Date.now ( ) | |
3962 BUILTIN(DateNow) { | |
3963 HandleScope scope(isolate); | |
3964 return *isolate->factory()->NewNumber(JSDate::CurrentTimeValue(isolate)); | |
3965 } | |
3966 | |
3967 | |
3968 // ES6 section 20.3.3.2 Date.parse ( string ) | |
3969 BUILTIN(DateParse) { | |
3970 HandleScope scope(isolate); | |
3971 Handle<String> string; | |
3972 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3973 isolate, string, | |
3974 Object::ToString(isolate, args.atOrUndefined(isolate, 1))); | |
3975 return *isolate->factory()->NewNumber(ParseDateTimeString(string)); | |
3976 } | |
3977 | |
3978 | |
3979 // ES6 section 20.3.3.4 Date.UTC (year,month,date,hours,minutes,seconds,ms) | |
3980 BUILTIN(DateUTC) { | |
3981 HandleScope scope(isolate); | |
3982 int const argc = args.length() - 1; | |
3983 double year = std::numeric_limits<double>::quiet_NaN(); | |
3984 double month = std::numeric_limits<double>::quiet_NaN(); | |
3985 double date = 1.0, hours = 0.0, minutes = 0.0, seconds = 0.0, ms = 0.0; | |
3986 if (argc >= 1) { | |
3987 Handle<Object> year_object; | |
3988 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year_object, | |
3989 Object::ToNumber(args.at<Object>(1))); | |
3990 year = year_object->Number(); | |
3991 if (argc >= 2) { | |
3992 Handle<Object> month_object; | |
3993 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month_object, | |
3994 Object::ToNumber(args.at<Object>(2))); | |
3995 month = month_object->Number(); | |
3996 if (argc >= 3) { | |
3997 Handle<Object> date_object; | |
3998 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
3999 isolate, date_object, Object::ToNumber(args.at<Object>(3))); | |
4000 date = date_object->Number(); | |
4001 if (argc >= 4) { | |
4002 Handle<Object> hours_object; | |
4003 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4004 isolate, hours_object, Object::ToNumber(args.at<Object>(4))); | |
4005 hours = hours_object->Number(); | |
4006 if (argc >= 5) { | |
4007 Handle<Object> minutes_object; | |
4008 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4009 isolate, minutes_object, Object::ToNumber(args.at<Object>(5))); | |
4010 minutes = minutes_object->Number(); | |
4011 if (argc >= 6) { | |
4012 Handle<Object> seconds_object; | |
4013 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4014 isolate, seconds_object, | |
4015 Object::ToNumber(args.at<Object>(6))); | |
4016 seconds = seconds_object->Number(); | |
4017 if (argc >= 7) { | |
4018 Handle<Object> ms_object; | |
4019 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4020 isolate, ms_object, Object::ToNumber(args.at<Object>(7))); | |
4021 ms = ms_object->Number(); | |
4022 } | |
4023 } | |
4024 } | |
4025 } | |
4026 } | |
4027 } | |
4028 } | |
4029 if (!std::isnan(year)) { | |
4030 double const y = DoubleToInteger(year); | |
4031 if (0.0 <= y && y <= 99) year = 1900 + y; | |
4032 } | |
4033 double const day = MakeDay(year, month, date); | |
4034 double const time = MakeTime(hours, minutes, seconds, ms); | |
4035 return *isolate->factory()->NewNumber(TimeClip(MakeDate(day, time))); | |
4036 } | |
4037 | |
4038 | |
4039 // ES6 section 20.3.4.20 Date.prototype.setDate ( date ) | |
4040 BUILTIN(DatePrototypeSetDate) { | |
4041 HandleScope scope(isolate); | |
4042 CHECK_RECEIVER(JSDate, date, "Date.prototype.setDate"); | |
4043 Handle<Object> value = args.atOrUndefined(isolate, 1); | |
4044 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value)); | |
4045 double time_val = date->value()->Number(); | |
4046 if (!std::isnan(time_val)) { | |
4047 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4048 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4049 int const days = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4050 int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days); | |
4051 int year, month, day; | |
4052 isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day); | |
4053 time_val = MakeDate(MakeDay(year, month, value->Number()), time_within_day); | |
4054 } | |
4055 return SetLocalDateValue(date, time_val); | |
4056 } | |
4057 | |
4058 | |
4059 // ES6 section 20.3.4.21 Date.prototype.setFullYear (year, month, date) | |
4060 BUILTIN(DatePrototypeSetFullYear) { | |
4061 HandleScope scope(isolate); | |
4062 CHECK_RECEIVER(JSDate, date, "Date.prototype.setFullYear"); | |
4063 int const argc = args.length() - 1; | |
4064 Handle<Object> year = args.atOrUndefined(isolate, 1); | |
4065 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year)); | |
4066 double y = year->Number(), m = 0.0, dt = 1.0; | |
4067 int time_within_day = 0; | |
4068 if (!std::isnan(date->value()->Number())) { | |
4069 int64_t const time_ms = static_cast<int64_t>(date->value()->Number()); | |
4070 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4071 int const days = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4072 time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days); | |
4073 int year, month, day; | |
4074 isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day); | |
4075 m = month; | |
4076 dt = day; | |
4077 } | |
4078 if (argc >= 2) { | |
4079 Handle<Object> month = args.at<Object>(2); | |
4080 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month)); | |
4081 m = month->Number(); | |
4082 if (argc >= 3) { | |
4083 Handle<Object> date = args.at<Object>(3); | |
4084 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date)); | |
4085 dt = date->Number(); | |
4086 } | |
4087 } | |
4088 double time_val = MakeDate(MakeDay(y, m, dt), time_within_day); | |
4089 return SetLocalDateValue(date, time_val); | |
4090 } | |
4091 | |
4092 | |
4093 // ES6 section 20.3.4.22 Date.prototype.setHours(hour, min, sec, ms) | |
4094 BUILTIN(DatePrototypeSetHours) { | |
4095 HandleScope scope(isolate); | |
4096 CHECK_RECEIVER(JSDate, date, "Date.prototype.setHours"); | |
4097 int const argc = args.length() - 1; | |
4098 Handle<Object> hour = args.atOrUndefined(isolate, 1); | |
4099 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, hour, Object::ToNumber(hour)); | |
4100 double h = hour->Number(); | |
4101 double time_val = date->value()->Number(); | |
4102 if (!std::isnan(time_val)) { | |
4103 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4104 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4105 int day = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4106 int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day); | |
4107 double m = (time_within_day / (60 * 1000)) % 60; | |
4108 double s = (time_within_day / 1000) % 60; | |
4109 double milli = time_within_day % 1000; | |
4110 if (argc >= 2) { | |
4111 Handle<Object> min = args.at<Object>(2); | |
4112 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min)); | |
4113 m = min->Number(); | |
4114 if (argc >= 3) { | |
4115 Handle<Object> sec = args.at<Object>(3); | |
4116 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec)); | |
4117 s = sec->Number(); | |
4118 if (argc >= 4) { | |
4119 Handle<Object> ms = args.at<Object>(4); | |
4120 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4121 milli = ms->Number(); | |
4122 } | |
4123 } | |
4124 } | |
4125 time_val = MakeDate(day, MakeTime(h, m, s, milli)); | |
4126 } | |
4127 return SetLocalDateValue(date, time_val); | |
4128 } | |
4129 | |
4130 | |
4131 // ES6 section 20.3.4.23 Date.prototype.setMilliseconds(ms) | |
4132 BUILTIN(DatePrototypeSetMilliseconds) { | |
4133 HandleScope scope(isolate); | |
4134 CHECK_RECEIVER(JSDate, date, "Date.prototype.setMilliseconds"); | |
4135 Handle<Object> ms = args.atOrUndefined(isolate, 1); | |
4136 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4137 double time_val = date->value()->Number(); | |
4138 if (!std::isnan(time_val)) { | |
4139 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4140 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4141 int day = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4142 int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day); | |
4143 int h = time_within_day / (60 * 60 * 1000); | |
4144 int m = (time_within_day / (60 * 1000)) % 60; | |
4145 int s = (time_within_day / 1000) % 60; | |
4146 time_val = MakeDate(day, MakeTime(h, m, s, ms->Number())); | |
4147 } | |
4148 return SetLocalDateValue(date, time_val); | |
4149 } | |
4150 | |
4151 | |
4152 // ES6 section 20.3.4.24 Date.prototype.setMinutes ( min, sec, ms ) | |
4153 BUILTIN(DatePrototypeSetMinutes) { | |
4154 HandleScope scope(isolate); | |
4155 CHECK_RECEIVER(JSDate, date, "Date.prototype.setMinutes"); | |
4156 int const argc = args.length() - 1; | |
4157 Handle<Object> min = args.atOrUndefined(isolate, 1); | |
4158 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min)); | |
4159 double time_val = date->value()->Number(); | |
4160 if (!std::isnan(time_val)) { | |
4161 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4162 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4163 int day = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4164 int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day); | |
4165 int h = time_within_day / (60 * 60 * 1000); | |
4166 double m = min->Number(); | |
4167 double s = (time_within_day / 1000) % 60; | |
4168 double milli = time_within_day % 1000; | |
4169 if (argc >= 2) { | |
4170 Handle<Object> sec = args.at<Object>(2); | |
4171 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec)); | |
4172 s = sec->Number(); | |
4173 if (argc >= 3) { | |
4174 Handle<Object> ms = args.at<Object>(3); | |
4175 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4176 milli = ms->Number(); | |
4177 } | |
4178 } | |
4179 time_val = MakeDate(day, MakeTime(h, m, s, milli)); | |
4180 } | |
4181 return SetLocalDateValue(date, time_val); | |
4182 } | |
4183 | |
4184 | |
4185 // ES6 section 20.3.4.25 Date.prototype.setMonth ( month, date ) | |
4186 BUILTIN(DatePrototypeSetMonth) { | |
4187 HandleScope scope(isolate); | |
4188 CHECK_RECEIVER(JSDate, date, "Date.prototype.setMonth"); | |
4189 int const argc = args.length() - 1; | |
4190 Handle<Object> month = args.atOrUndefined(isolate, 1); | |
4191 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month)); | |
4192 double time_val = date->value()->Number(); | |
4193 if (!std::isnan(time_val)) { | |
4194 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4195 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4196 int days = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4197 int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days); | |
4198 int year, unused, day; | |
4199 isolate->date_cache()->YearMonthDayFromDays(days, &year, &unused, &day); | |
4200 double m = month->Number(); | |
4201 double dt = day; | |
4202 if (argc >= 2) { | |
4203 Handle<Object> date = args.at<Object>(2); | |
4204 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date)); | |
4205 dt = date->Number(); | |
4206 } | |
4207 time_val = MakeDate(MakeDay(year, m, dt), time_within_day); | |
4208 } | |
4209 return SetLocalDateValue(date, time_val); | |
4210 } | |
4211 | |
4212 | |
4213 // ES6 section 20.3.4.26 Date.prototype.setSeconds ( sec, ms ) | |
4214 BUILTIN(DatePrototypeSetSeconds) { | |
4215 HandleScope scope(isolate); | |
4216 CHECK_RECEIVER(JSDate, date, "Date.prototype.setSeconds"); | |
4217 int const argc = args.length() - 1; | |
4218 Handle<Object> sec = args.atOrUndefined(isolate, 1); | |
4219 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec)); | |
4220 double time_val = date->value()->Number(); | |
4221 if (!std::isnan(time_val)) { | |
4222 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4223 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4224 int day = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4225 int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day); | |
4226 int h = time_within_day / (60 * 60 * 1000); | |
4227 double m = (time_within_day / (60 * 1000)) % 60; | |
4228 double s = sec->Number(); | |
4229 double milli = time_within_day % 1000; | |
4230 if (argc >= 2) { | |
4231 Handle<Object> ms = args.at<Object>(2); | |
4232 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4233 milli = ms->Number(); | |
4234 } | |
4235 time_val = MakeDate(day, MakeTime(h, m, s, milli)); | |
4236 } | |
4237 return SetLocalDateValue(date, time_val); | |
4238 } | |
4239 | |
4240 | |
4241 // ES6 section 20.3.4.27 Date.prototype.setTime ( time ) | |
4242 BUILTIN(DatePrototypeSetTime) { | |
4243 HandleScope scope(isolate); | |
4244 CHECK_RECEIVER(JSDate, date, "Date.prototype.setTime"); | |
4245 Handle<Object> value = args.atOrUndefined(isolate, 1); | |
4246 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value)); | |
4247 return *JSDate::SetValue(date, TimeClip(value->Number())); | |
4248 } | |
4249 | |
4250 | |
4251 // ES6 section 20.3.4.28 Date.prototype.setUTCDate ( date ) | |
4252 BUILTIN(DatePrototypeSetUTCDate) { | |
4253 HandleScope scope(isolate); | |
4254 CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCDate"); | |
4255 Handle<Object> value = args.atOrUndefined(isolate, 1); | |
4256 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value)); | |
4257 if (std::isnan(date->value()->Number())) return date->value(); | |
4258 int64_t const time_ms = static_cast<int64_t>(date->value()->Number()); | |
4259 int const days = isolate->date_cache()->DaysFromTime(time_ms); | |
4260 int const time_within_day = isolate->date_cache()->TimeInDay(time_ms, days); | |
4261 int year, month, day; | |
4262 isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day); | |
4263 double const time_val = | |
4264 MakeDate(MakeDay(year, month, value->Number()), time_within_day); | |
4265 return *JSDate::SetValue(date, TimeClip(time_val)); | |
4266 } | |
4267 | |
4268 | |
4269 // ES6 section 20.3.4.29 Date.prototype.setUTCFullYear (year, month, date) | |
4270 BUILTIN(DatePrototypeSetUTCFullYear) { | |
4271 HandleScope scope(isolate); | |
4272 CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCFullYear"); | |
4273 int const argc = args.length() - 1; | |
4274 Handle<Object> year = args.atOrUndefined(isolate, 1); | |
4275 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year)); | |
4276 double y = year->Number(), m = 0.0, dt = 1.0; | |
4277 int time_within_day = 0; | |
4278 if (!std::isnan(date->value()->Number())) { | |
4279 int64_t const time_ms = static_cast<int64_t>(date->value()->Number()); | |
4280 int const days = isolate->date_cache()->DaysFromTime(time_ms); | |
4281 time_within_day = isolate->date_cache()->TimeInDay(time_ms, days); | |
4282 int year, month, day; | |
4283 isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day); | |
4284 m = month; | |
4285 dt = day; | |
4286 } | |
4287 if (argc >= 2) { | |
4288 Handle<Object> month = args.at<Object>(2); | |
4289 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month)); | |
4290 m = month->Number(); | |
4291 if (argc >= 3) { | |
4292 Handle<Object> date = args.at<Object>(3); | |
4293 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date)); | |
4294 dt = date->Number(); | |
4295 } | |
4296 } | |
4297 double const time_val = MakeDate(MakeDay(y, m, dt), time_within_day); | |
4298 return *JSDate::SetValue(date, TimeClip(time_val)); | |
4299 } | |
4300 | |
4301 | |
4302 // ES6 section 20.3.4.30 Date.prototype.setUTCHours(hour, min, sec, ms) | |
4303 BUILTIN(DatePrototypeSetUTCHours) { | |
4304 HandleScope scope(isolate); | |
4305 CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCHours"); | |
4306 int const argc = args.length() - 1; | |
4307 Handle<Object> hour = args.atOrUndefined(isolate, 1); | |
4308 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, hour, Object::ToNumber(hour)); | |
4309 double h = hour->Number(); | |
4310 double time_val = date->value()->Number(); | |
4311 if (!std::isnan(time_val)) { | |
4312 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4313 int day = isolate->date_cache()->DaysFromTime(time_ms); | |
4314 int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day); | |
4315 double m = (time_within_day / (60 * 1000)) % 60; | |
4316 double s = (time_within_day / 1000) % 60; | |
4317 double milli = time_within_day % 1000; | |
4318 if (argc >= 2) { | |
4319 Handle<Object> min = args.at<Object>(2); | |
4320 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min)); | |
4321 m = min->Number(); | |
4322 if (argc >= 3) { | |
4323 Handle<Object> sec = args.at<Object>(3); | |
4324 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec)); | |
4325 s = sec->Number(); | |
4326 if (argc >= 4) { | |
4327 Handle<Object> ms = args.at<Object>(4); | |
4328 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4329 milli = ms->Number(); | |
4330 } | |
4331 } | |
4332 } | |
4333 time_val = MakeDate(day, MakeTime(h, m, s, milli)); | |
4334 } | |
4335 return *JSDate::SetValue(date, TimeClip(time_val)); | |
4336 } | |
4337 | |
4338 | |
4339 // ES6 section 20.3.4.31 Date.prototype.setUTCMilliseconds(ms) | |
4340 BUILTIN(DatePrototypeSetUTCMilliseconds) { | |
4341 HandleScope scope(isolate); | |
4342 CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMilliseconds"); | |
4343 Handle<Object> ms = args.atOrUndefined(isolate, 1); | |
4344 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4345 double time_val = date->value()->Number(); | |
4346 if (!std::isnan(time_val)) { | |
4347 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4348 int day = isolate->date_cache()->DaysFromTime(time_ms); | |
4349 int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day); | |
4350 int h = time_within_day / (60 * 60 * 1000); | |
4351 int m = (time_within_day / (60 * 1000)) % 60; | |
4352 int s = (time_within_day / 1000) % 60; | |
4353 time_val = MakeDate(day, MakeTime(h, m, s, ms->Number())); | |
4354 } | |
4355 return *JSDate::SetValue(date, TimeClip(time_val)); | |
4356 } | |
4357 | |
4358 | |
4359 // ES6 section 20.3.4.32 Date.prototype.setUTCMinutes ( min, sec, ms ) | |
4360 BUILTIN(DatePrototypeSetUTCMinutes) { | |
4361 HandleScope scope(isolate); | |
4362 CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMinutes"); | |
4363 int const argc = args.length() - 1; | |
4364 Handle<Object> min = args.atOrUndefined(isolate, 1); | |
4365 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min)); | |
4366 double time_val = date->value()->Number(); | |
4367 if (!std::isnan(time_val)) { | |
4368 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4369 int day = isolate->date_cache()->DaysFromTime(time_ms); | |
4370 int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day); | |
4371 int h = time_within_day / (60 * 60 * 1000); | |
4372 double m = min->Number(); | |
4373 double s = (time_within_day / 1000) % 60; | |
4374 double milli = time_within_day % 1000; | |
4375 if (argc >= 2) { | |
4376 Handle<Object> sec = args.at<Object>(2); | |
4377 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec)); | |
4378 s = sec->Number(); | |
4379 if (argc >= 3) { | |
4380 Handle<Object> ms = args.at<Object>(3); | |
4381 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4382 milli = ms->Number(); | |
4383 } | |
4384 } | |
4385 time_val = MakeDate(day, MakeTime(h, m, s, milli)); | |
4386 } | |
4387 return *JSDate::SetValue(date, TimeClip(time_val)); | |
4388 } | |
4389 | |
4390 | |
4391 // ES6 section 20.3.4.31 Date.prototype.setUTCMonth ( month, date ) | |
4392 BUILTIN(DatePrototypeSetUTCMonth) { | |
4393 HandleScope scope(isolate); | |
4394 CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMonth"); | |
4395 int const argc = args.length() - 1; | |
4396 Handle<Object> month = args.atOrUndefined(isolate, 1); | |
4397 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month)); | |
4398 double time_val = date->value()->Number(); | |
4399 if (!std::isnan(time_val)) { | |
4400 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4401 int days = isolate->date_cache()->DaysFromTime(time_ms); | |
4402 int time_within_day = isolate->date_cache()->TimeInDay(time_ms, days); | |
4403 int year, unused, day; | |
4404 isolate->date_cache()->YearMonthDayFromDays(days, &year, &unused, &day); | |
4405 double m = month->Number(); | |
4406 double dt = day; | |
4407 if (argc >= 2) { | |
4408 Handle<Object> date = args.at<Object>(2); | |
4409 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date)); | |
4410 dt = date->Number(); | |
4411 } | |
4412 time_val = MakeDate(MakeDay(year, m, dt), time_within_day); | |
4413 } | |
4414 return *JSDate::SetValue(date, TimeClip(time_val)); | |
4415 } | |
4416 | |
4417 | |
4418 // ES6 section 20.3.4.34 Date.prototype.setUTCSeconds ( sec, ms ) | |
4419 BUILTIN(DatePrototypeSetUTCSeconds) { | |
4420 HandleScope scope(isolate); | |
4421 CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCSeconds"); | |
4422 int const argc = args.length() - 1; | |
4423 Handle<Object> sec = args.atOrUndefined(isolate, 1); | |
4424 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec)); | |
4425 double time_val = date->value()->Number(); | |
4426 if (!std::isnan(time_val)) { | |
4427 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4428 int day = isolate->date_cache()->DaysFromTime(time_ms); | |
4429 int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day); | |
4430 int h = time_within_day / (60 * 60 * 1000); | |
4431 double m = (time_within_day / (60 * 1000)) % 60; | |
4432 double s = sec->Number(); | |
4433 double milli = time_within_day % 1000; | |
4434 if (argc >= 2) { | |
4435 Handle<Object> ms = args.at<Object>(2); | |
4436 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms)); | |
4437 milli = ms->Number(); | |
4438 } | |
4439 time_val = MakeDate(day, MakeTime(h, m, s, milli)); | |
4440 } | |
4441 return *JSDate::SetValue(date, TimeClip(time_val)); | |
4442 } | |
4443 | |
4444 | |
4445 // ES6 section 20.3.4.35 Date.prototype.toDateString ( ) | |
4446 BUILTIN(DatePrototypeToDateString) { | |
4447 HandleScope scope(isolate); | |
4448 CHECK_RECEIVER(JSDate, date, "Date.prototype.toDateString"); | |
4449 char buffer[128]; | |
4450 ToDateString(date->value()->Number(), ArrayVector(buffer), | |
4451 isolate->date_cache(), kDateOnly); | |
4452 RETURN_RESULT_OR_FAILURE( | |
4453 isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer))); | |
4454 } | |
4455 | |
4456 | |
4457 // ES6 section 20.3.4.36 Date.prototype.toISOString ( ) | |
4458 BUILTIN(DatePrototypeToISOString) { | |
4459 HandleScope scope(isolate); | |
4460 CHECK_RECEIVER(JSDate, date, "Date.prototype.toISOString"); | |
4461 double const time_val = date->value()->Number(); | |
4462 if (std::isnan(time_val)) { | |
4463 THROW_NEW_ERROR_RETURN_FAILURE( | |
4464 isolate, NewRangeError(MessageTemplate::kInvalidTimeValue)); | |
4465 } | |
4466 int64_t const time_ms = static_cast<int64_t>(time_val); | |
4467 int year, month, day, weekday, hour, min, sec, ms; | |
4468 isolate->date_cache()->BreakDownTime(time_ms, &year, &month, &day, &weekday, | |
4469 &hour, &min, &sec, &ms); | |
4470 char buffer[128]; | |
4471 if (year >= 0 && year <= 9999) { | |
4472 SNPrintF(ArrayVector(buffer), "%04d-%02d-%02dT%02d:%02d:%02d.%03dZ", year, | |
4473 month + 1, day, hour, min, sec, ms); | |
4474 } else if (year < 0) { | |
4475 SNPrintF(ArrayVector(buffer), "-%06d-%02d-%02dT%02d:%02d:%02d.%03dZ", -year, | |
4476 month + 1, day, hour, min, sec, ms); | |
4477 } else { | |
4478 SNPrintF(ArrayVector(buffer), "+%06d-%02d-%02dT%02d:%02d:%02d.%03dZ", year, | |
4479 month + 1, day, hour, min, sec, ms); | |
4480 } | |
4481 return *isolate->factory()->NewStringFromAsciiChecked(buffer); | |
4482 } | |
4483 | |
4484 | |
4485 // ES6 section 20.3.4.41 Date.prototype.toString ( ) | |
4486 BUILTIN(DatePrototypeToString) { | |
4487 HandleScope scope(isolate); | |
4488 CHECK_RECEIVER(JSDate, date, "Date.prototype.toString"); | |
4489 char buffer[128]; | |
4490 ToDateString(date->value()->Number(), ArrayVector(buffer), | |
4491 isolate->date_cache()); | |
4492 RETURN_RESULT_OR_FAILURE( | |
4493 isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer))); | |
4494 } | |
4495 | |
4496 | |
4497 // ES6 section 20.3.4.42 Date.prototype.toTimeString ( ) | |
4498 BUILTIN(DatePrototypeToTimeString) { | |
4499 HandleScope scope(isolate); | |
4500 CHECK_RECEIVER(JSDate, date, "Date.prototype.toTimeString"); | |
4501 char buffer[128]; | |
4502 ToDateString(date->value()->Number(), ArrayVector(buffer), | |
4503 isolate->date_cache(), kTimeOnly); | |
4504 RETURN_RESULT_OR_FAILURE( | |
4505 isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer))); | |
4506 } | |
4507 | |
4508 | |
4509 // ES6 section 20.3.4.43 Date.prototype.toUTCString ( ) | |
4510 BUILTIN(DatePrototypeToUTCString) { | |
4511 HandleScope scope(isolate); | |
4512 CHECK_RECEIVER(JSDate, date, "Date.prototype.toUTCString"); | |
4513 double const time_val = date->value()->Number(); | |
4514 if (std::isnan(time_val)) { | |
4515 return *isolate->factory()->NewStringFromAsciiChecked("Invalid Date"); | |
4516 } | |
4517 char buffer[128]; | |
4518 int64_t time_ms = static_cast<int64_t>(time_val); | |
4519 int year, month, day, weekday, hour, min, sec, ms; | |
4520 isolate->date_cache()->BreakDownTime(time_ms, &year, &month, &day, &weekday, | |
4521 &hour, &min, &sec, &ms); | |
4522 SNPrintF(ArrayVector(buffer), "%s, %02d %s %4d %02d:%02d:%02d GMT", | |
4523 kShortWeekDays[weekday], day, kShortMonths[month], year, hour, min, | |
4524 sec); | |
4525 return *isolate->factory()->NewStringFromAsciiChecked(buffer); | |
4526 } | |
4527 | |
4528 | |
4529 // ES6 section 20.3.4.44 Date.prototype.valueOf ( ) | |
4530 BUILTIN(DatePrototypeValueOf) { | |
4531 HandleScope scope(isolate); | |
4532 CHECK_RECEIVER(JSDate, date, "Date.prototype.valueOf"); | |
4533 return date->value(); | |
4534 } | |
4535 | |
4536 | |
4537 // ES6 section 20.3.4.45 Date.prototype [ @@toPrimitive ] ( hint ) | |
4538 BUILTIN(DatePrototypeToPrimitive) { | |
4539 HandleScope scope(isolate); | |
4540 DCHECK_EQ(2, args.length()); | |
4541 CHECK_RECEIVER(JSReceiver, receiver, "Date.prototype [ @@toPrimitive ]"); | |
4542 Handle<Object> hint = args.at<Object>(1); | |
4543 RETURN_RESULT_OR_FAILURE(isolate, JSDate::ToPrimitive(receiver, hint)); | |
4544 } | |
4545 | |
4546 | |
4547 // ES6 section B.2.4.1 Date.prototype.getYear ( ) | |
4548 BUILTIN(DatePrototypeGetYear) { | |
4549 HandleScope scope(isolate); | |
4550 CHECK_RECEIVER(JSDate, date, "Date.prototype.getYear"); | |
4551 double time_val = date->value()->Number(); | |
4552 if (std::isnan(time_val)) return date->value(); | |
4553 int64_t time_ms = static_cast<int64_t>(time_val); | |
4554 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4555 int days = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4556 int year, month, day; | |
4557 isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day); | |
4558 return Smi::FromInt(year - 1900); | |
4559 } | |
4560 | |
4561 | |
4562 // ES6 section B.2.4.2 Date.prototype.setYear ( year ) | |
4563 BUILTIN(DatePrototypeSetYear) { | |
4564 HandleScope scope(isolate); | |
4565 CHECK_RECEIVER(JSDate, date, "Date.prototype.setYear"); | |
4566 Handle<Object> year = args.atOrUndefined(isolate, 1); | |
4567 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year)); | |
4568 double m = 0.0, dt = 1.0, y = year->Number(); | |
4569 if (0.0 <= y && y <= 99.0) { | |
4570 y = 1900.0 + DoubleToInteger(y); | |
4571 } | |
4572 int time_within_day = 0; | |
4573 if (!std::isnan(date->value()->Number())) { | |
4574 int64_t const time_ms = static_cast<int64_t>(date->value()->Number()); | |
4575 int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms); | |
4576 int const days = isolate->date_cache()->DaysFromTime(local_time_ms); | |
4577 time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days); | |
4578 int year, month, day; | |
4579 isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day); | |
4580 m = month; | |
4581 dt = day; | |
4582 } | |
4583 double time_val = MakeDate(MakeDay(y, m, dt), time_within_day); | |
4584 return SetLocalDateValue(date, time_val); | |
4585 } | |
4586 | |
4587 // ES6 section 20.3.4.37 Date.prototype.toJSON ( key ) | |
4588 BUILTIN(DatePrototypeToJson) { | |
4589 HandleScope scope(isolate); | |
4590 Handle<Object> receiver = args.atOrUndefined(isolate, 0); | |
4591 Handle<JSReceiver> receiver_obj; | |
4592 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_obj, | |
4593 Object::ToObject(isolate, receiver)); | |
4594 Handle<Object> primitive; | |
4595 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4596 isolate, primitive, | |
4597 Object::ToPrimitive(receiver_obj, ToPrimitiveHint::kNumber)); | |
4598 if (primitive->IsNumber() && !std::isfinite(primitive->Number())) { | |
4599 return isolate->heap()->null_value(); | |
4600 } else { | |
4601 Handle<String> name = | |
4602 isolate->factory()->NewStringFromAsciiChecked("toISOString"); | |
4603 Handle<Object> function; | |
4604 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, function, | |
4605 Object::GetProperty(receiver_obj, name)); | |
4606 if (!function->IsCallable()) { | |
4607 THROW_NEW_ERROR_RETURN_FAILURE( | |
4608 isolate, NewTypeError(MessageTemplate::kCalledNonCallable, name)); | |
4609 } | |
4610 RETURN_RESULT_OR_FAILURE( | |
4611 isolate, Execution::Call(isolate, function, receiver_obj, 0, NULL)); | |
4612 } | |
4613 } | |
4614 | |
4615 // static | |
4616 void Builtins::Generate_DatePrototypeGetDate(MacroAssembler* masm) { | |
4617 Generate_DatePrototype_GetField(masm, JSDate::kDay); | |
4618 } | |
4619 | |
4620 | |
4621 // static | |
4622 void Builtins::Generate_DatePrototypeGetDay(MacroAssembler* masm) { | |
4623 Generate_DatePrototype_GetField(masm, JSDate::kWeekday); | |
4624 } | |
4625 | |
4626 | |
4627 // static | |
4628 void Builtins::Generate_DatePrototypeGetFullYear(MacroAssembler* masm) { | |
4629 Generate_DatePrototype_GetField(masm, JSDate::kYear); | |
4630 } | |
4631 | |
4632 | |
4633 // static | |
4634 void Builtins::Generate_DatePrototypeGetHours(MacroAssembler* masm) { | |
4635 Generate_DatePrototype_GetField(masm, JSDate::kHour); | |
4636 } | |
4637 | |
4638 | |
4639 // static | |
4640 void Builtins::Generate_DatePrototypeGetMilliseconds(MacroAssembler* masm) { | |
4641 Generate_DatePrototype_GetField(masm, JSDate::kMillisecond); | |
4642 } | |
4643 | |
4644 | |
4645 // static | |
4646 void Builtins::Generate_DatePrototypeGetMinutes(MacroAssembler* masm) { | |
4647 Generate_DatePrototype_GetField(masm, JSDate::kMinute); | |
4648 } | |
4649 | |
4650 | |
4651 // static | |
4652 void Builtins::Generate_DatePrototypeGetMonth(MacroAssembler* masm) { | |
4653 Generate_DatePrototype_GetField(masm, JSDate::kMonth); | |
4654 } | |
4655 | |
4656 | |
4657 // static | |
4658 void Builtins::Generate_DatePrototypeGetSeconds(MacroAssembler* masm) { | |
4659 Generate_DatePrototype_GetField(masm, JSDate::kSecond); | |
4660 } | |
4661 | |
4662 | |
4663 // static | |
4664 void Builtins::Generate_DatePrototypeGetTime(MacroAssembler* masm) { | |
4665 Generate_DatePrototype_GetField(masm, JSDate::kDateValue); | |
4666 } | |
4667 | |
4668 | |
4669 // static | |
4670 void Builtins::Generate_DatePrototypeGetTimezoneOffset(MacroAssembler* masm) { | |
4671 Generate_DatePrototype_GetField(masm, JSDate::kTimezoneOffset); | |
4672 } | |
4673 | |
4674 | |
4675 // static | |
4676 void Builtins::Generate_DatePrototypeGetUTCDate(MacroAssembler* masm) { | |
4677 Generate_DatePrototype_GetField(masm, JSDate::kDayUTC); | |
4678 } | |
4679 | |
4680 | |
4681 // static | |
4682 void Builtins::Generate_DatePrototypeGetUTCDay(MacroAssembler* masm) { | |
4683 Generate_DatePrototype_GetField(masm, JSDate::kWeekdayUTC); | |
4684 } | |
4685 | |
4686 | |
4687 // static | |
4688 void Builtins::Generate_DatePrototypeGetUTCFullYear(MacroAssembler* masm) { | |
4689 Generate_DatePrototype_GetField(masm, JSDate::kYearUTC); | |
4690 } | |
4691 | |
4692 | |
4693 // static | |
4694 void Builtins::Generate_DatePrototypeGetUTCHours(MacroAssembler* masm) { | |
4695 Generate_DatePrototype_GetField(masm, JSDate::kHourUTC); | |
4696 } | |
4697 | |
4698 | |
4699 // static | |
4700 void Builtins::Generate_DatePrototypeGetUTCMilliseconds(MacroAssembler* masm) { | |
4701 Generate_DatePrototype_GetField(masm, JSDate::kMillisecondUTC); | |
4702 } | |
4703 | |
4704 | |
4705 // static | |
4706 void Builtins::Generate_DatePrototypeGetUTCMinutes(MacroAssembler* masm) { | |
4707 Generate_DatePrototype_GetField(masm, JSDate::kMinuteUTC); | |
4708 } | |
4709 | |
4710 | |
4711 // static | |
4712 void Builtins::Generate_DatePrototypeGetUTCMonth(MacroAssembler* masm) { | |
4713 Generate_DatePrototype_GetField(masm, JSDate::kMonthUTC); | |
4714 } | |
4715 | |
4716 | |
4717 // static | |
4718 void Builtins::Generate_DatePrototypeGetUTCSeconds(MacroAssembler* masm) { | |
4719 Generate_DatePrototype_GetField(masm, JSDate::kSecondUTC); | |
4720 } | |
4721 | |
4722 | |
4723 namespace { | |
4724 | |
4725 // ES6 section 19.2.1.1.1 CreateDynamicFunction | |
4726 MaybeHandle<JSFunction> CreateDynamicFunction(Isolate* isolate, | |
4727 BuiltinArguments args, | |
4728 const char* token) { | |
4729 // Compute number of arguments, ignoring the receiver. | |
4730 DCHECK_LE(1, args.length()); | |
4731 int const argc = args.length() - 1; | |
4732 | |
4733 // Build the source string. | |
4734 Handle<String> source; | |
4735 { | |
4736 IncrementalStringBuilder builder(isolate); | |
4737 builder.AppendCharacter('('); | |
4738 builder.AppendCString(token); | |
4739 builder.AppendCharacter('('); | |
4740 bool parenthesis_in_arg_string = false; | |
4741 if (argc > 1) { | |
4742 for (int i = 1; i < argc; ++i) { | |
4743 if (i > 1) builder.AppendCharacter(','); | |
4744 Handle<String> param; | |
4745 ASSIGN_RETURN_ON_EXCEPTION( | |
4746 isolate, param, Object::ToString(isolate, args.at<Object>(i)), | |
4747 JSFunction); | |
4748 param = String::Flatten(param); | |
4749 builder.AppendString(param); | |
4750 // If the formal parameters string include ) - an illegal | |
4751 // character - it may make the combined function expression | |
4752 // compile. We avoid this problem by checking for this early on. | |
4753 DisallowHeapAllocation no_gc; // Ensure vectors stay valid. | |
4754 String::FlatContent param_content = param->GetFlatContent(); | |
4755 for (int i = 0, length = param->length(); i < length; ++i) { | |
4756 if (param_content.Get(i) == ')') { | |
4757 parenthesis_in_arg_string = true; | |
4758 break; | |
4759 } | |
4760 } | |
4761 } | |
4762 // If the formal parameters include an unbalanced block comment, the | |
4763 // function must be rejected. Since JavaScript does not allow nested | |
4764 // comments we can include a trailing block comment to catch this. | |
4765 builder.AppendCString("\n/**/"); | |
4766 } | |
4767 builder.AppendCString(") {\n"); | |
4768 if (argc > 0) { | |
4769 Handle<String> body; | |
4770 ASSIGN_RETURN_ON_EXCEPTION( | |
4771 isolate, body, Object::ToString(isolate, args.at<Object>(argc)), | |
4772 JSFunction); | |
4773 builder.AppendString(body); | |
4774 } | |
4775 builder.AppendCString("\n})"); | |
4776 ASSIGN_RETURN_ON_EXCEPTION(isolate, source, builder.Finish(), JSFunction); | |
4777 | |
4778 // The SyntaxError must be thrown after all the (observable) ToString | |
4779 // conversions are done. | |
4780 if (parenthesis_in_arg_string) { | |
4781 THROW_NEW_ERROR(isolate, | |
4782 NewSyntaxError(MessageTemplate::kParenthesisInArgString), | |
4783 JSFunction); | |
4784 } | |
4785 } | |
4786 | |
4787 // Compile the string in the constructor and not a helper so that errors to | |
4788 // come from here. | |
4789 Handle<JSFunction> target = args.target<JSFunction>(); | |
4790 Handle<JSObject> target_global_proxy(target->global_proxy(), isolate); | |
4791 Handle<JSFunction> function; | |
4792 { | |
4793 ASSIGN_RETURN_ON_EXCEPTION( | |
4794 isolate, function, | |
4795 CompileString(handle(target->native_context(), isolate), source, | |
4796 ONLY_SINGLE_FUNCTION_LITERAL), | |
4797 JSFunction); | |
4798 Handle<Object> result; | |
4799 ASSIGN_RETURN_ON_EXCEPTION( | |
4800 isolate, result, | |
4801 Execution::Call(isolate, function, target_global_proxy, 0, nullptr), | |
4802 JSFunction); | |
4803 function = Handle<JSFunction>::cast(result); | |
4804 function->shared()->set_name_should_print_as_anonymous(true); | |
4805 } | |
4806 | |
4807 // If new.target is equal to target then the function created | |
4808 // is already correctly setup and nothing else should be done | |
4809 // here. But if new.target is not equal to target then we are | |
4810 // have a Function builtin subclassing case and therefore the | |
4811 // function has wrong initial map. To fix that we create a new | |
4812 // function object with correct initial map. | |
4813 Handle<Object> unchecked_new_target = args.new_target(); | |
4814 if (!unchecked_new_target->IsUndefined(isolate) && | |
4815 !unchecked_new_target.is_identical_to(target)) { | |
4816 Handle<JSReceiver> new_target = | |
4817 Handle<JSReceiver>::cast(unchecked_new_target); | |
4818 Handle<Map> initial_map; | |
4819 ASSIGN_RETURN_ON_EXCEPTION( | |
4820 isolate, initial_map, | |
4821 JSFunction::GetDerivedMap(isolate, target, new_target), JSFunction); | |
4822 | |
4823 Handle<SharedFunctionInfo> shared_info(function->shared(), isolate); | |
4824 Handle<Map> map = Map::AsLanguageMode( | |
4825 initial_map, shared_info->language_mode(), shared_info->kind()); | |
4826 | |
4827 Handle<Context> context(function->context(), isolate); | |
4828 function = isolate->factory()->NewFunctionFromSharedFunctionInfo( | |
4829 map, shared_info, context, NOT_TENURED); | |
4830 } | |
4831 return function; | |
4832 } | |
4833 | |
4834 } // namespace | |
4835 | |
4836 | |
4837 // ES6 section 19.2.1.1 Function ( p1, p2, ... , pn, body ) | |
4838 BUILTIN(FunctionConstructor) { | |
4839 HandleScope scope(isolate); | |
4840 Handle<JSFunction> result; | |
4841 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4842 isolate, result, CreateDynamicFunction(isolate, args, "function")); | |
4843 return *result; | |
4844 } | |
4845 | |
4846 namespace { | |
4847 | |
4848 Object* DoFunctionBind(Isolate* isolate, BuiltinArguments args) { | |
4849 HandleScope scope(isolate); | |
4850 DCHECK_LE(1, args.length()); | |
4851 if (!args.receiver()->IsCallable()) { | |
4852 THROW_NEW_ERROR_RETURN_FAILURE( | |
4853 isolate, NewTypeError(MessageTemplate::kFunctionBind)); | |
4854 } | |
4855 | |
4856 // Allocate the bound function with the given {this_arg} and {args}. | |
4857 Handle<JSReceiver> target = args.at<JSReceiver>(0); | |
4858 Handle<Object> this_arg = isolate->factory()->undefined_value(); | |
4859 ScopedVector<Handle<Object>> argv(std::max(0, args.length() - 2)); | |
4860 if (args.length() > 1) { | |
4861 this_arg = args.at<Object>(1); | |
4862 for (int i = 2; i < args.length(); ++i) { | |
4863 argv[i - 2] = args.at<Object>(i); | |
4864 } | |
4865 } | |
4866 Handle<JSBoundFunction> function; | |
4867 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4868 isolate, function, | |
4869 isolate->factory()->NewJSBoundFunction(target, this_arg, argv)); | |
4870 | |
4871 LookupIterator length_lookup(target, isolate->factory()->length_string(), | |
4872 target, LookupIterator::OWN); | |
4873 // Setup the "length" property based on the "length" of the {target}. | |
4874 // If the targets length is the default JSFunction accessor, we can keep the | |
4875 // accessor that's installed by default on the JSBoundFunction. It lazily | |
4876 // computes the value from the underlying internal length. | |
4877 if (!target->IsJSFunction() || | |
4878 length_lookup.state() != LookupIterator::ACCESSOR || | |
4879 !length_lookup.GetAccessors()->IsAccessorInfo()) { | |
4880 Handle<Object> length(Smi::FromInt(0), isolate); | |
4881 Maybe<PropertyAttributes> attributes = | |
4882 JSReceiver::GetPropertyAttributes(&length_lookup); | |
4883 if (!attributes.IsJust()) return isolate->heap()->exception(); | |
4884 if (attributes.FromJust() != ABSENT) { | |
4885 Handle<Object> target_length; | |
4886 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target_length, | |
4887 Object::GetProperty(&length_lookup)); | |
4888 if (target_length->IsNumber()) { | |
4889 length = isolate->factory()->NewNumber(std::max( | |
4890 0.0, DoubleToInteger(target_length->Number()) - argv.length())); | |
4891 } | |
4892 } | |
4893 LookupIterator it(function, isolate->factory()->length_string(), function); | |
4894 DCHECK_EQ(LookupIterator::ACCESSOR, it.state()); | |
4895 RETURN_FAILURE_ON_EXCEPTION(isolate, | |
4896 JSObject::DefineOwnPropertyIgnoreAttributes( | |
4897 &it, length, it.property_attributes())); | |
4898 } | |
4899 | |
4900 // Setup the "name" property based on the "name" of the {target}. | |
4901 // If the targets name is the default JSFunction accessor, we can keep the | |
4902 // accessor that's installed by default on the JSBoundFunction. It lazily | |
4903 // computes the value from the underlying internal name. | |
4904 LookupIterator name_lookup(target, isolate->factory()->name_string(), target, | |
4905 LookupIterator::OWN); | |
4906 if (!target->IsJSFunction() || | |
4907 name_lookup.state() != LookupIterator::ACCESSOR || | |
4908 !name_lookup.GetAccessors()->IsAccessorInfo()) { | |
4909 Handle<Object> target_name; | |
4910 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target_name, | |
4911 Object::GetProperty(&name_lookup)); | |
4912 Handle<String> name; | |
4913 if (target_name->IsString()) { | |
4914 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4915 isolate, name, | |
4916 Name::ToFunctionName(Handle<String>::cast(target_name))); | |
4917 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4918 isolate, name, isolate->factory()->NewConsString( | |
4919 isolate->factory()->bound__string(), name)); | |
4920 } else { | |
4921 name = isolate->factory()->bound__string(); | |
4922 } | |
4923 LookupIterator it(function, isolate->factory()->name_string()); | |
4924 DCHECK_EQ(LookupIterator::ACCESSOR, it.state()); | |
4925 RETURN_FAILURE_ON_EXCEPTION(isolate, | |
4926 JSObject::DefineOwnPropertyIgnoreAttributes( | |
4927 &it, name, it.property_attributes())); | |
4928 } | |
4929 return *function; | |
4930 } | |
4931 | |
4932 } // namespace | |
4933 | |
4934 // ES6 section 19.2.3.2 Function.prototype.bind ( thisArg, ...args ) | |
4935 BUILTIN(FunctionPrototypeBind) { return DoFunctionBind(isolate, args); } | |
4936 | |
4937 // TODO(verwaest): This is a temporary helper until the FastFunctionBind stub | |
4938 // can tailcall to the builtin directly. | |
4939 RUNTIME_FUNCTION(Runtime_FunctionBind) { | |
4940 DCHECK_EQ(2, args.length()); | |
4941 Arguments* incoming = reinterpret_cast<Arguments*>(args[0]); | |
4942 // Rewrap the arguments as builtins arguments. | |
4943 int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver; | |
4944 BuiltinArguments caller_args(argc, incoming->arguments() + 1); | |
4945 return DoFunctionBind(isolate, caller_args); | |
4946 } | |
4947 | |
4948 // ES6 section 19.2.3.5 Function.prototype.toString ( ) | |
4949 BUILTIN(FunctionPrototypeToString) { | |
4950 HandleScope scope(isolate); | |
4951 Handle<Object> receiver = args.receiver(); | |
4952 if (receiver->IsJSBoundFunction()) { | |
4953 return *JSBoundFunction::ToString(Handle<JSBoundFunction>::cast(receiver)); | |
4954 } else if (receiver->IsJSFunction()) { | |
4955 return *JSFunction::ToString(Handle<JSFunction>::cast(receiver)); | |
4956 } | |
4957 THROW_NEW_ERROR_RETURN_FAILURE( | |
4958 isolate, NewTypeError(MessageTemplate::kNotGeneric, | |
4959 isolate->factory()->NewStringFromAsciiChecked( | |
4960 "Function.prototype.toString"))); | |
4961 } | |
4962 | |
4963 | |
4964 // ES6 section 25.2.1.1 GeneratorFunction (p1, p2, ... , pn, body) | |
4965 BUILTIN(GeneratorFunctionConstructor) { | |
4966 HandleScope scope(isolate); | |
4967 RETURN_RESULT_OR_FAILURE(isolate, | |
4968 CreateDynamicFunction(isolate, args, "function*")); | |
4969 } | |
4970 | |
4971 BUILTIN(AsyncFunctionConstructor) { | |
4972 HandleScope scope(isolate); | |
4973 Handle<JSFunction> func; | |
4974 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4975 isolate, func, CreateDynamicFunction(isolate, args, "async function")); | |
4976 | |
4977 // Do not lazily compute eval position for AsyncFunction, as they may not be | |
4978 // determined after the function is resumed. | |
4979 Handle<Script> script = handle(Script::cast(func->shared()->script())); | |
4980 int position = script->GetEvalPosition(); | |
4981 USE(position); | |
4982 | |
4983 return *func; | |
4984 } | |
4985 | |
4986 // ----------------------------------------------------------------------------- | |
4987 // ES6 section 19.1 Object Objects | |
4988 | |
4989 // ES6 section 19.1.3.4 Object.prototype.propertyIsEnumerable ( V ) | |
4990 BUILTIN(ObjectPrototypePropertyIsEnumerable) { | |
4991 HandleScope scope(isolate); | |
4992 Handle<JSReceiver> object; | |
4993 Handle<Name> name; | |
4994 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4995 isolate, name, Object::ToName(isolate, args.atOrUndefined(isolate, 1))); | |
4996 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
4997 isolate, object, JSReceiver::ToObject(isolate, args.receiver())); | |
4998 Maybe<PropertyAttributes> maybe = | |
4999 JSReceiver::GetOwnPropertyAttributes(object, name); | |
5000 if (!maybe.IsJust()) return isolate->heap()->exception(); | |
5001 if (maybe.FromJust() == ABSENT) return isolate->heap()->false_value(); | |
5002 return isolate->heap()->ToBoolean((maybe.FromJust() & DONT_ENUM) == 0); | |
5003 } | |
5004 | |
5005 // ES6 section 19.1.3.6 Object.prototype.toString | |
5006 BUILTIN(ObjectProtoToString) { | |
5007 HandleScope scope(isolate); | |
5008 Handle<Object> object = args.at<Object>(0); | |
5009 RETURN_RESULT_OR_FAILURE(isolate, | |
5010 Object::ObjectProtoToString(isolate, object)); | |
5011 } | |
5012 | |
5013 // ----------------------------------------------------------------------------- | |
5014 // ES6 section 19.4 Symbol Objects | |
5015 | |
5016 // ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Call]] case. | |
5017 BUILTIN(SymbolConstructor) { | |
5018 HandleScope scope(isolate); | |
5019 Handle<Symbol> result = isolate->factory()->NewSymbol(); | |
5020 Handle<Object> description = args.atOrUndefined(isolate, 1); | |
5021 if (!description->IsUndefined(isolate)) { | |
5022 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, description, | |
5023 Object::ToString(isolate, description)); | |
5024 result->set_name(*description); | |
5025 } | |
5026 return *result; | |
5027 } | |
5028 | |
5029 | |
5030 // ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Construct]] case. | |
5031 BUILTIN(SymbolConstructor_ConstructStub) { | |
5032 HandleScope scope(isolate); | |
5033 THROW_NEW_ERROR_RETURN_FAILURE( | |
5034 isolate, NewTypeError(MessageTemplate::kNotConstructor, | |
5035 isolate->factory()->Symbol_string())); | |
5036 } | |
5037 | |
5038 // ES6 section 19.4.3.4 Symbol.prototype [ @@toPrimitive ] ( hint ) | |
5039 void Builtins::Generate_SymbolPrototypeToPrimitive( | |
5040 CodeStubAssembler* assembler) { | |
5041 typedef compiler::Node Node; | |
5042 | |
5043 Node* receiver = assembler->Parameter(0); | |
5044 Node* context = assembler->Parameter(4); | |
5045 | |
5046 Node* result = | |
5047 assembler->ToThisValue(context, receiver, PrimitiveType::kSymbol, | |
5048 "Symbol.prototype [ @@toPrimitive ]"); | |
5049 assembler->Return(result); | |
5050 } | |
5051 | |
5052 // ES6 section 19.4.3.2 Symbol.prototype.toString ( ) | |
5053 void Builtins::Generate_SymbolPrototypeToString(CodeStubAssembler* assembler) { | |
5054 typedef compiler::Node Node; | |
5055 | |
5056 Node* receiver = assembler->Parameter(0); | |
5057 Node* context = assembler->Parameter(3); | |
5058 | |
5059 Node* value = assembler->ToThisValue( | |
5060 context, receiver, PrimitiveType::kSymbol, "Symbol.prototype.toString"); | |
5061 Node* result = | |
5062 assembler->CallRuntime(Runtime::kSymbolDescriptiveString, context, value); | |
5063 assembler->Return(result); | |
5064 } | |
5065 | |
5066 // ES6 section 19.4.3.3 Symbol.prototype.valueOf ( ) | |
5067 void Builtins::Generate_SymbolPrototypeValueOf(CodeStubAssembler* assembler) { | |
5068 typedef compiler::Node Node; | |
5069 | |
5070 Node* receiver = assembler->Parameter(0); | |
5071 Node* context = assembler->Parameter(3); | |
5072 | |
5073 Node* result = assembler->ToThisValue( | |
5074 context, receiver, PrimitiveType::kSymbol, "Symbol.prototype.valueOf"); | |
5075 assembler->Return(result); | |
5076 } | |
5077 | |
5078 // ----------------------------------------------------------------------------- | |
5079 // ES6 section 21.1 String Objects | |
5080 | |
5081 // ES6 section 21.1.2.1 String.fromCharCode ( ...codeUnits ) | |
5082 void Builtins::Generate_StringFromCharCode(CodeStubAssembler* assembler) { | |
5083 typedef CodeStubAssembler::Label Label; | |
5084 typedef compiler::Node Node; | |
5085 typedef CodeStubAssembler::Variable Variable; | |
5086 | |
5087 Node* code = assembler->Parameter(1); | |
5088 Node* context = assembler->Parameter(4); | |
5089 | |
5090 // Check if we have exactly one argument (plus the implicit receiver), i.e. | |
5091 // if the parent frame is not an arguments adaptor frame. | |
5092 Label if_oneargument(assembler), if_notoneargument(assembler); | |
5093 Node* parent_frame_pointer = assembler->LoadParentFramePointer(); | |
5094 Node* parent_frame_type = | |
5095 assembler->Load(MachineType::Pointer(), parent_frame_pointer, | |
5096 assembler->IntPtrConstant( | |
5097 CommonFrameConstants::kContextOrFrameTypeOffset)); | |
5098 assembler->Branch( | |
5099 assembler->WordEqual( | |
5100 parent_frame_type, | |
5101 assembler->SmiConstant(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))), | |
5102 &if_notoneargument, &if_oneargument); | |
5103 | |
5104 assembler->Bind(&if_oneargument); | |
5105 { | |
5106 // Single argument case, perform fast single character string cache lookup | |
5107 // for one-byte code units, or fall back to creating a single character | |
5108 // string on the fly otherwise. | |
5109 Node* code32 = assembler->TruncateTaggedToWord32(context, code); | |
5110 Node* code16 = assembler->Word32And( | |
5111 code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit)); | |
5112 Node* result = assembler->StringFromCharCode(code16); | |
5113 assembler->Return(result); | |
5114 } | |
5115 | |
5116 assembler->Bind(&if_notoneargument); | |
5117 { | |
5118 // Determine the resulting string length. | |
5119 Node* parent_frame_length = | |
5120 assembler->Load(MachineType::Pointer(), parent_frame_pointer, | |
5121 assembler->IntPtrConstant( | |
5122 ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
5123 Node* length = assembler->SmiToWord(parent_frame_length); | |
5124 | |
5125 // Assume that the resulting string contains only one-byte characters. | |
5126 Node* result = assembler->AllocateSeqOneByteString(context, length); | |
5127 | |
5128 // Truncate all input parameters and append them to the resulting string. | |
5129 Variable var_offset(assembler, MachineType::PointerRepresentation()); | |
5130 Label loop(assembler, &var_offset), done_loop(assembler); | |
5131 var_offset.Bind(assembler->IntPtrConstant(0)); | |
5132 assembler->Goto(&loop); | |
5133 assembler->Bind(&loop); | |
5134 { | |
5135 // Load the current {offset}. | |
5136 Node* offset = var_offset.value(); | |
5137 | |
5138 // Check if we're done with the string. | |
5139 assembler->GotoIf(assembler->WordEqual(offset, length), &done_loop); | |
5140 | |
5141 // Load the next code point and truncate it to a 16-bit value. | |
5142 Node* code = assembler->Load( | |
5143 MachineType::AnyTagged(), parent_frame_pointer, | |
5144 assembler->IntPtrAdd( | |
5145 assembler->WordShl(assembler->IntPtrSub(length, offset), | |
5146 assembler->IntPtrConstant(kPointerSizeLog2)), | |
5147 assembler->IntPtrConstant( | |
5148 CommonFrameConstants::kFixedFrameSizeAboveFp - | |
5149 kPointerSize))); | |
5150 Node* code32 = assembler->TruncateTaggedToWord32(context, code); | |
5151 Node* code16 = assembler->Word32And( | |
5152 code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit)); | |
5153 | |
5154 // Check if {code16} fits into a one-byte string. | |
5155 Label if_codeisonebyte(assembler), if_codeistwobyte(assembler); | |
5156 assembler->Branch( | |
5157 assembler->Int32LessThanOrEqual( | |
5158 code16, assembler->Int32Constant(String::kMaxOneByteCharCode)), | |
5159 &if_codeisonebyte, &if_codeistwobyte); | |
5160 | |
5161 assembler->Bind(&if_codeisonebyte); | |
5162 { | |
5163 // The {code16} fits into the SeqOneByteString {result}. | |
5164 assembler->StoreNoWriteBarrier( | |
5165 MachineRepresentation::kWord8, result, | |
5166 assembler->IntPtrAdd( | |
5167 assembler->IntPtrConstant(SeqOneByteString::kHeaderSize - | |
5168 kHeapObjectTag), | |
5169 offset), | |
5170 code16); | |
5171 var_offset.Bind( | |
5172 assembler->IntPtrAdd(offset, assembler->IntPtrConstant(1))); | |
5173 assembler->Goto(&loop); | |
5174 } | |
5175 | |
5176 assembler->Bind(&if_codeistwobyte); | |
5177 { | |
5178 // Allocate a SeqTwoByteString to hold the resulting string. | |
5179 Node* cresult = assembler->AllocateSeqTwoByteString(context, length); | |
5180 | |
5181 // Copy all characters that were previously written to the | |
5182 // SeqOneByteString in {result} over to the new {cresult}. | |
5183 Variable var_coffset(assembler, MachineType::PointerRepresentation()); | |
5184 Label cloop(assembler, &var_coffset), done_cloop(assembler); | |
5185 var_coffset.Bind(assembler->IntPtrConstant(0)); | |
5186 assembler->Goto(&cloop); | |
5187 assembler->Bind(&cloop); | |
5188 { | |
5189 Node* coffset = var_coffset.value(); | |
5190 assembler->GotoIf(assembler->WordEqual(coffset, offset), &done_cloop); | |
5191 Node* ccode = assembler->Load( | |
5192 MachineType::Uint8(), result, | |
5193 assembler->IntPtrAdd( | |
5194 assembler->IntPtrConstant(SeqOneByteString::kHeaderSize - | |
5195 kHeapObjectTag), | |
5196 coffset)); | |
5197 assembler->StoreNoWriteBarrier( | |
5198 MachineRepresentation::kWord16, cresult, | |
5199 assembler->IntPtrAdd( | |
5200 assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize - | |
5201 kHeapObjectTag), | |
5202 assembler->WordShl(coffset, 1)), | |
5203 ccode); | |
5204 var_coffset.Bind( | |
5205 assembler->IntPtrAdd(coffset, assembler->IntPtrConstant(1))); | |
5206 assembler->Goto(&cloop); | |
5207 } | |
5208 | |
5209 // Write the pending {code16} to {offset}. | |
5210 assembler->Bind(&done_cloop); | |
5211 assembler->StoreNoWriteBarrier( | |
5212 MachineRepresentation::kWord16, cresult, | |
5213 assembler->IntPtrAdd( | |
5214 assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize - | |
5215 kHeapObjectTag), | |
5216 assembler->WordShl(offset, 1)), | |
5217 code16); | |
5218 | |
5219 // Copy the remaining parameters to the SeqTwoByteString {cresult}. | |
5220 Label floop(assembler, &var_offset), done_floop(assembler); | |
5221 assembler->Goto(&floop); | |
5222 assembler->Bind(&floop); | |
5223 { | |
5224 // Compute the next {offset}. | |
5225 Node* offset = assembler->IntPtrAdd(var_offset.value(), | |
5226 assembler->IntPtrConstant(1)); | |
5227 | |
5228 // Check if we're done with the string. | |
5229 assembler->GotoIf(assembler->WordEqual(offset, length), &done_floop); | |
5230 | |
5231 // Load the next code point and truncate it to a 16-bit value. | |
5232 Node* code = assembler->Load( | |
5233 MachineType::AnyTagged(), parent_frame_pointer, | |
5234 assembler->IntPtrAdd( | |
5235 assembler->WordShl( | |
5236 assembler->IntPtrSub(length, offset), | |
5237 assembler->IntPtrConstant(kPointerSizeLog2)), | |
5238 assembler->IntPtrConstant( | |
5239 CommonFrameConstants::kFixedFrameSizeAboveFp - | |
5240 kPointerSize))); | |
5241 Node* code32 = assembler->TruncateTaggedToWord32(context, code); | |
5242 Node* code16 = assembler->Word32And( | |
5243 code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit)); | |
5244 | |
5245 // Store the truncated {code} point at the next offset. | |
5246 assembler->StoreNoWriteBarrier( | |
5247 MachineRepresentation::kWord16, cresult, | |
5248 assembler->IntPtrAdd( | |
5249 assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize - | |
5250 kHeapObjectTag), | |
5251 assembler->WordShl(offset, 1)), | |
5252 code16); | |
5253 var_offset.Bind(offset); | |
5254 assembler->Goto(&floop); | |
5255 } | |
5256 | |
5257 // Return the SeqTwoByteString. | |
5258 assembler->Bind(&done_floop); | |
5259 assembler->Return(cresult); | |
5260 } | |
5261 } | |
5262 | |
5263 assembler->Bind(&done_loop); | |
5264 assembler->Return(result); | |
5265 } | |
5266 } | |
5267 | |
5268 namespace { // for String.fromCodePoint | |
5269 | |
5270 bool IsValidCodePoint(Isolate* isolate, Handle<Object> value) { | |
5271 if (!value->IsNumber() && !Object::ToNumber(value).ToHandle(&value)) { | |
5272 return false; | |
5273 } | |
5274 | |
5275 if (Object::ToInteger(isolate, value).ToHandleChecked()->Number() != | |
5276 value->Number()) { | |
5277 return false; | |
5278 } | |
5279 | |
5280 if (value->Number() < 0 || value->Number() > 0x10FFFF) { | |
5281 return false; | |
5282 } | |
5283 | |
5284 return true; | |
5285 } | |
5286 | |
5287 uc32 NextCodePoint(Isolate* isolate, BuiltinArguments args, int index) { | |
5288 Handle<Object> value = args.at<Object>(1 + index); | |
5289 ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, value, Object::ToNumber(value), -1); | |
5290 if (!IsValidCodePoint(isolate, value)) { | |
5291 isolate->Throw(*isolate->factory()->NewRangeError( | |
5292 MessageTemplate::kInvalidCodePoint, value)); | |
5293 return -1; | |
5294 } | |
5295 return DoubleToUint32(value->Number()); | |
5296 } | |
5297 | |
5298 } // namespace | |
5299 | |
5300 // ES6 section 21.1.2.2 String.fromCodePoint ( ...codePoints ) | |
5301 BUILTIN(StringFromCodePoint) { | |
5302 HandleScope scope(isolate); | |
5303 int const length = args.length() - 1; | |
5304 if (length == 0) return isolate->heap()->empty_string(); | |
5305 DCHECK_LT(0, length); | |
5306 | |
5307 // Optimistically assume that the resulting String contains only one byte | |
5308 // characters. | |
5309 List<uint8_t> one_byte_buffer(length); | |
5310 uc32 code = 0; | |
5311 int index; | |
5312 for (index = 0; index < length; index++) { | |
5313 code = NextCodePoint(isolate, args, index); | |
5314 if (code < 0) { | |
5315 return isolate->heap()->exception(); | |
5316 } | |
5317 if (code > String::kMaxOneByteCharCode) { | |
5318 break; | |
5319 } | |
5320 one_byte_buffer.Add(code); | |
5321 } | |
5322 | |
5323 if (index == length) { | |
5324 RETURN_RESULT_OR_FAILURE(isolate, isolate->factory()->NewStringFromOneByte( | |
5325 one_byte_buffer.ToConstVector())); | |
5326 } | |
5327 | |
5328 List<uc16> two_byte_buffer(length - index); | |
5329 | |
5330 while (true) { | |
5331 if (code <= unibrow::Utf16::kMaxNonSurrogateCharCode) { | |
5332 two_byte_buffer.Add(code); | |
5333 } else { | |
5334 two_byte_buffer.Add(unibrow::Utf16::LeadSurrogate(code)); | |
5335 two_byte_buffer.Add(unibrow::Utf16::TrailSurrogate(code)); | |
5336 } | |
5337 | |
5338 if (++index == length) { | |
5339 break; | |
5340 } | |
5341 code = NextCodePoint(isolate, args, index); | |
5342 if (code < 0) { | |
5343 return isolate->heap()->exception(); | |
5344 } | |
5345 } | |
5346 | |
5347 Handle<SeqTwoByteString> result; | |
5348 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
5349 isolate, result, | |
5350 isolate->factory()->NewRawTwoByteString(one_byte_buffer.length() + | |
5351 two_byte_buffer.length())); | |
5352 | |
5353 CopyChars(result->GetChars(), one_byte_buffer.ToConstVector().start(), | |
5354 one_byte_buffer.length()); | |
5355 CopyChars(result->GetChars() + one_byte_buffer.length(), | |
5356 two_byte_buffer.ToConstVector().start(), two_byte_buffer.length()); | |
5357 | |
5358 return *result; | |
5359 } | |
5360 | |
5361 // ES6 section 21.1.3.1 String.prototype.charAt ( pos ) | |
5362 void Builtins::Generate_StringPrototypeCharAt(CodeStubAssembler* assembler) { | |
5363 typedef CodeStubAssembler::Label Label; | |
5364 typedef compiler::Node Node; | |
5365 typedef CodeStubAssembler::Variable Variable; | |
5366 | |
5367 Node* receiver = assembler->Parameter(0); | |
5368 Node* position = assembler->Parameter(1); | |
5369 Node* context = assembler->Parameter(4); | |
5370 | |
5371 // Check that {receiver} is coercible to Object and convert it to a String. | |
5372 receiver = | |
5373 assembler->ToThisString(context, receiver, "String.prototype.charAt"); | |
5374 | |
5375 // Convert the {position} to a Smi and check that it's in bounds of the | |
5376 // {receiver}. | |
5377 // TODO(bmeurer): Find an abstraction for this! | |
5378 { | |
5379 // Check if the {position} is already a Smi. | |
5380 Variable var_position(assembler, MachineRepresentation::kTagged); | |
5381 var_position.Bind(position); | |
5382 Label if_positionissmi(assembler), | |
5383 if_positionisnotsmi(assembler, Label::kDeferred); | |
5384 assembler->Branch(assembler->WordIsSmi(position), &if_positionissmi, | |
5385 &if_positionisnotsmi); | |
5386 assembler->Bind(&if_positionisnotsmi); | |
5387 { | |
5388 // Convert the {position} to an Integer via the ToIntegerStub. | |
5389 Callable callable = CodeFactory::ToInteger(assembler->isolate()); | |
5390 Node* index = assembler->CallStub(callable, context, position); | |
5391 | |
5392 // Check if the resulting {index} is now a Smi. | |
5393 Label if_indexissmi(assembler, Label::kDeferred), | |
5394 if_indexisnotsmi(assembler, Label::kDeferred); | |
5395 assembler->Branch(assembler->WordIsSmi(index), &if_indexissmi, | |
5396 &if_indexisnotsmi); | |
5397 | |
5398 assembler->Bind(&if_indexissmi); | |
5399 { | |
5400 var_position.Bind(index); | |
5401 assembler->Goto(&if_positionissmi); | |
5402 } | |
5403 | |
5404 assembler->Bind(&if_indexisnotsmi); | |
5405 { | |
5406 // The ToIntegerStub canonicalizes everything in Smi range to Smi | |
5407 // representation, so any HeapNumber returned is not in Smi range. | |
5408 // The only exception here is -0.0, which we treat as 0. | |
5409 Node* index_value = assembler->LoadHeapNumberValue(index); | |
5410 Label if_indexiszero(assembler, Label::kDeferred), | |
5411 if_indexisnotzero(assembler, Label::kDeferred); | |
5412 assembler->Branch(assembler->Float64Equal( | |
5413 index_value, assembler->Float64Constant(0.0)), | |
5414 &if_indexiszero, &if_indexisnotzero); | |
5415 | |
5416 assembler->Bind(&if_indexiszero); | |
5417 { | |
5418 var_position.Bind(assembler->SmiConstant(Smi::FromInt(0))); | |
5419 assembler->Goto(&if_positionissmi); | |
5420 } | |
5421 | |
5422 assembler->Bind(&if_indexisnotzero); | |
5423 { | |
5424 // The {index} is some other integral Number, that is definitely | |
5425 // neither -0.0 nor in Smi range. | |
5426 assembler->Return(assembler->EmptyStringConstant()); | |
5427 } | |
5428 } | |
5429 } | |
5430 assembler->Bind(&if_positionissmi); | |
5431 position = var_position.value(); | |
5432 | |
5433 // Determine the actual length of the {receiver} String. | |
5434 Node* receiver_length = | |
5435 assembler->LoadObjectField(receiver, String::kLengthOffset); | |
5436 | |
5437 // Return "" if the Smi {position} is outside the bounds of the {receiver}. | |
5438 Label if_positioninbounds(assembler), | |
5439 if_positionnotinbounds(assembler, Label::kDeferred); | |
5440 assembler->Branch(assembler->SmiAboveOrEqual(position, receiver_length), | |
5441 &if_positionnotinbounds, &if_positioninbounds); | |
5442 assembler->Bind(&if_positionnotinbounds); | |
5443 assembler->Return(assembler->EmptyStringConstant()); | |
5444 assembler->Bind(&if_positioninbounds); | |
5445 } | |
5446 | |
5447 // Load the character code at the {position} from the {receiver}. | |
5448 Node* code = assembler->StringCharCodeAt(receiver, position); | |
5449 | |
5450 // And return the single character string with only that {code}. | |
5451 Node* result = assembler->StringFromCharCode(code); | |
5452 assembler->Return(result); | |
5453 } | |
5454 | |
5455 // ES6 section 21.1.3.2 String.prototype.charCodeAt ( pos ) | |
5456 void Builtins::Generate_StringPrototypeCharCodeAt( | |
5457 CodeStubAssembler* assembler) { | |
5458 typedef CodeStubAssembler::Label Label; | |
5459 typedef compiler::Node Node; | |
5460 typedef CodeStubAssembler::Variable Variable; | |
5461 | |
5462 Node* receiver = assembler->Parameter(0); | |
5463 Node* position = assembler->Parameter(1); | |
5464 Node* context = assembler->Parameter(4); | |
5465 | |
5466 // Check that {receiver} is coercible to Object and convert it to a String. | |
5467 receiver = | |
5468 assembler->ToThisString(context, receiver, "String.prototype.charCodeAt"); | |
5469 | |
5470 // Convert the {position} to a Smi and check that it's in bounds of the | |
5471 // {receiver}. | |
5472 // TODO(bmeurer): Find an abstraction for this! | |
5473 { | |
5474 // Check if the {position} is already a Smi. | |
5475 Variable var_position(assembler, MachineRepresentation::kTagged); | |
5476 var_position.Bind(position); | |
5477 Label if_positionissmi(assembler), | |
5478 if_positionisnotsmi(assembler, Label::kDeferred); | |
5479 assembler->Branch(assembler->WordIsSmi(position), &if_positionissmi, | |
5480 &if_positionisnotsmi); | |
5481 assembler->Bind(&if_positionisnotsmi); | |
5482 { | |
5483 // Convert the {position} to an Integer via the ToIntegerStub. | |
5484 Callable callable = CodeFactory::ToInteger(assembler->isolate()); | |
5485 Node* index = assembler->CallStub(callable, context, position); | |
5486 | |
5487 // Check if the resulting {index} is now a Smi. | |
5488 Label if_indexissmi(assembler, Label::kDeferred), | |
5489 if_indexisnotsmi(assembler, Label::kDeferred); | |
5490 assembler->Branch(assembler->WordIsSmi(index), &if_indexissmi, | |
5491 &if_indexisnotsmi); | |
5492 | |
5493 assembler->Bind(&if_indexissmi); | |
5494 { | |
5495 var_position.Bind(index); | |
5496 assembler->Goto(&if_positionissmi); | |
5497 } | |
5498 | |
5499 assembler->Bind(&if_indexisnotsmi); | |
5500 { | |
5501 // The ToIntegerStub canonicalizes everything in Smi range to Smi | |
5502 // representation, so any HeapNumber returned is not in Smi range. | |
5503 // The only exception here is -0.0, which we treat as 0. | |
5504 Node* index_value = assembler->LoadHeapNumberValue(index); | |
5505 Label if_indexiszero(assembler, Label::kDeferred), | |
5506 if_indexisnotzero(assembler, Label::kDeferred); | |
5507 assembler->Branch(assembler->Float64Equal( | |
5508 index_value, assembler->Float64Constant(0.0)), | |
5509 &if_indexiszero, &if_indexisnotzero); | |
5510 | |
5511 assembler->Bind(&if_indexiszero); | |
5512 { | |
5513 var_position.Bind(assembler->SmiConstant(Smi::FromInt(0))); | |
5514 assembler->Goto(&if_positionissmi); | |
5515 } | |
5516 | |
5517 assembler->Bind(&if_indexisnotzero); | |
5518 { | |
5519 // The {index} is some other integral Number, that is definitely | |
5520 // neither -0.0 nor in Smi range. | |
5521 assembler->Return(assembler->NaNConstant()); | |
5522 } | |
5523 } | |
5524 } | |
5525 assembler->Bind(&if_positionissmi); | |
5526 position = var_position.value(); | |
5527 | |
5528 // Determine the actual length of the {receiver} String. | |
5529 Node* receiver_length = | |
5530 assembler->LoadObjectField(receiver, String::kLengthOffset); | |
5531 | |
5532 // Return NaN if the Smi {position} is outside the bounds of the {receiver}. | |
5533 Label if_positioninbounds(assembler), | |
5534 if_positionnotinbounds(assembler, Label::kDeferred); | |
5535 assembler->Branch(assembler->SmiAboveOrEqual(position, receiver_length), | |
5536 &if_positionnotinbounds, &if_positioninbounds); | |
5537 assembler->Bind(&if_positionnotinbounds); | |
5538 assembler->Return(assembler->NaNConstant()); | |
5539 assembler->Bind(&if_positioninbounds); | |
5540 } | |
5541 | |
5542 // Load the character at the {position} from the {receiver}. | |
5543 Node* value = assembler->StringCharCodeAt(receiver, position); | |
5544 Node* result = assembler->SmiFromWord32(value); | |
5545 assembler->Return(result); | |
5546 } | |
5547 | |
5548 // ES6 section 21.1.3.25 String.prototype.toString () | |
5549 void Builtins::Generate_StringPrototypeToString(CodeStubAssembler* assembler) { | |
5550 typedef compiler::Node Node; | |
5551 | |
5552 Node* receiver = assembler->Parameter(0); | |
5553 Node* context = assembler->Parameter(3); | |
5554 | |
5555 Node* result = assembler->ToThisValue( | |
5556 context, receiver, PrimitiveType::kString, "String.prototype.toString"); | |
5557 assembler->Return(result); | |
5558 } | |
5559 | |
5560 // ES6 section 21.1.3.27 String.prototype.trim () | |
5561 BUILTIN(StringPrototypeTrim) { | |
5562 HandleScope scope(isolate); | |
5563 TO_THIS_STRING(string, "String.prototype.trim"); | |
5564 return *String::Trim(string, String::kTrim); | |
5565 } | |
5566 | |
5567 // Non-standard WebKit extension | |
5568 BUILTIN(StringPrototypeTrimLeft) { | |
5569 HandleScope scope(isolate); | |
5570 TO_THIS_STRING(string, "String.prototype.trimLeft"); | |
5571 return *String::Trim(string, String::kTrimLeft); | |
5572 } | |
5573 | |
5574 // Non-standard WebKit extension | |
5575 BUILTIN(StringPrototypeTrimRight) { | |
5576 HandleScope scope(isolate); | |
5577 TO_THIS_STRING(string, "String.prototype.trimRight"); | |
5578 return *String::Trim(string, String::kTrimRight); | |
5579 } | |
5580 | |
5581 // ES6 section 21.1.3.28 String.prototype.valueOf ( ) | |
5582 void Builtins::Generate_StringPrototypeValueOf(CodeStubAssembler* assembler) { | |
5583 typedef compiler::Node Node; | |
5584 | |
5585 Node* receiver = assembler->Parameter(0); | |
5586 Node* context = assembler->Parameter(3); | |
5587 | |
5588 Node* result = assembler->ToThisValue( | |
5589 context, receiver, PrimitiveType::kString, "String.prototype.valueOf"); | |
5590 assembler->Return(result); | |
5591 } | |
5592 | |
5593 // ----------------------------------------------------------------------------- | |
5594 // ES6 section 21.1 ArrayBuffer Objects | |
5595 | |
5596 // ES6 section 24.1.2.1 ArrayBuffer ( length ) for the [[Call]] case. | |
5597 BUILTIN(ArrayBufferConstructor) { | |
5598 HandleScope scope(isolate); | |
5599 Handle<JSFunction> target = args.target<JSFunction>(); | |
5600 DCHECK(*target == target->native_context()->array_buffer_fun() || | |
5601 *target == target->native_context()->shared_array_buffer_fun()); | |
5602 THROW_NEW_ERROR_RETURN_FAILURE( | |
5603 isolate, NewTypeError(MessageTemplate::kConstructorNotFunction, | |
5604 handle(target->shared()->name(), isolate))); | |
5605 } | |
5606 | |
5607 | |
5608 // ES6 section 24.1.2.1 ArrayBuffer ( length ) for the [[Construct]] case. | |
5609 BUILTIN(ArrayBufferConstructor_ConstructStub) { | |
5610 HandleScope scope(isolate); | |
5611 Handle<JSFunction> target = args.target<JSFunction>(); | |
5612 Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target()); | |
5613 Handle<Object> length = args.atOrUndefined(isolate, 1); | |
5614 DCHECK(*target == target->native_context()->array_buffer_fun() || | |
5615 *target == target->native_context()->shared_array_buffer_fun()); | |
5616 Handle<Object> number_length; | |
5617 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_length, | |
5618 Object::ToInteger(isolate, length)); | |
5619 if (number_length->Number() < 0.0) { | |
5620 THROW_NEW_ERROR_RETURN_FAILURE( | |
5621 isolate, NewRangeError(MessageTemplate::kInvalidArrayBufferLength)); | |
5622 } | |
5623 Handle<JSObject> result; | |
5624 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, | |
5625 JSObject::New(target, new_target)); | |
5626 size_t byte_length; | |
5627 if (!TryNumberToSize(isolate, *number_length, &byte_length)) { | |
5628 THROW_NEW_ERROR_RETURN_FAILURE( | |
5629 isolate, NewRangeError(MessageTemplate::kInvalidArrayBufferLength)); | |
5630 } | |
5631 SharedFlag shared_flag = | |
5632 (*target == target->native_context()->array_buffer_fun()) | |
5633 ? SharedFlag::kNotShared | |
5634 : SharedFlag::kShared; | |
5635 if (!JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer>::cast(result), | |
5636 isolate, byte_length, true, | |
5637 shared_flag)) { | |
5638 THROW_NEW_ERROR_RETURN_FAILURE( | |
5639 isolate, NewRangeError(MessageTemplate::kArrayBufferAllocationFailed)); | |
5640 } | |
5641 return *result; | |
5642 } | |
5643 | |
5644 // ES6 section 24.1.4.1 get ArrayBuffer.prototype.byteLength | |
5645 BUILTIN(ArrayBufferPrototypeGetByteLength) { | |
5646 HandleScope scope(isolate); | |
5647 CHECK_RECEIVER(JSArrayBuffer, array_buffer, | |
5648 "get ArrayBuffer.prototype.byteLength"); | |
5649 | |
5650 if (array_buffer->is_shared()) { | |
5651 THROW_NEW_ERROR_RETURN_FAILURE( | |
5652 isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, | |
5653 isolate->factory()->NewStringFromAsciiChecked( | |
5654 "get ArrayBuffer.prototype.byteLength"), | |
5655 args.receiver())); | |
5656 } | |
5657 // TODO(franzih): According to the ES6 spec, we should throw a TypeError | |
5658 // here if the JSArrayBuffer is detached. | |
5659 return array_buffer->byte_length(); | |
5660 } | |
5661 | |
5662 // ES6 section 24.1.3.1 ArrayBuffer.isView ( arg ) | |
5663 BUILTIN(ArrayBufferIsView) { | |
5664 SealHandleScope shs(isolate); | |
5665 DCHECK_EQ(2, args.length()); | |
5666 Object* arg = args[1]; | |
5667 return isolate->heap()->ToBoolean(arg->IsJSArrayBufferView()); | |
5668 } | |
5669 | |
5670 // ES7 sharedmem 6.3.4.1 get SharedArrayBuffer.prototype.byteLength | |
5671 BUILTIN(SharedArrayBufferPrototypeGetByteLength) { | |
5672 HandleScope scope(isolate); | |
5673 CHECK_RECEIVER(JSArrayBuffer, array_buffer, | |
5674 "get SharedArrayBuffer.prototype.byteLength"); | |
5675 if (!array_buffer->is_shared()) { | |
5676 THROW_NEW_ERROR_RETURN_FAILURE( | |
5677 isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, | |
5678 isolate->factory()->NewStringFromAsciiChecked( | |
5679 "get SharedArrayBuffer.prototype.byteLength"), | |
5680 args.receiver())); | |
5681 } | |
5682 return array_buffer->byte_length(); | |
5683 } | |
5684 | |
5685 // ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Call]] case. | |
5686 BUILTIN(ProxyConstructor) { | |
5687 HandleScope scope(isolate); | |
5688 THROW_NEW_ERROR_RETURN_FAILURE( | |
5689 isolate, | |
5690 NewTypeError(MessageTemplate::kConstructorNotFunction, | |
5691 isolate->factory()->NewStringFromAsciiChecked("Proxy"))); | |
5692 } | |
5693 | |
5694 | |
5695 // ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Construct]] case. | |
5696 BUILTIN(ProxyConstructor_ConstructStub) { | |
5697 HandleScope scope(isolate); | |
5698 DCHECK(isolate->proxy_function()->IsConstructor()); | |
5699 Handle<Object> target = args.atOrUndefined(isolate, 1); | |
5700 Handle<Object> handler = args.atOrUndefined(isolate, 2); | |
5701 RETURN_RESULT_OR_FAILURE(isolate, JSProxy::New(isolate, target, handler)); | |
5702 } | |
5703 | |
5704 | |
5705 // ----------------------------------------------------------------------------- | |
5706 // Throwers for restricted function properties and strict arguments object | |
5707 // properties | |
5708 | |
5709 | |
5710 BUILTIN(RestrictedFunctionPropertiesThrower) { | |
5711 HandleScope scope(isolate); | |
5712 THROW_NEW_ERROR_RETURN_FAILURE( | |
5713 isolate, NewTypeError(MessageTemplate::kRestrictedFunctionProperties)); | |
5714 } | |
5715 | |
5716 | |
5717 BUILTIN(RestrictedStrictArgumentsPropertiesThrower) { | |
5718 HandleScope scope(isolate); | |
5719 THROW_NEW_ERROR_RETURN_FAILURE( | |
5720 isolate, NewTypeError(MessageTemplate::kStrictPoisonPill)); | |
5721 } | |
5722 | |
5723 | |
5724 // ----------------------------------------------------------------------------- | |
5725 // | |
5726 | |
5727 | |
5728 namespace { | |
5729 | |
5730 // Returns the holder JSObject if the function can legally be called with this | |
5731 // receiver. Returns nullptr if the call is illegal. | |
5732 // TODO(dcarney): CallOptimization duplicates this logic, merge. | |
5733 JSObject* GetCompatibleReceiver(Isolate* isolate, FunctionTemplateInfo* info, | |
5734 JSObject* receiver) { | |
5735 Object* recv_type = info->signature(); | |
5736 // No signature, return holder. | |
5737 if (!recv_type->IsFunctionTemplateInfo()) return receiver; | |
5738 FunctionTemplateInfo* signature = FunctionTemplateInfo::cast(recv_type); | |
5739 | |
5740 // Check the receiver. Fast path for receivers with no hidden prototypes. | |
5741 if (signature->IsTemplateFor(receiver)) return receiver; | |
5742 if (!receiver->map()->has_hidden_prototype()) return nullptr; | |
5743 for (PrototypeIterator iter(isolate, receiver, kStartAtPrototype, | |
5744 PrototypeIterator::END_AT_NON_HIDDEN); | |
5745 !iter.IsAtEnd(); iter.Advance()) { | |
5746 JSObject* current = iter.GetCurrent<JSObject>(); | |
5747 if (signature->IsTemplateFor(current)) return current; | |
5748 } | |
5749 return nullptr; | |
5750 } | |
5751 | |
5752 template <bool is_construct> | |
5753 MUST_USE_RESULT MaybeHandle<Object> HandleApiCallHelper( | |
5754 Isolate* isolate, Handle<HeapObject> function, | |
5755 Handle<HeapObject> new_target, Handle<FunctionTemplateInfo> fun_data, | |
5756 Handle<Object> receiver, BuiltinArguments args) { | |
5757 Handle<JSObject> js_receiver; | |
5758 JSObject* raw_holder; | |
5759 if (is_construct) { | |
5760 DCHECK(args.receiver()->IsTheHole(isolate)); | |
5761 if (fun_data->instance_template()->IsUndefined(isolate)) { | |
5762 v8::Local<ObjectTemplate> templ = | |
5763 ObjectTemplate::New(reinterpret_cast<v8::Isolate*>(isolate), | |
5764 ToApiHandle<v8::FunctionTemplate>(fun_data)); | |
5765 fun_data->set_instance_template(*Utils::OpenHandle(*templ)); | |
5766 } | |
5767 Handle<ObjectTemplateInfo> instance_template( | |
5768 ObjectTemplateInfo::cast(fun_data->instance_template()), isolate); | |
5769 ASSIGN_RETURN_ON_EXCEPTION( | |
5770 isolate, js_receiver, | |
5771 ApiNatives::InstantiateObject(instance_template, | |
5772 Handle<JSReceiver>::cast(new_target)), | |
5773 Object); | |
5774 args[0] = *js_receiver; | |
5775 DCHECK_EQ(*js_receiver, *args.receiver()); | |
5776 | |
5777 raw_holder = *js_receiver; | |
5778 } else { | |
5779 DCHECK(receiver->IsJSReceiver()); | |
5780 | |
5781 if (!receiver->IsJSObject()) { | |
5782 // This function cannot be called with the given receiver. Abort! | |
5783 THROW_NEW_ERROR( | |
5784 isolate, NewTypeError(MessageTemplate::kIllegalInvocation), Object); | |
5785 } | |
5786 | |
5787 js_receiver = Handle<JSObject>::cast(receiver); | |
5788 | |
5789 if (!fun_data->accept_any_receiver() && | |
5790 js_receiver->IsAccessCheckNeeded() && | |
5791 !isolate->MayAccess(handle(isolate->context()), js_receiver)) { | |
5792 isolate->ReportFailedAccessCheck(js_receiver); | |
5793 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); | |
5794 } | |
5795 | |
5796 raw_holder = GetCompatibleReceiver(isolate, *fun_data, *js_receiver); | |
5797 | |
5798 if (raw_holder == nullptr) { | |
5799 // This function cannot be called with the given receiver. Abort! | |
5800 THROW_NEW_ERROR( | |
5801 isolate, NewTypeError(MessageTemplate::kIllegalInvocation), Object); | |
5802 } | |
5803 } | |
5804 | |
5805 Object* raw_call_data = fun_data->call_code(); | |
5806 if (!raw_call_data->IsUndefined(isolate)) { | |
5807 DCHECK(raw_call_data->IsCallHandlerInfo()); | |
5808 CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); | |
5809 Object* callback_obj = call_data->callback(); | |
5810 v8::FunctionCallback callback = | |
5811 v8::ToCData<v8::FunctionCallback>(callback_obj); | |
5812 Object* data_obj = call_data->data(); | |
5813 | |
5814 LOG(isolate, ApiObjectAccess("call", JSObject::cast(*js_receiver))); | |
5815 | |
5816 FunctionCallbackArguments custom(isolate, data_obj, *function, raw_holder, | |
5817 *new_target, &args[0] - 1, | |
5818 args.length() - 1); | |
5819 | |
5820 Handle<Object> result = custom.Call(callback); | |
5821 | |
5822 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); | |
5823 if (result.is_null()) { | |
5824 if (is_construct) return js_receiver; | |
5825 return isolate->factory()->undefined_value(); | |
5826 } | |
5827 // Rebox the result. | |
5828 result->VerifyApiCallResultType(); | |
5829 if (!is_construct || result->IsJSObject()) return handle(*result, isolate); | |
5830 } | |
5831 | |
5832 return js_receiver; | |
5833 } | |
5834 | |
5835 } // namespace | |
5836 | |
5837 | |
5838 BUILTIN(HandleApiCall) { | |
5839 HandleScope scope(isolate); | |
5840 Handle<JSFunction> function = args.target<JSFunction>(); | |
5841 Handle<Object> receiver = args.receiver(); | |
5842 Handle<HeapObject> new_target = args.new_target(); | |
5843 Handle<FunctionTemplateInfo> fun_data(function->shared()->get_api_func_data(), | |
5844 isolate); | |
5845 if (new_target->IsJSReceiver()) { | |
5846 RETURN_RESULT_OR_FAILURE( | |
5847 isolate, HandleApiCallHelper<true>(isolate, function, new_target, | |
5848 fun_data, receiver, args)); | |
5849 } else { | |
5850 RETURN_RESULT_OR_FAILURE( | |
5851 isolate, HandleApiCallHelper<false>(isolate, function, new_target, | |
5852 fun_data, receiver, args)); | |
5853 } | |
5854 } | |
5855 | |
5856 | |
5857 Handle<Code> Builtins::CallFunction(ConvertReceiverMode mode, | |
5858 TailCallMode tail_call_mode) { | |
5859 switch (tail_call_mode) { | |
5860 case TailCallMode::kDisallow: | |
5861 switch (mode) { | |
5862 case ConvertReceiverMode::kNullOrUndefined: | |
5863 return CallFunction_ReceiverIsNullOrUndefined(); | |
5864 case ConvertReceiverMode::kNotNullOrUndefined: | |
5865 return CallFunction_ReceiverIsNotNullOrUndefined(); | |
5866 case ConvertReceiverMode::kAny: | |
5867 return CallFunction_ReceiverIsAny(); | |
5868 } | |
5869 break; | |
5870 case TailCallMode::kAllow: | |
5871 switch (mode) { | |
5872 case ConvertReceiverMode::kNullOrUndefined: | |
5873 return TailCallFunction_ReceiverIsNullOrUndefined(); | |
5874 case ConvertReceiverMode::kNotNullOrUndefined: | |
5875 return TailCallFunction_ReceiverIsNotNullOrUndefined(); | |
5876 case ConvertReceiverMode::kAny: | |
5877 return TailCallFunction_ReceiverIsAny(); | |
5878 } | |
5879 break; | |
5880 } | |
5881 UNREACHABLE(); | |
5882 return Handle<Code>::null(); | |
5883 } | |
5884 | |
5885 Handle<Code> Builtins::Call(ConvertReceiverMode mode, | |
5886 TailCallMode tail_call_mode) { | |
5887 switch (tail_call_mode) { | |
5888 case TailCallMode::kDisallow: | |
5889 switch (mode) { | |
5890 case ConvertReceiverMode::kNullOrUndefined: | |
5891 return Call_ReceiverIsNullOrUndefined(); | |
5892 case ConvertReceiverMode::kNotNullOrUndefined: | |
5893 return Call_ReceiverIsNotNullOrUndefined(); | |
5894 case ConvertReceiverMode::kAny: | |
5895 return Call_ReceiverIsAny(); | |
5896 } | |
5897 break; | |
5898 case TailCallMode::kAllow: | |
5899 switch (mode) { | |
5900 case ConvertReceiverMode::kNullOrUndefined: | |
5901 return TailCall_ReceiverIsNullOrUndefined(); | |
5902 case ConvertReceiverMode::kNotNullOrUndefined: | |
5903 return TailCall_ReceiverIsNotNullOrUndefined(); | |
5904 case ConvertReceiverMode::kAny: | |
5905 return TailCall_ReceiverIsAny(); | |
5906 } | |
5907 break; | |
5908 } | |
5909 UNREACHABLE(); | |
5910 return Handle<Code>::null(); | |
5911 } | |
5912 | |
5913 Handle<Code> Builtins::CallBoundFunction(TailCallMode tail_call_mode) { | |
5914 switch (tail_call_mode) { | |
5915 case TailCallMode::kDisallow: | |
5916 return CallBoundFunction(); | |
5917 case TailCallMode::kAllow: | |
5918 return TailCallBoundFunction(); | |
5919 } | |
5920 UNREACHABLE(); | |
5921 return Handle<Code>::null(); | |
5922 } | |
5923 | |
5924 Handle<Code> Builtins::InterpreterPushArgsAndCall(TailCallMode tail_call_mode, | |
5925 CallableType function_type) { | |
5926 switch (tail_call_mode) { | |
5927 case TailCallMode::kDisallow: | |
5928 if (function_type == CallableType::kJSFunction) { | |
5929 return InterpreterPushArgsAndCallFunction(); | |
5930 } else { | |
5931 return InterpreterPushArgsAndCall(); | |
5932 } | |
5933 case TailCallMode::kAllow: | |
5934 if (function_type == CallableType::kJSFunction) { | |
5935 return InterpreterPushArgsAndTailCallFunction(); | |
5936 } else { | |
5937 return InterpreterPushArgsAndTailCall(); | |
5938 } | |
5939 } | |
5940 UNREACHABLE(); | |
5941 return Handle<Code>::null(); | |
5942 } | |
5943 | |
5944 namespace { | |
5945 | |
5946 class RelocatableArguments : public BuiltinArguments, public Relocatable { | |
5947 public: | |
5948 RelocatableArguments(Isolate* isolate, int length, Object** arguments) | |
5949 : BuiltinArguments(length, arguments), Relocatable(isolate) {} | |
5950 | |
5951 virtual inline void IterateInstance(ObjectVisitor* v) { | |
5952 if (length() == 0) return; | |
5953 v->VisitPointers(lowest_address(), highest_address() + 1); | |
5954 } | |
5955 | |
5956 private: | |
5957 DISALLOW_COPY_AND_ASSIGN(RelocatableArguments); | |
5958 }; | |
5959 | |
5960 } // namespace | |
5961 | |
5962 MaybeHandle<Object> Builtins::InvokeApiFunction(Isolate* isolate, | |
5963 Handle<HeapObject> function, | |
5964 Handle<Object> receiver, | |
5965 int argc, | |
5966 Handle<Object> args[]) { | |
5967 DCHECK(function->IsFunctionTemplateInfo() || | |
5968 (function->IsJSFunction() && | |
5969 JSFunction::cast(*function)->shared()->IsApiFunction())); | |
5970 | |
5971 // Do proper receiver conversion for non-strict mode api functions. | |
5972 if (!receiver->IsJSReceiver()) { | |
5973 if (function->IsFunctionTemplateInfo() || | |
5974 is_sloppy(JSFunction::cast(*function)->shared()->language_mode())) { | |
5975 ASSIGN_RETURN_ON_EXCEPTION(isolate, receiver, | |
5976 Object::ConvertReceiver(isolate, receiver), | |
5977 Object); | |
5978 } | |
5979 } | |
5980 | |
5981 Handle<FunctionTemplateInfo> fun_data = | |
5982 function->IsFunctionTemplateInfo() | |
5983 ? Handle<FunctionTemplateInfo>::cast(function) | |
5984 : handle(JSFunction::cast(*function)->shared()->get_api_func_data(), | |
5985 isolate); | |
5986 Handle<HeapObject> new_target = isolate->factory()->undefined_value(); | |
5987 // Construct BuiltinArguments object: | |
5988 // new target, function, arguments reversed, receiver. | |
5989 const int kBufferSize = 32; | |
5990 Object* small_argv[kBufferSize]; | |
5991 Object** argv; | |
5992 const int frame_argc = argc + BuiltinArguments::kNumExtraArgsWithReceiver; | |
5993 if (frame_argc <= kBufferSize) { | |
5994 argv = small_argv; | |
5995 } else { | |
5996 argv = new Object*[frame_argc]; | |
5997 } | |
5998 int cursor = frame_argc - 1; | |
5999 argv[cursor--] = *receiver; | |
6000 for (int i = 0; i < argc; ++i) { | |
6001 argv[cursor--] = *args[i]; | |
6002 } | |
6003 DCHECK(cursor == BuiltinArguments::kArgcOffset); | |
6004 argv[BuiltinArguments::kArgcOffset] = Smi::FromInt(frame_argc); | |
6005 argv[BuiltinArguments::kTargetOffset] = *function; | |
6006 argv[BuiltinArguments::kNewTargetOffset] = *new_target; | |
6007 MaybeHandle<Object> result; | |
6008 { | |
6009 RelocatableArguments arguments(isolate, frame_argc, &argv[frame_argc - 1]); | |
6010 result = HandleApiCallHelper<false>(isolate, function, new_target, fun_data, | |
6011 receiver, arguments); | |
6012 } | |
6013 if (argv != small_argv) delete[] argv; | |
6014 return result; | |
6015 } | |
6016 | |
6017 | |
6018 // Helper function to handle calls to non-function objects created through the | |
6019 // API. The object can be called as either a constructor (using new) or just as | |
6020 // a function (without new). | |
6021 MUST_USE_RESULT static Object* HandleApiCallAsFunctionOrConstructor( | |
6022 Isolate* isolate, bool is_construct_call, BuiltinArguments args) { | |
6023 Handle<Object> receiver = args.receiver(); | |
6024 | |
6025 // Get the object called. | |
6026 JSObject* obj = JSObject::cast(*receiver); | |
6027 | |
6028 // Set the new target. | |
6029 HeapObject* new_target; | |
6030 if (is_construct_call) { | |
6031 // TODO(adamk): This should be passed through in args instead of | |
6032 // being patched in here. We need to set a non-undefined value | |
6033 // for v8::FunctionCallbackInfo::IsConstructCall() to get the | |
6034 // right answer. | |
6035 new_target = obj; | |
6036 } else { | |
6037 new_target = isolate->heap()->undefined_value(); | |
6038 } | |
6039 | |
6040 // Get the invocation callback from the function descriptor that was | |
6041 // used to create the called object. | |
6042 DCHECK(obj->map()->is_callable()); | |
6043 JSFunction* constructor = JSFunction::cast(obj->map()->GetConstructor()); | |
6044 // TODO(ishell): turn this back to a DCHECK. | |
6045 CHECK(constructor->shared()->IsApiFunction()); | |
6046 Object* handler = | |
6047 constructor->shared()->get_api_func_data()->instance_call_handler(); | |
6048 DCHECK(!handler->IsUndefined(isolate)); | |
6049 // TODO(ishell): remove this debugging code. | |
6050 CHECK(handler->IsCallHandlerInfo()); | |
6051 CallHandlerInfo* call_data = CallHandlerInfo::cast(handler); | |
6052 Object* callback_obj = call_data->callback(); | |
6053 v8::FunctionCallback callback = | |
6054 v8::ToCData<v8::FunctionCallback>(callback_obj); | |
6055 | |
6056 // Get the data for the call and perform the callback. | |
6057 Object* result; | |
6058 { | |
6059 HandleScope scope(isolate); | |
6060 LOG(isolate, ApiObjectAccess("call non-function", obj)); | |
6061 | |
6062 FunctionCallbackArguments custom(isolate, call_data->data(), constructor, | |
6063 obj, new_target, &args[0] - 1, | |
6064 args.length() - 1); | |
6065 Handle<Object> result_handle = custom.Call(callback); | |
6066 if (result_handle.is_null()) { | |
6067 result = isolate->heap()->undefined_value(); | |
6068 } else { | |
6069 result = *result_handle; | |
6070 } | |
6071 } | |
6072 // Check for exceptions and return result. | |
6073 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); | |
6074 return result; | |
6075 } | |
6076 | |
6077 | |
6078 // Handle calls to non-function objects created through the API. This delegate | |
6079 // function is used when the call is a normal function call. | |
6080 BUILTIN(HandleApiCallAsFunction) { | |
6081 return HandleApiCallAsFunctionOrConstructor(isolate, false, args); | |
6082 } | |
6083 | |
6084 | |
6085 // Handle calls to non-function objects created through the API. This delegate | |
6086 // function is used when the call is a construct call. | |
6087 BUILTIN(HandleApiCallAsConstructor) { | |
6088 return HandleApiCallAsFunctionOrConstructor(isolate, true, args); | |
6089 } | |
6090 | |
6091 namespace { | |
6092 | |
6093 void Generate_LoadIC_Miss(CodeStubAssembler* assembler) { | |
6094 typedef compiler::Node Node; | |
6095 | |
6096 Node* receiver = assembler->Parameter(0); | |
6097 Node* name = assembler->Parameter(1); | |
6098 Node* slot = assembler->Parameter(2); | |
6099 Node* vector = assembler->Parameter(3); | |
6100 Node* context = assembler->Parameter(4); | |
6101 | |
6102 assembler->TailCallRuntime(Runtime::kLoadIC_Miss, context, receiver, name, | |
6103 slot, vector); | |
6104 } | |
6105 | |
6106 void Generate_LoadGlobalIC_Miss(CodeStubAssembler* assembler) { | |
6107 typedef compiler::Node Node; | |
6108 | |
6109 Node* slot = assembler->Parameter(0); | |
6110 Node* vector = assembler->Parameter(1); | |
6111 Node* context = assembler->Parameter(2); | |
6112 | |
6113 assembler->TailCallRuntime(Runtime::kLoadGlobalIC_Miss, context, slot, | |
6114 vector); | |
6115 } | |
6116 | |
6117 void Generate_LoadIC_Normal(MacroAssembler* masm) { | |
6118 LoadIC::GenerateNormal(masm); | |
6119 } | |
6120 | |
6121 void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) { | |
6122 NamedLoadHandlerCompiler::GenerateLoadViaGetterForDeopt(masm); | |
6123 } | |
6124 | |
6125 void Generate_LoadIC_Slow(CodeStubAssembler* assembler) { | |
6126 typedef compiler::Node Node; | |
6127 | |
6128 Node* receiver = assembler->Parameter(0); | |
6129 Node* name = assembler->Parameter(1); | |
6130 // Node* slot = assembler->Parameter(2); | |
6131 // Node* vector = assembler->Parameter(3); | |
6132 Node* context = assembler->Parameter(4); | |
6133 | |
6134 assembler->TailCallRuntime(Runtime::kGetProperty, context, receiver, name); | |
6135 } | |
6136 | |
6137 void Generate_LoadGlobalIC_Slow(CodeStubAssembler* assembler, TypeofMode mode) { | |
6138 typedef compiler::Node Node; | |
6139 | |
6140 Node* slot = assembler->Parameter(0); | |
6141 Node* vector = assembler->Parameter(1); | |
6142 Node* context = assembler->Parameter(2); | |
6143 Node* typeof_mode = assembler->SmiConstant(Smi::FromInt(mode)); | |
6144 | |
6145 assembler->TailCallRuntime(Runtime::kGetGlobal, context, slot, vector, | |
6146 typeof_mode); | |
6147 } | |
6148 | |
6149 void Generate_LoadGlobalIC_SlowInsideTypeof(CodeStubAssembler* assembler) { | |
6150 Generate_LoadGlobalIC_Slow(assembler, INSIDE_TYPEOF); | |
6151 } | |
6152 | |
6153 void Generate_LoadGlobalIC_SlowNotInsideTypeof(CodeStubAssembler* assembler) { | |
6154 Generate_LoadGlobalIC_Slow(assembler, NOT_INSIDE_TYPEOF); | |
6155 } | |
6156 | |
6157 void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) { | |
6158 KeyedLoadIC::GenerateRuntimeGetProperty(masm); | |
6159 } | |
6160 | |
6161 void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) { | |
6162 KeyedLoadIC::GenerateMiss(masm); | |
6163 } | |
6164 | |
6165 void Generate_KeyedLoadIC_Megamorphic(MacroAssembler* masm) { | |
6166 KeyedLoadIC::GenerateMegamorphic(masm); | |
6167 } | |
6168 | |
6169 void Generate_StoreIC_Miss(CodeStubAssembler* assembler) { | |
6170 typedef compiler::Node Node; | |
6171 | |
6172 Node* receiver = assembler->Parameter(0); | |
6173 Node* name = assembler->Parameter(1); | |
6174 Node* value = assembler->Parameter(2); | |
6175 Node* slot = assembler->Parameter(3); | |
6176 Node* vector = assembler->Parameter(4); | |
6177 Node* context = assembler->Parameter(5); | |
6178 | |
6179 assembler->TailCallRuntime(Runtime::kStoreIC_Miss, context, receiver, name, | |
6180 value, slot, vector); | |
6181 } | |
6182 | |
6183 void Generate_StoreIC_Normal(MacroAssembler* masm) { | |
6184 StoreIC::GenerateNormal(masm); | |
6185 } | |
6186 | |
6187 void Generate_StoreIC_Slow(CodeStubAssembler* assembler, | |
6188 LanguageMode language_mode) { | |
6189 typedef compiler::Node Node; | |
6190 | |
6191 Node* receiver = assembler->Parameter(0); | |
6192 Node* name = assembler->Parameter(1); | |
6193 Node* value = assembler->Parameter(2); | |
6194 // Node* slot = assembler->Parameter(3); | |
6195 // Node* vector = assembler->Parameter(4); | |
6196 Node* context = assembler->Parameter(5); | |
6197 Node* lang_mode = assembler->SmiConstant(Smi::FromInt(language_mode)); | |
6198 | |
6199 // The slow case calls into the runtime to complete the store without causing | |
6200 // an IC miss that would otherwise cause a transition to the generic stub. | |
6201 assembler->TailCallRuntime(Runtime::kSetProperty, context, receiver, name, | |
6202 value, lang_mode); | |
6203 } | |
6204 | |
6205 void Generate_StoreIC_SlowSloppy(CodeStubAssembler* assembler) { | |
6206 Generate_StoreIC_Slow(assembler, SLOPPY); | |
6207 } | |
6208 | |
6209 void Generate_StoreIC_SlowStrict(CodeStubAssembler* assembler) { | |
6210 Generate_StoreIC_Slow(assembler, STRICT); | |
6211 } | |
6212 | |
6213 void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) { | |
6214 ElementHandlerCompiler::GenerateStoreSlow(masm); | |
6215 } | |
6216 | |
6217 void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) { | |
6218 NamedStoreHandlerCompiler::GenerateStoreViaSetterForDeopt(masm); | |
6219 } | |
6220 | |
6221 void Generate_KeyedStoreIC_Megamorphic(MacroAssembler* masm) { | |
6222 KeyedStoreIC::GenerateMegamorphic(masm, SLOPPY); | |
6223 } | |
6224 | |
6225 void Generate_KeyedStoreIC_Megamorphic_Strict(MacroAssembler* masm) { | |
6226 KeyedStoreIC::GenerateMegamorphic(masm, STRICT); | |
6227 } | |
6228 | |
6229 void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) { | |
6230 KeyedStoreIC::GenerateMiss(masm); | |
6231 } | |
6232 | |
6233 void Generate_Return_DebugBreak(MacroAssembler* masm) { | |
6234 DebugCodegen::GenerateDebugBreakStub(masm, | |
6235 DebugCodegen::SAVE_RESULT_REGISTER); | |
6236 } | |
6237 | |
6238 void Generate_Slot_DebugBreak(MacroAssembler* masm) { | |
6239 DebugCodegen::GenerateDebugBreakStub(masm, | |
6240 DebugCodegen::IGNORE_RESULT_REGISTER); | |
6241 } | |
6242 | |
6243 void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) { | |
6244 DebugCodegen::GenerateFrameDropperLiveEdit(masm); | |
6245 } | |
6246 | |
6247 } // namespace | |
6248 | |
6249 Builtins::Builtins() : initialized_(false) { | |
6250 memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count); | |
6251 memset(names_, 0, sizeof(names_[0]) * builtin_count); | |
6252 } | |
6253 | |
6254 | |
6255 Builtins::~Builtins() { | |
6256 } | |
6257 | |
6258 #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name), | |
6259 Address const Builtins::c_functions_[cfunction_count] = { | |
6260 BUILTIN_LIST_C(DEF_ENUM_C) | |
6261 }; | |
6262 #undef DEF_ENUM_C | |
6263 | |
6264 | |
6265 struct BuiltinDesc { | |
6266 Handle<Code> (*builder)(Isolate*, struct BuiltinDesc const*); | |
6267 byte* generator; | |
6268 byte* c_code; | |
6269 const char* s_name; // name is only used for generating log information. | |
6270 int name; | |
6271 Code::Flags flags; | |
6272 Builtins::ExitFrameType exit_frame_type; | |
6273 int argc; | |
6274 }; | |
6275 | |
6276 #define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} } | |
6277 | |
6278 class BuiltinFunctionTable { | |
6279 public: | |
6280 BuiltinDesc* functions() { | |
6281 base::CallOnce(&once_, &Builtins::InitBuiltinFunctionTable); | |
6282 return functions_; | |
6283 } | |
6284 | |
6285 base::OnceType once_; | |
6286 BuiltinDesc functions_[Builtins::builtin_count + 1]; | |
6287 | |
6288 friend class Builtins; | |
6289 }; | |
6290 | |
6291 namespace { | |
6292 | |
6293 BuiltinFunctionTable builtin_function_table = BUILTIN_FUNCTION_TABLE_INIT; | |
6294 | |
6295 Handle<Code> MacroAssemblerBuilder(Isolate* isolate, | |
6296 BuiltinDesc const* builtin_desc) { | |
6297 // For now we generate builtin adaptor code into a stack-allocated | |
6298 // buffer, before copying it into individual code objects. Be careful | |
6299 // with alignment, some platforms don't like unaligned code. | |
6300 #ifdef DEBUG | |
6301 // We can generate a lot of debug code on Arm64. | |
6302 const size_t buffer_size = 32 * KB; | |
6303 #elif V8_TARGET_ARCH_PPC64 | |
6304 // 8 KB is insufficient on PPC64 when FLAG_debug_code is on. | |
6305 const size_t buffer_size = 10 * KB; | |
6306 #else | |
6307 const size_t buffer_size = 8 * KB; | |
6308 #endif | |
6309 union { | |
6310 int force_alignment; | |
6311 byte buffer[buffer_size]; // NOLINT(runtime/arrays) | |
6312 } u; | |
6313 | |
6314 MacroAssembler masm(isolate, u.buffer, sizeof(u.buffer), | |
6315 CodeObjectRequired::kYes); | |
6316 // Generate the code/adaptor. | |
6317 typedef void (*Generator)(MacroAssembler*, int, Builtins::ExitFrameType); | |
6318 Generator g = FUNCTION_CAST<Generator>(builtin_desc->generator); | |
6319 // We pass all arguments to the generator, but it may not use all of | |
6320 // them. This works because the first arguments are on top of the | |
6321 // stack. | |
6322 DCHECK(!masm.has_frame()); | |
6323 g(&masm, builtin_desc->name, builtin_desc->exit_frame_type); | |
6324 // Move the code into the object heap. | |
6325 CodeDesc desc; | |
6326 masm.GetCode(&desc); | |
6327 Code::Flags flags = builtin_desc->flags; | |
6328 return isolate->factory()->NewCode(desc, flags, masm.CodeObject()); | |
6329 } | |
6330 | |
6331 // Builder for builtins implemented in TurboFan with JS linkage. | |
6332 Handle<Code> CodeStubAssemblerBuilderJS(Isolate* isolate, | |
6333 BuiltinDesc const* builtin_desc) { | |
6334 Zone zone(isolate->allocator()); | |
6335 CodeStubAssembler assembler(isolate, &zone, builtin_desc->argc, | |
6336 builtin_desc->flags, builtin_desc->s_name); | |
6337 // Generate the code/adaptor. | |
6338 typedef void (*Generator)(CodeStubAssembler*); | |
6339 Generator g = FUNCTION_CAST<Generator>(builtin_desc->generator); | |
6340 g(&assembler); | |
6341 return assembler.GenerateCode(); | |
6342 } | |
6343 | |
6344 // Builder for builtins implemented in TurboFan with CallStub linkage. | |
6345 Handle<Code> CodeStubAssemblerBuilderCS(Isolate* isolate, | |
6346 BuiltinDesc const* builtin_desc) { | |
6347 Zone zone(isolate->allocator()); | |
6348 // The interface descriptor with given key must be initialized at this point | |
6349 // and this construction just queries the details from the descriptors table. | |
6350 CallInterfaceDescriptor descriptor( | |
6351 isolate, static_cast<CallDescriptors::Key>(builtin_desc->argc)); | |
6352 // Ensure descriptor is already initialized. | |
6353 DCHECK_NOT_NULL(descriptor.GetFunctionType()); | |
6354 CodeStubAssembler assembler(isolate, &zone, descriptor, builtin_desc->flags, | |
6355 builtin_desc->s_name); | |
6356 // Generate the code/adaptor. | |
6357 typedef void (*Generator)(CodeStubAssembler*); | |
6358 Generator g = FUNCTION_CAST<Generator>(builtin_desc->generator); | |
6359 g(&assembler); | |
6360 return assembler.GenerateCode(); | |
6361 } | |
6362 | |
6363 } // namespace | |
6364 | |
6365 // Define array of pointers to generators and C builtin functions. | |
6366 // We do this in a sort of roundabout way so that we can do the initialization | |
6367 // within the lexical scope of Builtins:: and within a context where | |
6368 // Code::Flags names a non-abstract type. | |
6369 void Builtins::InitBuiltinFunctionTable() { | |
6370 BuiltinDesc* functions = builtin_function_table.functions_; | |
6371 functions[builtin_count].builder = nullptr; | |
6372 functions[builtin_count].generator = nullptr; | |
6373 functions[builtin_count].c_code = nullptr; | |
6374 functions[builtin_count].s_name = nullptr; | |
6375 functions[builtin_count].name = builtin_count; | |
6376 functions[builtin_count].flags = static_cast<Code::Flags>(0); | |
6377 functions[builtin_count].exit_frame_type = EXIT; | |
6378 functions[builtin_count].argc = 0; | |
6379 | |
6380 #define DEF_FUNCTION_PTR_C(aname, aexit_frame_type) \ | |
6381 functions->builder = &MacroAssemblerBuilder; \ | |
6382 functions->generator = FUNCTION_ADDR(Generate_Adaptor); \ | |
6383 functions->c_code = FUNCTION_ADDR(Builtin_##aname); \ | |
6384 functions->s_name = #aname; \ | |
6385 functions->name = c_##aname; \ | |
6386 functions->flags = Code::ComputeFlags(Code::BUILTIN); \ | |
6387 functions->exit_frame_type = aexit_frame_type; \ | |
6388 functions->argc = 0; \ | |
6389 ++functions; | |
6390 | |
6391 #define DEF_FUNCTION_PTR_A(aname, kind, extra) \ | |
6392 functions->builder = &MacroAssemblerBuilder; \ | |
6393 functions->generator = FUNCTION_ADDR(Generate_##aname); \ | |
6394 functions->c_code = NULL; \ | |
6395 functions->s_name = #aname; \ | |
6396 functions->name = k##aname; \ | |
6397 functions->flags = Code::ComputeFlags(Code::kind, extra); \ | |
6398 functions->exit_frame_type = EXIT; \ | |
6399 functions->argc = 0; \ | |
6400 ++functions; | |
6401 | |
6402 #define DEF_FUNCTION_PTR_T(aname, aargc) \ | |
6403 functions->builder = &CodeStubAssemblerBuilderJS; \ | |
6404 functions->generator = FUNCTION_ADDR(Generate_##aname); \ | |
6405 functions->c_code = NULL; \ | |
6406 functions->s_name = #aname; \ | |
6407 functions->name = k##aname; \ | |
6408 functions->flags = Code::ComputeFlags(Code::BUILTIN); \ | |
6409 functions->exit_frame_type = EXIT; \ | |
6410 functions->argc = aargc; \ | |
6411 ++functions; | |
6412 | |
6413 #define DEF_FUNCTION_PTR_S(aname, kind, extra, interface_descriptor) \ | |
6414 functions->builder = &CodeStubAssemblerBuilderCS; \ | |
6415 functions->generator = FUNCTION_ADDR(Generate_##aname); \ | |
6416 functions->c_code = NULL; \ | |
6417 functions->s_name = #aname; \ | |
6418 functions->name = k##aname; \ | |
6419 functions->flags = Code::ComputeFlags(Code::kind, extra); \ | |
6420 functions->exit_frame_type = EXIT; \ | |
6421 functions->argc = CallDescriptors::interface_descriptor; \ | |
6422 ++functions; | |
6423 | |
6424 #define DEF_FUNCTION_PTR_H(aname, kind) \ | |
6425 functions->builder = &MacroAssemblerBuilder; \ | |
6426 functions->generator = FUNCTION_ADDR(Generate_##aname); \ | |
6427 functions->c_code = NULL; \ | |
6428 functions->s_name = #aname; \ | |
6429 functions->name = k##aname; \ | |
6430 functions->flags = Code::ComputeHandlerFlags(Code::kind); \ | |
6431 functions->exit_frame_type = EXIT; \ | |
6432 functions->argc = 0; \ | |
6433 ++functions; | |
6434 | |
6435 BUILTIN_LIST_C(DEF_FUNCTION_PTR_C) | |
6436 BUILTIN_LIST_A(DEF_FUNCTION_PTR_A) | |
6437 BUILTIN_LIST_T(DEF_FUNCTION_PTR_T) | |
6438 BUILTIN_LIST_S(DEF_FUNCTION_PTR_S) | |
6439 BUILTIN_LIST_H(DEF_FUNCTION_PTR_H) | |
6440 BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A) | |
6441 | |
6442 #undef DEF_FUNCTION_PTR_C | |
6443 #undef DEF_FUNCTION_PTR_A | |
6444 #undef DEF_FUNCTION_PTR_T | |
6445 #undef DEF_FUNCTION_PTR_S | |
6446 #undef DEF_FUNCTION_PTR_H | |
6447 } | |
6448 | |
6449 | |
6450 void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) { | |
6451 DCHECK(!initialized_); | |
6452 | |
6453 // Create a scope for the handles in the builtins. | |
6454 HandleScope scope(isolate); | |
6455 | |
6456 #define INITIALIZE_CALL_DESCRIPTOR(name, kind, extra, interface_descriptor) \ | |
6457 { interface_descriptor##Descriptor descriptor(isolate); } | |
6458 BUILTIN_LIST_S(INITIALIZE_CALL_DESCRIPTOR) | |
6459 #undef INITIALIZE_CALL_DESCRIPTOR | |
6460 | |
6461 const BuiltinDesc* functions = builtin_function_table.functions(); | |
6462 | |
6463 // Traverse the list of builtins and generate an adaptor in a | |
6464 // separate code object for each one. | |
6465 for (int i = 0; i < builtin_count; i++) { | |
6466 if (create_heap_objects) { | |
6467 Handle<Code> code = (*functions[i].builder)(isolate, functions + i); | |
6468 // Log the event and add the code to the builtins array. | |
6469 PROFILE(isolate, | |
6470 CodeCreateEvent(CodeEventListener::BUILTIN_TAG, | |
6471 AbstractCode::cast(*code), functions[i].s_name)); | |
6472 builtins_[i] = *code; | |
6473 code->set_builtin_index(i); | |
6474 #ifdef ENABLE_DISASSEMBLER | |
6475 if (FLAG_print_builtin_code) { | |
6476 CodeTracer::Scope trace_scope(isolate->GetCodeTracer()); | |
6477 OFStream os(trace_scope.file()); | |
6478 os << "Builtin: " << functions[i].s_name << "\n"; | |
6479 code->Disassemble(functions[i].s_name, os); | |
6480 os << "\n"; | |
6481 } | |
6482 #endif | |
6483 } else { | |
6484 // Deserializing. The values will be filled in during IterateBuiltins. | |
6485 builtins_[i] = NULL; | |
6486 } | |
6487 names_[i] = functions[i].s_name; | |
6488 } | |
6489 | |
6490 // Mark as initialized. | |
6491 initialized_ = true; | |
6492 } | |
6493 | |
6494 | |
6495 void Builtins::TearDown() { | |
6496 initialized_ = false; | |
6497 } | |
6498 | |
6499 | |
6500 void Builtins::IterateBuiltins(ObjectVisitor* v) { | |
6501 v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count); | |
6502 } | |
6503 | |
6504 | |
6505 const char* Builtins::Lookup(byte* pc) { | |
6506 // may be called during initialization (disassembler!) | |
6507 if (initialized_) { | |
6508 for (int i = 0; i < builtin_count; i++) { | |
6509 Code* entry = Code::cast(builtins_[i]); | |
6510 if (entry->contains(pc)) { | |
6511 return names_[i]; | |
6512 } | |
6513 } | |
6514 } | |
6515 return NULL; | |
6516 } | |
6517 | |
6518 | |
6519 void Builtins::Generate_InterruptCheck(MacroAssembler* masm) { | |
6520 masm->TailCallRuntime(Runtime::kInterrupt); | |
6521 } | |
6522 | |
6523 | |
6524 void Builtins::Generate_StackCheck(MacroAssembler* masm) { | |
6525 masm->TailCallRuntime(Runtime::kStackGuard); | |
6526 } | |
6527 | |
6528 namespace { | |
6529 | |
6530 void ValidateSharedTypedArray(CodeStubAssembler* a, compiler::Node* tagged, | |
6531 compiler::Node* context, | |
6532 compiler::Node** out_instance_type, | |
6533 compiler::Node** out_backing_store) { | |
6534 using namespace compiler; | |
6535 CodeStubAssembler::Label is_smi(a), not_smi(a), is_typed_array(a), | |
6536 not_typed_array(a), is_shared(a), not_shared(a), is_float_or_clamped(a), | |
6537 not_float_or_clamped(a), invalid(a); | |
6538 | |
6539 // Fail if it is not a heap object. | |
6540 a->Branch(a->WordIsSmi(tagged), &is_smi, ¬_smi); | |
6541 a->Bind(&is_smi); | |
6542 a->Goto(&invalid); | |
6543 | |
6544 // Fail if the array's instance type is not JSTypedArray. | |
6545 a->Bind(¬_smi); | |
6546 a->Branch(a->WordEqual(a->LoadInstanceType(tagged), | |
6547 a->Int32Constant(JS_TYPED_ARRAY_TYPE)), | |
6548 &is_typed_array, ¬_typed_array); | |
6549 a->Bind(¬_typed_array); | |
6550 a->Goto(&invalid); | |
6551 | |
6552 // Fail if the array's JSArrayBuffer is not shared. | |
6553 a->Bind(&is_typed_array); | |
6554 Node* array_buffer = a->LoadObjectField(tagged, JSTypedArray::kBufferOffset); | |
6555 Node* is_buffer_shared = a->BitFieldDecode<JSArrayBuffer::IsShared>( | |
6556 a->LoadObjectField(array_buffer, JSArrayBuffer::kBitFieldSlot)); | |
6557 a->Branch(is_buffer_shared, &is_shared, ¬_shared); | |
6558 a->Bind(¬_shared); | |
6559 a->Goto(&invalid); | |
6560 | |
6561 // Fail if the array's element type is float32, float64 or clamped. | |
6562 a->Bind(&is_shared); | |
6563 Node* elements_instance_type = a->LoadInstanceType( | |
6564 a->LoadObjectField(tagged, JSObject::kElementsOffset)); | |
6565 STATIC_ASSERT(FIXED_INT8_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE); | |
6566 STATIC_ASSERT(FIXED_INT16_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE); | |
6567 STATIC_ASSERT(FIXED_INT32_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE); | |
6568 STATIC_ASSERT(FIXED_UINT8_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE); | |
6569 STATIC_ASSERT(FIXED_UINT16_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE); | |
6570 STATIC_ASSERT(FIXED_UINT32_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE); | |
6571 a->Branch(a->Int32LessThan(elements_instance_type, | |
6572 a->Int32Constant(FIXED_FLOAT32_ARRAY_TYPE)), | |
6573 ¬_float_or_clamped, &is_float_or_clamped); | |
6574 a->Bind(&is_float_or_clamped); | |
6575 a->Goto(&invalid); | |
6576 | |
6577 a->Bind(&invalid); | |
6578 a->CallRuntime(Runtime::kThrowNotIntegerSharedTypedArrayError, context, | |
6579 tagged); | |
6580 a->Return(a->UndefinedConstant()); | |
6581 | |
6582 a->Bind(¬_float_or_clamped); | |
6583 *out_instance_type = elements_instance_type; | |
6584 | |
6585 Node* backing_store = | |
6586 a->LoadObjectField(array_buffer, JSArrayBuffer::kBackingStoreOffset); | |
6587 Node* byte_offset = a->ChangeUint32ToWord(a->TruncateTaggedToWord32( | |
6588 context, | |
6589 a->LoadObjectField(tagged, JSArrayBufferView::kByteOffsetOffset))); | |
6590 *out_backing_store = a->IntPtrAdd(backing_store, byte_offset); | |
6591 } | |
6592 | |
6593 // https://tc39.github.io/ecmascript_sharedmem/shmem.html#Atomics.ValidateAtomic
Access | |
6594 compiler::Node* ConvertTaggedAtomicIndexToWord32(CodeStubAssembler* a, | |
6595 compiler::Node* tagged, | |
6596 compiler::Node* context) { | |
6597 using namespace compiler; | |
6598 CodeStubAssembler::Variable var_result(a, MachineRepresentation::kWord32); | |
6599 | |
6600 Callable to_number = CodeFactory::ToNumber(a->isolate()); | |
6601 Node* number_index = a->CallStub(to_number, context, tagged); | |
6602 CodeStubAssembler::Label done(a, &var_result); | |
6603 | |
6604 CodeStubAssembler::Label if_numberissmi(a), if_numberisnotsmi(a); | |
6605 a->Branch(a->WordIsSmi(number_index), &if_numberissmi, &if_numberisnotsmi); | |
6606 | |
6607 a->Bind(&if_numberissmi); | |
6608 { | |
6609 var_result.Bind(a->SmiToWord32(number_index)); | |
6610 a->Goto(&done); | |
6611 } | |
6612 | |
6613 a->Bind(&if_numberisnotsmi); | |
6614 { | |
6615 Node* number_index_value = a->LoadHeapNumberValue(number_index); | |
6616 Node* access_index = a->TruncateFloat64ToWord32(number_index_value); | |
6617 Node* test_index = a->ChangeInt32ToFloat64(access_index); | |
6618 | |
6619 CodeStubAssembler::Label if_indexesareequal(a), if_indexesarenotequal(a); | |
6620 a->Branch(a->Float64Equal(number_index_value, test_index), | |
6621 &if_indexesareequal, &if_indexesarenotequal); | |
6622 | |
6623 a->Bind(&if_indexesareequal); | |
6624 { | |
6625 var_result.Bind(access_index); | |
6626 a->Goto(&done); | |
6627 } | |
6628 | |
6629 a->Bind(&if_indexesarenotequal); | |
6630 a->Return( | |
6631 a->CallRuntime(Runtime::kThrowInvalidAtomicAccessIndexError, context)); | |
6632 } | |
6633 | |
6634 a->Bind(&done); | |
6635 return var_result.value(); | |
6636 } | |
6637 | |
6638 void ValidateAtomicIndex(CodeStubAssembler* a, compiler::Node* index_word, | |
6639 compiler::Node* array_length_word, | |
6640 compiler::Node* context) { | |
6641 using namespace compiler; | |
6642 // Check if the index is in bounds. If not, throw RangeError. | |
6643 CodeStubAssembler::Label if_inbounds(a), if_notinbounds(a); | |
6644 a->Branch( | |
6645 a->WordOr(a->Int32LessThan(index_word, a->Int32Constant(0)), | |
6646 a->Int32GreaterThanOrEqual(index_word, array_length_word)), | |
6647 &if_notinbounds, &if_inbounds); | |
6648 a->Bind(&if_notinbounds); | |
6649 a->Return( | |
6650 a->CallRuntime(Runtime::kThrowInvalidAtomicAccessIndexError, context)); | |
6651 a->Bind(&if_inbounds); | |
6652 } | |
6653 | |
6654 } // anonymous namespace | |
6655 | |
6656 void Builtins::Generate_AtomicsLoad(CodeStubAssembler* a) { | |
6657 using namespace compiler; | |
6658 Node* array = a->Parameter(1); | |
6659 Node* index = a->Parameter(2); | |
6660 Node* context = a->Parameter(3 + 2); | |
6661 | |
6662 Node* instance_type; | |
6663 Node* backing_store; | |
6664 ValidateSharedTypedArray(a, array, context, &instance_type, &backing_store); | |
6665 | |
6666 Node* index_word32 = ConvertTaggedAtomicIndexToWord32(a, index, context); | |
6667 Node* array_length_word32 = a->TruncateTaggedToWord32( | |
6668 context, a->LoadObjectField(array, JSTypedArray::kLengthOffset)); | |
6669 ValidateAtomicIndex(a, index_word32, array_length_word32, context); | |
6670 Node* index_word = a->ChangeUint32ToWord(index_word32); | |
6671 | |
6672 CodeStubAssembler::Label i8(a), u8(a), i16(a), u16(a), i32(a), u32(a), | |
6673 other(a); | |
6674 int32_t case_values[] = { | |
6675 FIXED_INT8_ARRAY_TYPE, FIXED_UINT8_ARRAY_TYPE, FIXED_INT16_ARRAY_TYPE, | |
6676 FIXED_UINT16_ARRAY_TYPE, FIXED_INT32_ARRAY_TYPE, FIXED_UINT32_ARRAY_TYPE, | |
6677 }; | |
6678 CodeStubAssembler::Label* case_labels[] = { | |
6679 &i8, &u8, &i16, &u16, &i32, &u32, | |
6680 }; | |
6681 a->Switch(instance_type, &other, case_values, case_labels, | |
6682 arraysize(case_labels)); | |
6683 | |
6684 a->Bind(&i8); | |
6685 a->Return( | |
6686 a->SmiTag(a->AtomicLoad(MachineType::Int8(), backing_store, index_word))); | |
6687 | |
6688 a->Bind(&u8); | |
6689 a->Return(a->SmiTag( | |
6690 a->AtomicLoad(MachineType::Uint8(), backing_store, index_word))); | |
6691 | |
6692 a->Bind(&i16); | |
6693 a->Return(a->SmiTag(a->AtomicLoad(MachineType::Int16(), backing_store, | |
6694 a->WordShl(index_word, 1)))); | |
6695 | |
6696 a->Bind(&u16); | |
6697 a->Return(a->SmiTag(a->AtomicLoad(MachineType::Uint16(), backing_store, | |
6698 a->WordShl(index_word, 1)))); | |
6699 | |
6700 a->Bind(&i32); | |
6701 a->Return(a->ChangeInt32ToTagged(a->AtomicLoad( | |
6702 MachineType::Int32(), backing_store, a->WordShl(index_word, 2)))); | |
6703 | |
6704 a->Bind(&u32); | |
6705 a->Return(a->ChangeUint32ToTagged(a->AtomicLoad( | |
6706 MachineType::Uint32(), backing_store, a->WordShl(index_word, 2)))); | |
6707 | |
6708 // This shouldn't happen, we've already validated the type. | |
6709 a->Bind(&other); | |
6710 a->Return(a->Int32Constant(0)); | |
6711 } | |
6712 | |
6713 void Builtins::Generate_AtomicsStore(CodeStubAssembler* a) { | |
6714 using namespace compiler; | |
6715 Node* array = a->Parameter(1); | |
6716 Node* index = a->Parameter(2); | |
6717 Node* value = a->Parameter(3); | |
6718 Node* context = a->Parameter(4 + 2); | |
6719 | |
6720 Node* instance_type; | |
6721 Node* backing_store; | |
6722 ValidateSharedTypedArray(a, array, context, &instance_type, &backing_store); | |
6723 | |
6724 Node* index_word32 = ConvertTaggedAtomicIndexToWord32(a, index, context); | |
6725 Node* array_length_word32 = a->TruncateTaggedToWord32( | |
6726 context, a->LoadObjectField(array, JSTypedArray::kLengthOffset)); | |
6727 ValidateAtomicIndex(a, index_word32, array_length_word32, context); | |
6728 Node* index_word = a->ChangeUint32ToWord(index_word32); | |
6729 | |
6730 Callable to_integer = CodeFactory::ToInteger(a->isolate()); | |
6731 Node* value_integer = a->CallStub(to_integer, context, value); | |
6732 Node* value_word32 = a->TruncateTaggedToWord32(context, value_integer); | |
6733 | |
6734 CodeStubAssembler::Label u8(a), u16(a), u32(a), other(a); | |
6735 int32_t case_values[] = { | |
6736 FIXED_INT8_ARRAY_TYPE, FIXED_UINT8_ARRAY_TYPE, FIXED_INT16_ARRAY_TYPE, | |
6737 FIXED_UINT16_ARRAY_TYPE, FIXED_INT32_ARRAY_TYPE, FIXED_UINT32_ARRAY_TYPE, | |
6738 }; | |
6739 CodeStubAssembler::Label* case_labels[] = { | |
6740 &u8, &u8, &u16, &u16, &u32, &u32, | |
6741 }; | |
6742 a->Switch(instance_type, &other, case_values, case_labels, | |
6743 arraysize(case_labels)); | |
6744 | |
6745 a->Bind(&u8); | |
6746 a->AtomicStore(MachineRepresentation::kWord8, backing_store, index_word, | |
6747 value_word32); | |
6748 a->Return(value_integer); | |
6749 | |
6750 a->Bind(&u16); | |
6751 a->SmiTag(a->AtomicStore(MachineRepresentation::kWord16, backing_store, | |
6752 a->WordShl(index_word, 1), value_word32)); | |
6753 a->Return(value_integer); | |
6754 | |
6755 a->Bind(&u32); | |
6756 a->AtomicStore(MachineRepresentation::kWord32, backing_store, | |
6757 a->WordShl(index_word, 2), value_word32); | |
6758 a->Return(value_integer); | |
6759 | |
6760 // This shouldn't happen, we've already validated the type. | |
6761 a->Bind(&other); | |
6762 a->Return(a->Int32Constant(0)); | |
6763 } | |
6764 | |
6765 #define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \ | |
6766 Handle<Code> Builtins::name() { \ | |
6767 Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \ | |
6768 return Handle<Code>(code_address); \ | |
6769 } | |
6770 #define DEFINE_BUILTIN_ACCESSOR_A(name, kind, extra) \ | |
6771 Handle<Code> Builtins::name() { \ | |
6772 Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \ | |
6773 return Handle<Code>(code_address); \ | |
6774 } | |
6775 #define DEFINE_BUILTIN_ACCESSOR_T(name, argc) \ | |
6776 Handle<Code> Builtins::name() { \ | |
6777 Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \ | |
6778 return Handle<Code>(code_address); \ | |
6779 } | |
6780 #define DEFINE_BUILTIN_ACCESSOR_S(name, kind, extra, interface_descriptor) \ | |
6781 Handle<Code> Builtins::name() { \ | |
6782 Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \ | |
6783 return Handle<Code>(code_address); \ | |
6784 } | |
6785 #define DEFINE_BUILTIN_ACCESSOR_H(name, kind) \ | |
6786 Handle<Code> Builtins::name() { \ | |
6787 Code** code_address = \ | |
6788 reinterpret_cast<Code**>(builtin_address(k##name)); \ | |
6789 return Handle<Code>(code_address); \ | |
6790 } | |
6791 BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C) | |
6792 BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A) | |
6793 BUILTIN_LIST_T(DEFINE_BUILTIN_ACCESSOR_T) | |
6794 BUILTIN_LIST_S(DEFINE_BUILTIN_ACCESSOR_S) | |
6795 BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H) | |
6796 BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A) | |
6797 #undef DEFINE_BUILTIN_ACCESSOR_C | |
6798 #undef DEFINE_BUILTIN_ACCESSOR_A | |
6799 #undef DEFINE_BUILTIN_ACCESSOR_T | |
6800 #undef DEFINE_BUILTIN_ACCESSOR_S | |
6801 #undef DEFINE_BUILTIN_ACCESSOR_H | |
6802 | |
6803 } // namespace internal | |
6804 } // namespace v8 | |
OLD | NEW |