Index: src/base/ieee754.cc |
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
index 9a9090de2b3c3d6628a88dc570049694ce26d8a2..94bc7d350fe8cf8dffedd23b8fac70065b497913 100644 |
--- a/src/base/ieee754.cc |
+++ b/src/base/ieee754.cc |
@@ -891,6 +891,263 @@ double __kernel_tan(double x, double y, int iy) { |
} // namespace |
+/* acos(x) |
+ * Method : |
+ * acos(x) = pi/2 - asin(x) |
+ * acos(-x) = pi/2 + asin(x) |
+ * For |x|<=0.5 |
+ * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) |
+ * For x>0.5 |
+ * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) |
+ * = 2asin(sqrt((1-x)/2)) |
+ * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) |
+ * = 2f + (2c + 2s*z*R(z)) |
+ * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term |
+ * for f so that f+c ~ sqrt(z). |
+ * For x<-0.5 |
+ * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) |
+ * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) |
+ * |
+ * Special cases: |
+ * if x is NaN, return x itself; |
+ * if |x|>1, return NaN with invalid signal. |
+ * |
+ * Function needed: sqrt |
+ */ |
+double acos(double x) { |
+ static const double |
+ one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
+ pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
+ pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
+ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
+ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
+ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
+ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
+ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
+ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
+ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
+ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
+ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
+ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
+ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
+ |
+ double z, p, q, r, w, s, c, df; |
+ int32_t hx, ix; |
+ GET_HIGH_WORD(hx, x); |
+ ix = hx & 0x7fffffff; |
+ if (ix >= 0x3ff00000) { /* |x| >= 1 */ |
+ uint32_t lx; |
+ GET_LOW_WORD(lx, x); |
+ if (((ix - 0x3ff00000) | lx) == 0) { /* |x|==1 */ |
+ if (hx > 0) |
+ return 0.0; /* acos(1) = 0 */ |
+ else |
+ return pi + 2.0 * pio2_lo; /* acos(-1)= pi */ |
+ } |
+ return (x - x) / (x - x); /* acos(|x|>1) is NaN */ |
+ } |
+ if (ix < 0x3fe00000) { /* |x| < 0.5 */ |
+ if (ix <= 0x3c600000) return pio2_hi + pio2_lo; /*if|x|<2**-57*/ |
+ z = x * x; |
+ p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); |
+ q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); |
+ r = p / q; |
+ return pio2_hi - (x - (pio2_lo - x * r)); |
+ } else if (hx < 0) { /* x < -0.5 */ |
+ z = (one + x) * 0.5; |
+ p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); |
+ q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); |
+ s = sqrt(z); |
+ r = p / q; |
+ w = r * s - pio2_lo; |
+ return pi - 2.0 * (s + w); |
+ } else { /* x > 0.5 */ |
+ z = (one - x) * 0.5; |
+ s = sqrt(z); |
+ df = s; |
+ SET_LOW_WORD(df, 0); |
+ c = (z - df * df) / (s + df); |
+ p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); |
+ q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); |
+ r = p / q; |
+ w = r * s + c; |
+ return 2.0 * (df + w); |
+ } |
+} |
+ |
+/* acosh(x) |
+ * Method : |
+ * Based on |
+ * acosh(x) = log [ x + sqrt(x*x-1) ] |
+ * we have |
+ * acosh(x) := log(x)+ln2, if x is large; else |
+ * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else |
+ * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. |
+ * |
+ * Special cases: |
+ * acosh(x) is NaN with signal if x<1. |
+ * acosh(NaN) is NaN without signal. |
+ */ |
+double acosh(double x) { |
+ static const double |
+ one = 1.0, |
+ ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ |
+ double t; |
+ int32_t hx; |
+ uint32_t lx; |
+ EXTRACT_WORDS(hx, lx, x); |
+ if (hx < 0x3ff00000) { /* x < 1 */ |
+ return (x - x) / (x - x); |
+ } else if (hx >= 0x41b00000) { /* x > 2**28 */ |
+ if (hx >= 0x7ff00000) { /* x is inf of NaN */ |
+ return x + x; |
+ } else { |
+ return log(x) + ln2; /* acosh(huge)=log(2x) */ |
+ } |
+ } else if (((hx - 0x3ff00000) | lx) == 0) { |
+ return 0.0; /* acosh(1) = 0 */ |
+ } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ |
+ t = x * x; |
+ return log(2.0 * x - one / (x + sqrt(t - one))); |
+ } else { /* 1<x<2 */ |
+ t = x - one; |
+ return log1p(t + sqrt(2.0 * t + t * t)); |
+ } |
+} |
+ |
+/* asin(x) |
+ * Method : |
+ * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
+ * we approximate asin(x) on [0,0.5] by |
+ * asin(x) = x + x*x^2*R(x^2) |
+ * where |
+ * R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
+ * and its remez error is bounded by |
+ * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
+ * |
+ * For x in [0.5,1] |
+ * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
+ * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
+ * then for x>0.98 |
+ * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
+ * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
+ * For x<=0.98, let pio4_hi = pio2_hi/2, then |
+ * f = hi part of s; |
+ * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
+ * and |
+ * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
+ * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
+ * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
+ * |
+ * Special cases: |
+ * if x is NaN, return x itself; |
+ * if |x|>1, return NaN with invalid signal. |
+ */ |
+double asin(double x) { |
+ static const double |
+ one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
+ huge = 1.000e+300, |
+ pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
+ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
+ pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
+ /* coefficient for R(x^2) */ |
+ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
+ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
+ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
+ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
+ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
+ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
+ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
+ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
+ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
+ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
+ |
+ double t, w, p, q, c, r, s; |
+ int32_t hx, ix; |
+ |
+ t = 0; |
+ GET_HIGH_WORD(hx, x); |
+ ix = hx & 0x7fffffff; |
+ if (ix >= 0x3ff00000) { /* |x|>= 1 */ |
+ uint32_t lx; |
+ GET_LOW_WORD(lx, x); |
+ if (((ix - 0x3ff00000) | lx) == 0) /* asin(1)=+-pi/2 with inexact */ |
+ return x * pio2_hi + x * pio2_lo; |
+ return (x - x) / (x - x); /* asin(|x|>1) is NaN */ |
+ } else if (ix < 0x3fe00000) { /* |x|<0.5 */ |
+ if (ix < 0x3e400000) { /* if |x| < 2**-27 */ |
+ if (huge + x > one) return x; /* return x with inexact if x!=0*/ |
+ } else { |
+ t = x * x; |
+ } |
+ p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
+ q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); |
+ w = p / q; |
+ return x + x * w; |
+ } |
+ /* 1> |x|>= 0.5 */ |
+ w = one - fabs(x); |
+ t = w * 0.5; |
+ p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
+ q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); |
+ s = sqrt(t); |
+ if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */ |
+ w = p / q; |
+ t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); |
+ } else { |
+ w = s; |
+ SET_LOW_WORD(w, 0); |
+ c = (t - w * w) / (s + w); |
+ r = p / q; |
+ p = 2.0 * s * r - (pio2_lo - 2.0 * c); |
+ q = pio4_hi - 2.0 * w; |
+ t = pio4_hi - (p - q); |
+ } |
+ if (hx > 0) |
+ return t; |
+ else |
+ return -t; |
+} |
+/* asinh(x) |
+ * Method : |
+ * Based on |
+ * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] |
+ * we have |
+ * asinh(x) := x if 1+x*x=1, |
+ * := sign(x)*(log(x)+ln2)) for large |x|, else |
+ * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else |
+ * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) |
+ */ |
+double asinh(double x) { |
+ static const double |
+ one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
+ ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
+ huge = 1.00000000000000000000e+300; |
+ |
+ double t, w; |
+ int32_t hx, ix; |
+ GET_HIGH_WORD(hx, x); |
+ ix = hx & 0x7fffffff; |
+ if (ix >= 0x7ff00000) return x + x; /* x is inf or NaN */ |
+ if (ix < 0x3e300000) { /* |x|<2**-28 */ |
+ if (huge + x > one) return x; /* return x inexact except 0 */ |
+ } |
+ if (ix > 0x41b00000) { /* |x| > 2**28 */ |
+ w = log(fabs(x)) + ln2; |
+ } else if (ix > 0x40000000) { /* 2**28 > |x| > 2.0 */ |
+ t = fabs(x); |
+ w = log(2.0 * t + one / (sqrt(x * x + one) + t)); |
+ } else { /* 2.0 > |x| > 2**-28 */ |
+ t = x * x; |
+ w = log1p(fabs(x) + t / (one + sqrt(one + t))); |
+ } |
+ if (hx > 0) { |
+ return w; |
+ } else { |
+ return -w; |
+ } |
+} |
+ |
/* atan(x) |
* Method |
* 1. Reduce x to positive by atan(x) = -atan(-x). |