| Index: src/core/SkLinearBitmapPipeline_sample.h
|
| diff --git a/src/core/SkLinearBitmapPipeline_sample.h b/src/core/SkLinearBitmapPipeline_sample.h
|
| index 759075b3e5ab3f2481e1f0af8d999448770bbd7d..20057cc992944d95ada788ee47503540ff26850c 100644
|
| --- a/src/core/SkLinearBitmapPipeline_sample.h
|
| +++ b/src/core/SkLinearBitmapPipeline_sample.h
|
| @@ -40,7 +40,7 @@ namespace {
|
| // * px11 -> xy
|
| // So x * y is calculated first and then used to calculate all the other factors.
|
| static Sk4s SK_VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10,
|
| - Sk4f px01, Sk4f px11) {
|
| + Sk4f px01, Sk4f px11) {
|
| // Calculate fractional xs and ys.
|
| Sk4s fxs = xs - xs.floor();
|
| Sk4s fys = ys - ys.floor();
|
| @@ -134,20 +134,21 @@ template <SkGammaType gammaType>
|
| class PixelConverter<kIndex_8_SkColorType, gammaType> {
|
| public:
|
| using Element = uint8_t;
|
| - PixelConverter(const SkPixmap& srcPixmap) {
|
| + PixelConverter(const SkPixmap& srcPixmap)
|
| + : fColorTableSize(srcPixmap.ctable()->count()){
|
| SkColorTable* skColorTable = srcPixmap.ctable();
|
| SkASSERT(skColorTable != nullptr);
|
|
|
| fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
|
| - for (int i = 0; i < skColorTable->count(); i++) {
|
| + for (int i = 0; i < fColorTableSize; i++) {
|
| fColorTable[i] = pmcolor_to_rgba<gammaType>((*skColorTable)[i]);
|
| }
|
| }
|
|
|
| - PixelConverter(const PixelConverter& strategy) {
|
| + PixelConverter(const PixelConverter& strategy)
|
| + : fColorTableSize{strategy.fColorTableSize}{
|
| fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
|
| - // TODO: figure out the count.
|
| - for (int i = 0; i < 256; i++) {
|
| + for (int i = 0; i < fColorTableSize; i++) {
|
| fColorTable[i] = strategy.fColorTable[i];
|
| }
|
| }
|
| @@ -158,9 +159,9 @@ public:
|
|
|
| private:
|
| static const size_t kColorTableSize = sizeof(Sk4f[256]) + 12;
|
| -
|
| - SkAutoMalloc fColorTableStorage{kColorTableSize};
|
| - Sk4f* fColorTable;
|
| + const int fColorTableSize;
|
| + SkAutoMalloc fColorTableStorage{kColorTableSize};
|
| + Sk4f* fColorTable;
|
| };
|
|
|
| template <SkGammaType gammaType>
|
| @@ -194,12 +195,12 @@ public:
|
| : fPixelAccessor(accessor) { }
|
|
|
| void SK_VECTORCALL getFewPixels(
|
| - int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const {
|
| + int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const {
|
| fPixelAccessor->getFewPixels(n, xs, ys, px0, px1, px2);
|
| }
|
|
|
| void SK_VECTORCALL get4Pixels(
|
| - Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
|
| + Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
|
| fPixelAccessor->get4Pixels(xs, ys, px0, px1, px2, px3);
|
| }
|
|
|
| @@ -237,10 +238,8 @@ public:
|
| , fConverter{srcPixmap, std::move<Args>(args)...} { }
|
|
|
| void SK_VECTORCALL getFewPixels (
|
| - int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override {
|
| - Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
|
| - Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
|
| - Sk4i bufferLoc = YIs * fWidth + XIs;
|
| + int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override {
|
| + Sk4i bufferLoc = ys * fWidth + xs;
|
| switch (n) {
|
| case 3:
|
| *px2 = this->getPixelAt(bufferLoc[2]);
|
| @@ -254,10 +253,8 @@ public:
|
| }
|
|
|
| void SK_VECTORCALL get4Pixels(
|
| - Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
|
| - Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
|
| - Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
|
| - Sk4i bufferLoc = YIs * fWidth + XIs;
|
| + Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
|
| + Sk4i bufferLoc = ys * fWidth + xs;
|
| *px0 = this->getPixelAt(bufferLoc[0]);
|
| *px1 = this->getPixelAt(bufferLoc[1]);
|
| *px2 = this->getPixelAt(bufferLoc[2]);
|
| @@ -330,6 +327,7 @@ static void src_strategy_blend(Span span, Next* next, Strategy* strategy) {
|
| }
|
| }
|
|
|
| +// -- NearestNeighborSampler -----------------------------------------------------------------------
|
| // NearestNeighborSampler - use nearest neighbor filtering to create runs of destination pixels.
|
| template<typename Accessor, typename Next>
|
| class NearestNeighborSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
|
| @@ -345,7 +343,7 @@ public:
|
| void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
|
| SkASSERT(0 < n && n < 4);
|
| Sk4f px0, px1, px2;
|
| - fAccessor.getFewPixels(n, xs, ys, &px0, &px1, &px2);
|
| + fAccessor.getFewPixels(n, SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2);
|
| if (n >= 1) fNext->blendPixel(px0);
|
| if (n >= 2) fNext->blendPixel(px1);
|
| if (n >= 3) fNext->blendPixel(px2);
|
| @@ -353,7 +351,7 @@ public:
|
|
|
| void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
|
| Sk4f px0, px1, px2, px3;
|
| - fAccessor.get4Pixels(xs, ys, &px0, &px1, &px2, &px3);
|
| + fAccessor.get4Pixels(SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2, &px3);
|
| fNext->blend4Pixels(px0, px1, px2, px3);
|
| }
|
|
|
| @@ -380,21 +378,11 @@ public:
|
| }
|
| }
|
|
|
| - void SK_VECTORCALL bilerpEdge(Sk4s xs, Sk4s ys) override {
|
| - SkFAIL("Using nearest neighbor sampler, but calling a bilerpEdge.");
|
| - }
|
| -
|
| - void bilerpSpan(Span span, SkScalar y) override {
|
| - SkFAIL("Using nearest neighbor sampler, but calling a bilerpSpan.");
|
| - }
|
| -
|
| private:
|
| // When moving through source space more slowly than dst space (zoomed in),
|
| // we'll be sampling from the same source pixel more than once.
|
| void spanSlowRate(Span span) {
|
| - SkPoint start;
|
| - SkScalar length;
|
| - int count;
|
| + SkPoint start; SkScalar length; int count;
|
| std::tie(start, length, count) = span;
|
| SkScalar x = X(start);
|
| SkFixed fx = SkScalarToFixed(x);
|
| @@ -451,35 +439,82 @@ private:
|
| Accessor fAccessor;
|
| };
|
|
|
| +// From an edgeType, the integer value of a pixel vs, and the integer value of the extreme edge
|
| +// vMax, take the point which might be off the tile by one pixel and either wrap it or pin it to
|
| +// generate the right pixel. The value vs is on the interval [-1, vMax + 1]. It produces a value
|
| +// on the interval [0, vMax].
|
| +// Note: vMax is not width or height, but width-1 or height-1 because it is the largest valid pixel.
|
| +static inline int adjust_edge(SkShader::TileMode edgeType, int vs, int vMax) {
|
| + SkASSERT(-1 <= vs && vs <= vMax + 1)
|
| + switch (edgeType) {
|
| + case SkShader::kClamp_TileMode:
|
| + case SkShader::kMirror_TileMode:
|
| + vs = std::max(vs, 0);
|
| + vs = std::min(vs, vMax);
|
| + break;
|
| + case SkShader::kRepeat_TileMode:
|
| + vs = (vs <= vMax) ? vs : 0;
|
| + vs = (vs >= 0) ? vs : vMax;
|
| + break;
|
| + }
|
| + SkASSERT(0 <= vs && vs <= vMax);
|
| + return vs;
|
| +}
|
| +
|
| +// From a sample point on the tile, return the top or left filter value.
|
| +// The result r should be in the range (0, 1]. Since this represents the weight given to the top
|
| +// left element, then if x == 0.5 the filter value should be 1.0.
|
| +// The input sample point must be on the tile, therefore it must be >= 0.
|
| +static SkScalar sample_to_filter(SkScalar x) {
|
| + SkASSERT(x >= 0.0f);
|
| + // The usual form of the top or left edge is x - .5, but since we are working on the unit
|
| + // square, then x + .5 works just as well. This also guarantees that v > 0.0 allowing the use
|
| + // of trunc.
|
| + SkScalar v = x + 0.5f;
|
| + // Produce the top or left offset a value on the range [0, 1).
|
| + SkScalar f = v - SkScalarTruncToScalar(v);
|
| + // Produce the filter value which is on the range (0, 1].
|
| + SkScalar r = 1.0f - f;
|
| + SkASSERT(0.0f < r && r <= 1.0f);
|
| + return r;
|
| +}
|
| +
|
| // -- BilerpSampler --------------------------------------------------------------------------------
|
| // BilerpSampler - use a bilerp filter to create runs of destination pixels.
|
| +// Note: in the code below, there are two types of points
|
| +// * sample points - these are the points passed in by pointList* and Spans.
|
| +// * filter points - are created from a sample point to form the coordinates of the points
|
| +// to use in the filter and to generate the filter values.
|
| template<typename Accessor, typename Next>
|
| class BilerpSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
|
| public:
|
| template<typename... Args>
|
| - BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, Args&& ... args)
|
| - : fNext{next}, fAccessor{std::forward<Args>(args)...} { }
|
| + BilerpSampler(
|
| + SkLinearBitmapPipeline::BlendProcessorInterface* next,
|
| + SkISize dimensions,
|
| + SkShader::TileMode xTile, SkShader::TileMode yTile,
|
| + Args&& ... args
|
| + )
|
| + : fNext{next}
|
| + , fXEdgeType{xTile}
|
| + , fXMax{dimensions.width() - 1}
|
| + , fYEdgeType{yTile}
|
| + , fYMax{dimensions.height() - 1}
|
| + , fAccessor{std::forward<Args>(args)...} { }
|
|
|
| BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next,
|
| const BilerpSampler& sampler)
|
| - : fNext{next}, fAccessor{sampler.fAccessor} { }
|
| -
|
| - Sk4f bilerpNonEdgePixel(SkScalar x, SkScalar y) {
|
| - Sk4f px00, px10, px01, px11;
|
| -
|
| - // bilerp4() expects xs, ys are the top-lefts of the 2x2 kernel.
|
| - Sk4f xs = Sk4f{x} - 0.5f;
|
| - Sk4f ys = Sk4f{y} - 0.5f;
|
| - Sk4f sampleXs = xs + Sk4f{0.0f, 1.0f, 0.0f, 1.0f};
|
| - Sk4f sampleYs = ys + Sk4f{0.0f, 0.0f, 1.0f, 1.0f};
|
| - fAccessor.get4Pixels(sampleXs, sampleYs, &px00, &px10, &px01, &px11);
|
| - return bilerp4(xs, ys, px00, px10, px01, px11);
|
| - }
|
| + : fNext{next}
|
| + , fXEdgeType{sampler.fXEdgeType}
|
| + , fXMax{sampler.fXMax}
|
| + , fYEdgeType{sampler.fYEdgeType}
|
| + , fYMax{sampler.fYMax}
|
| + , fAccessor{sampler.fAccessor} { }
|
|
|
| void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
|
| SkASSERT(0 < n && n < 4);
|
| auto bilerpPixel = [&](int index) {
|
| - return this->bilerpNonEdgePixel(xs[index], ys[index]);
|
| + return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
|
| };
|
|
|
| if (n >= 1) fNext->blendPixel(bilerpPixel(0));
|
| @@ -489,308 +524,484 @@ public:
|
|
|
| void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
|
| auto bilerpPixel = [&](int index) {
|
| - return this->bilerpNonEdgePixel(xs[index], ys[index]);
|
| + return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
|
| };
|
| fNext->blend4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3));
|
| }
|
|
|
| void pointSpan(Span span) override {
|
| - this->bilerpSpan(span, span.startY());
|
| - }
|
| -
|
| - void repeatSpan(Span span, int32_t repeatCount) override {
|
| - while (repeatCount > 0) {
|
| - this->pointSpan(span);
|
| - repeatCount--;
|
| - }
|
| - }
|
| -
|
| - void SK_VECTORCALL bilerpEdge(Sk4s sampleXs, Sk4s sampleYs) override {
|
| - Sk4f px00, px10, px01, px11;
|
| - Sk4f xs = Sk4f{sampleXs[0]};
|
| - Sk4f ys = Sk4f{sampleYs[0]};
|
| - fAccessor.get4Pixels(sampleXs, sampleYs, &px00, &px10, &px01, &px11);
|
| - Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11);
|
| - fNext->blendPixel(pixel);
|
| - }
|
| -
|
| - void bilerpSpan(Span span, SkScalar y) override {
|
| SkASSERT(!span.isEmpty());
|
| SkPoint start;
|
| SkScalar length;
|
| int count;
|
| std::tie(start, length, count) = span;
|
| +
|
| + // Nothing to do.
|
| + if (count == 0) {
|
| + return;
|
| + }
|
| +
|
| + // Trivial case. No sample points are generated other than start.
|
| + if (count == 1) {
|
| + fNext->blendPixel(this->bilerpSamplePoint(start));
|
| + return;
|
| + }
|
| +
|
| + // Note: the following code could be done in terms of dx = length / (count -1), but that
|
| + // would introduce a divide that is not needed for the most common dx == 1 cases.
|
| SkScalar absLength = SkScalarAbs(length);
|
| if (absLength == 0.0f) {
|
| - this->spanZeroRate(span, y);
|
| + // |dx| == 0
|
| + // length is zero, so clamp an edge pixel.
|
| + this->spanZeroRate(span);
|
| } else if (absLength < (count - 1)) {
|
| - this->spanSlowRate(span, y);
|
| + // 0 < |dx| < 1.
|
| + this->spanSlowRate(span);
|
| } else if (absLength == (count - 1)) {
|
| - if (std::fmod(span.startX() - 0.5f, 1.0f) == 0.0f) {
|
| - if (std::fmod(span.startY() - 0.5f, 1.0f) == 0.0f) {
|
| - src_strategy_blend(span, fNext, &fAccessor);
|
| - } else {
|
| - this->spanUnitRateAlignedX(span, y);
|
| - }
|
| + // |dx| == 1.
|
| + if (sample_to_filter(span.startX()) == 1.0f
|
| + && sample_to_filter(span.startY()) == 1.0f) {
|
| + // All the pixels are aligned with the dest; go fast.
|
| + src_strategy_blend(span, fNext, &fAccessor);
|
| } else {
|
| - this->spanUnitRate(span, y);
|
| + // There is some sub-pixel offsets, so bilerp.
|
| + this->spanUnitRate(span);
|
| }
|
| + } else if (absLength < 2.0f * (count - 1)) {
|
| + // 1 < |dx| < 2.
|
| + this->spanMediumRate(span);
|
| } else {
|
| - this->spanFastRate(span, y);
|
| + // |dx| >= 2.
|
| + this->spanFastRate(span);
|
| + }
|
| + }
|
| +
|
| + void repeatSpan(Span span, int32_t repeatCount) override {
|
| + while (repeatCount > 0) {
|
| + this->pointSpan(span);
|
| + repeatCount--;
|
| }
|
| }
|
|
|
| private:
|
| - void spanZeroRate(Span span, SkScalar y1) {
|
| - SkScalar y0 = span.startY() - 0.5f;
|
| - y1 += 0.5f;
|
| - int iy0 = SkScalarFloorToInt(y0);
|
| - SkScalar filterY1 = y0 - iy0;
|
| - SkScalar filterY0 = 1.0f - filterY1;
|
| - int iy1 = SkScalarFloorToInt(y1);
|
| - int ix = SkScalarFloorToInt(span.startX());
|
| - Sk4f pixelY0 = fAccessor.getPixelFromRow(fAccessor.row(iy0), ix);
|
| - Sk4f pixelY1 = fAccessor.getPixelFromRow(fAccessor.row(iy1), ix);
|
| - Sk4f filterPixel = pixelY0 * filterY0 + pixelY1 * filterY1;
|
| - int count = span.count();
|
| +
|
| + // Convert a sample point to the points used by the filter.
|
| + void filterPoints(SkPoint sample, Sk4i* filterXs, Sk4i* filterYs) {
|
| + // May be less than zero. Be careful to use Floor.
|
| + int x0 = adjust_edge(fXEdgeType, SkScalarFloorToInt(X(sample) - 0.5), fXMax);
|
| + // Always greater than zero. Use the faster Trunc.
|
| + int x1 = adjust_edge(fXEdgeType, SkScalarTruncToInt(X(sample) + 0.5), fXMax);
|
| + int y0 = adjust_edge(fYEdgeType, SkScalarFloorToInt(Y(sample) - 0.5), fYMax);
|
| + int y1 = adjust_edge(fYEdgeType, SkScalarTruncToInt(Y(sample) + 0.5), fYMax);
|
| +
|
| + *filterXs = Sk4i{x0, x1, x0, x1};
|
| + *filterYs = Sk4i{y0, y0, y1, y1};
|
| + }
|
| +
|
| + // Given a sample point, generate a color by bilerping the four filter points.
|
| + Sk4f bilerpSamplePoint(SkPoint sample) {
|
| + Sk4i iXs, iYs;
|
| + filterPoints(sample, &iXs, &iYs);
|
| + Sk4f px00, px10, px01, px11;
|
| + fAccessor.get4Pixels(iXs, iYs, &px00, &px10, &px01, &px11);
|
| + return bilerp4(Sk4f{X(sample) - 0.5f}, Sk4f{Y(sample) - 0.5f}, px00, px10, px01, px11);
|
| + }
|
| +
|
| + // Get two pixels at x from row0 and row1.
|
| + void get2PixelColumn(const void* row0, const void* row1, int x, Sk4f* px0, Sk4f* px1) {
|
| + *px0 = fAccessor.getPixelFromRow(row0, x);
|
| + *px1 = fAccessor.getPixelFromRow(row1, x);
|
| + }
|
| +
|
| + // |dx| == 0. This code assumes that length is zero.
|
| + void spanZeroRate(Span span) {
|
| + SkPoint start; SkScalar length; int count;
|
| + std::tie(start, length, count) = span;
|
| + SkASSERT(length == 0.0f);
|
| +
|
| + // Filter for the blending of the top and bottom pixels.
|
| + SkScalar filterY = sample_to_filter(Y(start));
|
| +
|
| + // Generate the four filter points from the sample point start. Generate the row* values.
|
| + Sk4i iXs, iYs;
|
| + this->filterPoints(start, &iXs, &iYs);
|
| + const void* const row0 = fAccessor.row(iYs[0]);
|
| + const void* const row1 = fAccessor.row(iYs[2]);
|
| +
|
| + // Get the two pixels that make up the clamping pixel.
|
| + Sk4f pxTop, pxBottom;
|
| + this->get2PixelColumn(row0, row1, SkScalarFloorToInt(X(start)), &pxTop, &pxBottom);
|
| + Sk4f pixel = pxTop * filterY + (1.0f - filterY) * pxBottom;
|
| +
|
| while (count >= 4) {
|
| - fNext->blend4Pixels(filterPixel, filterPixel, filterPixel, filterPixel);
|
| + fNext->blend4Pixels(pixel, pixel, pixel, pixel);
|
| count -= 4;
|
| }
|
| while (count > 0) {
|
| - fNext->blendPixel(filterPixel);
|
| + fNext->blendPixel(pixel);
|
| count -= 1;
|
| }
|
| }
|
|
|
| - // When moving through source space more slowly than dst space (zoomed in),
|
| - // we'll be sampling from the same source pixel more than once.
|
| - void spanSlowRate(Span span, SkScalar ry1) {
|
| - SkPoint start;
|
| - SkScalar length;
|
| - int count;
|
| + // 0 < |dx| < 1. This code reuses the calculations from previous pixels to reduce
|
| + // computation. In particular, several destination pixels maybe generated from the same four
|
| + // source pixels.
|
| + // In the following code a "part" is a combination of two pixels from the same column of the
|
| + // filter.
|
| + void spanSlowRate(Span span) {
|
| + SkPoint start; SkScalar length; int count;
|
| std::tie(start, length, count) = span;
|
| - SkFixed fx = SkScalarToFixed(X(start)-0.5f);
|
|
|
| - SkFixed fdx = SkScalarToFixed(length / (count - 1));
|
| + // Calculate the distance between each sample point.
|
| + const SkScalar dx = length / (count - 1);
|
| + SkASSERT(-1.0f < dx && dx < 1.0f && dx != 0.0f);
|
| +
|
| + // Generate the filter values for the top-left corner.
|
| + // Note: these values are in filter space; this has implications about how to adjust
|
| + // these values at each step. For example, as the sample point increases, the filter
|
| + // value decreases, this is because the filter and position are related by
|
| + // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
|
| + // direction of the sample point which is increasing by dx.
|
| + SkScalar filterX = sample_to_filter(X(start));
|
| + SkScalar filterY = sample_to_filter(Y(start));
|
| +
|
| + // Generate the four filter points from the sample point start. Generate the row* values.
|
| + Sk4i iXs, iYs;
|
| + this->filterPoints(start, &iXs, &iYs);
|
| + const void* const row0 = fAccessor.row(iYs[0]);
|
| + const void* const row1 = fAccessor.row(iYs[2]);
|
| +
|
| + // Generate part of the filter value at xColumn.
|
| + auto partAtColumn = [&](int xColumn) {
|
| + int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
|
| + Sk4f pxTop, pxBottom;
|
| + this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
|
| + return pxTop * filterY + (1.0f - filterY) * pxBottom;
|
| + };
|
|
|
| - Sk4f xAdjust;
|
| - if (fdx >= 0) {
|
| - xAdjust = Sk4f{-1.0f};
|
| - } else {
|
| - xAdjust = Sk4f{1.0f};
|
| - }
|
| - int ix = SkFixedFloorToInt(fx);
|
| - int ioldx = ix;
|
| - Sk4f x{SkFixedToScalar(fx) - ix};
|
| - Sk4f dx{SkFixedToScalar(fdx)};
|
| - SkScalar ry0 = Y(start) - 0.5f;
|
| - ry1 += 0.5f;
|
| - SkScalar yFloor = std::floor(ry0);
|
| - Sk4f y1 = Sk4f{ry0 - yFloor};
|
| - Sk4f y0 = Sk4f{1.0f} - y1;
|
| - const void* const row0 = fAccessor.row(SkScalarFloorToInt(ry0));
|
| - const void* const row1 = fAccessor.row(SkScalarFloorToInt(ry1));
|
| - Sk4f fpixel00 = y0 * fAccessor.getPixelFromRow(row0, ix);
|
| - Sk4f fpixel01 = y1 * fAccessor.getPixelFromRow(row1, ix);
|
| - Sk4f fpixel10 = y0 * fAccessor.getPixelFromRow(row0, ix + 1);
|
| - Sk4f fpixel11 = y1 * fAccessor.getPixelFromRow(row1, ix + 1);
|
| - auto getNextPixel = [&]() {
|
| - if (ix != ioldx) {
|
| - fpixel00 = fpixel10;
|
| - fpixel01 = fpixel11;
|
| - fpixel10 = y0 * fAccessor.getPixelFromRow(row0, ix + 1);
|
| - fpixel11 = y1 * fAccessor.getPixelFromRow(row1, ix + 1);
|
| - ioldx = ix;
|
| - x = x + xAdjust;
|
| - }
|
| + // The leftPart is made up of two pixels from the left column of the filter, right part
|
| + // is similar. The top and bottom pixels in the *Part are created as a linear blend of
|
| + // the top and bottom pixels using filterY. See the partAtColumn function above.
|
| + Sk4f leftPart = partAtColumn(iXs[0]);
|
| + Sk4f rightPart = partAtColumn(iXs[1]);
|
|
|
| - Sk4f x0, x1;
|
| - x0 = Sk4f{1.0f} - x;
|
| - x1 = x;
|
| - Sk4f fpixel = x0 * (fpixel00 + fpixel01) + x1 * (fpixel10 + fpixel11);
|
| - fx += fdx;
|
| - ix = SkFixedFloorToInt(fx);
|
| - x = x + dx;
|
| - return fpixel;
|
| + // Create a destination color by blending together a left and right part using filterX.
|
| + auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
|
| + Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
|
| + return check_pixel(pixel);
|
| };
|
|
|
| - while (count >= 4) {
|
| - Sk4f fpixel0 = getNextPixel();
|
| - Sk4f fpixel1 = getNextPixel();
|
| - Sk4f fpixel2 = getNextPixel();
|
| - Sk4f fpixel3 = getNextPixel();
|
| + // Send the first pixel to the destination. This simplifies the loop structure so that no
|
| + // extra pixels are fetched for the last iteration of the loop.
|
| + fNext->blendPixel(bilerp(leftPart, rightPart));
|
| + count -= 1;
|
| +
|
| + if (dx > 0.0f) {
|
| + // * positive direction - generate destination pixels by sliding the filter from left
|
| + // to right.
|
| + int rightPartCursor = iXs[1];
|
| +
|
| + // Advance the filter from left to right. Remember that moving the top-left corner of
|
| + // the filter to the right actually makes the filter value smaller.
|
| + auto advanceFilter = [&]() {
|
| + filterX -= dx;
|
| + if (filterX <= 0.0f) {
|
| + filterX += 1.0f;
|
| + leftPart = rightPart;
|
| + rightPartCursor += 1;
|
| + rightPart = partAtColumn(rightPartCursor);
|
| + }
|
| + SkASSERT(0.0f < filterX && filterX <= 1.0f);
|
|
|
| - fNext->blend4Pixels(fpixel0, fpixel1, fpixel2, fpixel3);
|
| - count -= 4;
|
| - }
|
| + return bilerp(leftPart, rightPart);
|
| + };
|
|
|
| - while (count > 0) {
|
| - fNext->blendPixel(getNextPixel());
|
| + while (count >= 4) {
|
| + Sk4f px0 = advanceFilter(),
|
| + px1 = advanceFilter(),
|
| + px2 = advanceFilter(),
|
| + px3 = advanceFilter();
|
| + fNext->blend4Pixels(px0, px1, px2, px3);
|
| + count -= 4;
|
| + }
|
|
|
| - count -= 1;
|
| + while (count > 0) {
|
| + fNext->blendPixel(advanceFilter());
|
| + count -= 1;
|
| + }
|
| + } else {
|
| + // * negative direction - generate destination pixels by sliding the filter from
|
| + // right to left.
|
| + int leftPartCursor = iXs[0];
|
| +
|
| + // Advance the filter from right to left. Remember that moving the top-left corner of
|
| + // the filter to the left actually makes the filter value larger.
|
| + auto advanceFilter = [&]() {
|
| + // Remember, dx < 0 therefore this adds |dx| to filterX.
|
| + filterX -= dx;
|
| + // At this point filterX may be > 1, and needs to be wrapped back on to the filter
|
| + // interval, and the next column in the filter is calculated.
|
| + if (filterX > 1.0f) {
|
| + filterX -= 1.0f;
|
| + rightPart = leftPart;
|
| + leftPartCursor -= 1;
|
| + leftPart = partAtColumn(leftPartCursor);
|
| + }
|
| + SkASSERT(0.0f < filterX && filterX <= 1.0f);
|
| +
|
| + return bilerp(leftPart, rightPart);
|
| + };
|
| +
|
| + while (count >= 4) {
|
| + Sk4f px0 = advanceFilter(),
|
| + px1 = advanceFilter(),
|
| + px2 = advanceFilter(),
|
| + px3 = advanceFilter();
|
| + fNext->blend4Pixels(px0, px1, px2, px3);
|
| + count -= 4;
|
| + }
|
| +
|
| + while (count > 0) {
|
| + fNext->blendPixel(advanceFilter());
|
| + count -= 1;
|
| + }
|
| }
|
| }
|
|
|
| - // We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
|
| - // We'll never re-use pixels, but we can at least load contiguous pixels.
|
| - void spanUnitRate(Span span, SkScalar y1) {
|
| - y1 += 0.5f;
|
| - SkScalar y0 = span.startY() - 0.5f;
|
| - int iy0 = SkScalarFloorToInt(y0);
|
| - SkScalar filterY1 = y0 - iy0;
|
| - SkScalar filterY0 = 1.0f - filterY1;
|
| - int iy1 = SkScalarFloorToInt(y1);
|
| - const void* rowY0 = fAccessor.row(iy0);
|
| - const void* rowY1 = fAccessor.row(iy1);
|
| - SkScalar x0 = span.startX() - 0.5f;
|
| - int ix0 = SkScalarFloorToInt(x0);
|
| - SkScalar filterX1 = x0 - ix0;
|
| - SkScalar filterX0 = 1.0f - filterX1;
|
| -
|
| - auto getPixelY0 = [&]() {
|
| - Sk4f px = fAccessor.getPixelFromRow(rowY0, ix0);
|
| - return px * filterY0;
|
| - };
|
| -
|
| - auto getPixelY1 = [&]() {
|
| - Sk4f px = fAccessor.getPixelFromRow(rowY1, ix0);
|
| - return px * filterY1;
|
| + // |dx| == 1. Moving through source space at a rate of 1 source pixel per 1 dst pixel.
|
| + // Every filter part is used for two destination pixels, and the code can bulk load four
|
| + // pixels at a time.
|
| + void spanUnitRate(Span span) {
|
| + SkPoint start; SkScalar length; int count;
|
| + std::tie(start, length, count) = span;
|
| + SkASSERT(SkScalarAbs(length) == (count - 1));
|
| +
|
| + // Calculate the four filter points of start, and use the two different Y values to
|
| + // generate the row pointers.
|
| + Sk4i iXs, iYs;
|
| + filterPoints(start, &iXs, &iYs);
|
| + const void* row0 = fAccessor.row(iYs[0]);
|
| + const void* row1 = fAccessor.row(iYs[2]);
|
| +
|
| + // Calculate the filter values for the top-left filter element.
|
| + const SkScalar filterX = sample_to_filter(X(start));
|
| + const SkScalar filterY = sample_to_filter(Y(start));
|
| +
|
| + // Generate part of the filter value at xColumn.
|
| + auto partAtColumn = [&](int xColumn) {
|
| + int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
|
| + Sk4f pxTop, pxBottom;
|
| + this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
|
| + return pxTop * filterY + (1.0f - filterY) * pxBottom;
|
| };
|
|
|
| - auto get4PixelsY0 = [&](int ix, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
|
| - fAccessor.get4Pixels(rowY0, ix, px0, px1, px2, px3);
|
| - *px0 = *px0 * filterY0;
|
| - *px1 = *px1 * filterY0;
|
| - *px2 = *px2 * filterY0;
|
| - *px3 = *px3 * filterY0;
|
| + auto get4Parts = [&](int ix, Sk4f* part0, Sk4f* part1, Sk4f* part2, Sk4f* part3) {
|
| + // Check if the pixels needed are near the edges. If not go fast using bulk pixels,
|
| + // otherwise be careful.
|
| + if (0 <= ix && ix <= fXMax - 3) {
|
| + Sk4f px00, px10, px20, px30,
|
| + px01, px11, px21, px31;
|
| + fAccessor.get4Pixels(row0, ix, &px00, &px10, &px20, &px30);
|
| + fAccessor.get4Pixels(row1, ix, &px01, &px11, &px21, &px31);
|
| + *part0 = filterY * px00 + (1.0f - filterY) * px01;
|
| + *part1 = filterY * px10 + (1.0f - filterY) * px11;
|
| + *part2 = filterY * px20 + (1.0f - filterY) * px21;
|
| + *part3 = filterY * px30 + (1.0f - filterY) * px31;
|
| + } else {
|
| + *part0 = partAtColumn(ix + 0);
|
| + *part1 = partAtColumn(ix + 1);
|
| + *part2 = partAtColumn(ix + 2);
|
| + *part3 = partAtColumn(ix + 3);
|
| + }
|
| };
|
|
|
| - auto get4PixelsY1 = [&](int ix, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
|
| - fAccessor.get4Pixels(rowY1, ix, px0, px1, px2, px3);
|
| - *px0 = *px0 * filterY1;
|
| - *px1 = *px1 * filterY1;
|
| - *px2 = *px2 * filterY1;
|
| - *px3 = *px3 * filterY1;
|
| + auto bilerp = [&](const Sk4f& part0, const Sk4f& part1) {
|
| + return part0 * filterX + part1 * (1.0f - filterX);
|
| };
|
|
|
| - auto lerp = [&](Sk4f& pixelX0, Sk4f& pixelX1) {
|
| - return pixelX0 * filterX0 + pixelX1 * filterX1;
|
| - };
|
| + if (length > 0) {
|
| + // * positive direction - generate destination pixels by sliding the filter from left
|
| + // to right.
|
|
|
| - // Mid making 4 unit rate.
|
| - Sk4f pxB = getPixelY0() + getPixelY1();
|
| - if (span.length() > 0) {
|
| - int count = span.count();
|
| + // overlapPart is the filter part from the end of the previous four pixels used at
|
| + // the start of the next four pixels.
|
| + Sk4f overlapPart = partAtColumn(iXs[0]);
|
| + int rightColumnCursor = iXs[1];
|
| while (count >= 4) {
|
| - Sk4f px00, px10, px20, px30;
|
| - get4PixelsY0(ix0, &px00, &px10, &px20, &px30);
|
| - Sk4f px01, px11, px21, px31;
|
| - get4PixelsY1(ix0, &px01, &px11, &px21, &px31);
|
| - Sk4f pxS0 = px00 + px01;
|
| - Sk4f px0 = lerp(pxB, pxS0);
|
| - Sk4f pxS1 = px10 + px11;
|
| - Sk4f px1 = lerp(pxS0, pxS1);
|
| - Sk4f pxS2 = px20 + px21;
|
| - Sk4f px2 = lerp(pxS1, pxS2);
|
| - Sk4f pxS3 = px30 + px31;
|
| - Sk4f px3 = lerp(pxS2, pxS3);
|
| - pxB = pxS3;
|
| + Sk4f part0, part1, part2, part3;
|
| + get4Parts(rightColumnCursor, &part0, &part1, &part2, &part3);
|
| + Sk4f px0 = bilerp(overlapPart, part0);
|
| + Sk4f px1 = bilerp(part0, part1);
|
| + Sk4f px2 = bilerp(part1, part2);
|
| + Sk4f px3 = bilerp(part2, part3);
|
| + overlapPart = part3;
|
| fNext->blend4Pixels(px0, px1, px2, px3);
|
| - ix0 += 4;
|
| + rightColumnCursor += 4;
|
| count -= 4;
|
| }
|
| +
|
| while (count > 0) {
|
| - Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix0);
|
| - Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix0);
|
| + Sk4f rightPart = partAtColumn(rightColumnCursor);
|
|
|
| - fNext->blendPixel(lerp(pixelY0, pixelY1));
|
| - ix0 += 1;
|
| + fNext->blendPixel(bilerp(overlapPart, rightPart));
|
| + overlapPart = rightPart;
|
| + rightColumnCursor += 1;
|
| count -= 1;
|
| }
|
| } else {
|
| - int count = span.count();
|
| + // * negative direction - generate destination pixels by sliding the filter from
|
| + // right to left.
|
| + Sk4f overlapPart = partAtColumn(iXs[1]);
|
| + int leftColumnCursor = iXs[0];
|
| +
|
| while (count >= 4) {
|
| - Sk4f px00, px10, px20, px30;
|
| - get4PixelsY0(ix0 - 3, &px00, &px10, &px20, &px30);
|
| - Sk4f px01, px11, px21, px31;
|
| - get4PixelsY1(ix0 - 3, &px01, &px11, &px21, &px31);
|
| - Sk4f pxS3 = px30 + px31;
|
| - Sk4f px0 = lerp(pxS3, pxB);
|
| - Sk4f pxS2 = px20 + px21;
|
| - Sk4f px1 = lerp(pxS2, pxS3);
|
| - Sk4f pxS1 = px10 + px11;
|
| - Sk4f px2 = lerp(pxS1, pxS2);
|
| - Sk4f pxS0 = px00 + px01;
|
| - Sk4f px3 = lerp(pxS0, pxS1);
|
| - pxB = pxS0;
|
| + Sk4f part0, part1, part2, part3;
|
| + get4Parts(leftColumnCursor - 3, &part3, &part2, &part1, &part0);
|
| + Sk4f px0 = bilerp(part0, overlapPart);
|
| + Sk4f px1 = bilerp(part1, part0);
|
| + Sk4f px2 = bilerp(part2, part1);
|
| + Sk4f px3 = bilerp(part3, part2);
|
| + overlapPart = part3;
|
| fNext->blend4Pixels(px0, px1, px2, px3);
|
| - ix0 -= 4;
|
| + leftColumnCursor -= 4;
|
| count -= 4;
|
| }
|
| +
|
| while (count > 0) {
|
| - Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix0);
|
| - Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix0);
|
| + Sk4f leftPart = partAtColumn(leftColumnCursor);
|
|
|
| - fNext->blendPixel(lerp(pixelY0, pixelY1));
|
| - ix0 -= 1;
|
| + fNext->blendPixel(bilerp(leftPart, overlapPart));
|
| + overlapPart = leftPart;
|
| + leftColumnCursor -= 1;
|
| count -= 1;
|
| }
|
| }
|
| }
|
|
|
| - void spanUnitRateAlignedX(Span span, SkScalar y1) {
|
| - SkScalar y0 = span.startY() - 0.5f;
|
| - y1 += 0.5f;
|
| - int iy0 = SkScalarFloorToInt(y0);
|
| - SkScalar filterY1 = y0 - iy0;
|
| - SkScalar filterY0 = 1.0f - filterY1;
|
| - int iy1 = SkScalarFloorToInt(y1);
|
| - int ix = SkScalarFloorToInt(span.startX());
|
| - const void* rowY0 = fAccessor.row(iy0);
|
| - const void* rowY1 = fAccessor.row(iy1);
|
| - auto lerp = [&](Sk4f* pixelY0, Sk4f* pixelY1) {
|
| - return *pixelY0 * filterY0 + *pixelY1 * filterY1;
|
| + // 1 < |dx| < 2. Going through the source pixels at a faster rate than the dest pixels, but
|
| + // still slow enough to take advantage of previous calculations.
|
| + void spanMediumRate(Span span) {
|
| + SkPoint start; SkScalar length; int count;
|
| + std::tie(start, length, count) = span;
|
| +
|
| + // Calculate the distance between each sample point.
|
| + const SkScalar dx = length / (count - 1);
|
| + SkASSERT((-2.0f < dx && dx < -1.0f) || (1.0f < dx && dx < 2.0f));
|
| +
|
| + // Generate the filter values for the top-left corner.
|
| + // Note: these values are in filter space; this has implications about how to adjust
|
| + // these values at each step. For example, as the sample point increases, the filter
|
| + // value decreases, this is because the filter and position are related by
|
| + // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
|
| + // direction of the sample point which is increasing by dx.
|
| + SkScalar filterX = sample_to_filter(X(start));
|
| + SkScalar filterY = sample_to_filter(Y(start));
|
| +
|
| + // Generate the four filter points from the sample point start. Generate the row* values.
|
| + Sk4i iXs, iYs;
|
| + this->filterPoints(start, &iXs, &iYs);
|
| + const void* const row0 = fAccessor.row(iYs[0]);
|
| + const void* const row1 = fAccessor.row(iYs[2]);
|
| +
|
| + // Generate part of the filter value at xColumn.
|
| + auto partAtColumn = [&](int xColumn) {
|
| + int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
|
| + Sk4f pxTop, pxBottom;
|
| + this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
|
| + return pxTop * filterY + (1.0f - filterY) * pxBottom;
|
| + };
|
| +
|
| + // The leftPart is made up of two pixels from the left column of the filter, right part
|
| + // is similar. The top and bottom pixels in the *Part are created as a linear blend of
|
| + // the top and bottom pixels using filterY. See the nextPart function below.
|
| + Sk4f leftPart = partAtColumn(iXs[0]);
|
| + Sk4f rightPart = partAtColumn(iXs[1]);
|
| +
|
| + // Create a destination color by blending together a left and right part using filterX.
|
| + auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
|
| + Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
|
| + return check_pixel(pixel);
|
| };
|
|
|
| - if (span.length() > 0) {
|
| - int count = span.count();
|
| + // Send the first pixel to the destination. This simplifies the loop structure so that no
|
| + // extra pixels are fetched for the last iteration of the loop.
|
| + fNext->blendPixel(bilerp(leftPart, rightPart));
|
| + count -= 1;
|
| +
|
| + if (dx > 0.0f) {
|
| + // * positive direction - generate destination pixels by sliding the filter from left
|
| + // to right.
|
| + int rightPartCursor = iXs[1];
|
| +
|
| + // Advance the filter from left to right. Remember that moving the top-left corner of
|
| + // the filter to the right actually makes the filter value smaller.
|
| + auto advanceFilter = [&]() {
|
| + filterX -= dx;
|
| + // At this point filterX is less than zero, but might actually be less than -1.
|
| + if (filterX > -1.0f) {
|
| + filterX += 1.0f;
|
| + leftPart = rightPart;
|
| + rightPartCursor += 1;
|
| + rightPart = partAtColumn(rightPartCursor);
|
| + } else {
|
| + filterX += 2.0f;
|
| + rightPartCursor += 2;
|
| + leftPart = partAtColumn(rightPartCursor - 1);
|
| + rightPart = partAtColumn(rightPartCursor);
|
| + }
|
| + SkASSERT(0.0f < filterX && filterX <= 1.0f);
|
| +
|
| + return bilerp(leftPart, rightPart);
|
| + };
|
| +
|
| while (count >= 4) {
|
| - Sk4f px00, px10, px20, px30;
|
| - fAccessor.get4Pixels(rowY0, ix, &px00, &px10, &px20, &px30);
|
| - Sk4f px01, px11, px21, px31;
|
| - fAccessor.get4Pixels(rowY1, ix, &px01, &px11, &px21, &px31);
|
| - fNext->blend4Pixels(
|
| - lerp(&px00, &px01), lerp(&px10, &px11), lerp(&px20, &px21), lerp(&px30, &px31));
|
| - ix += 4;
|
| + Sk4f px0 = advanceFilter(),
|
| + px1 = advanceFilter(),
|
| + px2 = advanceFilter(),
|
| + px3 = advanceFilter();
|
| + fNext->blend4Pixels(px0, px1, px2, px3);
|
| count -= 4;
|
| }
|
| - while (count > 0) {
|
| - Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix);
|
| - Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix);
|
|
|
| - fNext->blendPixel(lerp(&pixelY0, &pixelY1));
|
| - ix += 1;
|
| + while (count > 0) {
|
| + fNext->blendPixel(advanceFilter());
|
| count -= 1;
|
| }
|
| } else {
|
| - int count = span.count();
|
| + // * negative direction - generate destination pixels by sliding the filter from
|
| + // right to left.
|
| + int leftPartCursor = iXs[0];
|
| +
|
| + auto advanceFilter = [&]() {
|
| + // Remember, dx < 0 therefore this adds |dx| to filterX.
|
| + filterX -= dx;
|
| + // At this point, filterX is greater than one, but may actually be greater than two.
|
| + if (filterX < 2.0f) {
|
| + filterX -= 1.0f;
|
| + rightPart = leftPart;
|
| + leftPartCursor -= 1;
|
| + leftPart = partAtColumn(leftPartCursor);
|
| + } else {
|
| + filterX -= 2.0f;
|
| + leftPartCursor -= 2;
|
| + rightPart = partAtColumn(leftPartCursor - 1);
|
| + leftPart = partAtColumn(leftPartCursor);
|
| + }
|
| + SkASSERT(0.0f < filterX && filterX <= 1.0f);
|
| + return bilerp(leftPart, rightPart);
|
| + };
|
| +
|
| while (count >= 4) {
|
| - Sk4f px00, px10, px20, px30;
|
| - fAccessor.get4Pixels(rowY0, ix - 3, &px30, &px20, &px10, &px00);
|
| - Sk4f px01, px11, px21, px31;
|
| - fAccessor.get4Pixels(rowY1, ix - 3, &px31, &px21, &px11, &px01);
|
| - fNext->blend4Pixels(
|
| - lerp(&px00, &px01), lerp(&px10, &px11), lerp(&px20, &px21), lerp(&px30, &px31));
|
| - ix -= 4;
|
| + Sk4f px0 = advanceFilter(),
|
| + px1 = advanceFilter(),
|
| + px2 = advanceFilter(),
|
| + px3 = advanceFilter();
|
| + fNext->blend4Pixels(px0, px1, px2, px3);
|
| count -= 4;
|
| }
|
| - while (count > 0) {
|
| - Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix);
|
| - Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix);
|
|
|
| - fNext->blendPixel(lerp(&pixelY0, &pixelY1));
|
| - ix -= 1;
|
| + while (count > 0) {
|
| + fNext->blendPixel(advanceFilter());
|
| count -= 1;
|
| }
|
| }
|
| @@ -798,34 +1009,26 @@ private:
|
|
|
| // We're moving through source space faster than dst (zoomed out),
|
| // so we'll never reuse a source pixel or be able to do contiguous loads.
|
| - void spanFastRate(Span span, SkScalar y1) {
|
| - SkPoint start;
|
| - SkScalar length;
|
| - int count;
|
| + void spanFastRate(Span span) {
|
| + SkPoint start; SkScalar length; int count;
|
| std::tie(start, length, count) = span;
|
| SkScalar x = X(start);
|
| SkScalar y = Y(start);
|
|
|
| - // In this sampler, it is assumed that if span.StartY() and y1 are the same then both
|
| - // y-lines are on the same tile.
|
| - if (y == y1) {
|
| - // Both y-lines are on the same tile.
|
| - span_fallback(span, this);
|
| - } else {
|
| - // The y-lines are on different tiles.
|
| - SkScalar dx = length / (count - 1);
|
| - Sk4f ys = {y - 0.5f, y - 0.5f, y1 + 0.5f, y1 + 0.5f};
|
| - while (count > 0) {
|
| - Sk4f xs = Sk4f{-0.5f, 0.5f, -0.5f, 0.5f} + Sk4f{x};
|
| - this->bilerpEdge(xs, ys);
|
| - x += dx;
|
| - count -= 1;
|
| - }
|
| + SkScalar dx = length / (count - 1);
|
| + while (count > 0) {
|
| + fNext->blendPixel(this->bilerpSamplePoint(SkPoint{x, y}));
|
| + x += dx;
|
| + count -= 1;
|
| }
|
| }
|
|
|
| - Next* const fNext;
|
| - Accessor fAccessor;
|
| + Next* const fNext;
|
| + const SkShader::TileMode fXEdgeType;
|
| + const int fXMax;
|
| + const SkShader::TileMode fYEdgeType;
|
| + const int fYMax;
|
| + Accessor fAccessor;
|
| };
|
|
|
| } // namespace
|
|
|