Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(49)

Side by Side Diff: src/interpreter/interpreter.cc

Issue 2111923002: [interpreter] Introduce binary op bytecodes for Smi operand. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Rebase Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2015 the V8 project authors. All rights reserved. 1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "src/interpreter/interpreter.h" 5 #include "src/interpreter/interpreter.h"
6 6
7 #include <fstream> 7 #include <fstream>
8 8
9 #include "src/ast/prettyprinter.h" 9 #include "src/ast/prettyprinter.h"
10 #include "src/code-factory.h" 10 #include "src/code-factory.h"
(...skipping 818 matching lines...) Expand 10 before | Expand all | Expand 10 after
829 // ShiftRightLogical <src> 829 // ShiftRightLogical <src>
830 // 830 //
831 // Right Shifts register <src> by the count specified in the accumulator. 831 // Right Shifts register <src> by the count specified in the accumulator.
832 // Result is zero-filled. The accumulator and register <src> are converted to 832 // Result is zero-filled. The accumulator and register <src> are converted to
833 // uint32 before the operation 5 lsb bits from the accumulator are used as 833 // uint32 before the operation 5 lsb bits from the accumulator are used as
834 // count i.e. <src> << (accumulator & 0x1F). 834 // count i.e. <src> << (accumulator & 0x1F).
835 void Interpreter::DoShiftRightLogical(InterpreterAssembler* assembler) { 835 void Interpreter::DoShiftRightLogical(InterpreterAssembler* assembler) {
836 DoBinaryOp<ShiftRightLogicalStub>(assembler); 836 DoBinaryOp<ShiftRightLogicalStub>(assembler);
837 } 837 }
838 838
839 // AddSmi <imm> <reg>
840 //
841 // Adds an immediate value <imm> to register <reg>. For this
842 // operation <reg> is the lhs operand and <imm> is the <rhs> operand.
843 void Interpreter::DoAddSmi(InterpreterAssembler* assembler) {
844 Variable var_result(assembler, MachineRepresentation::kTagged);
845 Label fastpath(assembler), slowpath(assembler, Label::kDeferred),
846 end(assembler);
847
848 Node* reg_index = __ BytecodeOperandReg(1);
849 Node* left = __ LoadRegister(reg_index);
850 Node* raw_int = __ BytecodeOperandImm(0);
851 Node* right = __ SmiTag(raw_int);
852
853 // {right} is known to be a Smi.
854 // Check if the {left} is a Smi take the fast path.
855 __ BranchIf(__ WordIsSmi(left), &fastpath, &slowpath);
856 __ Bind(&fastpath);
857 {
858 // Try fast Smi addition first.
859 Node* pair = __ SmiAddWithOverflow(left, right);
860 Node* overflow = __ Projection(1, pair);
861
862 // Check if the Smi additon overflowed.
863 Label if_notoverflow(assembler);
864 __ BranchIf(overflow, &slowpath, &if_notoverflow);
865 __ Bind(&if_notoverflow);
866 {
867 var_result.Bind(__ Projection(0, pair));
868 __ Goto(&end);
869 }
870 }
871 __ Bind(&slowpath);
872 {
873 Node* context = __ GetContext();
874 Callable callable = CodeFactory::Add(__ isolate());
875 var_result.Bind(__ CallStub(callable, context, left, right));
876 __ Goto(&end);
877 }
878 __ Bind(&end);
879 {
880 __ SetAccumulator(var_result.value());
881 __ Dispatch();
882 }
883 }
884
885 // SubSmi <imm> <reg>
886 //
887 // Subtracts an immediate value <imm> to register <reg>. For this
888 // operation <reg> is the lhs operand and <imm> is the rhs operand.
889 void Interpreter::DoSubSmi(InterpreterAssembler* assembler) {
890 Variable var_result(assembler, MachineRepresentation::kTagged);
891 Label fastpath(assembler), slowpath(assembler, Label::kDeferred),
892 end(assembler);
893
894 Node* reg_index = __ BytecodeOperandReg(1);
895 Node* left = __ LoadRegister(reg_index);
896 Node* raw_int = __ BytecodeOperandImm(0);
897 Node* right = __ SmiTag(raw_int);
898
899 // {right} is known to be a Smi.
900 // Check if the {left} is a Smi take the fast path.
901 __ BranchIf(__ WordIsSmi(left), &fastpath, &slowpath);
902 __ Bind(&fastpath);
903 {
904 // Try fast Smi subtraction first.
905 Node* pair = __ SmiSubWithOverflow(left, right);
906 Node* overflow = __ Projection(1, pair);
907
908 // Check if the Smi subtraction overflowed.
909 Label if_notoverflow(assembler);
910 __ BranchIf(overflow, &slowpath, &if_notoverflow);
911 __ Bind(&if_notoverflow);
912 {
913 var_result.Bind(__ Projection(0, pair));
914 __ Goto(&end);
915 }
916 }
917 __ Bind(&slowpath);
918 {
919 Node* context = __ GetContext();
920 Callable callable = CodeFactory::Subtract(__ isolate());
921 var_result.Bind(__ CallStub(callable, context, left, right));
922 __ Goto(&end);
923 }
924 __ Bind(&end);
925 {
926 __ SetAccumulator(var_result.value());
927 __ Dispatch();
928 }
929 }
930
931 // BitwiseOr <imm> <reg>
932 //
933 // BitwiseOr <reg> with <imm>. For this operation <reg> is the lhs
934 // operand and <imm> is the rhs operand.
935 void Interpreter::DoBitwiseOrSmi(InterpreterAssembler* assembler) {
936 Node* reg_index = __ BytecodeOperandReg(1);
937 Node* left = __ LoadRegister(reg_index);
938 Node* raw_int = __ BytecodeOperandImm(0);
939 Node* right = __ SmiTag(raw_int);
940 Node* context = __ GetContext();
941 Node* lhs_value = __ TruncateTaggedToWord32(context, left);
942 Node* rhs_value = __ SmiToWord32(right);
943 Node* value = __ Word32Or(lhs_value, rhs_value);
944 Node* result = __ ChangeInt32ToTagged(value);
945 __ SetAccumulator(result);
946 __ Dispatch();
947 }
948
949 // BitwiseAnd <imm> <reg>
950 //
951 // BitwiseAnd <reg> with <imm>. For this operation <reg> is the lhs
952 // operand and <imm> is the rhs operand.
953 void Interpreter::DoBitwiseAndSmi(InterpreterAssembler* assembler) {
954 Node* reg_index = __ BytecodeOperandReg(1);
955 Node* left = __ LoadRegister(reg_index);
956 Node* raw_int = __ BytecodeOperandImm(0);
957 Node* right = __ SmiTag(raw_int);
958 Node* context = __ GetContext();
959 Node* lhs_value = __ TruncateTaggedToWord32(context, left);
960 Node* rhs_value = __ SmiToWord32(right);
961 Node* value = __ Word32And(lhs_value, rhs_value);
962 Node* result = __ ChangeInt32ToTagged(value);
963 __ SetAccumulator(result);
964 __ Dispatch();
965 }
966
967 // ShiftLeftSmi <imm> <reg>
968 //
969 // Left shifts register <src> by the count specified in <imm>.
970 // Register <src> is converted to an int32 before the operation. The 5
971 // lsb bits from <imm> are used as count i.e. <src> << (<imm> & 0x1F).
972 void Interpreter::DoShiftLeftSmi(InterpreterAssembler* assembler) {
973 Node* reg_index = __ BytecodeOperandReg(1);
974 Node* left = __ LoadRegister(reg_index);
975 Node* raw_int = __ BytecodeOperandImm(0);
976 Node* right = __ SmiTag(raw_int);
977 Node* context = __ GetContext();
978 Node* lhs_value = __ TruncateTaggedToWord32(context, left);
979 Node* rhs_value = __ SmiToWord32(right);
980 Node* shift_count = __ Word32And(rhs_value, __ Int32Constant(0x1f));
981 Node* value = __ Word32Shl(lhs_value, shift_count);
982 Node* result = __ ChangeInt32ToTagged(value);
983 __ SetAccumulator(result);
984 __ Dispatch();
985 }
986
987 // ShiftRightSmi <imm> <reg>
988 //
989 // Right shifts register <src> by the count specified in <imm>.
990 // Register <src> is converted to an int32 before the operation. The 5
991 // lsb bits from <imm> are used as count i.e. <src> << (<imm> & 0x1F).
992 void Interpreter::DoShiftRightSmi(InterpreterAssembler* assembler) {
993 Node* reg_index = __ BytecodeOperandReg(1);
994 Node* left = __ LoadRegister(reg_index);
995 Node* raw_int = __ BytecodeOperandImm(0);
996 Node* right = __ SmiTag(raw_int);
997 Node* context = __ GetContext();
998 Node* lhs_value = __ TruncateTaggedToWord32(context, left);
999 Node* rhs_value = __ SmiToWord32(right);
1000 Node* shift_count = __ Word32And(rhs_value, __ Int32Constant(0x1f));
1001 Node* value = __ Word32Sar(lhs_value, shift_count);
1002 Node* result = __ ChangeInt32ToTagged(value);
1003 __ SetAccumulator(result);
1004 __ Dispatch();
1005 }
1006
839 void Interpreter::DoUnaryOp(Callable callable, 1007 void Interpreter::DoUnaryOp(Callable callable,
840 InterpreterAssembler* assembler) { 1008 InterpreterAssembler* assembler) {
841 Node* target = __ HeapConstant(callable.code()); 1009 Node* target = __ HeapConstant(callable.code());
842 Node* accumulator = __ GetAccumulator(); 1010 Node* accumulator = __ GetAccumulator();
843 Node* context = __ GetContext(); 1011 Node* context = __ GetContext();
844 Node* result = 1012 Node* result =
845 __ CallStub(callable.descriptor(), target, context, accumulator); 1013 __ CallStub(callable.descriptor(), target, context, accumulator);
846 __ SetAccumulator(result); 1014 __ SetAccumulator(result);
847 __ Dispatch(); 1015 __ Dispatch();
848 } 1016 }
(...skipping 1007 matching lines...) Expand 10 before | Expand all | Expand 10 after
1856 __ StoreObjectField(generator, JSGeneratorObject::kContinuationOffset, 2024 __ StoreObjectField(generator, JSGeneratorObject::kContinuationOffset,
1857 __ SmiTag(new_state)); 2025 __ SmiTag(new_state));
1858 __ SetAccumulator(old_state); 2026 __ SetAccumulator(old_state);
1859 2027
1860 __ Dispatch(); 2028 __ Dispatch();
1861 } 2029 }
1862 2030
1863 } // namespace interpreter 2031 } // namespace interpreter
1864 } // namespace internal 2032 } // namespace internal
1865 } // namespace v8 2033 } // namespace v8
OLDNEW
« no previous file with comments | « src/interpreter/interpreter.h ('k') | test/cctest/interpreter/bytecode_expectations/ArrayLiterals.golden » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698