| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2016 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "InstanceProcessor.h" | |
| 9 | |
| 10 #include "GrContext.h" | |
| 11 #include "GrRenderTargetPriv.h" | |
| 12 #include "GrResourceCache.h" | |
| 13 #include "GrResourceProvider.h" | |
| 14 #include "glsl/GrGLSLGeometryProcessor.h" | |
| 15 #include "glsl/GrGLSLFragmentShaderBuilder.h" | |
| 16 #include "glsl/GrGLSLProgramBuilder.h" | |
| 17 #include "glsl/GrGLSLVarying.h" | |
| 18 | |
| 19 namespace gr_instanced { | |
| 20 | |
| 21 bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& ca
ps, | |
| 22 AntialiasMode* lastSupportedAAMode) { | |
| 23 if (!glslCaps.canUseAnyFunctionInShader() || | |
| 24 !glslCaps.flatInterpolationSupport() || | |
| 25 !glslCaps.integerSupport() || | |
| 26 0 == glslCaps.maxVertexSamplers() || | |
| 27 !caps.shaderCaps()->texelBufferSupport() || | |
| 28 caps.maxVertexAttributes() < kNumAttribs) { | |
| 29 return false; | |
| 30 } | |
| 31 if (caps.sampleLocationsSupport() && | |
| 32 glslCaps.sampleVariablesSupport() && | |
| 33 glslCaps.shaderDerivativeSupport()) { | |
| 34 if (0 != caps.maxRasterSamples() && | |
| 35 glslCaps.sampleMaskOverrideCoverageSupport()) { | |
| 36 *lastSupportedAAMode = AntialiasMode::kMixedSamples; | |
| 37 } else { | |
| 38 *lastSupportedAAMode = AntialiasMode::kMSAA; | |
| 39 } | |
| 40 } else { | |
| 41 *lastSupportedAAMode = AntialiasMode::kCoverage; | |
| 42 } | |
| 43 return true; | |
| 44 } | |
| 45 | |
| 46 InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer
) | |
| 47 : fBatchInfo(batchInfo) { | |
| 48 this->initClassID<InstanceProcessor>(); | |
| 49 | |
| 50 this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kH
igh_GrSLPrecision)); | |
| 51 this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType)); | |
| 52 this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType)); | |
| 53 this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType, | |
| 54 kHigh_GrSLPrecision)); | |
| 55 this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType, | |
| 56 kHigh_GrSLPrecision)); | |
| 57 this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrS
LPrecision)); | |
| 58 this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHig
h_GrSLPrecision)); | |
| 59 | |
| 60 GR_STATIC_ASSERT(0 == (int)Attrib::kShapeCoords); | |
| 61 GR_STATIC_ASSERT(1 == (int)Attrib::kVertexAttrs); | |
| 62 GR_STATIC_ASSERT(2 == (int)Attrib::kInstanceInfo); | |
| 63 GR_STATIC_ASSERT(3 == (int)Attrib::kShapeMatrixX); | |
| 64 GR_STATIC_ASSERT(4 == (int)Attrib::kShapeMatrixY); | |
| 65 GR_STATIC_ASSERT(5 == (int)Attrib::kColor); | |
| 66 GR_STATIC_ASSERT(6 == (int)Attrib::kLocalRect); | |
| 67 GR_STATIC_ASSERT(7 == kNumAttribs); | |
| 68 | |
| 69 if (fBatchInfo.fHasParams) { | |
| 70 SkASSERT(paramsBuffer); | |
| 71 fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrS
haderFlag); | |
| 72 this->addBufferAccess(&fParamsAccess); | |
| 73 } | |
| 74 | |
| 75 if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) { | |
| 76 if (!fBatchInfo.isSimpleRects() || | |
| 77 AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) { | |
| 78 this->setWillUseSampleLocations(); | |
| 79 } | |
| 80 } | |
| 81 } | |
| 82 | |
| 83 class GLSLInstanceProcessor : public GrGLSLGeometryProcessor { | |
| 84 public: | |
| 85 void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; | |
| 86 | |
| 87 private: | |
| 88 void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) o
verride {} | |
| 89 | |
| 90 class VertexInputs; | |
| 91 class Backend; | |
| 92 class BackendNonAA; | |
| 93 class BackendCoverage; | |
| 94 class BackendMultisample; | |
| 95 | |
| 96 typedef GrGLSLGeometryProcessor INHERITED; | |
| 97 }; | |
| 98 | |
| 99 GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps
&) const { | |
| 100 return new GLSLInstanceProcessor(); | |
| 101 } | |
| 102 | |
| 103 class GLSLInstanceProcessor::VertexInputs { | |
| 104 public: | |
| 105 VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexB
uilder) | |
| 106 : fInstProc(instProc), | |
| 107 fVertexBuilder(vertexBuilder) { | |
| 108 } | |
| 109 | |
| 110 void initParams(const SamplerHandle paramsBuffer) { | |
| 111 fParamsBuffer = paramsBuffer; | |
| 112 fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask)
; | |
| 113 fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 114 fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);"
, | |
| 115 this->attr(Attrib::kInstanceInfo)); | |
| 116 } | |
| 117 | |
| 118 const char* attr(Attrib attr) const { return fInstProc.getAttrib((int)attr).
fName; } | |
| 119 | |
| 120 void fetchNextParam(GrSLType type = kVec4f_GrSLType) const { | |
| 121 SkASSERT(fParamsBuffer.isValid()); | |
| 122 if (type != kVec4f_GrSLType) { | |
| 123 fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type)); | |
| 124 } | |
| 125 fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++"); | |
| 126 if (type != kVec4f_GrSLType) { | |
| 127 fVertexBuilder->codeAppend(")"); | |
| 128 } | |
| 129 } | |
| 130 | |
| 131 void skipParams(unsigned n) const { | |
| 132 SkASSERT(fParamsBuffer.isValid()); | |
| 133 fVertexBuilder->codeAppendf("paramsIdx += %u;", n); | |
| 134 } | |
| 135 | |
| 136 private: | |
| 137 const InstanceProcessor& fInstProc; | |
| 138 GrGLSLVertexBuilder* fVertexBuilder; | |
| 139 SamplerHandle fParamsBuffer; | |
| 140 }; | |
| 141 | |
| 142 class GLSLInstanceProcessor::Backend { | |
| 143 public: | |
| 144 static Backend* SK_WARN_UNUSED_RESULT Create(const GrGLSLProgramBuilder*, Ba
tchInfo, | |
| 145 const VertexInputs&); | |
| 146 virtual ~Backend() {} | |
| 147 | |
| 148 void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); | |
| 149 virtual void setupRect(GrGLSLVertexBuilder*) = 0; | |
| 150 virtual void setupOval(GrGLSLVertexBuilder*) = 0; | |
| 151 void setupRRect(GrGLSLVertexBuilder*); | |
| 152 | |
| 153 void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); | |
| 154 virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0; | |
| 155 virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0; | |
| 156 void setupInnerRRect(GrGLSLVertexBuilder*); | |
| 157 | |
| 158 const char* outShapeCoords() { | |
| 159 return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(Attrib
::kShapeCoords); | |
| 160 } | |
| 161 | |
| 162 void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* ou
tCoverage, | |
| 163 const char* outColor); | |
| 164 | |
| 165 protected: | |
| 166 Backend(BatchInfo batchInfo, const VertexInputs& inputs) | |
| 167 : fBatchInfo(batchInfo), | |
| 168 fInputs(inputs), | |
| 169 fModifiesCoverage(false), | |
| 170 fModifiesColor(false), | |
| 171 fNeedsNeighborRadii(false), | |
| 172 fColor(kVec4f_GrSLType), | |
| 173 fTriangleIsArc(kInt_GrSLType), | |
| 174 fArcCoords(kVec2f_GrSLType), | |
| 175 fInnerShapeCoords(kVec2f_GrSLType), | |
| 176 fInnerRRect(kVec4f_GrSLType), | |
| 177 fModifiedShapeCoords(nullptr) { | |
| 178 if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { | |
| 179 fModifiedShapeCoords = "adjustedShapeCoords"; | |
| 180 } | |
| 181 } | |
| 182 | |
| 183 virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; | |
| 184 virtual void adjustRRectVertices(GrGLSLVertexBuilder*); | |
| 185 virtual void onSetupRRect(GrGLSLVertexBuilder*) {} | |
| 186 | |
| 187 virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) =
0; | |
| 188 virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0; | |
| 189 | |
| 190 virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, | |
| 191 const char* outCoverage, const char* outColor) = 0; | |
| 192 | |
| 193 void setupSimpleRadii(GrGLSLVertexBuilder*); | |
| 194 void setupNinePatchRadii(GrGLSLVertexBuilder*); | |
| 195 void setupComplexRadii(GrGLSLVertexBuilder*); | |
| 196 | |
| 197 const BatchInfo fBatchInfo; | |
| 198 const VertexInputs& fInputs; | |
| 199 bool fModifiesCoverage; | |
| 200 bool fModifiesColor; | |
| 201 bool fNeedsNeighborRadii; | |
| 202 GrGLSLVertToFrag fColor; | |
| 203 GrGLSLVertToFrag fTriangleIsArc; | |
| 204 GrGLSLVertToFrag fArcCoords; | |
| 205 GrGLSLVertToFrag fInnerShapeCoords; | |
| 206 GrGLSLVertToFrag fInnerRRect; | |
| 207 const char* fModifiedShapeCoords; | |
| 208 }; | |
| 209 | |
| 210 void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { | |
| 211 const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>(); | |
| 212 GrGLSLUniformHandler* uniHandler = args.fUniformHandler; | |
| 213 GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; | |
| 214 GrGLSLVertexBuilder* v = args.fVertBuilder; | |
| 215 GrGLSLPPFragmentBuilder* f = args.fFragBuilder; | |
| 216 | |
| 217 varyingHandler->emitAttributes(ip); | |
| 218 | |
| 219 VertexInputs inputs(ip, v); | |
| 220 if (ip.batchInfo().fHasParams) { | |
| 221 SkASSERT(1 == ip.numBuffers()); | |
| 222 inputs.initParams(args.fBufferSamplers[0]); | |
| 223 } | |
| 224 | |
| 225 if (!ip.batchInfo().fHasPerspective) { | |
| 226 v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);", | |
| 227 inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::k
ShapeMatrixY)); | |
| 228 } else { | |
| 229 v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag); | |
| 230 v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));", | |
| 231 inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::k
ShapeMatrixY)); | |
| 232 v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {", | |
| 233 inputs.attr(Attrib::kInstanceInfo)); | |
| 234 v->codeAppend ( "shapeMatrix[2] = "); | |
| 235 inputs.fetchNextParam(kVec3f_GrSLType); | |
| 236 v->codeAppend ( ";"); | |
| 237 v->codeAppend ("}"); | |
| 238 } | |
| 239 | |
| 240 int usedShapeTypes = 0; | |
| 241 | |
| 242 bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes); | |
| 243 if (!hasSingleShapeType) { | |
| 244 usedShapeTypes |= ip.batchInfo().fShapeTypes; | |
| 245 v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit); | |
| 246 v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;", | |
| 247 inputs.attr(Attrib::kInstanceInfo)); | |
| 248 } | |
| 249 | |
| 250 SkAutoTDelete<Backend> backend(Backend::Create(v->getProgramBuilder(), ip.ba
tchInfo(), inputs)); | |
| 251 backend->init(varyingHandler, v); | |
| 252 | |
| 253 if (hasSingleShapeType) { | |
| 254 if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) { | |
| 255 backend->setupRect(v); | |
| 256 } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) { | |
| 257 backend->setupOval(v); | |
| 258 } else { | |
| 259 backend->setupRRect(v); | |
| 260 } | |
| 261 } else { | |
| 262 v->codeAppend ("switch (shapeType) {"); | |
| 263 if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) { | |
| 264 v->codeAppend ("case RECT_SHAPE_TYPE: {"); | |
| 265 backend->setupRect(v); | |
| 266 v->codeAppend ("} break;"); | |
| 267 } | |
| 268 if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) { | |
| 269 v->codeAppend ("case OVAL_SHAPE_TYPE: {"); | |
| 270 backend->setupOval(v); | |
| 271 v->codeAppend ("} break;"); | |
| 272 } | |
| 273 if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) { | |
| 274 v->codeAppend ("default: {"); | |
| 275 backend->setupRRect(v); | |
| 276 v->codeAppend ("} break;"); | |
| 277 } | |
| 278 v->codeAppend ("}"); | |
| 279 } | |
| 280 | |
| 281 if (ip.batchInfo().fInnerShapeTypes) { | |
| 282 bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes)
; | |
| 283 if (!hasSingleInnerShapeType) { | |
| 284 usedShapeTypes |= ip.batchInfo().fInnerShapeTypes; | |
| 285 v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMas
k); | |
| 286 v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit); | |
| 287 v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK)
>> " | |
| 288 "INNER_SHAPE_TYPE_BIT);", | |
| 289 inputs.attr(Attrib::kInstanceInfo)); | |
| 290 } | |
| 291 // Here we take advantage of the fact that outerRect == localRect in rec
ordDRRect. | |
| 292 v->codeAppendf("vec4 outer = %s;", inputs.attr(Attrib::kLocalRect)); | |
| 293 v->codeAppend ("vec4 inner = "); | |
| 294 inputs.fetchNextParam(); | |
| 295 v->codeAppend (";"); | |
| 296 // outer2Inner is a transform from shape coords to inner shape coords: | |
| 297 // e.g. innerShapeCoords = shapeCoords * outer2Inner.xy + outer2Inner.zw | |
| 298 v->codeAppend ("vec4 outer2Inner = vec4(outer.zw - outer.xy, " | |
| 299 "outer.xy + outer.zw - inner.xy -
inner.zw) / " | |
| 300 "(inner.zw - inner.xy).xyxy;"); | |
| 301 v->codeAppendf("vec2 innerShapeCoords = %s * outer2Inner.xy + outer2Inne
r.zw;", | |
| 302 backend->outShapeCoords()); | |
| 303 | |
| 304 backend->initInnerShape(varyingHandler, v); | |
| 305 | |
| 306 if (hasSingleInnerShapeType) { | |
| 307 if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { | |
| 308 backend->setupInnerRect(v); | |
| 309 } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { | |
| 310 backend->setupInnerOval(v); | |
| 311 } else { | |
| 312 backend->setupInnerRRect(v); | |
| 313 } | |
| 314 } else { | |
| 315 v->codeAppend("switch (innerShapeType) {"); | |
| 316 if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) { | |
| 317 v->codeAppend("case RECT_SHAPE_TYPE: {"); | |
| 318 backend->setupInnerRect(v); | |
| 319 v->codeAppend("} break;"); | |
| 320 } | |
| 321 if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) { | |
| 322 v->codeAppend("case OVAL_SHAPE_TYPE: {"); | |
| 323 backend->setupInnerOval(v); | |
| 324 v->codeAppend("} break;"); | |
| 325 } | |
| 326 if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) { | |
| 327 v->codeAppend("default: {"); | |
| 328 backend->setupInnerRRect(v); | |
| 329 v->codeAppend("} break;"); | |
| 330 } | |
| 331 v->codeAppend("}"); | |
| 332 } | |
| 333 } | |
| 334 | |
| 335 if (usedShapeTypes & kRect_ShapeFlag) { | |
| 336 v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect); | |
| 337 } | |
| 338 if (usedShapeTypes & kOval_ShapeFlag) { | |
| 339 v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval); | |
| 340 } | |
| 341 | |
| 342 backend->emitCode(v, f, args.fOutputCoverage, args.fOutputColor); | |
| 343 | |
| 344 const char* localCoords = nullptr; | |
| 345 if (ip.batchInfo().fUsesLocalCoords) { | |
| 346 localCoords = "localCoords"; | |
| 347 v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords
()); | |
| 348 v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;", | |
| 349 inputs.attr(Attrib::kLocalRect), inputs.attr(Attrib::kLoc
alRect)); | |
| 350 } | |
| 351 if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) { | |
| 352 v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag); | |
| 353 v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {", | |
| 354 inputs.attr(Attrib::kInstanceInfo)); | |
| 355 if (!ip.batchInfo().fUsesLocalCoords) { | |
| 356 inputs.skipParams(2); | |
| 357 } else { | |
| 358 v->codeAppendf( "mat2x3 localMatrix;"); | |
| 359 v->codeAppend ( "localMatrix[0] = "); | |
| 360 inputs.fetchNextParam(kVec3f_GrSLType); | |
| 361 v->codeAppend ( ";"); | |
| 362 v->codeAppend ( "localMatrix[1] = "); | |
| 363 inputs.fetchNextParam(kVec3f_GrSLType); | |
| 364 v->codeAppend ( ";"); | |
| 365 v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatri
x).xy;"); | |
| 366 } | |
| 367 v->codeAppend("}"); | |
| 368 } | |
| 369 | |
| 370 GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : k
Vec2f_GrSLType; | |
| 371 v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;", | |
| 372 GrGLSLTypeString(positionType), backend->outShapeCoords()); | |
| 373 gpArgs->fPositionVar.set(positionType, "deviceCoords"); | |
| 374 | |
| 375 this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, lo
calCoords, | |
| 376 args.fTransformsIn, args.fTransformsOut); | |
| 377 } | |
| 378 | |
| 379 ////////////////////////////////////////////////////////////////////////////////
//////////////////// | |
| 380 | |
| 381 void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler, | |
| 382 GrGLSLVertexBuilder* v) { | |
| 383 if (fModifiedShapeCoords) { | |
| 384 v->codeAppendf("vec2 %s = %s;", fModifiedShapeCoords, fInputs.attr(Attri
b::kShapeCoords)); | |
| 385 } | |
| 386 | |
| 387 this->onInit(varyingHandler, v); | |
| 388 | |
| 389 if (!fColor.vsOut()) { | |
| 390 varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision); | |
| 391 v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(Attrib::kColor))
; | |
| 392 } | |
| 393 } | |
| 394 | |
| 395 void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) { | |
| 396 v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);", | |
| 397 fInputs.attr(Attrib::kVertexAttrs), fInputs.attr(Attrib::kVer
texAttrs)); | |
| 398 v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;"); | |
| 399 v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : ""
); | |
| 400 v->codeAppend ("mat2 p = "); | |
| 401 fInputs.fetchNextParam(kMat22f_GrSLType); | |
| 402 v->codeAppend (";"); | |
| 403 uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask; | |
| 404 if (0 == (types & (types - 1))) { | |
| 405 if (kSimpleRRect_ShapeFlag == types) { | |
| 406 this->setupSimpleRadii(v); | |
| 407 } else if (kNinePatch_ShapeFlag == types) { | |
| 408 this->setupNinePatchRadii(v); | |
| 409 } else if (kComplexRRect_ShapeFlag == types) { | |
| 410 this->setupComplexRadii(v); | |
| 411 } | |
| 412 } else { | |
| 413 v->codeAppend("switch (shapeType) {"); | |
| 414 if (types & kSimpleRRect_ShapeFlag) { | |
| 415 v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpl
eRRect); | |
| 416 v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {"); | |
| 417 this->setupSimpleRadii(v); | |
| 418 v->codeAppend ("} break;"); | |
| 419 } | |
| 420 if (types & kNinePatch_ShapeFlag) { | |
| 421 v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatc
h); | |
| 422 v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {"); | |
| 423 this->setupNinePatchRadii(v); | |
| 424 v->codeAppend ("} break;"); | |
| 425 } | |
| 426 if (types & kComplexRRect_ShapeFlag) { | |
| 427 v->codeAppend ("default: {"); | |
| 428 this->setupComplexRadii(v); | |
| 429 v->codeAppend ("} break;"); | |
| 430 } | |
| 431 v->codeAppend("}"); | |
| 432 } | |
| 433 | |
| 434 this->adjustRRectVertices(v); | |
| 435 | |
| 436 if (fArcCoords.vsOut()) { | |
| 437 v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;", | |
| 438 fArcCoords.vsOut(), fModifiedShapeCoords); | |
| 439 } | |
| 440 if (fTriangleIsArc.vsOut()) { | |
| 441 v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));", | |
| 442 fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kShapeCoords
)); | |
| 443 } | |
| 444 | |
| 445 this->onSetupRRect(v); | |
| 446 } | |
| 447 | |
| 448 void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) { | |
| 449 if (fNeedsNeighborRadii) { | |
| 450 v->codeAppend ("neighborRadii = "); | |
| 451 } | |
| 452 v->codeAppend("radii = p[0] * 2.0 / p[1];"); | |
| 453 } | |
| 454 | |
| 455 void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v)
{ | |
| 456 v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);"); | |
| 457 if (fNeedsNeighborRadii) { | |
| 458 v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corne
r.y]);"); | |
| 459 } | |
| 460 } | |
| 461 | |
| 462 void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) { | |
| 463 /** | |
| 464 * The x and y radii of each arc are stored in separate vectors, | |
| 465 * in the following order: | |
| 466 * | |
| 467 * __x1 _ _ _ x3__ | |
| 468 * | |
| 469 * y1 | | y2 | |
| 470 * | |
| 471 * | | | |
| 472 * | |
| 473 * y3 |__ _ _ _ __| y4 | |
| 474 * x2 x4 | |
| 475 * | |
| 476 */ | |
| 477 v->codeAppend("mat2 p2 = "); | |
| 478 fInputs.fetchNextParam(kMat22f_GrSLType); | |
| 479 v->codeAppend(";"); | |
| 480 v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);"
); | |
| 481 if (fNeedsNeighborRadii) { | |
| 482 v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], " | |
| 483 "p2[1u - corner.y][corner.x]);"); | |
| 484 } | |
| 485 } | |
| 486 | |
| 487 void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v)
{ | |
| 488 // Resize the 4 triangles that arcs are drawn into so they match their corre
sponding radii. | |
| 489 // 0.5 is a special value that indicates the edge of an arc triangle. | |
| 490 v->codeAppendf("if (abs(%s.x) == 0.5)" | |
| 491 "%s.x = cornerSign.x * (1.0 - radii.x);", | |
| 492 fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords)
; | |
| 493 v->codeAppendf("if (abs(%s.y) == 0.5) " | |
| 494 "%s.y = cornerSign.y * (1.0 - radii.y);", | |
| 495 fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords)
; | |
| 496 } | |
| 497 | |
| 498 void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyin
gHandler, | |
| 499 GrGLSLVertexBuilder* v) { | |
| 500 SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRe
ct_ShapeFlag))); | |
| 501 | |
| 502 this->onInitInnerShape(varyingHandler, v); | |
| 503 | |
| 504 if (fInnerShapeCoords.vsOut()) { | |
| 505 v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut()); | |
| 506 } | |
| 507 } | |
| 508 | |
| 509 void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) { | |
| 510 v->codeAppend("mat2 innerP = "); | |
| 511 fInputs.fetchNextParam(kMat22f_GrSLType); | |
| 512 v->codeAppend(";"); | |
| 513 v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];"); | |
| 514 this->onSetupInnerRRect(v); | |
| 515 } | |
| 516 | |
| 517 void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFr
agmentBuilder* f, | |
| 518 const char* outCoverage, const cha
r* outColor) { | |
| 519 this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr, | |
| 520 fModifiesColor ? outColor : nullptr); | |
| 521 if (!fModifiesCoverage) { | |
| 522 // Even though the subclass doesn't use coverage, we are expected to ass
ign some value. | |
| 523 f->codeAppendf("%s = vec4(1);", outCoverage); | |
| 524 } | |
| 525 if (!fModifiesColor) { | |
| 526 // The subclass didn't assign a value to the output color. | |
| 527 f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); | |
| 528 } | |
| 529 } | |
| 530 | |
| 531 ////////////////////////////////////////////////////////////////////////////////
//////////////////// | |
| 532 | |
| 533 class GLSLInstanceProcessor::BackendNonAA : public Backend { | |
| 534 public: | |
| 535 BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs) | |
| 536 : INHERITED(batchInfo, inputs) { | |
| 537 if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) { | |
| 538 fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage; | |
| 539 fModifiesCoverage = !fModifiesColor; | |
| 540 } | |
| 541 } | |
| 542 | |
| 543 private: | |
| 544 void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; | |
| 545 void setupRect(GrGLSLVertexBuilder*) override; | |
| 546 void setupOval(GrGLSLVertexBuilder*) override; | |
| 547 | |
| 548 void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; | |
| 549 void setupInnerRect(GrGLSLVertexBuilder*) override; | |
| 550 void setupInnerOval(GrGLSLVertexBuilder*) override; | |
| 551 void onSetupInnerRRect(GrGLSLVertexBuilder*) override; | |
| 552 | |
| 553 void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, | |
| 554 const char*) override; | |
| 555 | |
| 556 typedef Backend INHERITED; | |
| 557 }; | |
| 558 | |
| 559 void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHa
ndler, | |
| 560 GrGLSLVertexBuilder*) { | |
| 561 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { | |
| 562 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_G
rSLPrecision); | |
| 563 varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecisi
on); | |
| 564 } | |
| 565 } | |
| 566 | |
| 567 void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) { | |
| 568 if (fTriangleIsArc.vsOut()) { | |
| 569 v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); | |
| 570 } | |
| 571 } | |
| 572 | |
| 573 void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) { | |
| 574 SkASSERT(fArcCoords.vsOut()); | |
| 575 SkASSERT(fTriangleIsArc.vsOut()); | |
| 576 v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords()); | |
| 577 v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(Attrib::
kVertexAttrs)); | |
| 578 } | |
| 579 | |
| 580 void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler*
varyingHandler, | |
| 581 GrGLSLVertexBuilder*)
{ | |
| 582 varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_G
rSLPrecision); | |
| 583 if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes && | |
| 584 kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) { | |
| 585 varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLP
recision); | |
| 586 } | |
| 587 } | |
| 588 | |
| 589 void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v)
{ | |
| 590 if (fInnerRRect.vsOut()) { | |
| 591 v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut()); | |
| 592 } | |
| 593 } | |
| 594 | |
| 595 void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v)
{ | |
| 596 if (fInnerRRect.vsOut()) { | |
| 597 v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); | |
| 598 } | |
| 599 } | |
| 600 | |
| 601 void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder*
v) { | |
| 602 v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect
.vsOut()); | |
| 603 } | |
| 604 | |
| 605 void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*, | |
| 606 GrGLSLPPFragmentBuilder* f, | |
| 607 const char* outCoverage, | |
| 608 const char* outColor) { | |
| 609 const char* dropFragment = nullptr; | |
| 610 if (!fBatchInfo.fCannotDiscard) { | |
| 611 dropFragment = "discard"; | |
| 612 } else if (fModifiesCoverage) { | |
| 613 f->appendPrecisionModifier(kLow_GrSLPrecision); | |
| 614 f->codeAppend ("float covered = 1.0;"); | |
| 615 dropFragment = "covered = 0.0"; | |
| 616 } else if (fModifiesColor) { | |
| 617 f->appendPrecisionModifier(kLow_GrSLPrecision); | |
| 618 f->codeAppendf("vec4 color = %s;", fColor.fsIn()); | |
| 619 dropFragment = "color = vec4(0)"; | |
| 620 } | |
| 621 if (fTriangleIsArc.fsIn()) { | |
| 622 SkASSERT(dropFragment); | |
| 623 f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;", | |
| 624 fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn
(), dropFragment); | |
| 625 } | |
| 626 if (fBatchInfo.fInnerShapeTypes) { | |
| 627 SkASSERT(dropFragment); | |
| 628 f->codeAppendf("// Inner shape.\n"); | |
| 629 if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { | |
| 630 f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;", | |
| 631 fInnerShapeCoords.fsIn(), dropFragment); | |
| 632 } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { | |
| 633 f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;", | |
| 634 fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), d
ropFragment); | |
| 635 } else { | |
| 636 f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShape
Coords.fsIn()); | |
| 637 f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;", | |
| 638 fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); | |
| 639 f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {
"); | |
| 640 f->codeAppendf( "%s;", dropFragment); | |
| 641 f->codeAppend ( "} else {"); | |
| 642 f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw
;", | |
| 643 fInnerRRect.fsIn()); | |
| 644 f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {"
); | |
| 645 f->codeAppendf( "%s;", dropFragment); | |
| 646 f->codeAppend ( "}"); | |
| 647 f->codeAppend ( "}"); | |
| 648 f->codeAppend ("}"); | |
| 649 } | |
| 650 } | |
| 651 if (fModifiesCoverage) { | |
| 652 f->codeAppendf("%s = vec4(covered);", outCoverage); | |
| 653 } else if (fModifiesColor) { | |
| 654 f->codeAppendf("%s = color;", outColor); | |
| 655 } | |
| 656 } | |
| 657 | |
| 658 ////////////////////////////////////////////////////////////////////////////////
//////////////////// | |
| 659 | |
| 660 class GLSLInstanceProcessor::BackendCoverage : public Backend { | |
| 661 public: | |
| 662 BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs) | |
| 663 : INHERITED(batchInfo, inputs), | |
| 664 fColorTimesRectCoverage(kVec4f_GrSLType), | |
| 665 fRectCoverage(kFloat_GrSLType), | |
| 666 fEllipseCoords(kVec2f_GrSLType), | |
| 667 fEllipseName(kVec2f_GrSLType), | |
| 668 fBloatedRadius(kFloat_GrSLType), | |
| 669 fDistanceToInnerEdge(kVec2f_GrSLType), | |
| 670 fInnerShapeBloatedHalfSize(kVec2f_GrSLType), | |
| 671 fInnerEllipseCoords(kVec2f_GrSLType), | |
| 672 fInnerEllipseName(kVec2f_GrSLType) { | |
| 673 fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kR
Rect_ShapesMask); | |
| 674 fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage && | |
| 675 !fBatchInfo.fInnerShapeTypes; | |
| 676 fModifiesCoverage = !fTweakAlphaForCoverage; | |
| 677 fModifiesColor = fTweakAlphaForCoverage; | |
| 678 fModifiedShapeCoords = "bloatedShapeCoords"; | |
| 679 } | |
| 680 | |
| 681 private: | |
| 682 void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; | |
| 683 void setupRect(GrGLSLVertexBuilder*) override; | |
| 684 void setupOval(GrGLSLVertexBuilder*) override; | |
| 685 void adjustRRectVertices(GrGLSLVertexBuilder*) override; | |
| 686 void onSetupRRect(GrGLSLVertexBuilder*) override; | |
| 687 | |
| 688 void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; | |
| 689 void setupInnerRect(GrGLSLVertexBuilder*) override; | |
| 690 void setupInnerOval(GrGLSLVertexBuilder*) override; | |
| 691 void onSetupInnerRRect(GrGLSLVertexBuilder*) override; | |
| 692 | |
| 693 void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*
outCoverage, | |
| 694 const char* outColor) override; | |
| 695 | |
| 696 void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char*
outColor); | |
| 697 void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage); | |
| 698 void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const ch
ar* ellipseName, | |
| 699 bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative, | |
| 700 const char* outCoverage); | |
| 701 void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage); | |
| 702 | |
| 703 GrGLSLVertToFrag fColorTimesRectCoverage; | |
| 704 GrGLSLVertToFrag fRectCoverage; | |
| 705 GrGLSLVertToFrag fEllipseCoords; | |
| 706 GrGLSLVertToFrag fEllipseName; | |
| 707 GrGLSLVertToFrag fBloatedRadius; | |
| 708 GrGLSLVertToFrag fDistanceToInnerEdge; | |
| 709 GrGLSLVertToFrag fInnerShapeBloatedHalfSize; | |
| 710 GrGLSLVertToFrag fInnerEllipseCoords; | |
| 711 GrGLSLVertToFrag fInnerEllipseName; | |
| 712 bool fShapeIsCircle; | |
| 713 bool fTweakAlphaForCoverage; | |
| 714 | |
| 715 typedef Backend INHERITED; | |
| 716 }; | |
| 717 | |
| 718 void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyin
gHandler, | |
| 719 GrGLSLVertexBuilder* v) { | |
| 720 v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));"); | |
| 721 v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), " | |
| 722 "length(shapeTransposeMatrix[1]));"
); | |
| 723 v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;"); | |
| 724 v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", fInputs.attr(Attr
ib::kShapeCoords)); | |
| 725 | |
| 726 if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) { | |
| 727 if (fTweakAlphaForCoverage) { | |
| 728 varyingHandler->addVarying("colorTimesRectCoverage", &fColorTimesRec
tCoverage, | |
| 729 kLow_GrSLPrecision); | |
| 730 if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) { | |
| 731 fColor = fColorTimesRectCoverage; | |
| 732 } | |
| 733 } else { | |
| 734 varyingHandler->addVarying("rectCoverage", &fRectCoverage, kLow_GrSL
Precision); | |
| 735 } | |
| 736 v->codeAppend("float rectCoverage = 0.0;"); | |
| 737 } | |
| 738 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { | |
| 739 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_G
rSLPrecision); | |
| 740 if (!fShapeIsCircle) { | |
| 741 varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_G
rSLPrecision); | |
| 742 varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_G
rSLPrecision); | |
| 743 } else { | |
| 744 varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_
GrSLPrecision); | |
| 745 varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMe
dium_GrSLPrecision); | |
| 746 } | |
| 747 } | |
| 748 } | |
| 749 | |
| 750 void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) { | |
| 751 // Make the border one pixel wide. Inner vs outer is indicated by coordAttrs
. | |
| 752 v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;", | |
| 753 fInputs.attr(Attrib::kVertexAttrs)); | |
| 754 // Here we use the absolute value, because when the rect is thinner than a p
ixel, this makes it | |
| 755 // mark the spot where pixel center is within half a pixel of the *opposite*
edge. This, | |
| 756 // combined with the "maxCoverage" logic below gives us mathematically corre
ct coverage even for | |
| 757 // subpixel rectangles. | |
| 758 v->codeAppendf("bloatedShapeCoords = %s * abs(vec2(1.0 + rectBloat));", | |
| 759 fInputs.attr(Attrib::kShapeCoords)); | |
| 760 | |
| 761 // Determine coverage at the vertex. Coverage naturally ramps from 0 to 1 un
less the rect is | |
| 762 // narrower than a pixel. | |
| 763 v->codeAppend ("float maxCoverage = 4.0 * min(0.5, shapeHalfSize.x) *" | |
| 764 "min(0.5, shapeHalfSize.y);"); | |
| 765 v->codeAppendf("rectCoverage = (%s != 0) ? 0.0 : maxCoverage;", | |
| 766 fInputs.attr(Attrib::kVertexAttrs)); | |
| 767 | |
| 768 if (fTriangleIsArc.vsOut()) { | |
| 769 v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); | |
| 770 } | |
| 771 } | |
| 772 | |
| 773 void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) { | |
| 774 // Offset the inner and outer octagons by one pixel. Inner vs outer is indic
ated by coordAttrs. | |
| 775 v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;", | |
| 776 fInputs.attr(Attrib::kVertexAttrs)); | |
| 777 v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0)
);", | |
| 778 fInputs.attr(Attrib::kShapeCoords)); | |
| 779 v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vs
Out()); | |
| 780 if (fEllipseName.vsOut()) { | |
| 781 v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseNa
me.vsOut()); | |
| 782 } | |
| 783 if (fBloatedRadius.vsOut()) { | |
| 784 SkASSERT(fShapeIsCircle); | |
| 785 v->codeAppendf("%s = shapeHalfSize.x + 0.5;", fBloatedRadius.vsOut()); | |
| 786 } | |
| 787 if (fTriangleIsArc.vsOut()) { | |
| 788 v->codeAppendf("%s = int(%s != 0);", | |
| 789 fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs
)); | |
| 790 } | |
| 791 if (fColorTimesRectCoverage.vsOut() || fRectCoverage.vsOut()) { | |
| 792 v->codeAppendf("rectCoverage = 1.0;"); | |
| 793 } | |
| 794 } | |
| 795 | |
| 796 void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBui
lder* v) { | |
| 797 // We try to let the AA borders line up with the arc edges on their particul
ar side, but we | |
| 798 // can't allow them to get closer than one half pixel to the edge or they mi
ght overlap with | |
| 799 // their neighboring border. | |
| 800 v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));"); | |
| 801 v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge
, innerEdge);"); | |
| 802 // 0.5 is a special value that indicates this vertex is an arc edge. | |
| 803 v->codeAppendf("if (abs(%s.x) == 0.5)" | |
| 804 "bloatedShapeCoords.x = borderEdge.x;", fInputs.attr(Attr
ib::kShapeCoords)); | |
| 805 v->codeAppendf("if (abs(%s.y) == 0.5)" | |
| 806 "bloatedShapeCoords.y = borderEdge.y;", fInputs.attr(Attr
ib::kShapeCoords)); | |
| 807 | |
| 808 // Adjust the interior border vertices to make the border one pixel wide. 0.
75 is a special | |
| 809 // value to indicate these points. | |
| 810 v->codeAppendf("if (abs(%s.x) == 0.75) " | |
| 811 "bloatedShapeCoords.x = cornerSign.x * innerEdge.x;", | |
| 812 fInputs.attr(Attrib::kShapeCoords)); | |
| 813 v->codeAppendf("if (abs(%s.y) == 0.75) " | |
| 814 "bloatedShapeCoords.y = cornerSign.y * innerEdge.y;", | |
| 815 fInputs.attr(Attrib::kShapeCoords)); | |
| 816 } | |
| 817 | |
| 818 void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v
) { | |
| 819 // The geometry is laid out in such a way that rectCoverage will be 0 and 1
on the vertices, but | |
| 820 // we still need to recompute this value because when the rrect gets thinner
than one pixel, the | |
| 821 // interior edge of the border will necessarily clamp, and we need to match
the AA behavior of | |
| 822 // the arc segments (i.e. distance from bloated edge only; ignoring the fact
that the pixel | |
| 823 // actully has less coverage because it's not completely inside the opposite
edge.) | |
| 824 v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shap
eHalfSize;"); | |
| 825 v->codeAppend("rectCoverage = min(d.x, d.y);"); | |
| 826 | |
| 827 SkASSERT(!fShapeIsCircle); | |
| 828 // The AA border does not get closer than one half pixel to the edge of the
rect, so to get a | |
| 829 // smooth transition from flat edge to arc, we don't allow the radii to be s
maller than one half | |
| 830 // pixel. (We don't worry about the transition on the opposite side when a r
adius is so large | |
| 831 // that the border clamped on that side.) | |
| 832 v->codeAppendf("vec2 clampedRadii = max(radii, bloat);"); | |
| 833 v->codeAppendf("%s = (cornerSign * bloatedShapeCoords + clampedRadii - vec2(
1)) * " | |
| 834 "shapeHalfSize;", fEllipseCoords.vsOut()); | |
| 835 v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * sh
apeHalfSize);", | |
| 836 fEllipseName.vsOut()); | |
| 837 } | |
| 838 | |
| 839 void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandl
er* varyingHandler, | |
| 840 GrGLSLVertexBuilde
r* v) { | |
| 841 v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / outer2Inner.xy;"); | |
| 842 | |
| 843 if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { | |
| 844 varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords, | |
| 845 kMedium_GrSLPrecision); | |
| 846 varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, | |
| 847 kMedium_GrSLPrecision); | |
| 848 } else { | |
| 849 varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge, | |
| 850 kMedium_GrSLPrecision); | |
| 851 varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShape
BloatedHalfSize, | |
| 852 kMedium_GrSLPrecision); | |
| 853 if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { | |
| 854 varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, k
High_GrSLPrecision); | |
| 855 varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseNam
e, | |
| 856 kMedium_GrSLPrecision); | |
| 857 varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrS
LPrecision); | |
| 858 } | |
| 859 } | |
| 860 } | |
| 861 | |
| 862 void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder*
v) { | |
| 863 if (fInnerRRect.vsOut()) { | |
| 864 // The fragment shader will generalize every inner shape as a round rect
. Since this one | |
| 865 // is a rect, we simply emit bogus parameters for the round rect (effect
ively negative | |
| 866 // radii) that ensure the fragment shader always takes the "emitRect" co
depath. | |
| 867 v->codeAppendf("%s.xy = abs(outer2Inner.xy) * (1.0 + bloat) + abs(outer2
Inner.zw);", | |
| 868 fInnerRRect.vsOut()); | |
| 869 } | |
| 870 } | |
| 871 | |
| 872 void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder*
v) { | |
| 873 v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);", | |
| 874 fInnerEllipseName.vsOut()); | |
| 875 if (fInnerEllipseCoords.vsOut()) { | |
| 876 v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerElli
pseCoords.vsOut()); | |
| 877 } | |
| 878 if (fInnerRRect.vsOut()) { | |
| 879 v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut
()); | |
| 880 } | |
| 881 } | |
| 882 | |
| 883 void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuild
er* v) { | |
| 884 // The distance to ellipse formula doesn't work well when the radii are less
than half a pixel. | |
| 885 v->codeAppend ("innerRadii = max(innerRadii, bloat);"); | |
| 886 v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * " | |
| 887 "innerShapeHalfSize);", | |
| 888 fInnerEllipseName.vsOut()); | |
| 889 v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRe
ct.vsOut()); | |
| 890 } | |
| 891 | |
| 892 void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v, | |
| 893 GrGLSLPPFragmentBuilder*
f, | |
| 894 const char* outCoverage, | |
| 895 const char* outColor) { | |
| 896 if (fColorTimesRectCoverage.vsOut()) { | |
| 897 SkASSERT(!fRectCoverage.vsOut()); | |
| 898 v->codeAppendf("%s = %s * rectCoverage;", | |
| 899 fColorTimesRectCoverage.vsOut(), fInputs.attr(Attrib::kCo
lor)); | |
| 900 } | |
| 901 if (fRectCoverage.vsOut()) { | |
| 902 SkASSERT(!fColorTimesRectCoverage.vsOut()); | |
| 903 v->codeAppendf("%s = rectCoverage;", fRectCoverage.vsOut()); | |
| 904 } | |
| 905 | |
| 906 SkString coverage("float coverage"); | |
| 907 if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { | |
| 908 coverage.prependf("lowp "); | |
| 909 } | |
| 910 if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsAr
c.fsIn())) { | |
| 911 f->codeAppendf("%s;", coverage.c_str()); | |
| 912 coverage = "coverage"; | |
| 913 } | |
| 914 if (fTriangleIsArc.fsIn()) { | |
| 915 f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); | |
| 916 this->emitRect(f, coverage.c_str(), outColor); | |
| 917 f->codeAppend ("} else {"); | |
| 918 if (fShapeIsCircle) { | |
| 919 this->emitCircle(f, coverage.c_str()); | |
| 920 } else { | |
| 921 bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes &
kOval_ShapeFlag); | |
| 922 this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(), | |
| 923 true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNeg
ative, | |
| 924 coverage.c_str()); | |
| 925 } | |
| 926 if (fTweakAlphaForCoverage) { | |
| 927 f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn()); | |
| 928 } | |
| 929 f->codeAppend ("}"); | |
| 930 } else { | |
| 931 this->emitRect(f, coverage.c_str(), outColor); | |
| 932 } | |
| 933 | |
| 934 if (fBatchInfo.fInnerShapeTypes) { | |
| 935 f->codeAppendf("// Inner shape.\n"); | |
| 936 SkString innerCoverageDecl("float innerCoverage"); | |
| 937 if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { | |
| 938 innerCoverageDecl.prependf("lowp "); | |
| 939 } | |
| 940 if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { | |
| 941 this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(
), | |
| 942 true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsM
ayBeNegative*/, | |
| 943 innerCoverageDecl.c_str()); | |
| 944 } else { | |
| 945 v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", | |
| 946 fDistanceToInnerEdge.vsOut()); | |
| 947 v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedH
alfSize.vsOut()); | |
| 948 | |
| 949 if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { | |
| 950 this->emitInnerRect(f, innerCoverageDecl.c_str()); | |
| 951 } else { | |
| 952 f->codeAppendf("%s = 0.0;", innerCoverageDecl.c_str()); | |
| 953 f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", | |
| 954 fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); | |
| 955 f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))
) {"); | |
| 956 this->emitInnerRect(f, "innerCoverage"); | |
| 957 f->codeAppend ("} else {"); | |
| 958 f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.
zw;", | |
| 959 fInnerRRect.fsIn()); | |
| 960 this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(), | |
| 961 false /*ellipseCoordsNeedClamp*/, | |
| 962 false /*ellipseCoordsMayBeNegative*/, "innerCovera
ge"); | |
| 963 f->codeAppend ("}"); | |
| 964 } | |
| 965 } | |
| 966 f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0.0));", outCove
rage); | |
| 967 } else if (!fTweakAlphaForCoverage) { | |
| 968 f->codeAppendf("%s = vec4(coverage);", outCoverage); | |
| 969 } | |
| 970 } | |
| 971 | |
| 972 void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f
, | |
| 973 const char* outCoverage, | |
| 974 const char* outColor) { | |
| 975 if (fColorTimesRectCoverage.fsIn()) { | |
| 976 f->codeAppendf("%s = %s;", outColor, fColorTimesRectCoverage.fsIn()); | |
| 977 } else if (fTweakAlphaForCoverage) { | |
| 978 // We are drawing just ovals. The interior rect always has 100% coverage
. | |
| 979 f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); | |
| 980 } else if (fRectCoverage.fsIn()) { | |
| 981 f->codeAppendf("%s = %s;", outCoverage, fRectCoverage.fsIn()); | |
| 982 } else { | |
| 983 f->codeAppendf("%s = 1.0;", outCoverage); | |
| 984 } | |
| 985 } | |
| 986 | |
| 987 void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder*
f, | |
| 988 const char* outCoverage)
{ | |
| 989 // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimiz
ation on rrects. | |
| 990 SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes)); | |
| 991 f->codeAppendf("float distanceToEdge = %s - length(%s);", | |
| 992 fBloatedRadius.fsIn(), fEllipseCoords.fsIn()); | |
| 993 f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage); | |
| 994 } | |
| 995 | |
| 996 void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f, | |
| 997 const char* ellipseCoords, | |
| 998 const char* ellipseName, | |
| 999 bool ellipseCoordsNeedClamp
, | |
| 1000 bool ellipseCoordsMayBeNega
tive, | |
| 1001 const char* outCoverage) { | |
| 1002 SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp); | |
| 1003 if (ellipseCoordsNeedClamp) { | |
| 1004 // This serves two purposes: | |
| 1005 // - To restrict the arcs of rounded rects to their positive quadrants. | |
| 1006 // - To avoid inversesqrt(0) in the ellipse formula. | |
| 1007 if (ellipseCoordsMayBeNegative) { | |
| 1008 f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4))
;", ellipseCoords); | |
| 1009 } else { | |
| 1010 f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", e
llipseCoords); | |
| 1011 } | |
| 1012 ellipseCoords = "ellipseClampedCoords"; | |
| 1013 } | |
| 1014 // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2. | |
| 1015 f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName); | |
| 1016 // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. | |
| 1017 f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords); | |
| 1018 // gradDot is the squared length of the gradient of the implicit. | |
| 1019 f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);"); | |
| 1020 f->appendPrecisionModifier(kLow_GrSLPrecision); | |
| 1021 f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);"); | |
| 1022 f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage); | |
| 1023 } | |
| 1024 | |
| 1025 void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuild
er* f, | |
| 1026 const char* outCovera
ge) { | |
| 1027 f->appendPrecisionModifier(kLow_GrSLPrecision); | |
| 1028 f->codeAppendf("vec2 c = %s - abs(%s);", | |
| 1029 fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn(
)); | |
| 1030 f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage); | |
| 1031 } | |
| 1032 | |
| 1033 ////////////////////////////////////////////////////////////////////////////////
//////////////////// | |
| 1034 | |
| 1035 class GLSLInstanceProcessor::BackendMultisample : public Backend { | |
| 1036 public: | |
| 1037 BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effe
ctiveSampleCnt) | |
| 1038 : INHERITED(batchInfo, inputs), | |
| 1039 fEffectiveSampleCnt(effectiveSampleCnt), | |
| 1040 fShapeCoords(kVec2f_GrSLType), | |
| 1041 fShapeInverseMatrix(kMat22f_GrSLType), | |
| 1042 fFragShapeHalfSpan(kVec2f_GrSLType), | |
| 1043 fArcTest(kVec2f_GrSLType), | |
| 1044 fArcInverseMatrix(kMat22f_GrSLType), | |
| 1045 fFragArcHalfSpan(kVec2f_GrSLType), | |
| 1046 fEarlyAccept(kInt_GrSLType), | |
| 1047 fInnerShapeInverseMatrix(kMat22f_GrSLType), | |
| 1048 fFragInnerShapeHalfSpan(kVec2f_GrSLType) { | |
| 1049 fRectTrianglesMaySplit = fBatchInfo.fHasPerspective; | |
| 1050 fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspect
ive; | |
| 1051 } | |
| 1052 | |
| 1053 private: | |
| 1054 bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchI
nfo.fAntialiasMode; } | |
| 1055 | |
| 1056 void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; | |
| 1057 void setupRect(GrGLSLVertexBuilder*) override; | |
| 1058 void setupOval(GrGLSLVertexBuilder*) override; | |
| 1059 void adjustRRectVertices(GrGLSLVertexBuilder*) override; | |
| 1060 void onSetupRRect(GrGLSLVertexBuilder*) override; | |
| 1061 | |
| 1062 void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; | |
| 1063 void setupInnerRect(GrGLSLVertexBuilder*) override; | |
| 1064 void setupInnerOval(GrGLSLVertexBuilder*) override; | |
| 1065 void onSetupInnerRRect(GrGLSLVertexBuilder*) override; | |
| 1066 | |
| 1067 void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, | |
| 1068 const char*) override; | |
| 1069 | |
| 1070 struct EmitShapeCoords { | |
| 1071 const GrGLSLVarying* fVarying; | |
| 1072 const char* fInverseMatrix; | |
| 1073 const char* fFragHalfSpan; | |
| 1074 }; | |
| 1075 | |
| 1076 struct EmitShapeOpts { | |
| 1077 bool fIsTightGeometry; | |
| 1078 bool fResolveMixedSamples; | |
| 1079 bool fInvertCoverage; | |
| 1080 }; | |
| 1081 | |
| 1082 void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitSh
apeOpts&); | |
| 1083 void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMa
yBeNegative, | |
| 1084 bool clampCoords, const EmitShapeOpts&); | |
| 1085 void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const
char* rrect, | |
| 1086 const EmitShapeOpts&); | |
| 1087 void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, con
st char* sampleIdx, | |
| 1088 const char* interpolationMatrix); | |
| 1089 void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, cons
t EmitShapeOpts&); | |
| 1090 void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, con
st EmitShapeOpts&, | |
| 1091 bool maybeSharedEdge = true); | |
| 1092 | |
| 1093 int fEffectiveSampleCnt; | |
| 1094 bool fRectTrianglesMaySplit; | |
| 1095 GrGLSLVertToFrag fShapeCoords; | |
| 1096 GrGLSLVertToFrag fShapeInverseMatrix; | |
| 1097 GrGLSLVertToFrag fFragShapeHalfSpan; | |
| 1098 GrGLSLVertToFrag fArcTest; | |
| 1099 GrGLSLVertToFrag fArcInverseMatrix; | |
| 1100 GrGLSLVertToFrag fFragArcHalfSpan; | |
| 1101 GrGLSLVertToFrag fEarlyAccept; | |
| 1102 GrGLSLVertToFrag fInnerShapeInverseMatrix; | |
| 1103 GrGLSLVertToFrag fFragInnerShapeHalfSpan; | |
| 1104 SkString fSquareFun; | |
| 1105 | |
| 1106 typedef Backend INHERITED; | |
| 1107 }; | |
| 1108 | |
| 1109 void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* var
yingHandler, | |
| 1110 GrGLSLVertexBuilder* v) { | |
| 1111 if (!this->isMixedSampled()) { | |
| 1112 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { | |
| 1113 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, | |
| 1114 kHigh_GrSLPrecision); | |
| 1115 varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPreci
sion); | |
| 1116 if (!fBatchInfo.fHasPerspective) { | |
| 1117 varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseM
atrix, | |
| 1118 kHigh_GrSLPrecision); | |
| 1119 varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfS
pan, | |
| 1120 kHigh_GrSLPrecision); | |
| 1121 } | |
| 1122 } else if (!fBatchInfo.fInnerShapeTypes) { | |
| 1123 return; | |
| 1124 } | |
| 1125 } else { | |
| 1126 varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPreci
sion); | |
| 1127 if (!fBatchInfo.fHasPerspective) { | |
| 1128 varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseM
atrix, | |
| 1129 kHigh_GrSLPrecision); | |
| 1130 varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfS
pan, | |
| 1131 kHigh_GrSLPrecision); | |
| 1132 } | |
| 1133 if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { | |
| 1134 varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPreci
sion); | |
| 1135 varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision
); | |
| 1136 if (!fBatchInfo.fHasPerspective) { | |
| 1137 varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseM
atrix, | |
| 1138 kHigh_GrSLPrecision); | |
| 1139 varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfS
pan, | |
| 1140 kHigh_GrSLPrecision); | |
| 1141 } | |
| 1142 } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) { | |
| 1143 fArcCoords = fShapeCoords; | |
| 1144 fArcInverseMatrix = fShapeInverseMatrix; | |
| 1145 fFragArcHalfSpan = fFragShapeHalfSpan; | |
| 1146 if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) { | |
| 1147 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, | |
| 1148 kHigh_GrSLPrecision); | |
| 1149 } | |
| 1150 } | |
| 1151 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { | |
| 1152 v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1)
; | |
| 1153 varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_Gr
SLPrecision); | |
| 1154 } | |
| 1155 } | |
| 1156 if (!fBatchInfo.fHasPerspective) { | |
| 1157 v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));"); | |
| 1158 v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + " | |
| 1159 "abs(vec4(shapeInverseMatrix).yw);"); | |
| 1160 } | |
| 1161 } | |
| 1162 | |
| 1163 void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v
) { | |
| 1164 if (fShapeCoords.vsOut()) { | |
| 1165 v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords())
; | |
| 1166 } | |
| 1167 if (fShapeInverseMatrix.vsOut()) { | |
| 1168 v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); | |
| 1169 } | |
| 1170 if (fFragShapeHalfSpan.vsOut()) { | |
| 1171 v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); | |
| 1172 } | |
| 1173 if (fArcTest.vsOut()) { | |
| 1174 // Pick a value that is not > 0. | |
| 1175 v->codeAppendf("%s = vec2(0);", fArcTest.vsOut()); | |
| 1176 } | |
| 1177 if (fTriangleIsArc.vsOut()) { | |
| 1178 v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); | |
| 1179 } | |
| 1180 if (fEarlyAccept.vsOut()) { | |
| 1181 v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut()); | |
| 1182 } | |
| 1183 } | |
| 1184 | |
| 1185 void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v
) { | |
| 1186 v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords()); | |
| 1187 if (fArcInverseMatrix.vsOut()) { | |
| 1188 v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords()); | |
| 1189 v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);", | |
| 1190 fArcInverseMatrix.vsOut()); | |
| 1191 } | |
| 1192 if (fFragArcHalfSpan.vsOut()) { | |
| 1193 v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut()); | |
| 1194 } | |
| 1195 if (fArcTest.vsOut()) { | |
| 1196 // Pick a value that is > 0. | |
| 1197 v->codeAppendf("%s = vec2(1);", fArcTest.vsOut()); | |
| 1198 } | |
| 1199 if (fTriangleIsArc.vsOut()) { | |
| 1200 if (!this->isMixedSampled()) { | |
| 1201 v->codeAppendf("%s = %s & 1;", | |
| 1202 fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexA
ttrs)); | |
| 1203 } else { | |
| 1204 v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut()); | |
| 1205 } | |
| 1206 } | |
| 1207 if (fEarlyAccept.vsOut()) { | |
| 1208 v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;", | |
| 1209 fEarlyAccept.vsOut(), fInputs.attr(Attrib::kVertexAttrs))
; | |
| 1210 } | |
| 1211 } | |
| 1212 | |
| 1213 void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertex
Builder* v) { | |
| 1214 if (!this->isMixedSampled()) { | |
| 1215 INHERITED::adjustRRectVertices(v); | |
| 1216 return; | |
| 1217 } | |
| 1218 | |
| 1219 if (!fBatchInfo.fHasPerspective) { | |
| 1220 // For the mixed samples algorithm it's best to bloat the corner triangl
es a bit so that | |
| 1221 // more of the pixels that cross into the arc region are completely insi
de the shared edges. | |
| 1222 // We also snap to a regular rect if the radii shrink smaller than a pix
el. | |
| 1223 v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);"); | |
| 1224 v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ?
" | |
| 1225 "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - mid
pt);"); | |
| 1226 } else { | |
| 1227 // TODO: We could still bloat the corner triangle in the perspective cas
e; we would just | |
| 1228 // need to find the screen-space derivative of shape coords at this part
icular point. | |
| 1229 v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec
2(0) : radii;"); | |
| 1230 } | |
| 1231 | |
| 1232 v->codeAppendf("if (abs(%s.x) == 0.5)" | |
| 1233 "%s.x = cornerSign.x * (1.0 - cornerSize.x);", | |
| 1234 fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords)
; | |
| 1235 v->codeAppendf("if (abs(%s.y) == 0.5)" | |
| 1236 "%s.y = cornerSign.y * (1.0 - cornerSize.y);", | |
| 1237 fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords)
; | |
| 1238 } | |
| 1239 | |
| 1240 void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder
* v) { | |
| 1241 if (fShapeCoords.vsOut()) { | |
| 1242 v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords())
; | |
| 1243 } | |
| 1244 if (fShapeInverseMatrix.vsOut()) { | |
| 1245 v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); | |
| 1246 } | |
| 1247 if (fFragShapeHalfSpan.vsOut()) { | |
| 1248 v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); | |
| 1249 } | |
| 1250 if (fArcInverseMatrix.vsOut()) { | |
| 1251 v->codeAppend ("vec2 s = cornerSign / radii;"); | |
| 1252 v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);", | |
| 1253 fArcInverseMatrix.vsOut()); | |
| 1254 } | |
| 1255 if (fFragArcHalfSpan.vsOut()) { | |
| 1256 v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));", | |
| 1257 fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(), | |
| 1258 fArcInverseMatrix.vsOut()); | |
| 1259 } | |
| 1260 if (fArcTest.vsOut()) { | |
| 1261 // The interior triangles are laid out as a fan. fArcTest is both distan
ces from shared | |
| 1262 // edges of a fan triangle to a point within that triangle. fArcTest is
used to check if a | |
| 1263 // fragment is too close to either shared edge, in which case we point s
ample the shape as a | |
| 1264 // rect at that point in order to guarantee the mixed samples discard lo
gic works correctly. | |
| 1265 v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : " | |
| 1266 "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize
.y - 1.0, 1);", | |
| 1267 fArcTest.vsOut(), fModifiedShapeCoords); | |
| 1268 if (!fBatchInfo.fHasPerspective) { | |
| 1269 // Shift the point at which distances to edges are measured from the
center of the pixel | |
| 1270 // to the corner. This way the sign of fArcTest will quickly tell us
whether a pixel | |
| 1271 // is completely inside the shared edge. Perspective mode will accom
plish this same task | |
| 1272 // by finding the derivatives in the fragment shader. | |
| 1273 v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + f
ragShapeSpan);", | |
| 1274 fArcTest.vsOut()); | |
| 1275 } | |
| 1276 } | |
| 1277 if (fEarlyAccept.vsOut()) { | |
| 1278 SkASSERT(this->isMixedSampled()); | |
| 1279 v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;
", | |
| 1280 fEarlyAccept.vsOut(), fInputs.attr(Attrib::kShapeCoords))
; | |
| 1281 } | |
| 1282 } | |
| 1283 | |
| 1284 void | |
| 1285 GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler
* varyingHandler, | |
| 1286 GrGLSLVertexBuilder*
v) { | |
| 1287 varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrS
LPrecision); | |
| 1288 if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes && | |
| 1289 kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { | |
| 1290 varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPre
cision); | |
| 1291 } | |
| 1292 if (!fBatchInfo.fHasPerspective) { | |
| 1293 varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeIn
verseMatrix, | |
| 1294 kHigh_GrSLPrecision); | |
| 1295 v->codeAppendf("%s = shapeInverseMatrix * mat2(outer2Inner.x, 0, 0, oute
r2Inner.y);", | |
| 1296 fInnerShapeInverseMatrix.vsOut()); | |
| 1297 varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShap
eHalfSpan, | |
| 1298 kHigh_GrSLPrecision); | |
| 1299 v->codeAppendf("%s = 0.5 * fragShapeSpan * outer2Inner.xy;", | |
| 1300 fFragInnerShapeHalfSpan.vsOut()); | |
| 1301 } | |
| 1302 } | |
| 1303 | |
| 1304 void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuild
er* v) { | |
| 1305 if (fInnerRRect.vsOut()) { | |
| 1306 // The fragment shader will generalize every inner shape as a round rect
. Since this one | |
| 1307 // is a rect, we simply emit bogus parameters for the round rect (negati
ve radii) that | |
| 1308 // ensure the fragment shader always takes the "sample as rect" codepath
. | |
| 1309 v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - oute
r.xy), vec2(0));", | |
| 1310 fInnerRRect.vsOut()); | |
| 1311 } | |
| 1312 } | |
| 1313 | |
| 1314 void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuild
er* v) { | |
| 1315 if (fInnerRRect.vsOut()) { | |
| 1316 v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); | |
| 1317 } | |
| 1318 } | |
| 1319 | |
| 1320 void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBu
ilder* v) { | |
| 1321 // Avoid numeric instability by not allowing the inner radii to get smaller
than 1/10th pixel. | |
| 1322 if (fFragInnerShapeHalfSpan.vsOut()) { | |
| 1323 v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerSha
peHalfSpan.vsOut()); | |
| 1324 } else { | |
| 1325 v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));"); | |
| 1326 } | |
| 1327 v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect
.vsOut()); | |
| 1328 } | |
| 1329 | |
| 1330 void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*, | |
| 1331 GrGLSLPPFragmentBuild
er* f, | |
| 1332 const char*, const ch
ar*) { | |
| 1333 f->define("SAMPLE_COUNT", fEffectiveSampleCnt); | |
| 1334 if (this->isMixedSampled()) { | |
| 1335 f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); | |
| 1336 f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1)); | |
| 1337 } | |
| 1338 | |
| 1339 if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes
)) { | |
| 1340 GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHig
h_GrSLPrecision); | |
| 1341 f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &
fSquareFun); | |
| 1342 } | |
| 1343 | |
| 1344 EmitShapeCoords shapeCoords; | |
| 1345 shapeCoords.fVarying = &fShapeCoords; | |
| 1346 shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn(); | |
| 1347 shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn(); | |
| 1348 | |
| 1349 EmitShapeCoords arcCoords; | |
| 1350 arcCoords.fVarying = &fArcCoords; | |
| 1351 arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn(); | |
| 1352 arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn(); | |
| 1353 bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kR
Rect_ShapesMask); | |
| 1354 | |
| 1355 EmitShapeOpts opts; | |
| 1356 opts.fIsTightGeometry = true; | |
| 1357 opts.fResolveMixedSamples = this->isMixedSampled(); | |
| 1358 opts.fInvertCoverage = false; | |
| 1359 | |
| 1360 if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) { | |
| 1361 // This determines if the fragment should consider the inner shape in it
s sample mask. | |
| 1362 // We take the derivative early in case discards may occur before we get
to the inner shape. | |
| 1363 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1364 f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);", | |
| 1365 fInnerShapeCoords.fsIn()); | |
| 1366 } | |
| 1367 | |
| 1368 if (!this->isMixedSampled()) { | |
| 1369 SkASSERT(!fArcTest.fsIn()); | |
| 1370 if (fTriangleIsArc.fsIn()) { | |
| 1371 f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn()); | |
| 1372 this->emitArc(f, arcCoords, false, clampArcCoords, opts); | |
| 1373 | |
| 1374 f->codeAppend ("}"); | |
| 1375 } | |
| 1376 } else { | |
| 1377 const char* arcTest = fArcTest.fsIn(); | |
| 1378 SkASSERT(arcTest); | |
| 1379 if (fBatchInfo.fHasPerspective) { | |
| 1380 // The non-perspective version accounts for fwith() in the vertex sh
ader. | |
| 1381 // We make sure to take the derivative here, before a neighbor pixel
may early accept. | |
| 1382 f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLF
eature); | |
| 1383 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1384 f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);", | |
| 1385 fArcTest.fsIn(), fArcTest.fsIn()); | |
| 1386 arcTest = "arcTest"; | |
| 1387 } | |
| 1388 const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "S
AMPLE_MASK_ALL"; | |
| 1389 f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept); | |
| 1390 f->overrideSampleCoverage(earlyAccept); | |
| 1391 f->codeAppend ("} else {"); | |
| 1392 if (arcTest) { | |
| 1393 // At this point, if the sample mask is all set it means we are insi
de an arc triangle. | |
| 1394 f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || " | |
| 1395 "all(greaterThan(%s, vec2(0)))) {", arcTest); | |
| 1396 this->emitArc(f, arcCoords, false, clampArcCoords, opts); | |
| 1397 f->codeAppend ("} else {"); | |
| 1398 this->emitRect(f, shapeCoords, opts); | |
| 1399 f->codeAppend ("}"); | |
| 1400 } else if (fTriangleIsArc.fsIn()) { | |
| 1401 f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); | |
| 1402 this->emitRect(f, shapeCoords, opts); | |
| 1403 f->codeAppend ("} else {"); | |
| 1404 this->emitArc(f, arcCoords, false, clampArcCoords, opts); | |
| 1405 f->codeAppend ("}"); | |
| 1406 } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) { | |
| 1407 this->emitArc(f, arcCoords, false, clampArcCoords, opts); | |
| 1408 } else { | |
| 1409 SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag); | |
| 1410 this->emitRect(f, shapeCoords, opts); | |
| 1411 } | |
| 1412 f->codeAppend ("}"); | |
| 1413 } | |
| 1414 | |
| 1415 if (fBatchInfo.fInnerShapeTypes) { | |
| 1416 f->codeAppendf("// Inner shape.\n"); | |
| 1417 | |
| 1418 EmitShapeCoords innerShapeCoords; | |
| 1419 innerShapeCoords.fVarying = &fInnerShapeCoords; | |
| 1420 if (!fBatchInfo.fHasPerspective) { | |
| 1421 innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn(); | |
| 1422 innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn(); | |
| 1423 } | |
| 1424 | |
| 1425 EmitShapeOpts innerOpts; | |
| 1426 innerOpts.fIsTightGeometry = false; | |
| 1427 innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in
the outer shape. | |
| 1428 innerOpts.fInvertCoverage = true; | |
| 1429 | |
| 1430 if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { | |
| 1431 this->emitArc(f, innerShapeCoords, true, false, innerOpts); | |
| 1432 } else { | |
| 1433 f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShap
eCoords.fsIn(), | |
| 1434 !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragH
alfSpan | |
| 1435 : "fragInnerShapeApproxHa
lfSpan"); // Above. | |
| 1436 if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { | |
| 1437 this->emitRect(f, innerShapeCoords, innerOpts); | |
| 1438 } else { | |
| 1439 this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), i
nnerOpts); | |
| 1440 } | |
| 1441 f->codeAppend ("}"); | |
| 1442 } | |
| 1443 } | |
| 1444 } | |
| 1445 | |
| 1446 void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder
* f, | |
| 1447 const EmitShapeCoords&
coords, | |
| 1448 const EmitShapeOpts& op
ts) { | |
| 1449 // Full MSAA doesn't need to do anything to draw a rect. | |
| 1450 SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples); | |
| 1451 if (coords.fFragHalfSpan) { | |
| 1452 f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {", | |
| 1453 coords.fVarying->fsIn(), coords.fFragHalfSpan); | |
| 1454 // The entire pixel is inside the rect. | |
| 1455 this->acceptOrRejectWholeFragment(f, true, opts); | |
| 1456 f->codeAppend ("} else "); | |
| 1457 if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) { | |
| 1458 f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {", | |
| 1459 coords.fVarying->fsIn(), coords.fFragHalfSpan); | |
| 1460 // The pixel falls on an edge of the rectangle and is known to not b
e on a shared edge. | |
| 1461 this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false); | |
| 1462 f->codeAppend ("} else"); | |
| 1463 } | |
| 1464 f->codeAppend ("{"); | |
| 1465 } | |
| 1466 f->codeAppend ("int rectMask = 0;"); | |
| 1467 f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); | |
| 1468 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1469 f->codeAppend ( "vec2 pt = "); | |
| 1470 this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); | |
| 1471 f->codeAppend ( ";"); | |
| 1472 f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i
);"); | |
| 1473 f->codeAppend ("}"); | |
| 1474 this->acceptCoverageMask(f, "rectMask", opts); | |
| 1475 if (coords.fFragHalfSpan) { | |
| 1476 f->codeAppend ("}"); | |
| 1477 } | |
| 1478 } | |
| 1479 | |
| 1480 void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder*
f, | |
| 1481 const EmitShapeCoords& c
oords, | |
| 1482 bool coordsMayBeNegative
, bool clampCoords, | |
| 1483 const EmitShapeOpts& opt
s) { | |
| 1484 if (coords.fFragHalfSpan) { | |
| 1485 SkString absArcCoords; | |
| 1486 absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVary
ing->fsIn()); | |
| 1487 if (clampCoords) { | |
| 1488 f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {", | |
| 1489 fSquareFun.c_str(), absArcCoords.c_str(), coords.fFra
gHalfSpan); | |
| 1490 } else { | |
| 1491 f->codeAppendf("if (%s(%s + %s) < 1.0) {", | |
| 1492 fSquareFun.c_str(), absArcCoords.c_str(), coords.fFra
gHalfSpan); | |
| 1493 } | |
| 1494 // The entire pixel is inside the arc. | |
| 1495 this->acceptOrRejectWholeFragment(f, true, opts); | |
| 1496 f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {", | |
| 1497 fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHal
fSpan); | |
| 1498 // The entire pixel is outside the arc. | |
| 1499 this->acceptOrRejectWholeFragment(f, false, opts); | |
| 1500 f->codeAppend ("} else {"); | |
| 1501 } | |
| 1502 f->codeAppend ( "int arcMask = 0;"); | |
| 1503 f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); | |
| 1504 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1505 f->codeAppend ( "vec2 pt = "); | |
| 1506 this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); | |
| 1507 f->codeAppend ( ";"); | |
| 1508 if (clampCoords) { | |
| 1509 SkASSERT(!coordsMayBeNegative); | |
| 1510 f->codeAppend ( "pt = max(pt, vec2(0));"); | |
| 1511 } | |
| 1512 f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.
c_str()); | |
| 1513 f->codeAppend ( "}"); | |
| 1514 this->acceptCoverageMask(f, "arcMask", opts); | |
| 1515 if (coords.fFragHalfSpan) { | |
| 1516 f->codeAppend ("}"); | |
| 1517 } | |
| 1518 } | |
| 1519 | |
| 1520 void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragment
Builder* f, | |
| 1521 const EmitShapeC
oords& coords, | |
| 1522 const char* rrec
t, | |
| 1523 const EmitShapeO
pts& opts) { | |
| 1524 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1525 f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying-
>fsIn(), rrect); | |
| 1526 f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); | |
| 1527 this->emitRect(f, coords, opts); | |
| 1528 f->codeAppend ("} else {"); | |
| 1529 if (coords.fInverseMatrix && coords.fFragHalfSpan) { | |
| 1530 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1531 f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect); | |
| 1532 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1533 f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfS
pan, rrect); | |
| 1534 f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSqu
areFun.c_str()); | |
| 1535 // The entire pixel is inside the round rect. | |
| 1536 this->acceptOrRejectWholeFragment(f, true, opts); | |
| 1537 f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(
0))) >= 1.0) {", | |
| 1538 fSquareFun.c_str()); | |
| 1539 // The entire pixel is outside the round rect. | |
| 1540 this->acceptOrRejectWholeFragment(f, false, opts); | |
| 1541 f->codeAppend ("} else {"); | |
| 1542 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1543 f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying-
>fsIn()); | |
| 1544 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1545 f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0,
s.y);", | |
| 1546 coords.fInverseMatrix); | |
| 1547 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1548 f->codeAppend ( "int rrectMask = 0;"); | |
| 1549 f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); | |
| 1550 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1551 f->codeAppend ( "vec2 pt = rrectCoords + "); | |
| 1552 f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordi
nates); | |
| 1553 f->codeAppend ( "* innerRRectInverseMatrix;"); | |
| 1554 f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1
<< i);", | |
| 1555 fSquareFun.c_str()); | |
| 1556 f->codeAppend ( "}"); | |
| 1557 this->acceptCoverageMask(f, "rrectMask", opts); | |
| 1558 f->codeAppend ("}"); | |
| 1559 } else { | |
| 1560 f->codeAppend ("int rrectMask = 0;"); | |
| 1561 f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); | |
| 1562 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1563 f->codeAppend ( "vec2 shapePt = "); | |
| 1564 this->interpolateAtSample(f, *coords.fVarying, "i", nullptr); | |
| 1565 f->codeAppend ( ";"); | |
| 1566 f->appendPrecisionModifier(kHigh_GrSLPrecision); | |
| 1567 f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) *
%s.zw;", | |
| 1568 rrect, rrect); | |
| 1569 f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSqu
areFun.c_str()); | |
| 1570 f->codeAppend ("}"); | |
| 1571 this->acceptCoverageMask(f, "rrectMask", opts); | |
| 1572 } | |
| 1573 f->codeAppend ("}"); | |
| 1574 } | |
| 1575 | |
| 1576 void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFrag
mentBuilder* f, | |
| 1577 const GrGLSLVa
rying& varying, | |
| 1578 const char* sa
mpleIdx, | |
| 1579 const char* in
terpolationMatrix) { | |
| 1580 if (interpolationMatrix) { | |
| 1581 f->codeAppendf("(%s + ", varying.fsIn()); | |
| 1582 f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_
Coordinates); | |
| 1583 f->codeAppendf(" * %s)", interpolationMatrix); | |
| 1584 } else { | |
| 1585 SkAssertResult( | |
| 1586 f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GL
SLFeature)); | |
| 1587 f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn()); | |
| 1588 f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_
Coordinates); | |
| 1589 f->codeAppend(")"); | |
| 1590 } | |
| 1591 } | |
| 1592 | |
| 1593 void | |
| 1594 GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPF
ragmentBuilder* f, | |
| 1595 bool insi
de, | |
| 1596 const Emi
tShapeOpts& opts) { | |
| 1597 if (inside != opts.fInvertCoverage) { // Accept the entire fragment. | |
| 1598 if (opts.fResolveMixedSamples) { | |
| 1599 // This is a mixed sampled fragment in the interior of the shape. Re
assign 100% coverage | |
| 1600 // to one fragment, and drop all other fragments that may fall on th
is same pixel. Since | |
| 1601 // our geometry is water tight and non-overlapping, we can take adva
ntage of the | |
| 1602 // properties that (1) the incoming sample masks will be disjoint ac
ross fragments that | |
| 1603 // fall on a common pixel, and (2) since the entire fragment is insi
de the shape, each | |
| 1604 // sample's corresponding bit will be set in the incoming sample mas
k of exactly one | |
| 1605 // fragment. | |
| 1606 f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {"); | |
| 1607 // Drop this fragment. | |
| 1608 if (!fBatchInfo.fCannotDiscard) { | |
| 1609 f->codeAppend("discard;"); | |
| 1610 } else { | |
| 1611 f->overrideSampleCoverage("0"); | |
| 1612 } | |
| 1613 f->codeAppend("} else {"); | |
| 1614 // Override the lone surviving fragment to full coverage. | |
| 1615 f->overrideSampleCoverage("-1"); | |
| 1616 f->codeAppend("}"); | |
| 1617 } | |
| 1618 } else { // Reject the entire fragment. | |
| 1619 if (!fBatchInfo.fCannotDiscard) { | |
| 1620 f->codeAppend("discard;"); | |
| 1621 } else if (opts.fResolveMixedSamples) { | |
| 1622 f->overrideSampleCoverage("0"); | |
| 1623 } else { | |
| 1624 f->maskSampleCoverage("0"); | |
| 1625 } | |
| 1626 } | |
| 1627 } | |
| 1628 | |
| 1629 void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragm
entBuilder* f, | |
| 1630 const char* s
hapeMask, | |
| 1631 const EmitSha
peOpts& opts, | |
| 1632 bool maybeSha
redEdge) { | |
| 1633 if (opts.fResolveMixedSamples) { | |
| 1634 if (maybeSharedEdge) { | |
| 1635 // This is a mixed sampled fragment, potentially on the outer edge o
f the shape, with | |
| 1636 // only partial shape coverage. Override the coverage of one fragmen
t to "shapeMask", | |
| 1637 // and drop all other fragments that may fall on this same pixel. Si
nce our geometry is | |
| 1638 // water tight, non-overlapping, and completely contains the shape,
this means that each | |
| 1639 // "on" bit from shapeMask is guaranteed to be set in the incoming s
ample mask of one, | |
| 1640 // and only one, fragment that falls on this same pixel. | |
| 1641 SkASSERT(!opts.fInvertCoverage); | |
| 1642 f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0)
{", shapeMask); | |
| 1643 // Drop this fragment. | |
| 1644 if (!fBatchInfo.fCannotDiscard) { | |
| 1645 f->codeAppend ("discard;"); | |
| 1646 } else { | |
| 1647 f->overrideSampleCoverage("0"); | |
| 1648 } | |
| 1649 f->codeAppend ("} else {"); | |
| 1650 // Override the coverage of the lone surviving fragment to "shapeMas
k". | |
| 1651 f->overrideSampleCoverage(shapeMask); | |
| 1652 f->codeAppend ("}"); | |
| 1653 } else { | |
| 1654 f->overrideSampleCoverage(shapeMask); | |
| 1655 } | |
| 1656 } else { | |
| 1657 f->maskSampleCoverage(shapeMask, opts.fInvertCoverage); | |
| 1658 } | |
| 1659 } | |
| 1660 | |
| 1661 ////////////////////////////////////////////////////////////////////////////////
//////////////////// | |
| 1662 | |
| 1663 GLSLInstanceProcessor::Backend* | |
| 1664 GLSLInstanceProcessor::Backend::Create(const GrGLSLProgramBuilder* p, BatchInfo
batchInfo, | |
| 1665 const VertexInputs& inputs) { | |
| 1666 switch (batchInfo.fAntialiasMode) { | |
| 1667 default: | |
| 1668 SkFAIL("Unexpected antialias mode."); | |
| 1669 case AntialiasMode::kNone: | |
| 1670 return new BackendNonAA(batchInfo, inputs); | |
| 1671 case AntialiasMode::kCoverage: | |
| 1672 return new BackendCoverage(batchInfo, inputs); | |
| 1673 case AntialiasMode::kMSAA: | |
| 1674 case AntialiasMode::kMixedSamples: { | |
| 1675 const GrPipeline& pipeline = p->pipeline(); | |
| 1676 const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTa
rgetPriv(); | |
| 1677 const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipel
ine.getStencil()); | |
| 1678 return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSam
pleCnt); | |
| 1679 } | |
| 1680 } | |
| 1681 } | |
| 1682 | |
| 1683 ////////////////////////////////////////////////////////////////////////////////
//////////////////// | |
| 1684 | |
| 1685 const ShapeVertex kVertexData[] = { | |
| 1686 // Rectangle. | |
| 1687 {+1, +1, ~0}, /*0*/ | |
| 1688 {-1, +1, ~0}, /*1*/ | |
| 1689 {-1, -1, ~0}, /*2*/ | |
| 1690 {+1, -1, ~0}, /*3*/ | |
| 1691 // The next 4 are for the bordered version. | |
| 1692 {+1, +1, 0}, /*4*/ | |
| 1693 {-1, +1, 0}, /*5*/ | |
| 1694 {-1, -1, 0}, /*6*/ | |
| 1695 {+1, -1, 0}, /*7*/ | |
| 1696 | |
| 1697 // Octagon that inscribes the unit circle, cut by an interior unit octagon. | |
| 1698 {+1.000000f, 0.000000f, 0}, /* 8*/ | |
| 1699 {+1.000000f, +0.414214f, ~0}, /* 9*/ | |
| 1700 {+0.707106f, +0.707106f, 0}, /*10*/ | |
| 1701 {+0.414214f, +1.000000f, ~0}, /*11*/ | |
| 1702 { 0.000000f, +1.000000f, 0}, /*12*/ | |
| 1703 {-0.414214f, +1.000000f, ~0}, /*13*/ | |
| 1704 {-0.707106f, +0.707106f, 0}, /*14*/ | |
| 1705 {-1.000000f, +0.414214f, ~0}, /*15*/ | |
| 1706 {-1.000000f, 0.000000f, 0}, /*16*/ | |
| 1707 {-1.000000f, -0.414214f, ~0}, /*17*/ | |
| 1708 {-0.707106f, -0.707106f, 0}, /*18*/ | |
| 1709 {-0.414214f, -1.000000f, ~0}, /*19*/ | |
| 1710 { 0.000000f, -1.000000f, 0}, /*20*/ | |
| 1711 {+0.414214f, -1.000000f, ~0}, /*21*/ | |
| 1712 {+0.707106f, -0.707106f, 0}, /*22*/ | |
| 1713 {+1.000000f, -0.414214f, ~0}, /*23*/ | |
| 1714 // This vertex is for the fanned versions. | |
| 1715 { 0.000000f, 0.000000f, ~0}, /*24*/ | |
| 1716 | |
| 1717 // Rectangle with disjoint corner segments. | |
| 1718 {+1.0, +0.5, 0x3}, /*25*/ | |
| 1719 {+1.0, +1.0, 0x3}, /*26*/ | |
| 1720 {+0.5, +1.0, 0x3}, /*27*/ | |
| 1721 {-0.5, +1.0, 0x2}, /*28*/ | |
| 1722 {-1.0, +1.0, 0x2}, /*29*/ | |
| 1723 {-1.0, +0.5, 0x2}, /*30*/ | |
| 1724 {-1.0, -0.5, 0x0}, /*31*/ | |
| 1725 {-1.0, -1.0, 0x0}, /*32*/ | |
| 1726 {-0.5, -1.0, 0x0}, /*33*/ | |
| 1727 {+0.5, -1.0, 0x1}, /*34*/ | |
| 1728 {+1.0, -1.0, 0x1}, /*35*/ | |
| 1729 {+1.0, -0.5, 0x1}, /*36*/ | |
| 1730 // The next 4 are for the fanned version. | |
| 1731 { 0.0, 0.0, 0x3}, /*37*/ | |
| 1732 { 0.0, 0.0, 0x2}, /*38*/ | |
| 1733 { 0.0, 0.0, 0x0}, /*39*/ | |
| 1734 { 0.0, 0.0, 0x1}, /*40*/ | |
| 1735 // The next 8 are for the bordered version. | |
| 1736 {+0.75, +0.50, 0x3}, /*41*/ | |
| 1737 {+0.50, +0.75, 0x3}, /*42*/ | |
| 1738 {-0.50, +0.75, 0x2}, /*43*/ | |
| 1739 {-0.75, +0.50, 0x2}, /*44*/ | |
| 1740 {-0.75, -0.50, 0x0}, /*45*/ | |
| 1741 {-0.50, -0.75, 0x0}, /*46*/ | |
| 1742 {+0.50, -0.75, 0x1}, /*47*/ | |
| 1743 {+0.75, -0.50, 0x1}, /*48*/ | |
| 1744 | |
| 1745 // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon. | |
| 1746 {+1.000000f, +0.000000f, 0}, /*49*/ | |
| 1747 {+1.000000f, +0.198913f, ~0}, /*50*/ | |
| 1748 {+0.923879f, +0.382683f, 0}, /*51*/ | |
| 1749 {+0.847760f, +0.566455f, ~0}, /*52*/ | |
| 1750 {+0.707106f, +0.707106f, 0}, /*53*/ | |
| 1751 {+0.566455f, +0.847760f, ~0}, /*54*/ | |
| 1752 {+0.382683f, +0.923879f, 0}, /*55*/ | |
| 1753 {+0.198913f, +1.000000f, ~0}, /*56*/ | |
| 1754 {+0.000000f, +1.000000f, 0}, /*57*/ | |
| 1755 {-0.198913f, +1.000000f, ~0}, /*58*/ | |
| 1756 {-0.382683f, +0.923879f, 0}, /*59*/ | |
| 1757 {-0.566455f, +0.847760f, ~0}, /*60*/ | |
| 1758 {-0.707106f, +0.707106f, 0}, /*61*/ | |
| 1759 {-0.847760f, +0.566455f, ~0}, /*62*/ | |
| 1760 {-0.923879f, +0.382683f, 0}, /*63*/ | |
| 1761 {-1.000000f, +0.198913f, ~0}, /*64*/ | |
| 1762 {-1.000000f, +0.000000f, 0}, /*65*/ | |
| 1763 {-1.000000f, -0.198913f, ~0}, /*66*/ | |
| 1764 {-0.923879f, -0.382683f, 0}, /*67*/ | |
| 1765 {-0.847760f, -0.566455f, ~0}, /*68*/ | |
| 1766 {-0.707106f, -0.707106f, 0}, /*69*/ | |
| 1767 {-0.566455f, -0.847760f, ~0}, /*70*/ | |
| 1768 {-0.382683f, -0.923879f, 0}, /*71*/ | |
| 1769 {-0.198913f, -1.000000f, ~0}, /*72*/ | |
| 1770 {-0.000000f, -1.000000f, 0}, /*73*/ | |
| 1771 {+0.198913f, -1.000000f, ~0}, /*74*/ | |
| 1772 {+0.382683f, -0.923879f, 0}, /*75*/ | |
| 1773 {+0.566455f, -0.847760f, ~0}, /*76*/ | |
| 1774 {+0.707106f, -0.707106f, 0}, /*77*/ | |
| 1775 {+0.847760f, -0.566455f, ~0}, /*78*/ | |
| 1776 {+0.923879f, -0.382683f, 0}, /*79*/ | |
| 1777 {+1.000000f, -0.198913f, ~0}, /*80*/ | |
| 1778 }; | |
| 1779 | |
| 1780 const uint8_t kIndexData[] = { | |
| 1781 // Rectangle. | |
| 1782 0, 1, 2, | |
| 1783 0, 2, 3, | |
| 1784 | |
| 1785 // Rectangle with a border. | |
| 1786 0, 1, 5, | |
| 1787 5, 4, 0, | |
| 1788 1, 2, 6, | |
| 1789 6, 5, 1, | |
| 1790 2, 3, 7, | |
| 1791 7, 6, 2, | |
| 1792 3, 0, 4, | |
| 1793 4, 7, 3, | |
| 1794 4, 5, 6, | |
| 1795 6, 7, 4, | |
| 1796 | |
| 1797 // Octagon that inscribes the unit circle, cut by an interior unit octagon. | |
| 1798 10, 8, 9, | |
| 1799 12, 10, 11, | |
| 1800 14, 12, 13, | |
| 1801 16, 14, 15, | |
| 1802 18, 16, 17, | |
| 1803 20, 18, 19, | |
| 1804 22, 20, 21, | |
| 1805 8, 22, 23, | |
| 1806 8, 10, 12, | |
| 1807 12, 14, 16, | |
| 1808 16, 18, 20, | |
| 1809 20, 22, 8, | |
| 1810 8, 12, 16, | |
| 1811 16, 20, 8, | |
| 1812 | |
| 1813 // Same octagons, but with the interior arranged as a fan. Used by mixed sam
ples. | |
| 1814 10, 8, 9, | |
| 1815 12, 10, 11, | |
| 1816 14, 12, 13, | |
| 1817 16, 14, 15, | |
| 1818 18, 16, 17, | |
| 1819 20, 18, 19, | |
| 1820 22, 20, 21, | |
| 1821 8, 22, 23, | |
| 1822 24, 8, 10, | |
| 1823 12, 24, 10, | |
| 1824 24, 12, 14, | |
| 1825 16, 24, 14, | |
| 1826 24, 16, 18, | |
| 1827 20, 24, 18, | |
| 1828 24, 20, 22, | |
| 1829 8, 24, 22, | |
| 1830 | |
| 1831 // Same octagons, but with the inner and outer disjoint. Used by coverage AA
. | |
| 1832 8, 22, 23, | |
| 1833 9, 8, 23, | |
| 1834 10, 8, 9, | |
| 1835 11, 10, 9, | |
| 1836 12, 10, 11, | |
| 1837 13, 12, 11, | |
| 1838 14, 12, 13, | |
| 1839 15, 14, 13, | |
| 1840 16, 14, 15, | |
| 1841 17, 16, 15, | |
| 1842 18, 16, 17, | |
| 1843 19, 18, 17, | |
| 1844 20, 18, 19, | |
| 1845 21, 20, 19, | |
| 1846 22, 20, 21, | |
| 1847 23, 22, 21, | |
| 1848 22, 8, 10, | |
| 1849 10, 12, 14, | |
| 1850 14, 16, 18, | |
| 1851 18, 20, 22, | |
| 1852 22, 10, 14, | |
| 1853 14, 18, 22, | |
| 1854 | |
| 1855 // Rectangle with disjoint corner segments. | |
| 1856 27, 25, 26, | |
| 1857 30, 28, 29, | |
| 1858 33, 31, 32, | |
| 1859 36, 34, 35, | |
| 1860 25, 27, 28, | |
| 1861 28, 30, 31, | |
| 1862 31, 33, 34, | |
| 1863 34, 36, 25, | |
| 1864 25, 28, 31, | |
| 1865 31, 34, 25, | |
| 1866 | |
| 1867 // Same rectangle with disjoint corners, but with the interior arranged as a
fan. Used by | |
| 1868 // mixed samples. | |
| 1869 27, 25, 26, | |
| 1870 30, 28, 29, | |
| 1871 33, 31, 32, | |
| 1872 36, 34, 35, | |
| 1873 27, 37, 25, | |
| 1874 28, 37, 27, | |
| 1875 30, 38, 28, | |
| 1876 31, 38, 30, | |
| 1877 33, 39, 31, | |
| 1878 34, 39, 33, | |
| 1879 36, 40, 34, | |
| 1880 25, 40, 36, | |
| 1881 | |
| 1882 // Same rectangle with disjoint corners, with a border as well. Used by cove
rage AA. | |
| 1883 41, 25, 26, | |
| 1884 42, 41, 26, | |
| 1885 27, 42, 26, | |
| 1886 43, 28, 29, | |
| 1887 44, 43, 29, | |
| 1888 30, 44, 29, | |
| 1889 45, 31, 32, | |
| 1890 46, 45, 32, | |
| 1891 33, 46, 32, | |
| 1892 47, 34, 35, | |
| 1893 48, 47, 35, | |
| 1894 36, 48, 35, | |
| 1895 27, 28, 42, | |
| 1896 42, 28, 43, | |
| 1897 30, 31, 44, | |
| 1898 44, 31, 45, | |
| 1899 33, 34, 46, | |
| 1900 46, 34, 47, | |
| 1901 36, 25, 48, | |
| 1902 48, 25, 41, | |
| 1903 41, 42, 43, | |
| 1904 43, 44, 45, | |
| 1905 45, 46, 47, | |
| 1906 47, 48, 41, | |
| 1907 41, 43, 45, | |
| 1908 45, 47, 41, | |
| 1909 | |
| 1910 // Same as the disjoint octagons, but with 16-gons instead. Used by coverage
AA when the oval is | |
| 1911 // sufficiently large. | |
| 1912 49, 79, 80, | |
| 1913 50, 49, 80, | |
| 1914 51, 49, 50, | |
| 1915 52, 51, 50, | |
| 1916 53, 51, 52, | |
| 1917 54, 53, 52, | |
| 1918 55, 53, 54, | |
| 1919 56, 55, 54, | |
| 1920 57, 55, 56, | |
| 1921 58, 57, 56, | |
| 1922 59, 57, 58, | |
| 1923 60, 59, 58, | |
| 1924 61, 59, 60, | |
| 1925 62, 61, 60, | |
| 1926 63, 61, 62, | |
| 1927 64, 63, 62, | |
| 1928 65, 63, 64, | |
| 1929 66, 65, 64, | |
| 1930 67, 65, 66, | |
| 1931 68, 67, 66, | |
| 1932 69, 67, 68, | |
| 1933 70, 69, 68, | |
| 1934 71, 69, 70, | |
| 1935 72, 71, 70, | |
| 1936 73, 71, 72, | |
| 1937 74, 73, 72, | |
| 1938 75, 73, 74, | |
| 1939 76, 75, 74, | |
| 1940 77, 75, 76, | |
| 1941 78, 77, 76, | |
| 1942 79, 77, 78, | |
| 1943 80, 79, 78, | |
| 1944 49, 51, 53, | |
| 1945 53, 55, 57, | |
| 1946 57, 59, 61, | |
| 1947 61, 63, 65, | |
| 1948 65, 67, 69, | |
| 1949 69, 71, 73, | |
| 1950 73, 75, 77, | |
| 1951 77, 79, 49, | |
| 1952 49, 53, 57, | |
| 1953 57, 61, 65, | |
| 1954 65, 69, 73, | |
| 1955 73, 77, 49, | |
| 1956 49, 57, 65, | |
| 1957 65, 73, 49, | |
| 1958 }; | |
| 1959 | |
| 1960 enum { | |
| 1961 kRect_FirstIndex = 0, | |
| 1962 kRect_TriCount = 2, | |
| 1963 | |
| 1964 kFramedRect_FirstIndex = 6, | |
| 1965 kFramedRect_TriCount = 10, | |
| 1966 | |
| 1967 kOctagons_FirstIndex = 36, | |
| 1968 kOctagons_TriCount = 14, | |
| 1969 | |
| 1970 kOctagonsFanned_FirstIndex = 78, | |
| 1971 kOctagonsFanned_TriCount = 16, | |
| 1972 | |
| 1973 kDisjointOctagons_FirstIndex = 126, | |
| 1974 kDisjointOctagons_TriCount = 22, | |
| 1975 | |
| 1976 kCorneredRect_FirstIndex = 192, | |
| 1977 kCorneredRect_TriCount = 10, | |
| 1978 | |
| 1979 kCorneredRectFanned_FirstIndex = 222, | |
| 1980 kCorneredRectFanned_TriCount = 12, | |
| 1981 | |
| 1982 kCorneredFramedRect_FirstIndex = 258, | |
| 1983 kCorneredFramedRect_TriCount = 26, | |
| 1984 | |
| 1985 kDisjoint16Gons_FirstIndex = 336, | |
| 1986 kDisjoint16Gons_TriCount = 46, | |
| 1987 }; | |
| 1988 | |
| 1989 static const GrUniqueKey::Domain kShapeBufferDomain = GrUniqueKey::GenerateDomai
n(); | |
| 1990 | |
| 1991 template<GrBufferType Type> static const GrUniqueKey& get_shape_buffer_key() { | |
| 1992 static GrUniqueKey* kKey; | |
| 1993 if (!kKey) { | |
| 1994 kKey = new GrUniqueKey; | |
| 1995 GrUniqueKey::Builder builder(kKey, kShapeBufferDomain, 1); | |
| 1996 builder[0] = Type; | |
| 1997 } | |
| 1998 return *kKey; | |
| 1999 } | |
| 2000 | |
| 2001 const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) { | |
| 2002 GrResourceCache* cache = gpu->getContext()->getResourceCache(); | |
| 2003 const GrUniqueKey& key = get_shape_buffer_key<kVertex_GrBufferType>(); | |
| 2004 if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { | |
| 2005 return static_cast<GrBuffer*>(cached); | |
| 2006 } | |
| 2007 if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBuff
erType, | |
| 2008 kStatic_GrAccessPattern, kVertexDat
a)) { | |
| 2009 buffer->resourcePriv().setUniqueKey(key); | |
| 2010 return buffer; | |
| 2011 } | |
| 2012 return nullptr; | |
| 2013 } | |
| 2014 | |
| 2015 const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) { | |
| 2016 GrResourceCache* cache = gpu->getContext()->getResourceCache(); | |
| 2017 const GrUniqueKey& key = get_shape_buffer_key<kIndex_GrBufferType>(); | |
| 2018 if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { | |
| 2019 return static_cast<GrBuffer*>(cached); | |
| 2020 } | |
| 2021 if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBuffer
Type, | |
| 2022 kStatic_GrAccessPattern, kIndexData
)) { | |
| 2023 buffer->resourcePriv().setUniqueKey(key); | |
| 2024 return buffer; | |
| 2025 } | |
| 2026 return nullptr; | |
| 2027 } | |
| 2028 | |
| 2029 IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) { | |
| 2030 static constexpr IndexRange kRectRanges[kNumAntialiasModes] = { | |
| 2031 {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone | |
| 2032 {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage | |
| 2033 {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA | |
| 2034 {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples | |
| 2035 }; | |
| 2036 | |
| 2037 SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); | |
| 2038 return kRectRanges[(int)aa]; | |
| 2039 | |
| 2040 GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); | |
| 2041 GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); | |
| 2042 GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); | |
| 2043 GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); | |
| 2044 } | |
| 2045 | |
| 2046 IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRec
t& devBounds) { | |
| 2047 if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width()
>= 256 * 256) { | |
| 2048 // This threshold was chosen quasi-scientifically on Tegra X1. | |
| 2049 return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount}; | |
| 2050 } | |
| 2051 | |
| 2052 static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = { | |
| 2053 {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNo
ne | |
| 2054 {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCo
verage | |
| 2055 {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMS
AA | |
| 2056 {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMi
xedSamples | |
| 2057 }; | |
| 2058 | |
| 2059 SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); | |
| 2060 return kOvalRanges[(int)aa]; | |
| 2061 | |
| 2062 GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); | |
| 2063 GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); | |
| 2064 GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); | |
| 2065 GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); | |
| 2066 } | |
| 2067 | |
| 2068 IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) { | |
| 2069 static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = { | |
| 2070 {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, //
kNone | |
| 2071 {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, //
kCoverage | |
| 2072 {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, //
kMSAA | |
| 2073 {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} //
kMixedSamples | |
| 2074 }; | |
| 2075 | |
| 2076 SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); | |
| 2077 return kRRectRanges[(int)aa]; | |
| 2078 | |
| 2079 GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); | |
| 2080 GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); | |
| 2081 GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); | |
| 2082 GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); | |
| 2083 } | |
| 2084 | |
| 2085 const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) { | |
| 2086 switch (range.fStart) { | |
| 2087 case kRect_FirstIndex: return "basic_rect"; | |
| 2088 case kFramedRect_FirstIndex: return "coverage_rect"; | |
| 2089 | |
| 2090 case kOctagons_FirstIndex: return "basic_oval"; | |
| 2091 case kDisjointOctagons_FirstIndex: return "coverage_oval"; | |
| 2092 case kOctagonsFanned_FirstIndex: return "mixed_samples_oval"; | |
| 2093 | |
| 2094 case kCorneredRect_FirstIndex: return "basic_round_rect"; | |
| 2095 case kCorneredFramedRect_FirstIndex: return "coverage_round_rect"; | |
| 2096 case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect"; | |
| 2097 | |
| 2098 default: return "unknown"; | |
| 2099 } | |
| 2100 } | |
| 2101 | |
| 2102 } | |
| OLD | NEW |