Index: src/gpu/instanced/InstanceProcessor.cpp |
diff --git a/src/gpu/instanced/InstanceProcessor.cpp b/src/gpu/instanced/InstanceProcessor.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..acad4c1e1b0e446d71de88e1411cd534759bef24 |
--- /dev/null |
+++ b/src/gpu/instanced/InstanceProcessor.cpp |
@@ -0,0 +1,2096 @@ |
+/* |
+ * Copyright 2016 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "InstanceProcessor.h" |
+ |
+#include "GrContext.h" |
+#include "GrRenderTargetPriv.h" |
+#include "GrResourceCache.h" |
+#include "GrResourceProvider.h" |
+#include "glsl/GrGLSLGeometryProcessor.h" |
+#include "glsl/GrGLSLFragmentShaderBuilder.h" |
+#include "glsl/GrGLSLProgramBuilder.h" |
+#include "glsl/GrGLSLVarying.h" |
+ |
+namespace gr_instanced { |
+ |
+bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& caps, |
+ AntialiasMode* lastSupportedAAMode) { |
+ if (!glslCaps.canUseAnyFunctionInShader() || |
+ !glslCaps.flatInterpolationSupport() || |
+ !glslCaps.integerSupport() || |
+ 0 == glslCaps.maxVertexSamplers() || |
+ !caps.shaderCaps()->texelBufferSupport() || |
+ caps.maxVertexAttributes() < kNumAttribs) { |
+ return false; |
+ } |
+ if (caps.sampleLocationsSupport() && |
+ glslCaps.sampleVariablesSupport() && |
+ glslCaps.shaderDerivativeSupport()) { |
+ if (0 != caps.maxRasterSamples() && |
+ glslCaps.sampleMaskOverrideCoverageSupport()) { |
+ *lastSupportedAAMode = AntialiasMode::kMixedSamples; |
+ } else { |
+ *lastSupportedAAMode = AntialiasMode::kMSAA; |
+ } |
+ } else { |
+ *lastSupportedAAMode = AntialiasMode::kCoverage; |
+ } |
+ return true; |
+} |
+ |
+InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer) |
+ : fBatchInfo(batchInfo) { |
+ this->initClassID<InstanceProcessor>(); |
+ |
+ this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision)); |
+ this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType)); |
+ this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType)); |
+ this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType, |
+ kHigh_GrSLPrecision)); |
+ this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType, |
+ kHigh_GrSLPrecision)); |
+ this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrSLPrecision)); |
+ this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision)); |
+ |
+ GR_STATIC_ASSERT(0 == (int)Attrib::kShapeCoords); |
+ GR_STATIC_ASSERT(1 == (int)Attrib::kVertexAttrs); |
+ GR_STATIC_ASSERT(2 == (int)Attrib::kInstanceInfo); |
+ GR_STATIC_ASSERT(3 == (int)Attrib::kShapeMatrixX); |
+ GR_STATIC_ASSERT(4 == (int)Attrib::kShapeMatrixY); |
+ GR_STATIC_ASSERT(5 == (int)Attrib::kColor); |
+ GR_STATIC_ASSERT(6 == (int)Attrib::kLocalRect); |
+ GR_STATIC_ASSERT(7 == kNumAttribs); |
+ |
+ if (fBatchInfo.fHasParams) { |
+ SkASSERT(paramsBuffer); |
+ fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrShaderFlag); |
+ this->addBufferAccess(&fParamsAccess); |
+ } |
+ |
+ if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) { |
+ if (!fBatchInfo.isSimpleRects() || |
+ AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) { |
+ this->setWillUseSampleLocations(); |
+ } |
+ } |
+} |
+ |
+class GLSLInstanceProcessor : public GrGLSLGeometryProcessor { |
+public: |
+ void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
+ |
+private: |
+ void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override {} |
+ |
+ class VertexInputs; |
+ class Backend; |
+ class BackendNonAA; |
+ class BackendCoverage; |
+ class BackendMultisample; |
+ |
+ typedef GrGLSLGeometryProcessor INHERITED; |
+}; |
+ |
+GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps&) const { |
+ return new GLSLInstanceProcessor(); |
+} |
+ |
+class GLSLInstanceProcessor::VertexInputs { |
+public: |
+ VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexBuilder) |
+ : fInstProc(instProc), |
+ fVertexBuilder(vertexBuilder) { |
+ } |
+ |
+ void initParams(const SamplerHandle paramsBuffer) { |
+ fParamsBuffer = paramsBuffer; |
+ fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask); |
+ fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);", |
+ this->attr(Attrib::kInstanceInfo)); |
+ } |
+ |
+ const char* attr(Attrib attr) const { return fInstProc.getAttrib((int)attr).fName; } |
+ |
+ void fetchNextParam(GrSLType type = kVec4f_GrSLType) const { |
+ SkASSERT(fParamsBuffer.isValid()); |
+ if (type != kVec4f_GrSLType) { |
+ fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type)); |
+ } |
+ fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++"); |
+ if (type != kVec4f_GrSLType) { |
+ fVertexBuilder->codeAppend(")"); |
+ } |
+ } |
+ |
+ void skipParams(unsigned n) const { |
+ SkASSERT(fParamsBuffer.isValid()); |
+ fVertexBuilder->codeAppendf("paramsIdx += %u;", n); |
+ } |
+ |
+private: |
+ const InstanceProcessor& fInstProc; |
+ GrGLSLVertexBuilder* fVertexBuilder; |
+ SamplerHandle fParamsBuffer; |
+}; |
+ |
+class GLSLInstanceProcessor::Backend { |
+public: |
+ static Backend* SK_WARN_UNUSED_RESULT Create(const GrPipeline&, BatchInfo, const VertexInputs&); |
+ virtual ~Backend() {} |
+ |
+ void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
+ virtual void setupRect(GrGLSLVertexBuilder*) = 0; |
+ virtual void setupOval(GrGLSLVertexBuilder*) = 0; |
+ void setupRRect(GrGLSLVertexBuilder*); |
+ |
+ void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
+ virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0; |
+ virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0; |
+ void setupInnerRRect(GrGLSLVertexBuilder*); |
+ |
+ const char* outShapeCoords() { |
+ return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(Attrib::kShapeCoords); |
+ } |
+ |
+ void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, |
+ const char* outColor); |
+ |
+protected: |
+ Backend(BatchInfo batchInfo, const VertexInputs& inputs) |
+ : fBatchInfo(batchInfo), |
+ fInputs(inputs), |
+ fModifiesCoverage(false), |
+ fModifiesColor(false), |
+ fNeedsNeighborRadii(false), |
+ fColor(kVec4f_GrSLType), |
+ fTriangleIsArc(kInt_GrSLType), |
+ fArcCoords(kVec2f_GrSLType), |
+ fInnerShapeCoords(kVec2f_GrSLType), |
+ fInnerRRect(kVec4f_GrSLType), |
+ fModifiedShapeCoords(nullptr) { |
+ if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { |
+ fModifiedShapeCoords = "adjustedShapeCoords"; |
+ } |
+ } |
+ |
+ virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; |
+ virtual void adjustRRectVertices(GrGLSLVertexBuilder*); |
+ virtual void onSetupRRect(GrGLSLVertexBuilder*) {} |
+ |
+ virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; |
+ virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0; |
+ |
+ virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, |
+ const char* outCoverage, const char* outColor) = 0; |
+ |
+ void setupSimpleRadii(GrGLSLVertexBuilder*); |
+ void setupNinePatchRadii(GrGLSLVertexBuilder*); |
+ void setupComplexRadii(GrGLSLVertexBuilder*); |
+ |
+ const BatchInfo fBatchInfo; |
+ const VertexInputs& fInputs; |
+ bool fModifiesCoverage; |
+ bool fModifiesColor; |
+ bool fNeedsNeighborRadii; |
+ GrGLSLVertToFrag fColor; |
+ GrGLSLVertToFrag fTriangleIsArc; |
+ GrGLSLVertToFrag fArcCoords; |
+ GrGLSLVertToFrag fInnerShapeCoords; |
+ GrGLSLVertToFrag fInnerRRect; |
+ const char* fModifiedShapeCoords; |
+}; |
+ |
+void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
+ const GrPipeline& pipeline = args.fVertBuilder->getProgramBuilder()->pipeline(); |
+ const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>(); |
+ GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
+ GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
+ GrGLSLVertexBuilder* v = args.fVertBuilder; |
+ GrGLSLPPFragmentBuilder* f = args.fFragBuilder; |
+ |
+ varyingHandler->emitAttributes(ip); |
+ |
+ VertexInputs inputs(ip, v); |
+ if (ip.batchInfo().fHasParams) { |
+ SkASSERT(1 == ip.numBuffers()); |
+ inputs.initParams(args.fBufferSamplers[0]); |
+ } |
+ |
+ if (!ip.batchInfo().fHasPerspective) { |
+ v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);", |
+ inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); |
+ } else { |
+ v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag); |
+ v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));", |
+ inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); |
+ v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {", |
+ inputs.attr(Attrib::kInstanceInfo)); |
+ v->codeAppend ( "shapeMatrix[2] = "); |
+ inputs.fetchNextParam(kVec3f_GrSLType); |
+ v->codeAppend ( ";"); |
+ v->codeAppend ("}"); |
+ } |
+ |
+ int usedShapeTypes = 0; |
+ |
+ bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes); |
+ if (!hasSingleShapeType) { |
+ usedShapeTypes |= ip.batchInfo().fShapeTypes; |
+ v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit); |
+ v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;", |
+ inputs.attr(Attrib::kInstanceInfo)); |
+ } |
+ |
+ SkAutoTDelete<Backend> backend(Backend::Create(pipeline, ip.batchInfo(), inputs)); |
+ backend->init(varyingHandler, v); |
+ |
+ if (hasSingleShapeType) { |
+ if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) { |
+ backend->setupRect(v); |
+ } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) { |
+ backend->setupOval(v); |
+ } else { |
+ backend->setupRRect(v); |
+ } |
+ } else { |
+ v->codeAppend ("switch (shapeType) {"); |
+ if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) { |
+ v->codeAppend ("case RECT_SHAPE_TYPE: {"); |
+ backend->setupRect(v); |
+ v->codeAppend ("} break;"); |
+ } |
+ if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) { |
+ v->codeAppend ("case OVAL_SHAPE_TYPE: {"); |
+ backend->setupOval(v); |
+ v->codeAppend ("} break;"); |
+ } |
+ if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) { |
+ v->codeAppend ("default: {"); |
+ backend->setupRRect(v); |
+ v->codeAppend ("} break;"); |
+ } |
+ v->codeAppend ("}"); |
+ } |
+ |
+ if (ip.batchInfo().fInnerShapeTypes) { |
+ bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes); |
+ if (!hasSingleInnerShapeType) { |
+ usedShapeTypes |= ip.batchInfo().fInnerShapeTypes; |
+ v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMask); |
+ v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit); |
+ v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK) >> " |
+ "INNER_SHAPE_TYPE_BIT);", |
+ inputs.attr(Attrib::kInstanceInfo)); |
+ } |
+ // Here we take advantage of the fact that outerRect == localRect in recordDRRect. |
+ v->codeAppendf("vec4 outer = %s;", inputs.attr(Attrib::kLocalRect)); |
+ v->codeAppend ("vec4 inner = "); |
+ inputs.fetchNextParam(); |
+ v->codeAppend (";"); |
+ // outer2Inner is a transform from shape coords to inner shape coords: |
+ // e.g. innerShapeCoords = shapeCoords * outer2Inner.xy + outer2Inner.zw |
+ v->codeAppend ("vec4 outer2Inner = vec4(outer.zw - outer.xy, " |
+ "outer.xy + outer.zw - inner.xy - inner.zw) / " |
+ "(inner.zw - inner.xy).xyxy;"); |
+ v->codeAppendf("vec2 innerShapeCoords = %s * outer2Inner.xy + outer2Inner.zw;", |
+ backend->outShapeCoords()); |
+ |
+ backend->initInnerShape(varyingHandler, v); |
+ |
+ if (hasSingleInnerShapeType) { |
+ if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { |
+ backend->setupInnerRect(v); |
+ } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { |
+ backend->setupInnerOval(v); |
+ } else { |
+ backend->setupInnerRRect(v); |
+ } |
+ } else { |
+ v->codeAppend("switch (innerShapeType) {"); |
+ if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) { |
+ v->codeAppend("case RECT_SHAPE_TYPE: {"); |
+ backend->setupInnerRect(v); |
+ v->codeAppend("} break;"); |
+ } |
+ if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) { |
+ v->codeAppend("case OVAL_SHAPE_TYPE: {"); |
+ backend->setupInnerOval(v); |
+ v->codeAppend("} break;"); |
+ } |
+ if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) { |
+ v->codeAppend("default: {"); |
+ backend->setupInnerRRect(v); |
+ v->codeAppend("} break;"); |
+ } |
+ v->codeAppend("}"); |
+ } |
+ } |
+ |
+ if (usedShapeTypes & kRect_ShapeFlag) { |
+ v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect); |
+ } |
+ if (usedShapeTypes & kOval_ShapeFlag) { |
+ v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval); |
+ } |
+ |
+ backend->emitCode(v, f, pipeline.ignoresCoverage() ? nullptr : args.fOutputCoverage, |
+ args.fOutputColor); |
+ |
+ const char* localCoords = nullptr; |
+ if (ip.batchInfo().fUsesLocalCoords) { |
+ localCoords = "localCoords"; |
+ v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords()); |
+ v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;", |
+ inputs.attr(Attrib::kLocalRect), inputs.attr(Attrib::kLocalRect)); |
+ } |
+ if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) { |
+ v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag); |
+ v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {", |
+ inputs.attr(Attrib::kInstanceInfo)); |
+ if (!ip.batchInfo().fUsesLocalCoords) { |
+ inputs.skipParams(2); |
+ } else { |
+ v->codeAppendf( "mat2x3 localMatrix;"); |
+ v->codeAppend ( "localMatrix[0] = "); |
+ inputs.fetchNextParam(kVec3f_GrSLType); |
+ v->codeAppend ( ";"); |
+ v->codeAppend ( "localMatrix[1] = "); |
+ inputs.fetchNextParam(kVec3f_GrSLType); |
+ v->codeAppend ( ";"); |
+ v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatrix).xy;"); |
+ } |
+ v->codeAppend("}"); |
+ } |
+ |
+ GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : kVec2f_GrSLType; |
+ v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;", |
+ GrGLSLTypeString(positionType), backend->outShapeCoords()); |
+ gpArgs->fPositionVar.set(positionType, "deviceCoords"); |
+ |
+ this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, localCoords, |
+ args.fTransformsIn, args.fTransformsOut); |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder* v) { |
+ if (fModifiedShapeCoords) { |
+ v->codeAppendf("vec2 %s = %s;", fModifiedShapeCoords, fInputs.attr(Attrib::kShapeCoords)); |
+ } |
+ |
+ this->onInit(varyingHandler, v); |
+ |
+ if (!fColor.vsOut()) { |
+ varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision); |
+ v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(Attrib::kColor)); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) { |
+ v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);", |
+ fInputs.attr(Attrib::kVertexAttrs), fInputs.attr(Attrib::kVertexAttrs)); |
+ v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;"); |
+ v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : ""); |
+ v->codeAppend ("mat2 p = "); |
+ fInputs.fetchNextParam(kMat22f_GrSLType); |
+ v->codeAppend (";"); |
+ uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask; |
+ if (0 == (types & (types - 1))) { |
+ if (kSimpleRRect_ShapeFlag == types) { |
+ this->setupSimpleRadii(v); |
+ } else if (kNinePatch_ShapeFlag == types) { |
+ this->setupNinePatchRadii(v); |
+ } else if (kComplexRRect_ShapeFlag == types) { |
+ this->setupComplexRadii(v); |
+ } |
+ } else { |
+ v->codeAppend("switch (shapeType) {"); |
+ if (types & kSimpleRRect_ShapeFlag) { |
+ v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpleRRect); |
+ v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {"); |
+ this->setupSimpleRadii(v); |
+ v->codeAppend ("} break;"); |
+ } |
+ if (types & kNinePatch_ShapeFlag) { |
+ v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatch); |
+ v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {"); |
+ this->setupNinePatchRadii(v); |
+ v->codeAppend ("} break;"); |
+ } |
+ if (types & kComplexRRect_ShapeFlag) { |
+ v->codeAppend ("default: {"); |
+ this->setupComplexRadii(v); |
+ v->codeAppend ("} break;"); |
+ } |
+ v->codeAppend("}"); |
+ } |
+ |
+ this->adjustRRectVertices(v); |
+ |
+ if (fArcCoords.vsOut()) { |
+ v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;", |
+ fArcCoords.vsOut(), fModifiedShapeCoords); |
+ } |
+ if (fTriangleIsArc.vsOut()) { |
+ v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));", |
+ fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kShapeCoords)); |
+ } |
+ |
+ this->onSetupRRect(v); |
+} |
+ |
+void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) { |
+ if (fNeedsNeighborRadii) { |
+ v->codeAppend ("neighborRadii = "); |
+ } |
+ v->codeAppend("radii = p[0] * 2.0 / p[1];"); |
+} |
+ |
+void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v) { |
+ v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);"); |
+ if (fNeedsNeighborRadii) { |
+ v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corner.y]);"); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) { |
+ /** |
+ * The x and y radii of each arc are stored in separate vectors, |
+ * in the following order: |
+ * |
+ * __x1 _ _ _ x3__ |
+ * |
+ * y1 | | y2 |
+ * |
+ * | | |
+ * |
+ * y3 |__ _ _ _ __| y4 |
+ * x2 x4 |
+ * |
+ */ |
+ v->codeAppend("mat2 p2 = "); |
+ fInputs.fetchNextParam(kMat22f_GrSLType); |
+ v->codeAppend(";"); |
+ v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);"); |
+ if (fNeedsNeighborRadii) { |
+ v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], " |
+ "p2[1u - corner.y][corner.x]);"); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
+ // Resize the 4 triangles that arcs are drawn into so they match their corresponding radii. |
+ // 0.5 is a special value that indicates the edge of an arc triangle. |
+ v->codeAppendf("if (abs(%s.x) == 0.5)" |
+ "%s.x = cornerSign.x * (1.0 - radii.x);", |
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
+ v->codeAppendf("if (abs(%s.y) == 0.5) " |
+ "%s.y = cornerSign.y * (1.0 - radii.y);", |
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
+} |
+ |
+void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder* v) { |
+ SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRect_ShapeFlag))); |
+ |
+ this->onInitInnerShape(varyingHandler, v); |
+ |
+ if (fInnerShapeCoords.vsOut()) { |
+ v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) { |
+ v->codeAppend("mat2 innerP = "); |
+ fInputs.fetchNextParam(kMat22f_GrSLType); |
+ v->codeAppend(";"); |
+ v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];"); |
+ this->onSetupInnerRRect(v); |
+} |
+ |
+void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFragmentBuilder* f, |
+ const char* outCoverage, const char* outColor) { |
+ SkASSERT(!fModifiesCoverage || outCoverage); |
+ this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr, |
+ fModifiesColor ? outColor : nullptr); |
+ if (outCoverage && !fModifiesCoverage) { |
+ // Even though the subclass doesn't use coverage, we are expected to assign some value. |
+ f->codeAppendf("%s = vec4(1);", outCoverage); |
+ } |
+ if (!fModifiesColor) { |
+ // The subclass didn't assign a value to the output color. |
+ f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
+ } |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+class GLSLInstanceProcessor::BackendNonAA : public Backend { |
+public: |
+ BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs) |
+ : INHERITED(batchInfo, inputs) { |
+ if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) { |
+ fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage; |
+ fModifiesCoverage = !fModifiesColor; |
+ } |
+ } |
+ |
+private: |
+ void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
+ void setupRect(GrGLSLVertexBuilder*) override; |
+ void setupOval(GrGLSLVertexBuilder*) override; |
+ |
+ void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
+ void setupInnerRect(GrGLSLVertexBuilder*) override; |
+ void setupInnerOval(GrGLSLVertexBuilder*) override; |
+ void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
+ |
+ void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
+ const char*) override; |
+ |
+ typedef Backend INHERITED; |
+}; |
+ |
+void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder*) { |
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision); |
+ varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecision); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) { |
+ if (fTriangleIsArc.vsOut()) { |
+ v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) { |
+ SkASSERT(fArcCoords.vsOut()); |
+ SkASSERT(fTriangleIsArc.vsOut()); |
+ v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords()); |
+ v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
+} |
+ |
+void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder*) { |
+ varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_GrSLPrecision); |
+ if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes && |
+ kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
+ varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v) { |
+ if (fInnerRRect.vsOut()) { |
+ v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v) { |
+ if (fInnerRRect.vsOut()) { |
+ v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder* v) { |
+ v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); |
+} |
+ |
+void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*, |
+ GrGLSLPPFragmentBuilder* f, |
+ const char* outCoverage, |
+ const char* outColor) { |
+ const char* dropFragment = nullptr; |
+ if (!fBatchInfo.fCannotDiscard) { |
+ dropFragment = "discard"; |
+ } else if (fModifiesCoverage) { |
+ f->appendPrecisionModifier(kLow_GrSLPrecision); |
+ f->codeAppend ("float covered = 1.0;"); |
+ dropFragment = "covered = 0.0"; |
+ } else if (fModifiesColor) { |
+ f->appendPrecisionModifier(kLow_GrSLPrecision); |
+ f->codeAppendf("vec4 color = %s;", fColor.fsIn()); |
+ dropFragment = "color = vec4(0)"; |
+ } |
+ if (fTriangleIsArc.fsIn()) { |
+ SkASSERT(dropFragment); |
+ f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;", |
+ fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn(), dropFragment); |
+ } |
+ if (fBatchInfo.fInnerShapeTypes) { |
+ SkASSERT(dropFragment); |
+ f->codeAppendf("// Inner shape.\n"); |
+ if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
+ f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;", |
+ fInnerShapeCoords.fsIn(), dropFragment); |
+ } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
+ f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;", |
+ fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), dropFragment); |
+ } else { |
+ f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShapeCoords.fsIn()); |
+ f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
+ fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
+ f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); |
+ f->codeAppendf( "%s;", dropFragment); |
+ f->codeAppend ( "} else {"); |
+ f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw;", |
+ fInnerRRect.fsIn()); |
+ f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {"); |
+ f->codeAppendf( "%s;", dropFragment); |
+ f->codeAppend ( "}"); |
+ f->codeAppend ( "}"); |
+ f->codeAppend ("}"); |
+ } |
+ } |
+ if (fModifiesCoverage) { |
+ f->codeAppendf("%s = vec4(covered);", outCoverage); |
+ } else if (fModifiesColor) { |
+ f->codeAppendf("%s = color;", outColor); |
+ } |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+class GLSLInstanceProcessor::BackendCoverage : public Backend { |
+public: |
+ BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs) |
+ : INHERITED(batchInfo, inputs), |
+ fColorTimesRectCoverage(kVec4f_GrSLType), |
+ fRectCoverage(kFloat_GrSLType), |
+ fEllipseCoords(kVec2f_GrSLType), |
+ fEllipseName(kVec2f_GrSLType), |
+ fBloatedRadius(kFloat_GrSLType), |
+ fDistanceToInnerEdge(kVec2f_GrSLType), |
+ fInnerShapeBloatedHalfSize(kVec2f_GrSLType), |
+ fInnerEllipseCoords(kVec2f_GrSLType), |
+ fInnerEllipseName(kVec2f_GrSLType) { |
+ fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kRRect_ShapesMask); |
+ fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage && |
+ !fBatchInfo.fInnerShapeTypes; |
+ fModifiesCoverage = !fTweakAlphaForCoverage; |
+ fModifiesColor = fTweakAlphaForCoverage; |
+ fModifiedShapeCoords = "bloatedShapeCoords"; |
+ } |
+ |
+private: |
+ void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
+ void setupRect(GrGLSLVertexBuilder*) override; |
+ void setupOval(GrGLSLVertexBuilder*) override; |
+ void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
+ void onSetupRRect(GrGLSLVertexBuilder*) override; |
+ |
+ void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
+ void setupInnerRect(GrGLSLVertexBuilder*) override; |
+ void setupInnerOval(GrGLSLVertexBuilder*) override; |
+ void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
+ |
+ void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, |
+ const char* outColor) override; |
+ |
+ void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char* outColor); |
+ void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
+ void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const char* ellipseName, |
+ bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative, |
+ const char* outCoverage); |
+ void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
+ |
+ GrGLSLVertToFrag fColorTimesRectCoverage; |
+ GrGLSLVertToFrag fRectCoverage; |
+ GrGLSLVertToFrag fEllipseCoords; |
+ GrGLSLVertToFrag fEllipseName; |
+ GrGLSLVertToFrag fBloatedRadius; |
+ GrGLSLVertToFrag fDistanceToInnerEdge; |
+ GrGLSLVertToFrag fInnerShapeBloatedHalfSize; |
+ GrGLSLVertToFrag fInnerEllipseCoords; |
+ GrGLSLVertToFrag fInnerEllipseName; |
+ bool fShapeIsCircle; |
+ bool fTweakAlphaForCoverage; |
+ |
+ typedef Backend INHERITED; |
+}; |
+ |
+void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder* v) { |
+ v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));"); |
+ v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), " |
+ "length(shapeTransposeMatrix[1]));"); |
+ v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;"); |
+ v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", fInputs.attr(Attrib::kShapeCoords)); |
+ |
+ if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) { |
+ if (fTweakAlphaForCoverage) { |
+ varyingHandler->addVarying("colorTimesRectCoverage", &fColorTimesRectCoverage, |
+ kLow_GrSLPrecision); |
+ if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) { |
+ fColor = fColorTimesRectCoverage; |
+ } |
+ } else { |
+ varyingHandler->addVarying("rectCoverage", &fRectCoverage, kLow_GrSLPrecision); |
+ } |
+ v->codeAppend("float rectCoverage = 0.0;"); |
+ } |
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision); |
+ if (!fShapeIsCircle) { |
+ varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_GrSLPrecision); |
+ varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_GrSLPrecision); |
+ } else { |
+ varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_GrSLPrecision); |
+ varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMedium_GrSLPrecision); |
+ } |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) { |
+ // Make the border one pixel wide. Inner vs outer is indicated by coordAttrs. |
+ v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;", |
+ fInputs.attr(Attrib::kVertexAttrs)); |
+ // Here we use the absolute value, because when the rect is thinner than a pixel, this makes it |
+ // mark the spot where pixel center is within half a pixel of the *opposite* edge. This, |
+ // combined with the "maxCoverage" logic below gives us mathematically correct coverage even for |
+ // subpixel rectangles. |
+ v->codeAppendf("bloatedShapeCoords = %s * abs(vec2(1.0 + rectBloat));", |
+ fInputs.attr(Attrib::kShapeCoords)); |
+ |
+ // Determine coverage at the vertex. Coverage naturally ramps from 0 to 1 unless the rect is |
+ // narrower than a pixel. |
+ v->codeAppend ("float maxCoverage = 4.0 * min(0.5, shapeHalfSize.x) *" |
+ "min(0.5, shapeHalfSize.y);"); |
+ v->codeAppendf("rectCoverage = (%s != 0) ? 0.0 : maxCoverage;", |
+ fInputs.attr(Attrib::kVertexAttrs)); |
+ |
+ if (fTriangleIsArc.vsOut()) { |
+ v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) { |
+ // Offset the inner and outer octagons by one pixel. Inner vs outer is indicated by coordAttrs. |
+ v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;", |
+ fInputs.attr(Attrib::kVertexAttrs)); |
+ v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0));", |
+ fInputs.attr(Attrib::kShapeCoords)); |
+ v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vsOut()); |
+ if (fEllipseName.vsOut()) { |
+ v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseName.vsOut()); |
+ } |
+ if (fBloatedRadius.vsOut()) { |
+ SkASSERT(fShapeIsCircle); |
+ v->codeAppendf("%s = shapeHalfSize.x + 0.5;", fBloatedRadius.vsOut()); |
+ } |
+ if (fTriangleIsArc.vsOut()) { |
+ v->codeAppendf("%s = int(%s != 0);", |
+ fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
+ } |
+ if (fColorTimesRectCoverage.vsOut() || fRectCoverage.vsOut()) { |
+ v->codeAppendf("rectCoverage = 1.0;"); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
+ // We try to let the AA borders line up with the arc edges on their particular side, but we |
+ // can't allow them to get closer than one half pixel to the edge or they might overlap with |
+ // their neighboring border. |
+ v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));"); |
+ v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge, innerEdge);"); |
+ // 0.5 is a special value that indicates this vertex is an arc edge. |
+ v->codeAppendf("if (abs(%s.x) == 0.5)" |
+ "bloatedShapeCoords.x = borderEdge.x;", fInputs.attr(Attrib::kShapeCoords)); |
+ v->codeAppendf("if (abs(%s.y) == 0.5)" |
+ "bloatedShapeCoords.y = borderEdge.y;", fInputs.attr(Attrib::kShapeCoords)); |
+ |
+ // Adjust the interior border vertices to make the border one pixel wide. 0.75 is a special |
+ // value to indicate these points. |
+ v->codeAppendf("if (abs(%s.x) == 0.75) " |
+ "bloatedShapeCoords.x = cornerSign.x * innerEdge.x;", |
+ fInputs.attr(Attrib::kShapeCoords)); |
+ v->codeAppendf("if (abs(%s.y) == 0.75) " |
+ "bloatedShapeCoords.y = cornerSign.y * innerEdge.y;", |
+ fInputs.attr(Attrib::kShapeCoords)); |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v) { |
+ // The geometry is laid out in such a way that rectCoverage will be 0 and 1 on the vertices, but |
+ // we still need to recompute this value because when the rrect gets thinner than one pixel, the |
+ // interior edge of the border will necessarily clamp, and we need to match the AA behavior of |
+ // the arc segments (i.e. distance from bloated edge only; ignoring the fact that the pixel |
+ // actully has less coverage because it's not completely inside the opposite edge.) |
+ v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;"); |
+ v->codeAppend("rectCoverage = min(d.x, d.y);"); |
+ |
+ SkASSERT(!fShapeIsCircle); |
+ // The AA border does not get closer than one half pixel to the edge of the rect, so to get a |
+ // smooth transition from flat edge to arc, we don't allow the radii to be smaller than one half |
+ // pixel. (We don't worry about the transition on the opposite side when a radius is so large |
+ // that the border clamped on that side.) |
+ v->codeAppendf("vec2 clampedRadii = max(radii, bloat);"); |
+ v->codeAppendf("%s = (cornerSign * bloatedShapeCoords + clampedRadii - vec2(1)) * " |
+ "shapeHalfSize;", fEllipseCoords.vsOut()); |
+ v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * shapeHalfSize);", |
+ fEllipseName.vsOut()); |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder* v) { |
+ v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / outer2Inner.xy;"); |
+ |
+ if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
+ varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords, |
+ kMedium_GrSLPrecision); |
+ varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, |
+ kMedium_GrSLPrecision); |
+ } else { |
+ varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge, |
+ kMedium_GrSLPrecision); |
+ varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShapeBloatedHalfSize, |
+ kMedium_GrSLPrecision); |
+ if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
+ varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision); |
+ varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, |
+ kMedium_GrSLPrecision); |
+ varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision); |
+ } |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder* v) { |
+ if (fInnerRRect.vsOut()) { |
+ // The fragment shader will generalize every inner shape as a round rect. Since this one |
+ // is a rect, we simply emit bogus parameters for the round rect (effectively negative |
+ // radii) that ensure the fragment shader always takes the "emitRect" codepath. |
+ v->codeAppendf("%s.xy = abs(outer2Inner.xy) * (1.0 + bloat) + abs(outer2Inner.zw);", |
+ fInnerRRect.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder* v) { |
+ v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);", |
+ fInnerEllipseName.vsOut()); |
+ if (fInnerEllipseCoords.vsOut()) { |
+ v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerEllipseCoords.vsOut()); |
+ } |
+ if (fInnerRRect.vsOut()) { |
+ v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuilder* v) { |
+ // The distance to ellipse formula doesn't work well when the radii are less than half a pixel. |
+ v->codeAppend ("innerRadii = max(innerRadii, bloat);"); |
+ v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * " |
+ "innerShapeHalfSize);", |
+ fInnerEllipseName.vsOut()); |
+ v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRect.vsOut()); |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v, |
+ GrGLSLPPFragmentBuilder* f, |
+ const char* outCoverage, |
+ const char* outColor) { |
+ if (fColorTimesRectCoverage.vsOut()) { |
+ SkASSERT(!fRectCoverage.vsOut()); |
+ v->codeAppendf("%s = %s * rectCoverage;", |
+ fColorTimesRectCoverage.vsOut(), fInputs.attr(Attrib::kColor)); |
+ } |
+ if (fRectCoverage.vsOut()) { |
+ SkASSERT(!fColorTimesRectCoverage.vsOut()); |
+ v->codeAppendf("%s = rectCoverage;", fRectCoverage.vsOut()); |
+ } |
+ |
+ SkString coverage("float coverage"); |
+ if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { |
+ coverage.prependf("lowp "); |
+ } |
+ if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsArc.fsIn())) { |
+ f->codeAppendf("%s;", coverage.c_str()); |
+ coverage = "coverage"; |
+ } |
+ if (fTriangleIsArc.fsIn()) { |
+ f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
+ this->emitRect(f, coverage.c_str(), outColor); |
+ f->codeAppend ("} else {"); |
+ if (fShapeIsCircle) { |
+ this->emitCircle(f, coverage.c_str()); |
+ } else { |
+ bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes & kOval_ShapeFlag); |
+ this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(), |
+ true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNegative, |
+ coverage.c_str()); |
+ } |
+ if (fTweakAlphaForCoverage) { |
+ f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn()); |
+ } |
+ f->codeAppend ("}"); |
+ } else { |
+ this->emitRect(f, coverage.c_str(), outColor); |
+ } |
+ |
+ if (fBatchInfo.fInnerShapeTypes) { |
+ f->codeAppendf("// Inner shape.\n"); |
+ SkString innerCoverageDecl("float innerCoverage"); |
+ if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { |
+ innerCoverageDecl.prependf("lowp "); |
+ } |
+ if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
+ this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(), |
+ true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsMayBeNegative*/, |
+ innerCoverageDecl.c_str()); |
+ } else { |
+ v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", |
+ fDistanceToInnerEdge.vsOut()); |
+ v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedHalfSize.vsOut()); |
+ |
+ if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
+ this->emitInnerRect(f, innerCoverageDecl.c_str()); |
+ } else { |
+ f->codeAppendf("%s = 0.0;", innerCoverageDecl.c_str()); |
+ f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
+ fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
+ f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))) {"); |
+ this->emitInnerRect(f, "innerCoverage"); |
+ f->codeAppend ("} else {"); |
+ f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.zw;", |
+ fInnerRRect.fsIn()); |
+ this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(), |
+ false /*ellipseCoordsNeedClamp*/, |
+ false /*ellipseCoordsMayBeNegative*/, "innerCoverage"); |
+ f->codeAppend ("}"); |
+ } |
+ } |
+ f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0.0));", outCoverage); |
+ } else if (!fTweakAlphaForCoverage) { |
+ f->codeAppendf("%s = vec4(coverage);", outCoverage); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f, |
+ const char* outCoverage, |
+ const char* outColor) { |
+ if (fColorTimesRectCoverage.fsIn()) { |
+ f->codeAppendf("%s = %s;", outColor, fColorTimesRectCoverage.fsIn()); |
+ } else if (fTweakAlphaForCoverage) { |
+ // We are drawing just ovals. The interior rect always has 100% coverage. |
+ f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
+ } else if (fRectCoverage.fsIn()) { |
+ f->codeAppendf("%s = %s;", outCoverage, fRectCoverage.fsIn()); |
+ } else { |
+ f->codeAppendf("%s = 1.0;", outCoverage); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder* f, |
+ const char* outCoverage) { |
+ // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimization on rrects. |
+ SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes)); |
+ f->codeAppendf("float distanceToEdge = %s - length(%s);", |
+ fBloatedRadius.fsIn(), fEllipseCoords.fsIn()); |
+ f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage); |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f, |
+ const char* ellipseCoords, |
+ const char* ellipseName, |
+ bool ellipseCoordsNeedClamp, |
+ bool ellipseCoordsMayBeNegative, |
+ const char* outCoverage) { |
+ SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp); |
+ if (ellipseCoordsNeedClamp) { |
+ // This serves two purposes: |
+ // - To restrict the arcs of rounded rects to their positive quadrants. |
+ // - To avoid inversesqrt(0) in the ellipse formula. |
+ if (ellipseCoordsMayBeNegative) { |
+ f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4));", ellipseCoords); |
+ } else { |
+ f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", ellipseCoords); |
+ } |
+ ellipseCoords = "ellipseClampedCoords"; |
+ } |
+ // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2. |
+ f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName); |
+ // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. |
+ f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords); |
+ // gradDot is the squared length of the gradient of the implicit. |
+ f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);"); |
+ f->appendPrecisionModifier(kLow_GrSLPrecision); |
+ f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);"); |
+ f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage); |
+} |
+ |
+void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuilder* f, |
+ const char* outCoverage) { |
+ f->appendPrecisionModifier(kLow_GrSLPrecision); |
+ f->codeAppendf("vec2 c = %s - abs(%s);", |
+ fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn()); |
+ f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage); |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+class GLSLInstanceProcessor::BackendMultisample : public Backend { |
+public: |
+ BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effectiveSampleCnt) |
+ : INHERITED(batchInfo, inputs), |
+ fEffectiveSampleCnt(effectiveSampleCnt), |
+ fShapeCoords(kVec2f_GrSLType), |
+ fShapeInverseMatrix(kMat22f_GrSLType), |
+ fFragShapeHalfSpan(kVec2f_GrSLType), |
+ fArcTest(kVec2f_GrSLType), |
+ fArcInverseMatrix(kMat22f_GrSLType), |
+ fFragArcHalfSpan(kVec2f_GrSLType), |
+ fEarlyAccept(kInt_GrSLType), |
+ fInnerShapeInverseMatrix(kMat22f_GrSLType), |
+ fFragInnerShapeHalfSpan(kVec2f_GrSLType) { |
+ fRectTrianglesMaySplit = fBatchInfo.fHasPerspective; |
+ fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspective; |
+ } |
+ |
+private: |
+ bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode; } |
+ |
+ void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
+ void setupRect(GrGLSLVertexBuilder*) override; |
+ void setupOval(GrGLSLVertexBuilder*) override; |
+ void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
+ void onSetupRRect(GrGLSLVertexBuilder*) override; |
+ |
+ void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
+ void setupInnerRect(GrGLSLVertexBuilder*) override; |
+ void setupInnerOval(GrGLSLVertexBuilder*) override; |
+ void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
+ |
+ void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
+ const char*) override; |
+ |
+ struct EmitShapeCoords { |
+ const GrGLSLVarying* fVarying; |
+ const char* fInverseMatrix; |
+ const char* fFragHalfSpan; |
+ }; |
+ |
+ struct EmitShapeOpts { |
+ bool fIsTightGeometry; |
+ bool fResolveMixedSamples; |
+ bool fInvertCoverage; |
+ }; |
+ |
+ void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitShapeOpts&); |
+ void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMayBeNegative, |
+ bool clampCoords, const EmitShapeOpts&); |
+ void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const char* rrect, |
+ const EmitShapeOpts&); |
+ void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, const char* sampleIdx, |
+ const char* interpolationMatrix); |
+ void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, const EmitShapeOpts&); |
+ void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, const EmitShapeOpts&, |
+ bool maybeSharedEdge = true); |
+ |
+ int fEffectiveSampleCnt; |
+ bool fRectTrianglesMaySplit; |
+ GrGLSLVertToFrag fShapeCoords; |
+ GrGLSLVertToFrag fShapeInverseMatrix; |
+ GrGLSLVertToFrag fFragShapeHalfSpan; |
+ GrGLSLVertToFrag fArcTest; |
+ GrGLSLVertToFrag fArcInverseMatrix; |
+ GrGLSLVertToFrag fFragArcHalfSpan; |
+ GrGLSLVertToFrag fEarlyAccept; |
+ GrGLSLVertToFrag fInnerShapeInverseMatrix; |
+ GrGLSLVertToFrag fFragInnerShapeHalfSpan; |
+ SkString fSquareFun; |
+ |
+ typedef Backend INHERITED; |
+}; |
+ |
+void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder* v) { |
+ if (!this->isMixedSampled()) { |
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, |
+ kHigh_GrSLPrecision); |
+ varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); |
+ if (!fBatchInfo.fHasPerspective) { |
+ varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, |
+ kHigh_GrSLPrecision); |
+ varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, |
+ kHigh_GrSLPrecision); |
+ } |
+ } else if (!fBatchInfo.fInnerShapeTypes) { |
+ return; |
+ } |
+ } else { |
+ varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPrecision); |
+ if (!fBatchInfo.fHasPerspective) { |
+ varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseMatrix, |
+ kHigh_GrSLPrecision); |
+ varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfSpan, |
+ kHigh_GrSLPrecision); |
+ } |
+ if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { |
+ varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); |
+ varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision); |
+ if (!fBatchInfo.fHasPerspective) { |
+ varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, |
+ kHigh_GrSLPrecision); |
+ varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, |
+ kHigh_GrSLPrecision); |
+ } |
+ } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) { |
+ fArcCoords = fShapeCoords; |
+ fArcInverseMatrix = fShapeInverseMatrix; |
+ fFragArcHalfSpan = fFragShapeHalfSpan; |
+ if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) { |
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, |
+ kHigh_GrSLPrecision); |
+ } |
+ } |
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
+ v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); |
+ varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_GrSLPrecision); |
+ } |
+ } |
+ if (!fBatchInfo.fHasPerspective) { |
+ v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));"); |
+ v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + " |
+ "abs(vec4(shapeInverseMatrix).yw);"); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v) { |
+ if (fShapeCoords.vsOut()) { |
+ v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); |
+ } |
+ if (fShapeInverseMatrix.vsOut()) { |
+ v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
+ } |
+ if (fFragShapeHalfSpan.vsOut()) { |
+ v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
+ } |
+ if (fArcTest.vsOut()) { |
+ // Pick a value that is not > 0. |
+ v->codeAppendf("%s = vec2(0);", fArcTest.vsOut()); |
+ } |
+ if (fTriangleIsArc.vsOut()) { |
+ v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
+ } |
+ if (fEarlyAccept.vsOut()) { |
+ v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v) { |
+ v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords()); |
+ if (fArcInverseMatrix.vsOut()) { |
+ v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords()); |
+ v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);", |
+ fArcInverseMatrix.vsOut()); |
+ } |
+ if (fFragArcHalfSpan.vsOut()) { |
+ v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut()); |
+ } |
+ if (fArcTest.vsOut()) { |
+ // Pick a value that is > 0. |
+ v->codeAppendf("%s = vec2(1);", fArcTest.vsOut()); |
+ } |
+ if (fTriangleIsArc.vsOut()) { |
+ if (!this->isMixedSampled()) { |
+ v->codeAppendf("%s = %s & 1;", |
+ fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
+ } else { |
+ v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut()); |
+ } |
+ } |
+ if (fEarlyAccept.vsOut()) { |
+ v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;", |
+ fEarlyAccept.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
+ if (!this->isMixedSampled()) { |
+ INHERITED::adjustRRectVertices(v); |
+ return; |
+ } |
+ |
+ if (!fBatchInfo.fHasPerspective) { |
+ // For the mixed samples algorithm it's best to bloat the corner triangles a bit so that |
+ // more of the pixels that cross into the arc region are completely inside the shared edges. |
+ // We also snap to a regular rect if the radii shrink smaller than a pixel. |
+ v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);"); |
+ v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ? " |
+ "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - midpt);"); |
+ } else { |
+ // TODO: We could still bloat the corner triangle in the perspective case; we would just |
+ // need to find the screen-space derivative of shape coords at this particular point. |
+ v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec2(0) : radii;"); |
+ } |
+ |
+ v->codeAppendf("if (abs(%s.x) == 0.5)" |
+ "%s.x = cornerSign.x * (1.0 - cornerSize.x);", |
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
+ v->codeAppendf("if (abs(%s.y) == 0.5)" |
+ "%s.y = cornerSign.y * (1.0 - cornerSize.y);", |
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder* v) { |
+ if (fShapeCoords.vsOut()) { |
+ v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); |
+ } |
+ if (fShapeInverseMatrix.vsOut()) { |
+ v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
+ } |
+ if (fFragShapeHalfSpan.vsOut()) { |
+ v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
+ } |
+ if (fArcInverseMatrix.vsOut()) { |
+ v->codeAppend ("vec2 s = cornerSign / radii;"); |
+ v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);", |
+ fArcInverseMatrix.vsOut()); |
+ } |
+ if (fFragArcHalfSpan.vsOut()) { |
+ v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));", |
+ fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(), |
+ fArcInverseMatrix.vsOut()); |
+ } |
+ if (fArcTest.vsOut()) { |
+ // The interior triangles are laid out as a fan. fArcTest is both distances from shared |
+ // edges of a fan triangle to a point within that triangle. fArcTest is used to check if a |
+ // fragment is too close to either shared edge, in which case we point sample the shape as a |
+ // rect at that point in order to guarantee the mixed samples discard logic works correctly. |
+ v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : " |
+ "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize.y - 1.0, 1);", |
+ fArcTest.vsOut(), fModifiedShapeCoords); |
+ if (!fBatchInfo.fHasPerspective) { |
+ // Shift the point at which distances to edges are measured from the center of the pixel |
+ // to the corner. This way the sign of fArcTest will quickly tell us whether a pixel |
+ // is completely inside the shared edge. Perspective mode will accomplish this same task |
+ // by finding the derivatives in the fragment shader. |
+ v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + fragShapeSpan);", |
+ fArcTest.vsOut()); |
+ } |
+ } |
+ if (fEarlyAccept.vsOut()) { |
+ SkASSERT(this->isMixedSampled()); |
+ v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;", |
+ fEarlyAccept.vsOut(), fInputs.attr(Attrib::kShapeCoords)); |
+ } |
+} |
+ |
+void |
+GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
+ GrGLSLVertexBuilder* v) { |
+ varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision); |
+ if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes && |
+ kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
+ varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision); |
+ } |
+ if (!fBatchInfo.fHasPerspective) { |
+ varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeInverseMatrix, |
+ kHigh_GrSLPrecision); |
+ v->codeAppendf("%s = shapeInverseMatrix * mat2(outer2Inner.x, 0, 0, outer2Inner.y);", |
+ fInnerShapeInverseMatrix.vsOut()); |
+ varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShapeHalfSpan, |
+ kHigh_GrSLPrecision); |
+ v->codeAppendf("%s = 0.5 * fragShapeSpan * outer2Inner.xy;", |
+ fFragInnerShapeHalfSpan.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuilder* v) { |
+ if (fInnerRRect.vsOut()) { |
+ // The fragment shader will generalize every inner shape as a round rect. Since this one |
+ // is a rect, we simply emit bogus parameters for the round rect (negative radii) that |
+ // ensure the fragment shader always takes the "sample as rect" codepath. |
+ v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));", |
+ fInnerRRect.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuilder* v) { |
+ if (fInnerRRect.vsOut()) { |
+ v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBuilder* v) { |
+ // Avoid numeric instability by not allowing the inner radii to get smaller than 1/10th pixel. |
+ if (fFragInnerShapeHalfSpan.vsOut()) { |
+ v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerShapeHalfSpan.vsOut()); |
+ } else { |
+ v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));"); |
+ } |
+ v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*, |
+ GrGLSLPPFragmentBuilder* f, |
+ const char*, const char*) { |
+ f->define("SAMPLE_COUNT", fEffectiveSampleCnt); |
+ if (this->isMixedSampled()) { |
+ f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); |
+ f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1)); |
+ } |
+ |
+ if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes)) { |
+ GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHigh_GrSLPrecision); |
+ f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &fSquareFun); |
+ } |
+ |
+ EmitShapeCoords shapeCoords; |
+ shapeCoords.fVarying = &fShapeCoords; |
+ shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn(); |
+ shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn(); |
+ |
+ EmitShapeCoords arcCoords; |
+ arcCoords.fVarying = &fArcCoords; |
+ arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn(); |
+ arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn(); |
+ bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kRRect_ShapesMask); |
+ |
+ EmitShapeOpts opts; |
+ opts.fIsTightGeometry = true; |
+ opts.fResolveMixedSamples = this->isMixedSampled(); |
+ opts.fInvertCoverage = false; |
+ |
+ if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) { |
+ // This determines if the fragment should consider the inner shape in its sample mask. |
+ // We take the derivative early in case discards may occur before we get to the inner shape. |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);", |
+ fInnerShapeCoords.fsIn()); |
+ } |
+ |
+ if (!this->isMixedSampled()) { |
+ SkASSERT(!fArcTest.fsIn()); |
+ if (fTriangleIsArc.fsIn()) { |
+ f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn()); |
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
+ |
+ f->codeAppend ("}"); |
+ } |
+ } else { |
+ const char* arcTest = fArcTest.fsIn(); |
+ SkASSERT(arcTest); |
+ if (fBatchInfo.fHasPerspective) { |
+ // The non-perspective version accounts for fwith() in the vertex shader. |
+ // We make sure to take the derivative here, before a neighbor pixel may early accept. |
+ f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLFeature); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);", |
+ fArcTest.fsIn(), fArcTest.fsIn()); |
+ arcTest = "arcTest"; |
+ } |
+ const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "SAMPLE_MASK_ALL"; |
+ f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept); |
+ f->overrideSampleCoverage(earlyAccept); |
+ f->codeAppend ("} else {"); |
+ if (arcTest) { |
+ // At this point, if the sample mask is all set it means we are inside an arc triangle. |
+ f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || " |
+ "all(greaterThan(%s, vec2(0)))) {", arcTest); |
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
+ f->codeAppend ("} else {"); |
+ this->emitRect(f, shapeCoords, opts); |
+ f->codeAppend ("}"); |
+ } else if (fTriangleIsArc.fsIn()) { |
+ f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
+ this->emitRect(f, shapeCoords, opts); |
+ f->codeAppend ("} else {"); |
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
+ f->codeAppend ("}"); |
+ } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) { |
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
+ } else { |
+ SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag); |
+ this->emitRect(f, shapeCoords, opts); |
+ } |
+ f->codeAppend ("}"); |
+ } |
+ |
+ if (fBatchInfo.fInnerShapeTypes) { |
+ f->codeAppendf("// Inner shape.\n"); |
+ |
+ EmitShapeCoords innerShapeCoords; |
+ innerShapeCoords.fVarying = &fInnerShapeCoords; |
+ if (!fBatchInfo.fHasPerspective) { |
+ innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn(); |
+ innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn(); |
+ } |
+ |
+ EmitShapeOpts innerOpts; |
+ innerOpts.fIsTightGeometry = false; |
+ innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in the outer shape. |
+ innerOpts.fInvertCoverage = true; |
+ |
+ if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
+ this->emitArc(f, innerShapeCoords, true, false, innerOpts); |
+ } else { |
+ f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShapeCoords.fsIn(), |
+ !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragHalfSpan |
+ : "fragInnerShapeApproxHalfSpan"); // Above. |
+ if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
+ this->emitRect(f, innerShapeCoords, innerOpts); |
+ } else { |
+ this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), innerOpts); |
+ } |
+ f->codeAppend ("}"); |
+ } |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder* f, |
+ const EmitShapeCoords& coords, |
+ const EmitShapeOpts& opts) { |
+ // Full MSAA doesn't need to do anything to draw a rect. |
+ SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples); |
+ if (coords.fFragHalfSpan) { |
+ f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {", |
+ coords.fVarying->fsIn(), coords.fFragHalfSpan); |
+ // The entire pixel is inside the rect. |
+ this->acceptOrRejectWholeFragment(f, true, opts); |
+ f->codeAppend ("} else "); |
+ if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) { |
+ f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {", |
+ coords.fVarying->fsIn(), coords.fFragHalfSpan); |
+ // The pixel falls on an edge of the rectangle and is known to not be on a shared edge. |
+ this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false); |
+ f->codeAppend ("} else"); |
+ } |
+ f->codeAppend ("{"); |
+ } |
+ f->codeAppend ("int rectMask = 0;"); |
+ f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppend ( "vec2 pt = "); |
+ this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
+ f->codeAppend ( ";"); |
+ f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i);"); |
+ f->codeAppend ("}"); |
+ this->acceptCoverageMask(f, "rectMask", opts); |
+ if (coords.fFragHalfSpan) { |
+ f->codeAppend ("}"); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder* f, |
+ const EmitShapeCoords& coords, |
+ bool coordsMayBeNegative, bool clampCoords, |
+ const EmitShapeOpts& opts) { |
+ if (coords.fFragHalfSpan) { |
+ SkString absArcCoords; |
+ absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVarying->fsIn()); |
+ if (clampCoords) { |
+ f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {", |
+ fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
+ } else { |
+ f->codeAppendf("if (%s(%s + %s) < 1.0) {", |
+ fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
+ } |
+ // The entire pixel is inside the arc. |
+ this->acceptOrRejectWholeFragment(f, true, opts); |
+ f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {", |
+ fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
+ // The entire pixel is outside the arc. |
+ this->acceptOrRejectWholeFragment(f, false, opts); |
+ f->codeAppend ("} else {"); |
+ } |
+ f->codeAppend ( "int arcMask = 0;"); |
+ f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppend ( "vec2 pt = "); |
+ this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
+ f->codeAppend ( ";"); |
+ if (clampCoords) { |
+ SkASSERT(!coordsMayBeNegative); |
+ f->codeAppend ( "pt = max(pt, vec2(0));"); |
+ } |
+ f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.c_str()); |
+ f->codeAppend ( "}"); |
+ this->acceptCoverageMask(f, "arcMask", opts); |
+ if (coords.fFragHalfSpan) { |
+ f->codeAppend ("}"); |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragmentBuilder* f, |
+ const EmitShapeCoords& coords, |
+ const char* rrect, |
+ const EmitShapeOpts& opts) { |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying->fsIn(), rrect); |
+ f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); |
+ this->emitRect(f, coords, opts); |
+ f->codeAppend ("} else {"); |
+ if (coords.fInverseMatrix && coords.fFragHalfSpan) { |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfSpan, rrect); |
+ f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSquareFun.c_str()); |
+ // The entire pixel is inside the round rect. |
+ this->acceptOrRejectWholeFragment(f, true, opts); |
+ f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(0))) >= 1.0) {", |
+ fSquareFun.c_str()); |
+ // The entire pixel is outside the round rect. |
+ this->acceptOrRejectWholeFragment(f, false, opts); |
+ f->codeAppend ("} else {"); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying->fsIn()); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0, s.y);", |
+ coords.fInverseMatrix); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppend ( "int rrectMask = 0;"); |
+ f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppend ( "vec2 pt = rrectCoords + "); |
+ f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); |
+ f->codeAppend ( "* innerRRectInverseMatrix;"); |
+ f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1 << i);", |
+ fSquareFun.c_str()); |
+ f->codeAppend ( "}"); |
+ this->acceptCoverageMask(f, "rrectMask", opts); |
+ f->codeAppend ("}"); |
+ } else { |
+ f->codeAppend ("int rrectMask = 0;"); |
+ f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppend ( "vec2 shapePt = "); |
+ this->interpolateAtSample(f, *coords.fVarying, "i", nullptr); |
+ f->codeAppend ( ";"); |
+ f->appendPrecisionModifier(kHigh_GrSLPrecision); |
+ f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) * %s.zw;", |
+ rrect, rrect); |
+ f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSquareFun.c_str()); |
+ f->codeAppend ("}"); |
+ this->acceptCoverageMask(f, "rrectMask", opts); |
+ } |
+ f->codeAppend ("}"); |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFragmentBuilder* f, |
+ const GrGLSLVarying& varying, |
+ const char* sampleIdx, |
+ const char* interpolationMatrix) { |
+ if (interpolationMatrix) { |
+ f->codeAppendf("(%s + ", varying.fsIn()); |
+ f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); |
+ f->codeAppendf(" * %s)", interpolationMatrix); |
+ } else { |
+ SkAssertResult( |
+ f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GLSLFeature)); |
+ f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn()); |
+ f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates); |
+ f->codeAppend(")"); |
+ } |
+} |
+ |
+void |
+GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder* f, |
+ bool inside, |
+ const EmitShapeOpts& opts) { |
+ if (inside != opts.fInvertCoverage) { // Accept the entire fragment. |
+ if (opts.fResolveMixedSamples) { |
+ // This is a mixed sampled fragment in the interior of the shape. Reassign 100% coverage |
+ // to one fragment, and drop all other fragments that may fall on this same pixel. Since |
+ // our geometry is water tight and non-overlapping, we can take advantage of the |
+ // properties that (1) the incoming sample masks will be disjoint across fragments that |
+ // fall on a common pixel, and (2) since the entire fragment is inside the shape, each |
+ // sample's corresponding bit will be set in the incoming sample mask of exactly one |
+ // fragment. |
+ f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {"); |
+ // Drop this fragment. |
+ if (!fBatchInfo.fCannotDiscard) { |
+ f->codeAppend("discard;"); |
+ } else { |
+ f->overrideSampleCoverage("0"); |
+ } |
+ f->codeAppend("} else {"); |
+ // Override the lone surviving fragment to full coverage. |
+ f->overrideSampleCoverage("-1"); |
+ f->codeAppend("}"); |
+ } |
+ } else { // Reject the entire fragment. |
+ if (!fBatchInfo.fCannotDiscard) { |
+ f->codeAppend("discard;"); |
+ } else if (opts.fResolveMixedSamples) { |
+ f->overrideSampleCoverage("0"); |
+ } else { |
+ f->maskSampleCoverage("0"); |
+ } |
+ } |
+} |
+ |
+void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragmentBuilder* f, |
+ const char* shapeMask, |
+ const EmitShapeOpts& opts, |
+ bool maybeSharedEdge) { |
+ if (opts.fResolveMixedSamples) { |
+ if (maybeSharedEdge) { |
+ // This is a mixed sampled fragment, potentially on the outer edge of the shape, with |
+ // only partial shape coverage. Override the coverage of one fragment to "shapeMask", |
+ // and drop all other fragments that may fall on this same pixel. Since our geometry is |
+ // water tight, non-overlapping, and completely contains the shape, this means that each |
+ // "on" bit from shapeMask is guaranteed to be set in the incoming sample mask of one, |
+ // and only one, fragment that falls on this same pixel. |
+ SkASSERT(!opts.fInvertCoverage); |
+ f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0) {", shapeMask); |
+ // Drop this fragment. |
+ if (!fBatchInfo.fCannotDiscard) { |
+ f->codeAppend ("discard;"); |
+ } else { |
+ f->overrideSampleCoverage("0"); |
+ } |
+ f->codeAppend ("} else {"); |
+ // Override the coverage of the lone surviving fragment to "shapeMask". |
+ f->overrideSampleCoverage(shapeMask); |
+ f->codeAppend ("}"); |
+ } else { |
+ f->overrideSampleCoverage(shapeMask); |
+ } |
+ } else { |
+ f->maskSampleCoverage(shapeMask, opts.fInvertCoverage); |
+ } |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+GLSLInstanceProcessor::Backend* |
+GLSLInstanceProcessor::Backend::Create(const GrPipeline& pipeline, BatchInfo batchInfo, |
+ const VertexInputs& inputs) { |
+ switch (batchInfo.fAntialiasMode) { |
+ default: |
+ SkFAIL("Unexpected antialias mode."); |
+ case AntialiasMode::kNone: |
+ return new BackendNonAA(batchInfo, inputs); |
+ case AntialiasMode::kCoverage: |
+ return new BackendCoverage(batchInfo, inputs); |
+ case AntialiasMode::kMSAA: |
+ case AntialiasMode::kMixedSamples: { |
+ const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv(); |
+ const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline.getStencil()); |
+ return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSampleCnt); |
+ } |
+ } |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+const ShapeVertex kVertexData[] = { |
+ // Rectangle. |
+ {+1, +1, ~0}, /*0*/ |
+ {-1, +1, ~0}, /*1*/ |
+ {-1, -1, ~0}, /*2*/ |
+ {+1, -1, ~0}, /*3*/ |
+ // The next 4 are for the bordered version. |
+ {+1, +1, 0}, /*4*/ |
+ {-1, +1, 0}, /*5*/ |
+ {-1, -1, 0}, /*6*/ |
+ {+1, -1, 0}, /*7*/ |
+ |
+ // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
+ {+1.000000f, 0.000000f, 0}, /* 8*/ |
+ {+1.000000f, +0.414214f, ~0}, /* 9*/ |
+ {+0.707106f, +0.707106f, 0}, /*10*/ |
+ {+0.414214f, +1.000000f, ~0}, /*11*/ |
+ { 0.000000f, +1.000000f, 0}, /*12*/ |
+ {-0.414214f, +1.000000f, ~0}, /*13*/ |
+ {-0.707106f, +0.707106f, 0}, /*14*/ |
+ {-1.000000f, +0.414214f, ~0}, /*15*/ |
+ {-1.000000f, 0.000000f, 0}, /*16*/ |
+ {-1.000000f, -0.414214f, ~0}, /*17*/ |
+ {-0.707106f, -0.707106f, 0}, /*18*/ |
+ {-0.414214f, -1.000000f, ~0}, /*19*/ |
+ { 0.000000f, -1.000000f, 0}, /*20*/ |
+ {+0.414214f, -1.000000f, ~0}, /*21*/ |
+ {+0.707106f, -0.707106f, 0}, /*22*/ |
+ {+1.000000f, -0.414214f, ~0}, /*23*/ |
+ // This vertex is for the fanned versions. |
+ { 0.000000f, 0.000000f, ~0}, /*24*/ |
+ |
+ // Rectangle with disjoint corner segments. |
+ {+1.0, +0.5, 0x3}, /*25*/ |
+ {+1.0, +1.0, 0x3}, /*26*/ |
+ {+0.5, +1.0, 0x3}, /*27*/ |
+ {-0.5, +1.0, 0x2}, /*28*/ |
+ {-1.0, +1.0, 0x2}, /*29*/ |
+ {-1.0, +0.5, 0x2}, /*30*/ |
+ {-1.0, -0.5, 0x0}, /*31*/ |
+ {-1.0, -1.0, 0x0}, /*32*/ |
+ {-0.5, -1.0, 0x0}, /*33*/ |
+ {+0.5, -1.0, 0x1}, /*34*/ |
+ {+1.0, -1.0, 0x1}, /*35*/ |
+ {+1.0, -0.5, 0x1}, /*36*/ |
+ // The next 4 are for the fanned version. |
+ { 0.0, 0.0, 0x3}, /*37*/ |
+ { 0.0, 0.0, 0x2}, /*38*/ |
+ { 0.0, 0.0, 0x0}, /*39*/ |
+ { 0.0, 0.0, 0x1}, /*40*/ |
+ // The next 8 are for the bordered version. |
+ {+0.75, +0.50, 0x3}, /*41*/ |
+ {+0.50, +0.75, 0x3}, /*42*/ |
+ {-0.50, +0.75, 0x2}, /*43*/ |
+ {-0.75, +0.50, 0x2}, /*44*/ |
+ {-0.75, -0.50, 0x0}, /*45*/ |
+ {-0.50, -0.75, 0x0}, /*46*/ |
+ {+0.50, -0.75, 0x1}, /*47*/ |
+ {+0.75, -0.50, 0x1}, /*48*/ |
+ |
+ // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon. |
+ {+1.000000f, +0.000000f, 0}, /*49*/ |
+ {+1.000000f, +0.198913f, ~0}, /*50*/ |
+ {+0.923879f, +0.382683f, 0}, /*51*/ |
+ {+0.847760f, +0.566455f, ~0}, /*52*/ |
+ {+0.707106f, +0.707106f, 0}, /*53*/ |
+ {+0.566455f, +0.847760f, ~0}, /*54*/ |
+ {+0.382683f, +0.923879f, 0}, /*55*/ |
+ {+0.198913f, +1.000000f, ~0}, /*56*/ |
+ {+0.000000f, +1.000000f, 0}, /*57*/ |
+ {-0.198913f, +1.000000f, ~0}, /*58*/ |
+ {-0.382683f, +0.923879f, 0}, /*59*/ |
+ {-0.566455f, +0.847760f, ~0}, /*60*/ |
+ {-0.707106f, +0.707106f, 0}, /*61*/ |
+ {-0.847760f, +0.566455f, ~0}, /*62*/ |
+ {-0.923879f, +0.382683f, 0}, /*63*/ |
+ {-1.000000f, +0.198913f, ~0}, /*64*/ |
+ {-1.000000f, +0.000000f, 0}, /*65*/ |
+ {-1.000000f, -0.198913f, ~0}, /*66*/ |
+ {-0.923879f, -0.382683f, 0}, /*67*/ |
+ {-0.847760f, -0.566455f, ~0}, /*68*/ |
+ {-0.707106f, -0.707106f, 0}, /*69*/ |
+ {-0.566455f, -0.847760f, ~0}, /*70*/ |
+ {-0.382683f, -0.923879f, 0}, /*71*/ |
+ {-0.198913f, -1.000000f, ~0}, /*72*/ |
+ {-0.000000f, -1.000000f, 0}, /*73*/ |
+ {+0.198913f, -1.000000f, ~0}, /*74*/ |
+ {+0.382683f, -0.923879f, 0}, /*75*/ |
+ {+0.566455f, -0.847760f, ~0}, /*76*/ |
+ {+0.707106f, -0.707106f, 0}, /*77*/ |
+ {+0.847760f, -0.566455f, ~0}, /*78*/ |
+ {+0.923879f, -0.382683f, 0}, /*79*/ |
+ {+1.000000f, -0.198913f, ~0}, /*80*/ |
+}; |
+ |
+const uint8_t kIndexData[] = { |
+ // Rectangle. |
+ 0, 1, 2, |
+ 0, 2, 3, |
+ |
+ // Rectangle with a border. |
+ 0, 1, 5, |
+ 5, 4, 0, |
+ 1, 2, 6, |
+ 6, 5, 1, |
+ 2, 3, 7, |
+ 7, 6, 2, |
+ 3, 0, 4, |
+ 4, 7, 3, |
+ 4, 5, 6, |
+ 6, 7, 4, |
+ |
+ // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
+ 10, 8, 9, |
+ 12, 10, 11, |
+ 14, 12, 13, |
+ 16, 14, 15, |
+ 18, 16, 17, |
+ 20, 18, 19, |
+ 22, 20, 21, |
+ 8, 22, 23, |
+ 8, 10, 12, |
+ 12, 14, 16, |
+ 16, 18, 20, |
+ 20, 22, 8, |
+ 8, 12, 16, |
+ 16, 20, 8, |
+ |
+ // Same octagons, but with the interior arranged as a fan. Used by mixed samples. |
+ 10, 8, 9, |
+ 12, 10, 11, |
+ 14, 12, 13, |
+ 16, 14, 15, |
+ 18, 16, 17, |
+ 20, 18, 19, |
+ 22, 20, 21, |
+ 8, 22, 23, |
+ 24, 8, 10, |
+ 12, 24, 10, |
+ 24, 12, 14, |
+ 16, 24, 14, |
+ 24, 16, 18, |
+ 20, 24, 18, |
+ 24, 20, 22, |
+ 8, 24, 22, |
+ |
+ // Same octagons, but with the inner and outer disjoint. Used by coverage AA. |
+ 8, 22, 23, |
+ 9, 8, 23, |
+ 10, 8, 9, |
+ 11, 10, 9, |
+ 12, 10, 11, |
+ 13, 12, 11, |
+ 14, 12, 13, |
+ 15, 14, 13, |
+ 16, 14, 15, |
+ 17, 16, 15, |
+ 18, 16, 17, |
+ 19, 18, 17, |
+ 20, 18, 19, |
+ 21, 20, 19, |
+ 22, 20, 21, |
+ 23, 22, 21, |
+ 22, 8, 10, |
+ 10, 12, 14, |
+ 14, 16, 18, |
+ 18, 20, 22, |
+ 22, 10, 14, |
+ 14, 18, 22, |
+ |
+ // Rectangle with disjoint corner segments. |
+ 27, 25, 26, |
+ 30, 28, 29, |
+ 33, 31, 32, |
+ 36, 34, 35, |
+ 25, 27, 28, |
+ 28, 30, 31, |
+ 31, 33, 34, |
+ 34, 36, 25, |
+ 25, 28, 31, |
+ 31, 34, 25, |
+ |
+ // Same rectangle with disjoint corners, but with the interior arranged as a fan. Used by |
+ // mixed samples. |
+ 27, 25, 26, |
+ 30, 28, 29, |
+ 33, 31, 32, |
+ 36, 34, 35, |
+ 27, 37, 25, |
+ 28, 37, 27, |
+ 30, 38, 28, |
+ 31, 38, 30, |
+ 33, 39, 31, |
+ 34, 39, 33, |
+ 36, 40, 34, |
+ 25, 40, 36, |
+ |
+ // Same rectangle with disjoint corners, with a border as well. Used by coverage AA. |
+ 41, 25, 26, |
+ 42, 41, 26, |
+ 27, 42, 26, |
+ 43, 28, 29, |
+ 44, 43, 29, |
+ 30, 44, 29, |
+ 45, 31, 32, |
+ 46, 45, 32, |
+ 33, 46, 32, |
+ 47, 34, 35, |
+ 48, 47, 35, |
+ 36, 48, 35, |
+ 27, 28, 42, |
+ 42, 28, 43, |
+ 30, 31, 44, |
+ 44, 31, 45, |
+ 33, 34, 46, |
+ 46, 34, 47, |
+ 36, 25, 48, |
+ 48, 25, 41, |
+ 41, 42, 43, |
+ 43, 44, 45, |
+ 45, 46, 47, |
+ 47, 48, 41, |
+ 41, 43, 45, |
+ 45, 47, 41, |
+ |
+ // Same as the disjoint octagons, but with 16-gons instead. Used by coverage AA when the oval is |
+ // sufficiently large. |
+ 49, 79, 80, |
+ 50, 49, 80, |
+ 51, 49, 50, |
+ 52, 51, 50, |
+ 53, 51, 52, |
+ 54, 53, 52, |
+ 55, 53, 54, |
+ 56, 55, 54, |
+ 57, 55, 56, |
+ 58, 57, 56, |
+ 59, 57, 58, |
+ 60, 59, 58, |
+ 61, 59, 60, |
+ 62, 61, 60, |
+ 63, 61, 62, |
+ 64, 63, 62, |
+ 65, 63, 64, |
+ 66, 65, 64, |
+ 67, 65, 66, |
+ 68, 67, 66, |
+ 69, 67, 68, |
+ 70, 69, 68, |
+ 71, 69, 70, |
+ 72, 71, 70, |
+ 73, 71, 72, |
+ 74, 73, 72, |
+ 75, 73, 74, |
+ 76, 75, 74, |
+ 77, 75, 76, |
+ 78, 77, 76, |
+ 79, 77, 78, |
+ 80, 79, 78, |
+ 49, 51, 53, |
+ 53, 55, 57, |
+ 57, 59, 61, |
+ 61, 63, 65, |
+ 65, 67, 69, |
+ 69, 71, 73, |
+ 73, 75, 77, |
+ 77, 79, 49, |
+ 49, 53, 57, |
+ 57, 61, 65, |
+ 65, 69, 73, |
+ 73, 77, 49, |
+ 49, 57, 65, |
+ 65, 73, 49, |
+}; |
+ |
+enum { |
+ kRect_FirstIndex = 0, |
+ kRect_TriCount = 2, |
+ |
+ kFramedRect_FirstIndex = 6, |
+ kFramedRect_TriCount = 10, |
+ |
+ kOctagons_FirstIndex = 36, |
+ kOctagons_TriCount = 14, |
+ |
+ kOctagonsFanned_FirstIndex = 78, |
+ kOctagonsFanned_TriCount = 16, |
+ |
+ kDisjointOctagons_FirstIndex = 126, |
+ kDisjointOctagons_TriCount = 22, |
+ |
+ kCorneredRect_FirstIndex = 192, |
+ kCorneredRect_TriCount = 10, |
+ |
+ kCorneredRectFanned_FirstIndex = 222, |
+ kCorneredRectFanned_TriCount = 12, |
+ |
+ kCorneredFramedRect_FirstIndex = 258, |
+ kCorneredFramedRect_TriCount = 26, |
+ |
+ kDisjoint16Gons_FirstIndex = 336, |
+ kDisjoint16Gons_TriCount = 46, |
+}; |
+ |
+GR_DECLARE_STATIC_UNIQUE_KEY(gShapeVertexBufferKey); |
+ |
+const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) { |
+ GR_DEFINE_STATIC_UNIQUE_KEY(gShapeVertexBufferKey); |
+ GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
+ if (GrGpuResource* cached = cache->findAndRefUniqueResource(gShapeVertexBufferKey)) { |
+ return static_cast<GrBuffer*>(cached); |
+ } |
+ if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBufferType, |
+ kStatic_GrAccessPattern, kVertexData)) { |
+ buffer->resourcePriv().setUniqueKey(gShapeVertexBufferKey); |
+ return buffer; |
+ } |
+ return nullptr; |
+} |
+ |
+GR_DECLARE_STATIC_UNIQUE_KEY(gShapeIndexBufferKey); |
+ |
+const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) { |
+ GR_DEFINE_STATIC_UNIQUE_KEY(gShapeIndexBufferKey); |
+ GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
+ if (GrGpuResource* cached = cache->findAndRefUniqueResource(gShapeIndexBufferKey)) { |
+ return static_cast<GrBuffer*>(cached); |
+ } |
+ if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBufferType, |
+ kStatic_GrAccessPattern, kIndexData)) { |
+ buffer->resourcePriv().setUniqueKey(gShapeIndexBufferKey); |
+ return buffer; |
+ } |
+ return nullptr; |
+} |
+ |
+IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) { |
+ static constexpr IndexRange kRectRanges[kNumAntialiasModes] = { |
+ {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone |
+ {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage |
+ {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA |
+ {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples |
+ }; |
+ |
+ SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
+ return kRectRanges[(int)aa]; |
+ |
+ GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
+ GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
+ GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
+ GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
+} |
+ |
+IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRect& devBounds) { |
+ if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width() >= 256 * 256) { |
+ // This threshold was chosen quasi-scientifically on Tegra X1. |
+ return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount}; |
+ } |
+ |
+ static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = { |
+ {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNone |
+ {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCoverage |
+ {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMSAA |
+ {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMixedSamples |
+ }; |
+ |
+ SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
+ return kOvalRanges[(int)aa]; |
+ |
+ GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
+ GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
+ GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
+ GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
+} |
+ |
+IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) { |
+ static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = { |
+ {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kNone |
+ {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, // kCoverage |
+ {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kMSAA |
+ {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} // kMixedSamples |
+ }; |
+ |
+ SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
+ return kRRectRanges[(int)aa]; |
+ |
+ GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
+ GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
+ GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
+ GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
+} |
+ |
+const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) { |
+ switch (range.fStart) { |
+ case kRect_FirstIndex: return "basic_rect"; |
+ case kFramedRect_FirstIndex: return "coverage_rect"; |
+ |
+ case kOctagons_FirstIndex: return "basic_oval"; |
+ case kDisjointOctagons_FirstIndex: return "coverage_oval"; |
+ case kDisjoint16Gons_FirstIndex: return "coverage_large_oval"; |
+ case kOctagonsFanned_FirstIndex: return "mixed_samples_oval"; |
+ |
+ case kCorneredRect_FirstIndex: return "basic_round_rect"; |
+ case kCorneredFramedRect_FirstIndex: return "coverage_round_rect"; |
+ case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect"; |
+ |
+ default: return "unknown"; |
+ } |
+} |
+ |
+} |