Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: src/sksl/SkSLIRGenerator.cpp

Issue 2131223002: SkSL performance improvements (Closed) Base URL: https://skia.googlesource.com/skia@master
Patch Set: went back to pointers on global types Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright 2016 Google Inc. 2 * Copyright 2016 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkSLIRGenerator.h" 8 #include "SkSLIRGenerator.h"
9 9
10 #include "limits.h" 10 #include "limits.h"
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after
61 fIR->popSymbolTable(); 61 fIR->popSymbolTable();
62 ASSERT(fPrevious == fIR->fSymbolTable); 62 ASSERT(fPrevious == fIR->fSymbolTable);
63 } 63 }
64 64
65 IRGenerator* fIR; 65 IRGenerator* fIR;
66 std::shared_ptr<SymbolTable> fPrevious; 66 std::shared_ptr<SymbolTable> fPrevious;
67 }; 67 };
68 68
69 IRGenerator::IRGenerator(std::shared_ptr<SymbolTable> symbolTable, 69 IRGenerator::IRGenerator(std::shared_ptr<SymbolTable> symbolTable,
70 ErrorReporter& errorReporter) 70 ErrorReporter& errorReporter)
71 : fSymbolTable(std::move(symbolTable)) 71 : fCurrentFunction(nullptr)
72 , fErrors(errorReporter) { 72 , fSymbolTable(std::move(symbolTable))
73 } 73 , fErrors(errorReporter) {}
74 74
75 void IRGenerator::pushSymbolTable() { 75 void IRGenerator::pushSymbolTable() {
76 fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), fErrors)); 76 fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), fErrors));
77 } 77 }
78 78
79 void IRGenerator::popSymbolTable() { 79 void IRGenerator::popSymbolTable() {
80 fSymbolTable = fSymbolTable->fParent; 80 fSymbolTable = fSymbolTable->fParent;
81 } 81 }
82 82
83 std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& ext ension) { 83 std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& ext ension) {
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
116 std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) { 116 std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) {
117 AutoSymbolTable table(this); 117 AutoSymbolTable table(this);
118 std::vector<std::unique_ptr<Statement>> statements; 118 std::vector<std::unique_ptr<Statement>> statements;
119 for (size_t i = 0; i < block.fStatements.size(); i++) { 119 for (size_t i = 0; i < block.fStatements.size(); i++) {
120 std::unique_ptr<Statement> statement = this->convertStatement(*block.fSt atements[i]); 120 std::unique_ptr<Statement> statement = this->convertStatement(*block.fSt atements[i]);
121 if (!statement) { 121 if (!statement) {
122 return nullptr; 122 return nullptr;
123 } 123 }
124 statements.push_back(std::move(statement)); 124 statements.push_back(std::move(statement));
125 } 125 }
126 return std::unique_ptr<Block>(new Block(block.fPosition, std::move(statement s))); 126 return std::unique_ptr<Block>(new Block(block.fPosition, std::move(statement s), fSymbolTable));
127 } 127 }
128 128
129 std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement( 129 std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(
130 const ASTVarDeclar ationStatement& s) { 130 const ASTVarDeclar ationStatement& s) {
131 auto decl = this->convertVarDeclaration(*s.fDeclaration, Variable::kLocal_St orage); 131 auto decl = this->convertVarDeclaration(*s.fDeclaration, Variable::kLocal_St orage);
132 if (!decl) { 132 if (!decl) {
133 return nullptr; 133 return nullptr;
134 } 134 }
135 return std::unique_ptr<Statement>(new VarDeclarationStatement(std::move(decl ))); 135 return std::unique_ptr<Statement>(new VarDeclarationStatement(std::move(decl )));
136 } 136 }
137 137
138 Modifiers IRGenerator::convertModifiers(const ASTModifiers& modifiers) { 138 Modifiers IRGenerator::convertModifiers(const ASTModifiers& modifiers) {
139 return Modifiers(modifiers); 139 return Modifiers(modifiers);
140 } 140 }
141 141
142 std::unique_ptr<VarDeclaration> IRGenerator::convertVarDeclaration(const ASTVarD eclaration& decl, 142 std::unique_ptr<VarDeclaration> IRGenerator::convertVarDeclaration(const ASTVarD eclaration& decl,
143 Variable::Sto rage storage) { 143 Variable::Sto rage storage) {
144 std::vector<std::shared_ptr<Variable>> variables; 144 std::vector<const Variable*> variables;
145 std::vector<std::vector<std::unique_ptr<Expression>>> sizes; 145 std::vector<std::vector<std::unique_ptr<Expression>>> sizes;
146 std::vector<std::unique_ptr<Expression>> values; 146 std::vector<std::unique_ptr<Expression>> values;
147 std::shared_ptr<Type> baseType = this->convertType(*decl.fType); 147 const Type* baseType = this->convertType(*decl.fType);
148 if (!baseType) { 148 if (!baseType) {
149 return nullptr; 149 return nullptr;
150 } 150 }
151 for (size_t i = 0; i < decl.fNames.size(); i++) { 151 for (size_t i = 0; i < decl.fNames.size(); i++) {
152 Modifiers modifiers = this->convertModifiers(decl.fModifiers); 152 Modifiers modifiers = this->convertModifiers(decl.fModifiers);
153 std::shared_ptr<Type> type = baseType; 153 const Type* type = baseType;
154 ASSERT(type->kind() != Type::kArray_Kind); 154 ASSERT(type->kind() != Type::kArray_Kind);
155 std::vector<std::unique_ptr<Expression>> currentVarSizes; 155 std::vector<std::unique_ptr<Expression>> currentVarSizes;
156 for (size_t j = 0; j < decl.fSizes[i].size(); j++) { 156 for (size_t j = 0; j < decl.fSizes[i].size(); j++) {
157 if (decl.fSizes[i][j]) { 157 if (decl.fSizes[i][j]) {
158 ASTExpression& rawSize = *decl.fSizes[i][j]; 158 ASTExpression& rawSize = *decl.fSizes[i][j];
159 auto size = this->coerce(this->convertExpression(rawSize), kInt_ Type); 159 auto size = this->coerce(this->convertExpression(rawSize), *kInt _Type);
160 if (!size) { 160 if (!size) {
161 return nullptr; 161 return nullptr;
162 } 162 }
163 std::string name = type->fName; 163 std::string name = type->fName;
164 uint64_t count; 164 uint64_t count;
165 if (size->fKind == Expression::kIntLiteral_Kind) { 165 if (size->fKind == Expression::kIntLiteral_Kind) {
166 count = ((IntLiteral&) *size).fValue; 166 count = ((IntLiteral&) *size).fValue;
167 if (count <= 0) { 167 if (count <= 0) {
168 fErrors.error(size->fPosition, "array size must be posit ive"); 168 fErrors.error(size->fPosition, "array size must be posit ive");
169 } 169 }
170 name += "[" + to_string(count) + "]"; 170 name += "[" + to_string(count) + "]";
171 } else { 171 } else {
172 count = -1; 172 count = -1;
173 name += "[]"; 173 name += "[]";
174 } 174 }
175 type = std::shared_ptr<Type>(new Type(name, Type::kArray_Kind, t ype, (int) count)); 175 type = new Type(name, Type::kArray_Kind, *type, (int) count);
176 fSymbolTable->takeOwnership((Type*) type);
176 currentVarSizes.push_back(std::move(size)); 177 currentVarSizes.push_back(std::move(size));
177 } else { 178 } else {
178 type = std::shared_ptr<Type>(new Type(type->fName + "[]", Type:: kArray_Kind, type, 179 type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1 );
179 -1)); 180 fSymbolTable->takeOwnership((Type*) type);
180 currentVarSizes.push_back(nullptr); 181 currentVarSizes.push_back(nullptr);
181 } 182 }
182 } 183 }
183 sizes.push_back(std::move(currentVarSizes)); 184 sizes.push_back(std::move(currentVarSizes));
184 auto var = std::make_shared<Variable>(decl.fPosition, modifiers, decl.fN ames[i], type, 185 auto var = std::unique_ptr<Variable>(new Variable(decl.fPosition, modifi ers, decl.fNames[i],
185 storage); 186 *type, storage));
186 variables.push_back(var);
187 std::unique_ptr<Expression> value; 187 std::unique_ptr<Expression> value;
188 if (decl.fValues[i]) { 188 if (decl.fValues[i]) {
189 value = this->convertExpression(*decl.fValues[i]); 189 value = this->convertExpression(*decl.fValues[i]);
190 if (!value) { 190 if (!value) {
191 return nullptr; 191 return nullptr;
192 } 192 }
193 value = this->coerce(std::move(value), type); 193 value = this->coerce(std::move(value), *type);
194 } 194 }
195 fSymbolTable->add(var->fName, var); 195 variables.push_back(var.get());
196 fSymbolTable->add(decl.fNames[i], std::move(var));
196 values.push_back(std::move(value)); 197 values.push_back(std::move(value));
197 } 198 }
198 return std::unique_ptr<VarDeclaration>(new VarDeclaration(decl.fPosition, st d::move(variables), 199 return std::unique_ptr<VarDeclaration>(new VarDeclaration(decl.fPosition, st d::move(variables),
199 std::move(sizes), std::move(values))); 200 std::move(sizes), std::move(values)));
200 } 201 }
201 202
202 std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) { 203 std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) {
203 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.f Test), kBool_Type); 204 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.f Test), *kBool_Type);
204 if (!test) { 205 if (!test) {
205 return nullptr; 206 return nullptr;
206 } 207 }
207 std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue); 208 std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue);
208 if (!ifTrue) { 209 if (!ifTrue) {
209 return nullptr; 210 return nullptr;
210 } 211 }
211 std::unique_ptr<Statement> ifFalse; 212 std::unique_ptr<Statement> ifFalse;
212 if (s.fIfFalse) { 213 if (s.fIfFalse) {
213 ifFalse = this->convertStatement(*s.fIfFalse); 214 ifFalse = this->convertStatement(*s.fIfFalse);
214 if (!ifFalse) { 215 if (!ifFalse) {
215 return nullptr; 216 return nullptr;
216 } 217 }
217 } 218 }
218 return std::unique_ptr<Statement>(new IfStatement(s.fPosition, std::move(tes t), 219 return std::unique_ptr<Statement>(new IfStatement(s.fPosition, std::move(tes t),
219 std::move(ifTrue), std::mo ve(ifFalse))); 220 std::move(ifTrue), std::mo ve(ifFalse)));
220 } 221 }
221 222
222 std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) { 223 std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) {
223 AutoSymbolTable table(this); 224 AutoSymbolTable table(this);
224 std::unique_ptr<Statement> initializer = this->convertStatement(*f.fInitiali zer); 225 std::unique_ptr<Statement> initializer = this->convertStatement(*f.fInitiali zer);
225 if (!initializer) { 226 if (!initializer) {
226 return nullptr; 227 return nullptr;
227 } 228 }
228 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*f.f Test), kBool_Type); 229 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*f.f Test), *kBool_Type);
229 if (!test) { 230 if (!test) {
230 return nullptr; 231 return nullptr;
231 } 232 }
232 std::unique_ptr<Expression> next = this->convertExpression(*f.fNext); 233 std::unique_ptr<Expression> next = this->convertExpression(*f.fNext);
233 if (!next) { 234 if (!next) {
234 return nullptr; 235 return nullptr;
235 } 236 }
236 this->checkValid(*next); 237 this->checkValid(*next);
237 std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement) ; 238 std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement) ;
238 if (!statement) { 239 if (!statement) {
239 return nullptr; 240 return nullptr;
240 } 241 }
241 return std::unique_ptr<Statement>(new ForStatement(f.fPosition, std::move(in itializer), 242 return std::unique_ptr<Statement>(new ForStatement(f.fPosition, std::move(in itializer),
242 std::move(test), std::mov e(next), 243 std::move(test), std::mov e(next),
243 std::move(statement))); 244 std::move(statement), fSy mbolTable));
244 } 245 }
245 246
246 std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) { 247 std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) {
247 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.f Test), kBool_Type); 248 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.f Test), *kBool_Type);
248 if (!test) { 249 if (!test) {
249 return nullptr; 250 return nullptr;
250 } 251 }
251 std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement) ; 252 std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement) ;
252 if (!statement) { 253 if (!statement) {
253 return nullptr; 254 return nullptr;
254 } 255 }
255 return std::unique_ptr<Statement>(new WhileStatement(w.fPosition, std::move( test), 256 return std::unique_ptr<Statement>(new WhileStatement(w.fPosition, std::move( test),
256 std::move(statement))); 257 std::move(statement)));
257 } 258 }
258 259
259 std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) { 260 std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) {
260 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.f Test), kBool_Type); 261 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.f Test), *kBool_Type);
261 if (!test) { 262 if (!test) {
262 return nullptr; 263 return nullptr;
263 } 264 }
264 std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement) ; 265 std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement) ;
265 if (!statement) { 266 if (!statement) {
266 return nullptr; 267 return nullptr;
267 } 268 }
268 return std::unique_ptr<Statement>(new DoStatement(d.fPosition, std::move(sta tement), 269 return std::unique_ptr<Statement>(new DoStatement(d.fPosition, std::move(sta tement),
269 std::move(test))); 270 std::move(test)));
270 } 271 }
271 272
272 std::unique_ptr<Statement> IRGenerator::convertExpressionStatement( 273 std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(
273 const ASTExpre ssionStatement& s) { 274 const ASTExpre ssionStatement& s) {
274 std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression); 275 std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression);
275 if (!e) { 276 if (!e) {
276 return nullptr; 277 return nullptr;
277 } 278 }
278 this->checkValid(*e); 279 this->checkValid(*e);
279 return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e))); 280 return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
280 } 281 }
281 282
282 std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) { 283 std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) {
283 ASSERT(fCurrentFunction); 284 ASSERT(fCurrentFunction);
284 if (r.fExpression) { 285 if (r.fExpression) {
285 std::unique_ptr<Expression> result = this->convertExpression(*r.fExpress ion); 286 std::unique_ptr<Expression> result = this->convertExpression(*r.fExpress ion);
286 if (!result) { 287 if (!result) {
287 return nullptr; 288 return nullptr;
288 } 289 }
289 if (fCurrentFunction->fReturnType == kVoid_Type) { 290 if (fCurrentFunction->fReturnType == *kVoid_Type) {
290 fErrors.error(result->fPosition, "may not return a value from a void function"); 291 fErrors.error(result->fPosition, "may not return a value from a void function");
291 } else { 292 } else {
292 result = this->coerce(std::move(result), fCurrentFunction->fReturnTy pe); 293 result = this->coerce(std::move(result), fCurrentFunction->fReturnTy pe);
293 if (!result) { 294 if (!result) {
294 return nullptr; 295 return nullptr;
295 } 296 }
296 } 297 }
297 return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)) ); 298 return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)) );
298 } else { 299 } else {
299 if (fCurrentFunction->fReturnType != kVoid_Type) { 300 if (fCurrentFunction->fReturnType != *kVoid_Type) {
300 fErrors.error(r.fPosition, "expected function to return '" + 301 fErrors.error(r.fPosition, "expected function to return '" +
301 fCurrentFunction->fReturnType->descriptio n() + "'"); 302 fCurrentFunction->fReturnType.description () + "'");
302 } 303 }
303 return std::unique_ptr<Statement>(new ReturnStatement(r.fPosition)); 304 return std::unique_ptr<Statement>(new ReturnStatement(r.fPosition));
304 } 305 }
305 } 306 }
306 307
307 std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) { 308 std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) {
308 return std::unique_ptr<Statement>(new BreakStatement(b.fPosition)); 309 return std::unique_ptr<Statement>(new BreakStatement(b.fPosition));
309 } 310 }
310 311
311 std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStateme nt& c) { 312 std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStateme nt& c) {
312 return std::unique_ptr<Statement>(new ContinueStatement(c.fPosition)); 313 return std::unique_ptr<Statement>(new ContinueStatement(c.fPosition));
313 } 314 }
314 315
315 std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement & d) { 316 std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement & d) {
316 return std::unique_ptr<Statement>(new DiscardStatement(d.fPosition)); 317 return std::unique_ptr<Statement>(new DiscardStatement(d.fPosition));
317 } 318 }
318 319
319 static std::shared_ptr<Type> expand_generics(std::shared_ptr<Type> type, int i) { 320 static const Type& expand_generics(const Type& type, int i) {
320 if (type->kind() == Type::kGeneric_Kind) { 321 if (type.kind() == Type::kGeneric_Kind) {
321 return type->coercibleTypes()[i]; 322 return *type.coercibleTypes()[i];
322 } 323 }
323 return type; 324 return type;
324 } 325 }
325 326
326 static void expand_generics(FunctionDeclaration& decl, 327 static void expand_generics(const FunctionDeclaration& decl,
327 SymbolTable& symbolTable) { 328 std::shared_ptr<SymbolTable> symbolTable) {
328 for (int i = 0; i < 4; i++) { 329 for (int i = 0; i < 4; i++) {
329 std::shared_ptr<Type> returnType = expand_generics(decl.fReturnType, i); 330 const Type& returnType = expand_generics(decl.fReturnType, i);
330 std::vector<std::shared_ptr<Variable>> arguments; 331 std::vector<const Variable*> parameters;
331 for (const auto& p : decl.fParameters) { 332 for (const auto& p : decl.fParameters) {
332 arguments.push_back(std::shared_ptr<Variable>(new Variable( 333 Variable* var = new Variable(p->fPosition, Modifiers(p->fModifiers), p->fName,
333 p->fPosition , 334 expand_generics(p->fType, i),
334 Modifiers(p- >fModifiers), 335 Variable::kParameter_Storage);
335 p->fName, 336 symbolTable->takeOwnership(var);
336 expand_gener ics(p->fType, i), 337 parameters.push_back(var);
337 Variable::kP arameter_Storage)));
338 } 338 }
339 std::shared_ptr<FunctionDeclaration> expanded(new FunctionDeclaration( 339 symbolTable->add(decl.fName, std::unique_ptr<FunctionDeclaration>(new Fu nctionDeclaration(
340 decl .fPosition, 340 decl. fPosition,
341 decl .fName, 341 decl. fName,
342 std: :move(arguments), 342 std:: move(parameters),
343 std: :move(returnType))); 343 std:: move(returnType))));
344 symbolTable.add(expanded->fName, expanded);
345 } 344 }
346 } 345 }
347 346
348 std::unique_ptr<FunctionDefinition> IRGenerator::convertFunction(const ASTFuncti on& f) { 347 std::unique_ptr<FunctionDefinition> IRGenerator::convertFunction(const ASTFuncti on& f) {
349 std::shared_ptr<SymbolTable> old = fSymbolTable;
350 AutoSymbolTable table(this);
351 bool isGeneric; 348 bool isGeneric;
352 std::shared_ptr<Type> returnType = this->convertType(*f.fReturnType); 349 const Type* returnType = this->convertType(*f.fReturnType);
353 if (!returnType) { 350 if (!returnType) {
354 return nullptr; 351 return nullptr;
355 } 352 }
356 isGeneric = returnType->kind() == Type::kGeneric_Kind; 353 isGeneric = returnType->kind() == Type::kGeneric_Kind;
357 std::vector<std::shared_ptr<Variable>> parameters; 354 std::vector<const Variable*> parameters;
358 for (const auto& param : f.fParameters) { 355 for (const auto& param : f.fParameters) {
359 std::shared_ptr<Type> type = this->convertType(*param->fType); 356 const Type* type = this->convertType(*param->fType);
360 if (!type) { 357 if (!type) {
361 return nullptr; 358 return nullptr;
362 } 359 }
363 for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) { 360 for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) {
364 int size = param->fSizes[j]; 361 int size = param->fSizes[j];
365 std::string name = type->name() + "[" + to_string(size) + "]"; 362 std::string name = type->name() + "[" + to_string(size) + "]";
366 type = std::shared_ptr<Type>(new Type(std::move(name), Type::kArray_ Kind, 363 Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size);
367 std::move(type), size)); 364 fSymbolTable->takeOwnership(newType);
365 type = newType;
368 } 366 }
369 std::string name = param->fName; 367 std::string name = param->fName;
370 Modifiers modifiers = this->convertModifiers(param->fModifiers); 368 Modifiers modifiers = this->convertModifiers(param->fModifiers);
371 Position pos = param->fPosition; 369 Position pos = param->fPosition;
372 std::shared_ptr<Variable> var = std::shared_ptr<Variable>(new Variable( 370 Variable* var = new Variable(pos, modifiers, std::move(name), *type,
373 pos, 371 Variable::kParameter_Storage);
374 modifiers, 372 fSymbolTable->takeOwnership(var);
375 std::move(n ame), 373 parameters.push_back(var);
376 type,
377 Variable::k Parameter_Storage));
378 parameters.push_back(std::move(var));
379 isGeneric |= type->kind() == Type::kGeneric_Kind; 374 isGeneric |= type->kind() == Type::kGeneric_Kind;
380 } 375 }
381 376
382 // find existing declaration 377 // find existing declaration
383 std::shared_ptr<FunctionDeclaration> decl; 378 const FunctionDeclaration* decl = nullptr;
384 auto entry = (*old)[f.fName]; 379 auto entry = (*fSymbolTable)[f.fName];
385 if (entry) { 380 if (entry) {
386 std::vector<std::shared_ptr<FunctionDeclaration>> functions; 381 std::vector<const FunctionDeclaration*> functions;
387 switch (entry->fKind) { 382 switch (entry->fKind) {
388 case Symbol::kUnresolvedFunction_Kind: 383 case Symbol::kUnresolvedFunction_Kind:
389 functions = std::static_pointer_cast<UnresolvedFunction>(entry)- >fFunctions; 384 functions = ((UnresolvedFunction*) entry)->fFunctions;
390 break; 385 break;
391 case Symbol::kFunctionDeclaration_Kind: 386 case Symbol::kFunctionDeclaration_Kind:
392 functions.push_back(std::static_pointer_cast<FunctionDeclaration >(entry)); 387 functions.push_back((FunctionDeclaration*) entry);
393 break; 388 break;
394 default: 389 default:
395 fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined"); 390 fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined");
396 return nullptr; 391 return nullptr;
397 } 392 }
398 for (const auto& other : functions) { 393 for (const auto& other : functions) {
399 ASSERT(other->fName == f.fName); 394 ASSERT(other->fName == f.fName);
400 if (parameters.size() == other->fParameters.size()) { 395 if (parameters.size() == other->fParameters.size()) {
401 bool match = true; 396 bool match = true;
402 for (size_t i = 0; i < parameters.size(); i++) { 397 for (size_t i = 0; i < parameters.size(); i++) {
403 if (parameters[i]->fType != other->fParameters[i]->fType) { 398 if (parameters[i]->fType != other->fParameters[i]->fType) {
404 match = false; 399 match = false;
405 break; 400 break;
406 } 401 }
407 } 402 }
408 if (match) { 403 if (match) {
409 if (returnType != other->fReturnType) { 404 if (*returnType != other->fReturnType) {
410 FunctionDeclaration newDecl = FunctionDeclaration(f.fPos ition, 405 FunctionDeclaration newDecl(f.fPosition, f.fName, parame ters, *returnType);
411 f.fNam e,
412 parame ters,
413 return Type);
414 fErrors.error(f.fPosition, "functions '" + newDecl.descr iption() + 406 fErrors.error(f.fPosition, "functions '" + newDecl.descr iption() +
415 "' and '" + other->descriptio n() + 407 "' and '" + other->descriptio n() +
416 "' differ only in return type "); 408 "' differ only in return type ");
417 return nullptr; 409 return nullptr;
418 } 410 }
419 decl = other; 411 decl = other;
420 for (size_t i = 0; i < parameters.size(); i++) { 412 for (size_t i = 0; i < parameters.size(); i++) {
421 if (parameters[i]->fModifiers != other->fParameters[i]-> fModifiers) { 413 if (parameters[i]->fModifiers != other->fParameters[i]-> fModifiers) {
422 fErrors.error(f.fPosition, "modifiers on parameter " + 414 fErrors.error(f.fPosition, "modifiers on parameter " +
423 to_string(i + 1) + " diff er between " + 415 to_string(i + 1) + " diff er between " +
424 "declaration and definiti on"); 416 "declaration and definiti on");
425 return nullptr; 417 return nullptr;
426 } 418 }
427 fSymbolTable->add(parameters[i]->fName, decl->fParameter s[i]);
428 } 419 }
429 if (other->fDefined) { 420 if (other->fDefined) {
430 fErrors.error(f.fPosition, "duplicate definition of " + 421 fErrors.error(f.fPosition, "duplicate definition of " +
431 other->description()); 422 other->description());
432 } 423 }
433 break; 424 break;
434 } 425 }
435 } 426 }
436 } 427 }
437 } 428 }
438 if (!decl) { 429 if (!decl) {
439 // couldn't find an existing declaration 430 // couldn't find an existing declaration
440 decl.reset(new FunctionDeclaration(f.fPosition, f.fName, parameters, ret urnType)); 431 if (isGeneric) {
441 for (auto var : parameters) { 432 ASSERT(!f.fBody);
442 fSymbolTable->add(var->fName, var); 433 expand_generics(FunctionDeclaration(f.fPosition, f.fName, parameters , *returnType),
434 fSymbolTable);
435 } else {
436 auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDecl aration(
437 f.fPosition,
438 f.fName,
439 parameters,
440 *returnType));
441 decl = newDecl.get();
442 fSymbolTable->add(decl->fName, std::move(newDecl));
443 } 443 }
444 } 444 }
445 if (isGeneric) { 445 if (f.fBody) {
446 ASSERT(!f.fBody); 446 ASSERT(!fCurrentFunction);
447 expand_generics(*decl, *old); 447 fCurrentFunction = decl;
448 } else { 448 decl->fDefined = true;
449 old->add(decl->fName, decl); 449 std::shared_ptr<SymbolTable> old = fSymbolTable;
450 if (f.fBody) { 450 AutoSymbolTable table(this);
451 ASSERT(!fCurrentFunction); 451 for (size_t i = 0; i < parameters.size(); i++) {
452 fCurrentFunction = decl; 452 fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParam eters[i]);
453 decl->fDefined = true;
454 std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
455 fCurrentFunction = nullptr;
456 if (!body) {
457 return nullptr;
458 }
459 return std::unique_ptr<FunctionDefinition>(new FunctionDefinition(f. fPosition, decl,
460 st d::move(body)));
461 } 453 }
454 std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
455 fCurrentFunction = nullptr;
456 if (!body) {
457 return nullptr;
458 }
459 return std::unique_ptr<FunctionDefinition>(new FunctionDefinition(f.fPos ition, *decl,
460 std::m ove(body)));
462 } 461 }
463 return nullptr; 462 return nullptr;
464 } 463 }
465 464
466 std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInte rfaceBlock& intf) { 465 std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInte rfaceBlock& intf) {
467 std::shared_ptr<SymbolTable> old = fSymbolTable; 466 std::shared_ptr<SymbolTable> old = fSymbolTable;
468 AutoSymbolTable table(this); 467 AutoSymbolTable table(this);
469 Modifiers mods = this->convertModifiers(intf.fModifiers); 468 Modifiers mods = this->convertModifiers(intf.fModifiers);
470 std::vector<Type::Field> fields; 469 std::vector<Type::Field> fields;
471 for (size_t i = 0; i < intf.fDeclarations.size(); i++) { 470 for (size_t i = 0; i < intf.fDeclarations.size(); i++) {
472 std::unique_ptr<VarDeclaration> decl = this->convertVarDeclaration( 471 std::unique_ptr<VarDeclaration> decl = this->convertVarDeclaration(
473 *intf.f Declarations[i], 472 *intf.f Declarations[i],
474 Variabl e::kGlobal_Storage); 473 Variabl e::kGlobal_Storage);
475 for (size_t j = 0; j < decl->fVars.size(); j++) { 474 for (size_t j = 0; j < decl->fVars.size(); j++) {
476 fields.push_back(Type::Field(decl->fVars[j]->fModifiers, decl->fVars [j]->fName, 475 fields.push_back(Type::Field(decl->fVars[j]->fModifiers, decl->fVars [j]->fName,
477 decl->fVars[j]->fType)); 476 decl->fVars[j]->fType));
478 if (decl->fValues[j]) { 477 if (decl->fValues[j]) {
479 fErrors.error(decl->fPosition, 478 fErrors.error(decl->fPosition,
480 "initializers are not permitted on interface block fields"); 479 "initializers are not permitted on interface block fields");
481 } 480 }
482 if (decl->fVars[j]->fModifiers.fFlags & (Modifiers::kIn_Flag | 481 if (decl->fVars[j]->fModifiers.fFlags & (Modifiers::kIn_Flag |
483 Modifiers::kOut_Flag | 482 Modifiers::kOut_Flag |
484 Modifiers::kUniform_Flag | 483 Modifiers::kUniform_Flag |
485 Modifiers::kConst_Flag)) { 484 Modifiers::kConst_Flag)) {
486 fErrors.error(decl->fPosition, 485 fErrors.error(decl->fPosition,
487 "interface block fields may not have storage quali fiers"); 486 "interface block fields may not have storage quali fiers");
488 } 487 }
489 } 488 }
490 } 489 }
491 std::shared_ptr<Type> type = std::shared_ptr<Type>(new Type(intf.fInterfaceN ame, fields)); 490 Type* type = new Type(intf.fInterfaceName, fields);
491 fSymbolTable->takeOwnership(type);
492 std::string name = intf.fValueName.length() > 0 ? intf.fValueName : intf.fIn terfaceName; 492 std::string name = intf.fValueName.length() > 0 ? intf.fValueName : intf.fIn terfaceName;
493 std::shared_ptr<Variable> var = std::shared_ptr<Variable>(new Variable(intf. fPosition, mods, 493 Variable* var = new Variable(intf.fPosition, mods, name, *type, Variable::kG lobal_Storage);
494 name, type, 494 fSymbolTable->takeOwnership(var);
495 Variable::kGloba l_Storage));
496 if (intf.fValueName.length()) { 495 if (intf.fValueName.length()) {
497 old->add(intf.fValueName, var); 496 old->addWithoutOwnership(intf.fValueName, var);
498
499 } else { 497 } else {
500 for (size_t i = 0; i < fields.size(); i++) { 498 for (size_t i = 0; i < fields.size(); i++) {
501 std::shared_ptr<Field> field = std::shared_ptr<Field>(new Field(intf .fPosition, var, 499 old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fPos ition, *var,
502 (int ) i)); 500 (int) i)) );
503 old->add(fields[i].fName, field);
504 } 501 }
505 } 502 }
506 return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fPosition, va r)); 503 return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fPosition, *v ar, fSymbolTable));
507 } 504 }
508 505
509 std::shared_ptr<Type> IRGenerator::convertType(const ASTType& type) { 506 const Type* IRGenerator::convertType(const ASTType& type) {
510 std::shared_ptr<Symbol> result = (*fSymbolTable)[type.fName]; 507 const Symbol* result = (*fSymbolTable)[type.fName];
511 if (result && result->fKind == Symbol::kType_Kind) { 508 if (result && result->fKind == Symbol::kType_Kind) {
512 return std::static_pointer_cast<Type>(result); 509 return (const Type*) result;
513 } 510 }
514 fErrors.error(type.fPosition, "unknown type '" + type.fName + "'"); 511 fErrors.error(type.fPosition, "unknown type '" + type.fName + "'");
515 return nullptr; 512 return nullptr;
516 } 513 }
517 514
518 std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) { 515 std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) {
519 switch (expr.fKind) { 516 switch (expr.fKind) {
520 case ASTExpression::kIdentifier_Kind: 517 case ASTExpression::kIdentifier_Kind:
521 return this->convertIdentifier((ASTIdentifier&) expr); 518 return this->convertIdentifier((ASTIdentifier&) expr);
522 case ASTExpression::kBool_Kind: 519 case ASTExpression::kBool_Kind:
(...skipping 12 matching lines...) Expand all
535 case ASTExpression::kSuffix_Kind: 532 case ASTExpression::kSuffix_Kind:
536 return this->convertSuffixExpression((ASTSuffixExpression&) expr); 533 return this->convertSuffixExpression((ASTSuffixExpression&) expr);
537 case ASTExpression::kTernary_Kind: 534 case ASTExpression::kTernary_Kind:
538 return this->convertTernaryExpression((ASTTernaryExpression&) expr); 535 return this->convertTernaryExpression((ASTTernaryExpression&) expr);
539 default: 536 default:
540 ABORT("unsupported expression type: %d\n", expr.fKind); 537 ABORT("unsupported expression type: %d\n", expr.fKind);
541 } 538 }
542 } 539 }
543 540
544 std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) { 541 std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) {
545 std::shared_ptr<Symbol> result = (*fSymbolTable)[identifier.fText]; 542 const Symbol* result = (*fSymbolTable)[identifier.fText];
546 if (!result) { 543 if (!result) {
547 fErrors.error(identifier.fPosition, "unknown identifier '" + identifier. fText + "'"); 544 fErrors.error(identifier.fPosition, "unknown identifier '" + identifier. fText + "'");
548 return nullptr; 545 return nullptr;
549 } 546 }
550 switch (result->fKind) { 547 switch (result->fKind) {
551 case Symbol::kFunctionDeclaration_Kind: { 548 case Symbol::kFunctionDeclaration_Kind: {
552 std::vector<std::shared_ptr<FunctionDeclaration>> f = { 549 std::vector<const FunctionDeclaration*> f = {
553 std::static_pointer_cast<FunctionDeclaration>(result) 550 (const FunctionDeclaration*) result
554 }; 551 };
555 return std::unique_ptr<FunctionReference>(new FunctionReference(iden tifier.fPosition, 552 return std::unique_ptr<FunctionReference>(new FunctionReference(iden tifier.fPosition,
556 std: :move(f))); 553 f));
557 } 554 }
558 case Symbol::kUnresolvedFunction_Kind: { 555 case Symbol::kUnresolvedFunction_Kind: {
559 auto f = std::static_pointer_cast<UnresolvedFunction>(result); 556 const UnresolvedFunction* f = (const UnresolvedFunction*) result;
560 return std::unique_ptr<FunctionReference>(new FunctionReference(iden tifier.fPosition, 557 return std::unique_ptr<FunctionReference>(new FunctionReference(iden tifier.fPosition,
561 f->f Functions)); 558 f->f Functions));
562 } 559 }
563 case Symbol::kVariable_Kind: { 560 case Symbol::kVariable_Kind: {
564 std::shared_ptr<Variable> var = std::static_pointer_cast<Variable>(r esult); 561 const Variable* var = (const Variable*) result;
565 this->markReadFrom(var); 562 this->markReadFrom(*var);
566 return std::unique_ptr<VariableReference>(new VariableReference(iden tifier.fPosition, 563 return std::unique_ptr<VariableReference>(new VariableReference(iden tifier.fPosition,
567 std: :move(var))); 564 *var ));
568 } 565 }
569 case Symbol::kField_Kind: { 566 case Symbol::kField_Kind: {
570 std::shared_ptr<Field> field = std::static_pointer_cast<Field>(resul t); 567 const Field* field = (const Field*) result;
571 VariableReference* base = new VariableReference(identifier.fPosition , field->fOwner); 568 VariableReference* base = new VariableReference(identifier.fPosition , field->fOwner);
572 return std::unique_ptr<Expression>(new FieldAccess(std::unique_ptr<E xpression>(base), 569 return std::unique_ptr<Expression>(new FieldAccess(std::unique_ptr<E xpression>(base),
573 field->fFieldInde x)); 570 field->fFieldInde x));
574 } 571 }
575 case Symbol::kType_Kind: { 572 case Symbol::kType_Kind: {
576 auto t = std::static_pointer_cast<Type>(result); 573 const Type* t = (const Type*) result;
577 return std::unique_ptr<TypeReference>(new TypeReference(identifier.f Position, 574 return std::unique_ptr<TypeReference>(new TypeReference(identifier.f Position,
578 std::move(t) )); 575 *t));
579 } 576 }
580 default: 577 default:
581 ABORT("unsupported symbol type %d\n", result->fKind); 578 ABORT("unsupported symbol type %d\n", result->fKind);
582 } 579 }
583 580
584 } 581 }
585 582
586 std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr , 583 std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr ,
587 std::shared_ptr<Type> type) { 584 const Type& type) {
588 if (!expr) { 585 if (!expr) {
589 return nullptr; 586 return nullptr;
590 } 587 }
591 if (*expr->fType == *type) { 588 if (expr->fType == type) {
592 return expr; 589 return expr;
593 } 590 }
594 this->checkValid(*expr); 591 this->checkValid(*expr);
595 if (*expr->fType == *kInvalid_Type) { 592 if (expr->fType == *kInvalid_Type) {
596 return nullptr; 593 return nullptr;
597 } 594 }
598 if (!expr->fType->canCoerceTo(type)) { 595 if (!expr->fType.canCoerceTo(type)) {
599 fErrors.error(expr->fPosition, "expected '" + type->description() + "', but found '" + 596 fErrors.error(expr->fPosition, "expected '" + type.description() + "', b ut found '" +
600 expr->fType->description() + "'"); 597 expr->fType.description() + "'");
601 return nullptr; 598 return nullptr;
602 } 599 }
603 if (type->kind() == Type::kScalar_Kind) { 600 if (type.kind() == Type::kScalar_Kind) {
604 std::vector<std::unique_ptr<Expression>> args; 601 std::vector<std::unique_ptr<Expression>> args;
605 args.push_back(std::move(expr)); 602 args.push_back(std::move(expr));
606 ASTIdentifier id(Position(), type->description()); 603 ASTIdentifier id(Position(), type.description());
607 std::unique_ptr<Expression> ctor = this->convertIdentifier(id); 604 std::unique_ptr<Expression> ctor = this->convertIdentifier(id);
608 ASSERT(ctor); 605 ASSERT(ctor);
609 return this->call(Position(), std::move(ctor), std::move(args)); 606 return this->call(Position(), std::move(ctor), std::move(args));
610 } 607 }
611 ABORT("cannot coerce %s to %s", expr->fType->description().c_str(), 608 ABORT("cannot coerce %s to %s", expr->fType.description().c_str(),
612 type->description().c_str()); 609 type.description().c_str());
613 } 610 }
614 611
615 /** 612 /**
616 * Determines the operand and result types of a binary expression. Returns true if the expression is 613 * Determines the operand and result types of a binary expression. Returns true if the expression is
617 * legal, false otherwise. If false, the values of the out parameters are undefi ned. 614 * legal, false otherwise. If false, the values of the out parameters are undefi ned.
618 */ 615 */
619 static bool determine_binary_type(Token::Kind op, std::shared_ptr<Type> left, 616 static bool determine_binary_type(Token::Kind op, const Type& left, const Type& right,
620 std::shared_ptr<Type> right, 617 const Type** outLeftType,
621 std::shared_ptr<Type>* outLeftType, 618 const Type** outRightType,
622 std::shared_ptr<Type>* outRightType, 619 const Type** outResultType,
623 std::shared_ptr<Type>* outResultType,
624 bool tryFlipped) { 620 bool tryFlipped) {
625 bool isLogical; 621 bool isLogical;
626 switch (op) { 622 switch (op) {
627 case Token::EQEQ: // fall through 623 case Token::EQEQ: // fall through
628 case Token::NEQ: // fall through 624 case Token::NEQ: // fall through
629 case Token::LT: // fall through 625 case Token::LT: // fall through
630 case Token::GT: // fall through 626 case Token::GT: // fall through
631 case Token::LTEQ: // fall through 627 case Token::LTEQ: // fall through
632 case Token::GTEQ: 628 case Token::GTEQ:
633 isLogical = true; 629 isLogical = true;
634 break; 630 break;
635 case Token::LOGICALOR: // fall through 631 case Token::LOGICALOR: // fall through
636 case Token::LOGICALAND: // fall through 632 case Token::LOGICALAND: // fall through
637 case Token::LOGICALXOR: // fall through 633 case Token::LOGICALXOR: // fall through
638 case Token::LOGICALOREQ: // fall through 634 case Token::LOGICALOREQ: // fall through
639 case Token::LOGICALANDEQ: // fall through 635 case Token::LOGICALANDEQ: // fall through
640 case Token::LOGICALXOREQ: 636 case Token::LOGICALXOREQ:
641 *outLeftType = kBool_Type; 637 *outLeftType = kBool_Type;
642 *outRightType = kBool_Type; 638 *outRightType = kBool_Type;
643 *outResultType = kBool_Type; 639 *outResultType = kBool_Type;
644 return left->canCoerceTo(kBool_Type) && right->canCoerceTo(kBool_Typ e); 640 return left.canCoerceTo(*kBool_Type) && right.canCoerceTo(*kBool_Typ e);
645 case Token::STAR: // fall through 641 case Token::STAR: // fall through
646 case Token::STAREQ: 642 case Token::STAREQ:
647 // FIXME need to handle non-square matrices 643 // FIXME need to handle non-square matrices
648 if (left->kind() == Type::kMatrix_Kind && right->kind() == Type::kVe ctor_Kind) { 644 if (left.kind() == Type::kMatrix_Kind && right.kind() == Type::kVect or_Kind) {
649 *outLeftType = left; 645 *outLeftType = &left;
650 *outRightType = right; 646 *outRightType = &right;
651 *outResultType = right; 647 *outResultType = &right;
652 return left->rows() == right->columns(); 648 return left.rows() == right.columns();
653 } 649 }
654 if (left->kind() == Type::kVector_Kind && right->kind() == Type::kMa trix_Kind) { 650 if (left.kind() == Type::kVector_Kind && right.kind() == Type::kMatr ix_Kind) {
655 *outLeftType = left; 651 *outLeftType = &left;
656 *outRightType = right; 652 *outRightType = &right;
657 *outResultType = left; 653 *outResultType = &left;
658 return left->columns() == right->columns(); 654 return left.columns() == right.columns();
659 } 655 }
660 // fall through 656 // fall through
661 default: 657 default:
662 isLogical = false; 658 isLogical = false;
663 } 659 }
664 // FIXME: need to disallow illegal operations like vec3 > vec3. Also do not currently have 660 // FIXME: need to disallow illegal operations like vec3 > vec3. Also do not currently have
665 // full support for numbers other than float. 661 // full support for numbers other than float.
666 if (left == right) { 662 if (left == right) {
667 *outLeftType = left; 663 *outLeftType = &left;
668 *outRightType = left; 664 *outRightType = &left;
669 if (isLogical) { 665 if (isLogical) {
670 *outResultType = kBool_Type; 666 *outResultType = kBool_Type;
671 } else { 667 } else {
672 *outResultType = left; 668 *outResultType = &left;
673 } 669 }
674 return true; 670 return true;
675 } 671 }
676 // FIXME: incorrect for shift operations 672 // FIXME: incorrect for shift operations
677 if (left->canCoerceTo(right)) { 673 if (left.canCoerceTo(right)) {
678 *outLeftType = right; 674 *outLeftType = &right;
679 *outRightType = right; 675 *outRightType = &right;
680 if (isLogical) { 676 if (isLogical) {
681 *outResultType = kBool_Type; 677 *outResultType = kBool_Type;
682 } else { 678 } else {
683 *outResultType = right; 679 *outResultType = &right;
684 } 680 }
685 return true; 681 return true;
686 } 682 }
687 if ((left->kind() == Type::kVector_Kind || left->kind() == Type::kMatrix_Kin d) && 683 if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) &&
688 (right->kind() == Type::kScalar_Kind)) { 684 (right.kind() == Type::kScalar_Kind)) {
689 if (determine_binary_type(op, left->componentType(), right, outLeftType, outRightType, 685 if (determine_binary_type(op, left.componentType(), right, outLeftType, outRightType,
690 outResultType, false)) { 686 outResultType, false)) {
691 *outLeftType = (*outLeftType)->toCompound(left->columns(), left->row s()); 687 *outLeftType = &(*outLeftType)->toCompound(left.columns(), left.rows ());
692 if (!isLogical) { 688 if (!isLogical) {
693 *outResultType = (*outResultType)->toCompound(left->columns(), l eft->rows()); 689 *outResultType = &(*outResultType)->toCompound(left.columns(), l eft.rows());
694 } 690 }
695 return true; 691 return true;
696 } 692 }
697 return false; 693 return false;
698 } 694 }
699 if (tryFlipped) { 695 if (tryFlipped) {
700 return determine_binary_type(op, right, left, outRightType, outLeftType, outResultType, 696 return determine_binary_type(op, right, left, outRightType, outLeftType, outResultType,
701 false); 697 false);
702 } 698 }
703 return false; 699 return false;
704 } 700 }
705 701
706 std::unique_ptr<Expression> IRGenerator::convertBinaryExpression( 702 std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
707 const ASTBinaryExpre ssion& expression) { 703 const ASTBinaryExpre ssion& expression) {
708 std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft ); 704 std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft );
709 if (!left) { 705 if (!left) {
710 return nullptr; 706 return nullptr;
711 } 707 }
712 std::unique_ptr<Expression> right = this->convertExpression(*expression.fRig ht); 708 std::unique_ptr<Expression> right = this->convertExpression(*expression.fRig ht);
713 if (!right) { 709 if (!right) {
714 return nullptr; 710 return nullptr;
715 } 711 }
716 std::shared_ptr<Type> leftType; 712 const Type* leftType;
717 std::shared_ptr<Type> rightType; 713 const Type* rightType;
718 std::shared_ptr<Type> resultType; 714 const Type* resultType;
719 if (!determine_binary_type(expression.fOperator, left->fType, right->fType, &leftType, 715 if (!determine_binary_type(expression.fOperator, left->fType, right->fType, &leftType,
720 &rightType, &resultType, true)) { 716 &rightType, &resultType, true)) {
721 fErrors.error(expression.fPosition, "type mismatch: '" + 717 fErrors.error(expression.fPosition, "type mismatch: '" +
722 Token::OperatorName(expression.fOper ator) + 718 Token::OperatorName(expression.fOper ator) +
723 "' cannot operate on '" + left->fTyp e->fName + 719 "' cannot operate on '" + left->fTyp e.fName +
724 "', '" + right->fType->fName + "'"); 720 "', '" + right->fType.fName + "'");
725 return nullptr; 721 return nullptr;
726 } 722 }
727 switch (expression.fOperator) { 723 switch (expression.fOperator) {
728 case Token::EQ: // fall through 724 case Token::EQ: // fall through
729 case Token::PLUSEQ: // fall through 725 case Token::PLUSEQ: // fall through
730 case Token::MINUSEQ: // fall through 726 case Token::MINUSEQ: // fall through
731 case Token::STAREQ: // fall through 727 case Token::STAREQ: // fall through
732 case Token::SLASHEQ: // fall through 728 case Token::SLASHEQ: // fall through
733 case Token::PERCENTEQ: // fall through 729 case Token::PERCENTEQ: // fall through
734 case Token::SHLEQ: // fall through 730 case Token::SHLEQ: // fall through
735 case Token::SHREQ: // fall through 731 case Token::SHREQ: // fall through
736 case Token::BITWISEOREQ: // fall through 732 case Token::BITWISEOREQ: // fall through
737 case Token::BITWISEXOREQ: // fall through 733 case Token::BITWISEXOREQ: // fall through
738 case Token::BITWISEANDEQ: // fall through 734 case Token::BITWISEANDEQ: // fall through
739 case Token::LOGICALOREQ: // fall through 735 case Token::LOGICALOREQ: // fall through
740 case Token::LOGICALXOREQ: // fall through 736 case Token::LOGICALXOREQ: // fall through
741 case Token::LOGICALANDEQ: 737 case Token::LOGICALANDEQ:
742 this->markWrittenTo(*left); 738 this->markWrittenTo(*left);
743 default: 739 default:
744 break; 740 break;
745 } 741 }
746 return std::unique_ptr<Expression>(new BinaryExpression(expression.fPosition , 742 return std::unique_ptr<Expression>(new BinaryExpression(expression.fPosition ,
747 this->coerce(std::mo ve(left), leftType), 743 this->coerce(std::mo ve(left),
744 *leftTy pe),
748 expression.fOperator , 745 expression.fOperator ,
749 this->coerce(std::mo ve(right), 746 this->coerce(std::mo ve(right),
750 rightTy pe), 747 *rightT ype),
751 resultType)); 748 *resultType));
752 } 749 }
753 750
754 std::unique_ptr<Expression> IRGenerator::convertTernaryExpression( 751 std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
755 const ASTTernaryExpre ssion& expression) { 752 const ASTTernaryExpre ssion& expression) {
756 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*exp ression.fTest), 753 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*exp ression.fTest),
757 kBool_Type); 754 *kBool_Type);
758 if (!test) { 755 if (!test) {
759 return nullptr; 756 return nullptr;
760 } 757 }
761 std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIf True); 758 std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIf True);
762 if (!ifTrue) { 759 if (!ifTrue) {
763 return nullptr; 760 return nullptr;
764 } 761 }
765 std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fI fFalse); 762 std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fI fFalse);
766 if (!ifFalse) { 763 if (!ifFalse) {
767 return nullptr; 764 return nullptr;
768 } 765 }
769 std::shared_ptr<Type> trueType; 766 const Type* trueType;
770 std::shared_ptr<Type> falseType; 767 const Type* falseType;
771 std::shared_ptr<Type> resultType; 768 const Type* resultType;
772 if (!determine_binary_type(Token::EQEQ, ifTrue->fType, ifFalse->fType, &true Type, 769 if (!determine_binary_type(Token::EQEQ, ifTrue->fType, ifFalse->fType, &true Type,
773 &falseType, &resultType, true)) { 770 &falseType, &resultType, true)) {
774 fErrors.error(expression.fPosition, "ternary operator result mismatch: ' " + 771 fErrors.error(expression.fPosition, "ternary operator result mismatch: ' " +
775 ifTrue->fType->fName + "', '" + 772 ifTrue->fType.fName + "', '" +
776 ifFalse->fType->fName + "'"); 773 ifFalse->fType.fName + "'");
777 return nullptr; 774 return nullptr;
778 } 775 }
779 ASSERT(trueType == falseType); 776 ASSERT(trueType == falseType);
780 ifTrue = this->coerce(std::move(ifTrue), trueType); 777 ifTrue = this->coerce(std::move(ifTrue), *trueType);
781 ifFalse = this->coerce(std::move(ifFalse), falseType); 778 ifFalse = this->coerce(std::move(ifFalse), *falseType);
782 return std::unique_ptr<Expression>(new TernaryExpression(expression.fPositio n, 779 return std::unique_ptr<Expression>(new TernaryExpression(expression.fPositio n,
783 std::move(test), 780 std::move(test),
784 std::move(ifTrue), 781 std::move(ifTrue),
785 std::move(ifFalse)) ); 782 std::move(ifFalse)) );
786 } 783 }
787 784
788 std::unique_ptr<Expression> IRGenerator::call( 785 std::unique_ptr<Expression> IRGenerator::call(Position position,
789 Position position, 786 const FunctionDeclaration& functio n,
790 std::shared_ptr<FunctionDeclaration> fu nction, 787 std::vector<std::unique_ptr<Expres sion>> arguments) {
791 std::vector<std::unique_ptr<Expression> > arguments) { 788 if (function.fParameters.size() != arguments.size()) {
792 if (function->fParameters.size() != arguments.size()) { 789 std::string msg = "call to '" + function.fName + "' expected " +
793 std::string msg = "call to '" + function->fName + "' expected " + 790 to_string(function.fParameters.size()) +
794 to_string(function->fParameters.size()) +
795 " argument"; 791 " argument";
796 if (function->fParameters.size() != 1) { 792 if (function.fParameters.size() != 1) {
797 msg += "s"; 793 msg += "s";
798 } 794 }
799 msg += ", but found " + to_string(arguments.size()); 795 msg += ", but found " + to_string(arguments.size());
800 fErrors.error(position, msg); 796 fErrors.error(position, msg);
801 return nullptr; 797 return nullptr;
802 } 798 }
803 for (size_t i = 0; i < arguments.size(); i++) { 799 for (size_t i = 0; i < arguments.size(); i++) {
804 arguments[i] = this->coerce(std::move(arguments[i]), function->fParamete rs[i]->fType); 800 arguments[i] = this->coerce(std::move(arguments[i]), function.fParameter s[i]->fType);
805 if (arguments[i] && (function->fParameters[i]->fModifiers.fFlags & Modif iers::kOut_Flag)) { 801 if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifi ers::kOut_Flag)) {
806 this->markWrittenTo(*arguments[i]); 802 this->markWrittenTo(*arguments[i]);
807 } 803 }
808 } 804 }
809 return std::unique_ptr<FunctionCall>(new FunctionCall(position, std::move(fu nction), 805 return std::unique_ptr<FunctionCall>(new FunctionCall(position, function,
810 std::move(arguments))) ; 806 std::move(arguments))) ;
811 } 807 }
812 808
813 /** 809 /**
814 * Determines the cost of coercing the arguments of a function to the required t ypes. Returns true 810 * Determines the cost of coercing the arguments of a function to the required t ypes. Returns true
815 * if the cost could be computed, false if the call is not valid. Cost has no pa rticular meaning 811 * if the cost could be computed, false if the call is not valid. Cost has no pa rticular meaning
816 * other than "lower costs are preferred". 812 * other than "lower costs are preferred".
817 */ 813 */
818 bool IRGenerator::determineCallCost(std::shared_ptr<FunctionDeclaration> functio n, 814 bool IRGenerator::determineCallCost(const FunctionDeclaration& function,
819 const std::vector<std::unique_ptr<Expression >>& arguments, 815 const std::vector<std::unique_ptr<Expression >>& arguments,
820 int* outCost) { 816 int* outCost) {
821 if (function->fParameters.size() != arguments.size()) { 817 if (function.fParameters.size() != arguments.size()) {
822 return false; 818 return false;
823 } 819 }
824 int total = 0; 820 int total = 0;
825 for (size_t i = 0; i < arguments.size(); i++) { 821 for (size_t i = 0; i < arguments.size(); i++) {
826 int cost; 822 int cost;
827 if (arguments[i]->fType->determineCoercionCost(function->fParameters[i]- >fType, &cost)) { 823 if (arguments[i]->fType.determineCoercionCost(function.fParameters[i]->f Type, &cost)) {
828 total += cost; 824 total += cost;
829 } else { 825 } else {
830 return false; 826 return false;
831 } 827 }
832 } 828 }
833 *outCost = total; 829 *outCost = total;
834 return true; 830 return true;
835 } 831 }
836 832
837 std::unique_ptr<Expression> IRGenerator::call(Position position, 833 std::unique_ptr<Expression> IRGenerator::call(Position position,
838 std::unique_ptr<Expression> functi onValue, 834 std::unique_ptr<Expression> functi onValue,
839 std::vector<std::unique_ptr<Expres sion>> arguments) { 835 std::vector<std::unique_ptr<Expres sion>> arguments) {
840 if (functionValue->fKind == Expression::kTypeReference_Kind) { 836 if (functionValue->fKind == Expression::kTypeReference_Kind) {
841 return this->convertConstructor(position, 837 return this->convertConstructor(position,
842 ((TypeReference&) *functionValue).fValue , 838 ((TypeReference&) *functionValue).fValue ,
843 std::move(arguments)); 839 std::move(arguments));
844 } 840 }
845 if (functionValue->fKind != Expression::kFunctionReference_Kind) { 841 if (functionValue->fKind != Expression::kFunctionReference_Kind) {
846 fErrors.error(position, "'" + functionValue->description() + "' is not a function"); 842 fErrors.error(position, "'" + functionValue->description() + "' is not a function");
847 return nullptr; 843 return nullptr;
848 } 844 }
849 FunctionReference* ref = (FunctionReference*) functionValue.get(); 845 FunctionReference* ref = (FunctionReference*) functionValue.get();
850 int bestCost = INT_MAX; 846 int bestCost = INT_MAX;
851 std::shared_ptr<FunctionDeclaration> best; 847 const FunctionDeclaration* best = nullptr;
852 if (ref->fFunctions.size() > 1) { 848 if (ref->fFunctions.size() > 1) {
853 for (const auto& f : ref->fFunctions) { 849 for (const auto& f : ref->fFunctions) {
854 int cost; 850 int cost;
855 if (this->determineCallCost(f, arguments, &cost) && cost < bestCost) { 851 if (this->determineCallCost(*f, arguments, &cost) && cost < bestCost ) {
856 bestCost = cost; 852 bestCost = cost;
857 best = f; 853 best = f;
858 } 854 }
859 } 855 }
860 if (best) { 856 if (best) {
861 return this->call(position, std::move(best), std::move(arguments)); 857 return this->call(position, *best, std::move(arguments));
862 } 858 }
863 std::string msg = "no match for " + ref->fFunctions[0]->fName + "("; 859 std::string msg = "no match for " + ref->fFunctions[0]->fName + "(";
864 std::string separator = ""; 860 std::string separator = "";
865 for (size_t i = 0; i < arguments.size(); i++) { 861 for (size_t i = 0; i < arguments.size(); i++) {
866 msg += separator; 862 msg += separator;
867 separator = ", "; 863 separator = ", ";
868 msg += arguments[i]->fType->description(); 864 msg += arguments[i]->fType.description();
869 } 865 }
870 msg += ")"; 866 msg += ")";
871 fErrors.error(position, msg); 867 fErrors.error(position, msg);
872 return nullptr; 868 return nullptr;
873 } 869 }
874 return this->call(position, ref->fFunctions[0], std::move(arguments)); 870 return this->call(position, *ref->fFunctions[0], std::move(arguments));
875 } 871 }
876 872
877 std::unique_ptr<Expression> IRGenerator::convertConstructor( 873 std::unique_ptr<Expression> IRGenerator::convertConstructor(
878 Position position, 874 Position position,
879 std::shared_ptr<Type> type, 875 const Type& type,
880 std::vector<std::unique_ptr< Expression>> args) { 876 std::vector<std::unique_ptr< Expression>> args) {
881 // FIXME: add support for structs and arrays 877 // FIXME: add support for structs and arrays
882 Type::Kind kind = type->kind(); 878 Type::Kind kind = type.kind();
883 if (!type->isNumber() && kind != Type::kVector_Kind && kind != Type::kMatrix _Kind) { 879 if (!type.isNumber() && kind != Type::kVector_Kind && kind != Type::kMatrix_ Kind) {
884 fErrors.error(position, "cannot construct '" + type->description() + "'" ); 880 fErrors.error(position, "cannot construct '" + type.description() + "'") ;
885 return nullptr; 881 return nullptr;
886 } 882 }
887 if (type == kFloat_Type && args.size() == 1 && 883 if (type == *kFloat_Type && args.size() == 1 &&
888 args[0]->fKind == Expression::kIntLiteral_Kind) { 884 args[0]->fKind == Expression::kIntLiteral_Kind) {
889 int64_t value = ((IntLiteral&) *args[0]).fValue; 885 int64_t value = ((IntLiteral&) *args[0]).fValue;
890 return std::unique_ptr<Expression>(new FloatLiteral(position, (double) v alue)); 886 return std::unique_ptr<Expression>(new FloatLiteral(position, (double) v alue));
891 } 887 }
892 if (args.size() == 1 && args[0]->fType == type) { 888 if (args.size() == 1 && args[0]->fType == type) {
893 // argument is already the right type, just return it 889 // argument is already the right type, just return it
894 return std::move(args[0]); 890 return std::move(args[0]);
895 } 891 }
896 if (type->isNumber()) { 892 if (type.isNumber()) {
897 if (args.size() != 1) { 893 if (args.size() != 1) {
898 fErrors.error(position, "invalid arguments to '" + type->description () + 894 fErrors.error(position, "invalid arguments to '" + type.description( ) +
899 "' constructor, (expected exactly 1 argument , but found " + 895 "' constructor, (expected exactly 1 argument , but found " +
900 to_string(args.size()) + ")"); 896 to_string(args.size()) + ")");
901 } 897 }
902 if (args[0]->fType == kBool_Type) { 898 if (args[0]->fType == *kBool_Type) {
903 std::unique_ptr<IntLiteral> zero(new IntLiteral(position, 0)); 899 std::unique_ptr<IntLiteral> zero(new IntLiteral(position, 0));
904 std::unique_ptr<IntLiteral> one(new IntLiteral(position, 1)); 900 std::unique_ptr<IntLiteral> one(new IntLiteral(position, 1));
905 return std::unique_ptr<Expression>( 901 return std::unique_ptr<Expression>(
906 new TernaryExpression(position, std::mo ve(args[0]), 902 new TernaryExpression(position, std::mo ve(args[0]),
907 this->coerce(std: :move(one), type), 903 this->coerce(std: :move(one), type),
908 this->coerce(std: :move(zero), 904 this->coerce(std: :move(zero),
909 type ))); 905 type )));
910 } else if (!args[0]->fType->isNumber()) { 906 } else if (!args[0]->fType.isNumber()) {
911 fErrors.error(position, "invalid argument to '" + type->description( ) + 907 fErrors.error(position, "invalid argument to '" + type.description() +
912 "' constructor (expected a number or bool, b ut found '" + 908 "' constructor (expected a number or bool, b ut found '" +
913 args[0]->fType->description() + "')"); 909 args[0]->fType.description() + "')");
914 } 910 }
915 } else { 911 } else {
916 ASSERT(kind == Type::kVector_Kind || kind == Type::kMatrix_Kind); 912 ASSERT(kind == Type::kVector_Kind || kind == Type::kMatrix_Kind);
917 int actual = 0; 913 int actual = 0;
918 for (size_t i = 0; i < args.size(); i++) { 914 for (size_t i = 0; i < args.size(); i++) {
919 if (args[i]->fType->kind() == Type::kVector_Kind || 915 if (args[i]->fType.kind() == Type::kVector_Kind ||
920 args[i]->fType->kind() == Type::kMatrix_Kind) { 916 args[i]->fType.kind() == Type::kMatrix_Kind) {
921 int columns = args[i]->fType->columns(); 917 int columns = args[i]->fType.columns();
922 int rows = args[i]->fType->rows(); 918 int rows = args[i]->fType.rows();
923 args[i] = this->coerce(std::move(args[i]), 919 args[i] = this->coerce(std::move(args[i]),
924 type->componentType()->toCompound(columns , rows)); 920 type.componentType().toCompound(columns, rows));
925 actual += args[i]->fType->rows() * args[i]->fType->columns(); 921 actual += args[i]->fType.rows() * args[i]->fType.columns();
926 } else if (args[i]->fType->kind() == Type::kScalar_Kind) { 922 } else if (args[i]->fType.kind() == Type::kScalar_Kind) {
927 actual += 1; 923 actual += 1;
928 if (type->kind() != Type::kScalar_Kind) { 924 if (type.kind() != Type::kScalar_Kind) {
929 args[i] = this->coerce(std::move(args[i]), type->componentTy pe()); 925 args[i] = this->coerce(std::move(args[i]), type.componentTyp e());
930 } 926 }
931 } else { 927 } else {
932 fErrors.error(position, "'" + args[i]->fType->description() + "' is not a valid " 928 fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid "
933 "parameter to '" + type->description() + "' constructor"); 929 "parameter to '" + type.description() + "' constructor");
934 return nullptr; 930 return nullptr;
935 } 931 }
936 } 932 }
937 int min = type->rows() * type->columns(); 933 int min = type.rows() * type.columns();
938 int max = type->columns() > 1 ? INT_MAX : min; 934 int max = type.columns() > 1 ? INT_MAX : min;
939 if ((actual < min || actual > max) && 935 if ((actual < min || actual > max) &&
940 !((kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) && (act ual == 1))) { 936 !((kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) && (act ual == 1))) {
941 fErrors.error(position, "invalid arguments to '" + type->description () + 937 fErrors.error(position, "invalid arguments to '" + type.description( ) +
942 "' constructor (expected " + to_string(min) + " scalar" + 938 "' constructor (expected " + to_string(min) + " scalar" +
943 (min == 1 ? "" : "s") + ", but found " + to_ string(actual) + 939 (min == 1 ? "" : "s") + ", but found " + to_ string(actual) +
944 ")"); 940 ")");
945 return nullptr; 941 return nullptr;
946 } 942 }
947 } 943 }
948 return std::unique_ptr<Expression>(new Constructor(position, std::move(type) , std::move(args))); 944 return std::unique_ptr<Expression>(new Constructor(position, std::move(type) , std::move(args)));
949 } 945 }
950 946
951 std::unique_ptr<Expression> IRGenerator::convertPrefixExpression( 947 std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(
952 const ASTPrefixExpre ssion& expression) { 948 const ASTPrefixExpre ssion& expression) {
953 std::unique_ptr<Expression> base = this->convertExpression(*expression.fOper and); 949 std::unique_ptr<Expression> base = this->convertExpression(*expression.fOper and);
954 if (!base) { 950 if (!base) {
955 return nullptr; 951 return nullptr;
956 } 952 }
957 switch (expression.fOperator) { 953 switch (expression.fOperator) {
958 case Token::PLUS: 954 case Token::PLUS:
959 if (!base->fType->isNumber() && base->fType->kind() != Type::kVector _Kind) { 955 if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_K ind) {
960 fErrors.error(expression.fPosition, 956 fErrors.error(expression.fPosition,
961 "'+' cannot operate on '" + base->fType->descripti on() + "'"); 957 "'+' cannot operate on '" + base->fType.descriptio n() + "'");
962 return nullptr; 958 return nullptr;
963 } 959 }
964 return base; 960 return base;
965 case Token::MINUS: 961 case Token::MINUS:
966 if (!base->fType->isNumber() && base->fType->kind() != Type::kVector _Kind) { 962 if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_K ind) {
967 fErrors.error(expression.fPosition, 963 fErrors.error(expression.fPosition,
968 "'-' cannot operate on '" + base->fType->descripti on() + "'"); 964 "'-' cannot operate on '" + base->fType.descriptio n() + "'");
969 return nullptr; 965 return nullptr;
970 } 966 }
971 if (base->fKind == Expression::kIntLiteral_Kind) { 967 if (base->fKind == Expression::kIntLiteral_Kind) {
972 return std::unique_ptr<Expression>(new IntLiteral(base->fPositio n, 968 return std::unique_ptr<Expression>(new IntLiteral(base->fPositio n,
973 -((IntLiteral& ) *base).fValue)); 969 -((IntLiteral& ) *base).fValue));
974 } 970 }
975 if (base->fKind == Expression::kFloatLiteral_Kind) { 971 if (base->fKind == Expression::kFloatLiteral_Kind) {
976 double value = -((FloatLiteral&) *base).fValue; 972 double value = -((FloatLiteral&) *base).fValue;
977 return std::unique_ptr<Expression>(new FloatLiteral(base->fPosit ion, value)); 973 return std::unique_ptr<Expression>(new FloatLiteral(base->fPosit ion, value));
978 } 974 }
979 return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS , std::move(base))); 975 return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS , std::move(base)));
980 case Token::PLUSPLUS: 976 case Token::PLUSPLUS:
981 if (!base->fType->isNumber()) { 977 if (!base->fType.isNumber()) {
982 fErrors.error(expression.fPosition, 978 fErrors.error(expression.fPosition,
983 "'" + Token::OperatorName(expression.fOperator) + 979 "'" + Token::OperatorName(expression.fOperator) +
984 "' cannot operate on '" + base->fType->description () + "'"); 980 "' cannot operate on '" + base->fType.description( ) + "'");
985 return nullptr; 981 return nullptr;
986 } 982 }
987 this->markWrittenTo(*base); 983 this->markWrittenTo(*base);
988 break; 984 break;
989 case Token::MINUSMINUS: 985 case Token::MINUSMINUS:
990 if (!base->fType->isNumber()) { 986 if (!base->fType.isNumber()) {
991 fErrors.error(expression.fPosition, 987 fErrors.error(expression.fPosition,
992 "'" + Token::OperatorName(expression.fOperator) + 988 "'" + Token::OperatorName(expression.fOperator) +
993 "' cannot operate on '" + base->fType->description () + "'"); 989 "' cannot operate on '" + base->fType.description( ) + "'");
994 return nullptr; 990 return nullptr;
995 } 991 }
996 this->markWrittenTo(*base); 992 this->markWrittenTo(*base);
997 break; 993 break;
998 case Token::NOT: 994 case Token::NOT:
999 if (base->fType != kBool_Type) { 995 if (base->fType != *kBool_Type) {
1000 fErrors.error(expression.fPosition, 996 fErrors.error(expression.fPosition,
1001 "'" + Token::OperatorName(expression.fOperator) + 997 "'" + Token::OperatorName(expression.fOperator) +
1002 "' cannot operate on '" + base->fType->description () + "'"); 998 "' cannot operate on '" + base->fType.description( ) + "'");
1003 return nullptr; 999 return nullptr;
1004 } 1000 }
1005 break; 1001 break;
1006 default: 1002 default:
1007 ABORT("unsupported prefix operator\n"); 1003 ABORT("unsupported prefix operator\n");
1008 } 1004 }
1009 return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator , 1005 return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator ,
1010 std::move(base))); 1006 std::move(base)));
1011 } 1007 }
1012 1008
1013 std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression > base, 1009 std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression > base,
1014 const ASTExpression& index ) { 1010 const ASTExpression& index ) {
1015 if (base->fType->kind() != Type::kArray_Kind && base->fType->kind() != Type: :kMatrix_Kind) { 1011 if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::k Matrix_Kind) {
1016 fErrors.error(base->fPosition, "expected array, but found '" + base->fTy pe->description() + 1012 fErrors.error(base->fPosition, "expected array, but found '" + base->fTy pe.description() +
1017 "'"); 1013 "'");
1018 return nullptr; 1014 return nullptr;
1019 } 1015 }
1020 std::unique_ptr<Expression> converted = this->convertExpression(index); 1016 std::unique_ptr<Expression> converted = this->convertExpression(index);
1021 if (!converted) { 1017 if (!converted) {
1022 return nullptr; 1018 return nullptr;
1023 } 1019 }
1024 converted = this->coerce(std::move(converted), kInt_Type); 1020 converted = this->coerce(std::move(converted), *kInt_Type);
1025 if (!converted) { 1021 if (!converted) {
1026 return nullptr; 1022 return nullptr;
1027 } 1023 }
1028 return std::unique_ptr<Expression>(new IndexExpression(std::move(base), std: :move(converted))); 1024 return std::unique_ptr<Expression>(new IndexExpression(std::move(base), std: :move(converted)));
1029 } 1025 }
1030 1026
1031 std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression > base, 1027 std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression > base,
1032 const std::string& field) { 1028 const std::string& field) {
1033 auto fields = base->fType->fields(); 1029 auto fields = base->fType.fields();
1034 for (size_t i = 0; i < fields.size(); i++) { 1030 for (size_t i = 0; i < fields.size(); i++) {
1035 if (fields[i].fName == field) { 1031 if (fields[i].fName == field) {
1036 return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i)); 1032 return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
1037 } 1033 }
1038 } 1034 }
1039 fErrors.error(base->fPosition, "type '" + base->fType->description() + "' do es not have a " 1035 fErrors.error(base->fPosition, "type '" + base->fType.description() + "' doe s not have a "
1040 "field named '" + field + ""); 1036 "field named '" + field + "");
1041 return nullptr; 1037 return nullptr;
1042 } 1038 }
1043 1039
1044 std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expressi on> base, 1040 std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expressi on> base,
1045 const std::string& field s) { 1041 const std::string& field s) {
1046 if (base->fType->kind() != Type::kVector_Kind) { 1042 if (base->fType.kind() != Type::kVector_Kind) {
1047 fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType->de scription() + "'"); 1043 fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType.des cription() + "'");
1048 return nullptr; 1044 return nullptr;
1049 } 1045 }
1050 std::vector<int> swizzleComponents; 1046 std::vector<int> swizzleComponents;
1051 for (char c : fields) { 1047 for (char c : fields) {
1052 switch (c) { 1048 switch (c) {
1053 case 'x': // fall through 1049 case 'x': // fall through
1054 case 'r': // fall through 1050 case 'r': // fall through
1055 case 's': 1051 case 's':
1056 swizzleComponents.push_back(0); 1052 swizzleComponents.push_back(0);
1057 break; 1053 break;
1058 case 'y': // fall through 1054 case 'y': // fall through
1059 case 'g': // fall through 1055 case 'g': // fall through
1060 case 't': 1056 case 't':
1061 if (base->fType->columns() >= 2) { 1057 if (base->fType.columns() >= 2) {
1062 swizzleComponents.push_back(1); 1058 swizzleComponents.push_back(1);
1063 break; 1059 break;
1064 } 1060 }
1065 // fall through 1061 // fall through
1066 case 'z': // fall through 1062 case 'z': // fall through
1067 case 'b': // fall through 1063 case 'b': // fall through
1068 case 'p': 1064 case 'p':
1069 if (base->fType->columns() >= 3) { 1065 if (base->fType.columns() >= 3) {
1070 swizzleComponents.push_back(2); 1066 swizzleComponents.push_back(2);
1071 break; 1067 break;
1072 } 1068 }
1073 // fall through 1069 // fall through
1074 case 'w': // fall through 1070 case 'w': // fall through
1075 case 'a': // fall through 1071 case 'a': // fall through
1076 case 'q': 1072 case 'q':
1077 if (base->fType->columns() >= 4) { 1073 if (base->fType.columns() >= 4) {
1078 swizzleComponents.push_back(3); 1074 swizzleComponents.push_back(3);
1079 break; 1075 break;
1080 } 1076 }
1081 // fall through 1077 // fall through
1082 default: 1078 default:
1083 fErrors.error(base->fPosition, "invalid swizzle component '" + s td::string(1, c) + 1079 fErrors.error(base->fPosition, "invalid swizzle component '" + s td::string(1, c) +
1084 "'"); 1080 "'");
1085 return nullptr; 1081 return nullptr;
1086 } 1082 }
1087 } 1083 }
(...skipping 22 matching lines...) Expand all
1110 std::unique_ptr<Expression> converted = 1106 std::unique_ptr<Expression> converted =
1111 this->convertExpression(*(*rawArguments)[i]); 1107 this->convertExpression(*(*rawArguments)[i]);
1112 if (!converted) { 1108 if (!converted) {
1113 return nullptr; 1109 return nullptr;
1114 } 1110 }
1115 arguments.push_back(std::move(converted)); 1111 arguments.push_back(std::move(converted));
1116 } 1112 }
1117 return this->call(expression.fPosition, std::move(base), std::move(a rguments)); 1113 return this->call(expression.fPosition, std::move(base), std::move(a rguments));
1118 } 1114 }
1119 case ASTSuffix::kField_Kind: { 1115 case ASTSuffix::kField_Kind: {
1120 switch (base->fType->kind()) { 1116 switch (base->fType.kind()) {
1121 case Type::kVector_Kind: 1117 case Type::kVector_Kind:
1122 return this->convertSwizzle(std::move(base), 1118 return this->convertSwizzle(std::move(base),
1123 ((ASTFieldSuffix&) *expression.f Suffix).fField); 1119 ((ASTFieldSuffix&) *expression.f Suffix).fField);
1124 case Type::kStruct_Kind: 1120 case Type::kStruct_Kind:
1125 return this->convertField(std::move(base), 1121 return this->convertField(std::move(base),
1126 ((ASTFieldSuffix&) *expression.fSu ffix).fField); 1122 ((ASTFieldSuffix&) *expression.fSu ffix).fField);
1127 default: 1123 default:
1128 fErrors.error(base->fPosition, "cannot swizzle value of type '" + 1124 fErrors.error(base->fPosition, "cannot swizzle value of type '" +
1129 base->fType->description() + "'"); 1125 base->fType.description() + " '");
1130 return nullptr; 1126 return nullptr;
1131 } 1127 }
1132 } 1128 }
1133 case ASTSuffix::kPostIncrement_Kind: 1129 case ASTSuffix::kPostIncrement_Kind:
1134 if (!base->fType->isNumber()) { 1130 if (!base->fType.isNumber()) {
1135 fErrors.error(expression.fPosition, 1131 fErrors.error(expression.fPosition,
1136 "'++' cannot operate on '" + base->fType->descript ion() + "'"); 1132 "'++' cannot operate on '" + base->fType.descripti on() + "'");
1137 return nullptr; 1133 return nullptr;
1138 } 1134 }
1139 this->markWrittenTo(*base); 1135 this->markWrittenTo(*base);
1140 return std::unique_ptr<Expression>(new PostfixExpression(std::move(b ase), 1136 return std::unique_ptr<Expression>(new PostfixExpression(std::move(b ase),
1141 Token::PLUS PLUS)); 1137 Token::PLUS PLUS));
1142 case ASTSuffix::kPostDecrement_Kind: 1138 case ASTSuffix::kPostDecrement_Kind:
1143 if (!base->fType->isNumber()) { 1139 if (!base->fType.isNumber()) {
1144 fErrors.error(expression.fPosition, 1140 fErrors.error(expression.fPosition,
1145 "'--' cannot operate on '" + base->fType->descript ion() + "'"); 1141 "'--' cannot operate on '" + base->fType.descripti on() + "'");
1146 return nullptr; 1142 return nullptr;
1147 } 1143 }
1148 this->markWrittenTo(*base); 1144 this->markWrittenTo(*base);
1149 return std::unique_ptr<Expression>(new PostfixExpression(std::move(b ase), 1145 return std::unique_ptr<Expression>(new PostfixExpression(std::move(b ase),
1150 Token::MINU SMINUS)); 1146 Token::MINU SMINUS));
1151 default: 1147 default:
1152 ABORT("unsupported suffix operator"); 1148 ABORT("unsupported suffix operator");
1153 } 1149 }
1154 } 1150 }
1155 1151
1156 void IRGenerator::checkValid(const Expression& expr) { 1152 void IRGenerator::checkValid(const Expression& expr) {
1157 switch (expr.fKind) { 1153 switch (expr.fKind) {
1158 case Expression::kFunctionReference_Kind: 1154 case Expression::kFunctionReference_Kind:
1159 fErrors.error(expr.fPosition, "expected '(' to begin function call") ; 1155 fErrors.error(expr.fPosition, "expected '(' to begin function call") ;
1160 break; 1156 break;
1161 case Expression::kTypeReference_Kind: 1157 case Expression::kTypeReference_Kind:
1162 fErrors.error(expr.fPosition, "expected '(' to begin constructor inv ocation"); 1158 fErrors.error(expr.fPosition, "expected '(' to begin constructor inv ocation");
1163 break; 1159 break;
1164 default: 1160 default:
1165 ASSERT(expr.fType != kInvalid_Type); 1161 ASSERT(expr.fType != *kInvalid_Type);
1166 break; 1162 break;
1167 } 1163 }
1168 } 1164 }
1169 1165
1170 void IRGenerator::markReadFrom(std::shared_ptr<Variable> var) { 1166 void IRGenerator::markReadFrom(const Variable& var) {
1171 var->fIsReadFrom = true; 1167 var.fIsReadFrom = true;
1172 } 1168 }
1173 1169
1174 static bool has_duplicates(const Swizzle& swizzle) { 1170 static bool has_duplicates(const Swizzle& swizzle) {
1175 int bits = 0; 1171 int bits = 0;
1176 for (int idx : swizzle.fComponents) { 1172 for (int idx : swizzle.fComponents) {
1177 ASSERT(idx >= 0 && idx <= 3); 1173 ASSERT(idx >= 0 && idx <= 3);
1178 int bit = 1 << idx; 1174 int bit = 1 << idx;
1179 if (bits & bit) { 1175 if (bits & bit) {
1180 return true; 1176 return true;
1181 } 1177 }
1182 bits |= bit; 1178 bits |= bit;
1183 } 1179 }
1184 return false; 1180 return false;
1185 } 1181 }
1186 1182
1187 void IRGenerator::markWrittenTo(const Expression& expr) { 1183 void IRGenerator::markWrittenTo(const Expression& expr) {
1188 switch (expr.fKind) { 1184 switch (expr.fKind) {
1189 case Expression::kVariableReference_Kind: { 1185 case Expression::kVariableReference_Kind: {
1190 const Variable& var = *((VariableReference&) expr).fVariable; 1186 const Variable& var = ((VariableReference&) expr).fVariable;
1191 if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUn iform_Flag)) { 1187 if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUn iform_Flag)) {
1192 fErrors.error(expr.fPosition, 1188 fErrors.error(expr.fPosition,
1193 "cannot modify immutable variable '" + var.fName + "'"); 1189 "cannot modify immutable variable '" + var.fName + "'");
1194 } 1190 }
1195 var.fIsWrittenTo = true; 1191 var.fIsWrittenTo = true;
1196 break; 1192 break;
1197 } 1193 }
1198 case Expression::kFieldAccess_Kind: 1194 case Expression::kFieldAccess_Kind:
1199 this->markWrittenTo(*((FieldAccess&) expr).fBase); 1195 this->markWrittenTo(*((FieldAccess&) expr).fBase);
1200 break; 1196 break;
1201 case Expression::kSwizzle_Kind: 1197 case Expression::kSwizzle_Kind:
1202 if (has_duplicates((Swizzle&) expr)) { 1198 if (has_duplicates((Swizzle&) expr)) {
1203 fErrors.error(expr.fPosition, 1199 fErrors.error(expr.fPosition,
1204 "cannot write to the same swizzle field more than once"); 1200 "cannot write to the same swizzle field more than once");
1205 } 1201 }
1206 this->markWrittenTo(*((Swizzle&) expr).fBase); 1202 this->markWrittenTo(*((Swizzle&) expr).fBase);
1207 break; 1203 break;
1208 case Expression::kIndex_Kind: 1204 case Expression::kIndex_Kind:
1209 this->markWrittenTo(*((IndexExpression&) expr).fBase); 1205 this->markWrittenTo(*((IndexExpression&) expr).fBase);
1210 break; 1206 break;
1211 default: 1207 default:
1212 fErrors.error(expr.fPosition, "cannot assign to '" + expr.descriptio n() + "'"); 1208 fErrors.error(expr.fPosition, "cannot assign to '" + expr.descriptio n() + "'");
1213 break; 1209 break;
1214 } 1210 }
1215 } 1211 }
1216 1212
1217 } 1213 }
OLDNEW
« no previous file with comments | « src/sksl/SkSLIRGenerator.h ('k') | src/sksl/SkSLParser.cpp » ('j') | src/sksl/ir/SkSLType.cpp » ('J')

Powered by Google App Engine
This is Rietveld 408576698