Index: src/gpu/GrAAHairLinePathRenderer.cpp |
diff --git a/src/gpu/GrAAHairLinePathRenderer.cpp b/src/gpu/GrAAHairLinePathRenderer.cpp |
index 67c2a32863fdcf3fcdfa6f95617643205ae6aec9..ecd938961e478c5d31d98a566cf76a46f3ee099b 100644 |
--- a/src/gpu/GrAAHairLinePathRenderer.cpp |
+++ b/src/gpu/GrAAHairLinePathRenderer.cpp |
@@ -1,4 +1,3 @@ |
- |
/* |
* Copyright 2011 Google Inc. |
* |
@@ -146,9 +145,9 @@ int get_float_exp(float x) { |
// Uses the max curvature function for quads to estimate |
// where to chop the conic. If the max curvature is not |
// found along the curve segment it will return 1 and |
-// dst[0] is the orginal conic. If it returns 2 the dst[0] |
+// dst[0] is the original conic. If it returns 2 the dst[0] |
// and dst[1] are the two new conics. |
-int chop_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
+int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
SkScalar t = SkFindQuadMaxCurvature(src); |
if (t == 0) { |
if (dst) { |
@@ -165,6 +164,21 @@ int chop_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
} |
} |
+// Calls split_conic on the entire conic and then once more on each subsection. |
+// Most cases will result in either 1 conic (chop point is not within t range) |
+// or 3 points (split once and then one subsection is split again). |
+int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
+ SkConic dstTemp[2]; |
+ int conicCnt = split_conic(src, dstTemp, weight); |
+ if (2 == conicCnt) { |
+ int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
+ conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
+ } else { |
+ dst[0] = dstTemp[0]; |
+ } |
+ return conicCnt; |
+} |
+ |
// returns 0 if quad/conic is degen or close to it |
// in this case approx the path with lines |
// otherwise returns 1 |
@@ -271,7 +285,10 @@ int generate_lines_and_quads(const SkPath& path, |
SkPath::Verb verb = iter.next(pathPts); |
switch (verb) { |
case SkPath::kConic_Verb: { |
- SkConic dst[2]; |
+ SkConic dst[4]; |
+ // We chop the conics to create tighter clipping to hide error |
+ // that appears near max curvature of very thin conics. Thin |
+ // hyperbolas with high weight still show error. |
int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); |
for (int i = 0; i < conicCnt; ++i) { |
SkPoint* chopPnts = dst[i].fPts; |
@@ -424,21 +441,18 @@ struct Vertex { |
SkScalar fC; |
} fLine; |
struct { |
- SkScalar fA; |
- SkScalar fB; |
- SkScalar fC; |
- SkScalar fD; |
- SkScalar fE; |
- SkScalar fF; |
+ SkScalar fK; |
+ SkScalar fL; |
+ SkScalar fM; |
} fConic; |
GrVec fQuadCoord; |
struct { |
- SkScalar fBogus[6]; |
+ SkScalar fBogus[4]; |
}; |
}; |
}; |
-GR_STATIC_ASSERT(sizeof(Vertex) == 4 * sizeof(GrPoint)); |
+GR_STATIC_ASSERT(sizeof(Vertex) == 3 * sizeof(GrPoint)); |
void intersect_lines(const SkPoint& ptA, const SkVector& normA, |
const SkPoint& ptB, const SkVector& normB, |
@@ -538,43 +552,67 @@ void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, |
DevToUV.apply<kVertsPerQuad, sizeof(Vertex), sizeof(GrPoint)>(verts); |
} |
+// Input: |
+// Three control points: p[0], p[1], p[2] and weight: w |
+// Output: |
+// Let: |
+// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1)) |
+// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2)) |
+// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 ) |
+void calc_conic_klm(const SkPoint p[3], const SkScalar weight, |
+ SkScalar k[3], SkScalar l[3], SkScalar m[3]) { |
+ const SkScalar w2 = 2 * weight; |
+ l[0] = w2 * (p[1].fY - p[0].fY); |
+ l[1] = w2 * (p[0].fX - p[1].fX); |
+ l[2] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY); |
+ |
+ m[0] = w2 * (p[2].fY - p[1].fY); |
+ m[1] = w2 * (p[1].fX - p[2].fX); |
+ m[2] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY); |
+ |
+ k[0] = p[2].fY - p[0].fY; |
+ k[1] = p[0].fX - p[2].fX; |
+ k[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX; |
+ |
+ // scale the max absolute value of coeffs to 10 |
+ SkScalar scale = 0.0f; |
+ for (int i = 0; i < 3; ++i) { |
+ scale = SkMaxScalar(scale, SkScalarAbs(k[i])); |
+ scale = SkMaxScalar(scale, SkScalarAbs(l[i])); |
+ scale = SkMaxScalar(scale, SkScalarAbs(m[i])); |
+ } |
+ GrAssert(scale > 0); |
+ scale /= 10.0f; |
+ k[0] /= scale; |
+ k[1] /= scale; |
+ k[2] /= scale; |
+ l[0] /= scale; |
+ l[1] /= scale; |
+ l[2] /= scale; |
+ m[0] /= scale; |
+ m[1] /= scale; |
+ m[2] /= scale; |
+} |
+// Equations based off of Loop-Blinn Quadratic GPU Rendering |
// Input Parametric: |
// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) |
// Output Implicit: |
-// Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 |
-// A = 4w^2*(y0-y1)(y1-y2)-(y0-y2)^2 |
-// B = 4w^2*((x0-x1)(y2-y1)+(x1-x2)(y1-y0)) + 2(x0-x2)(y0-y2) |
-// C = 4w^2(x0-x1)(x1-x2) - (x0-x2)^2 |
-// D = 4w^2((x0y1-x1y0)(y1-y2)+(x1y2-x2y1)(y0-y1)) + 2(y2-y0)(x0y2-x2y0) |
-// E = 4w^2((y0x1-y1x0)(x1-x2)+(y1x2-y2x1)(x0-x1)) + 2(x2-x0)(y0x2-y2x0) |
-// F = 4w^2(x1y2-x2y1)(x0y1-x1y0) - (x2y0-x0y2)^2 |
- |
+// f(x, y, w) = f(P) = K^2 - LM |
+// K = dot(k, P), L = dot(l, P), M = dot(m, P) |
+// k, l, m are calculated in function calc_conic_klm |
void set_conic_coeffs(const SkPoint p[3], Vertex verts[kVertsPerQuad], const float weight) { |
- const float ww4 = 4 * weight * weight; |
- const float x0Mx1 = p[0].fX - p[1].fX; |
- const float x1Mx2 = p[1].fX - p[2].fX; |
- const float x0Mx2 = p[0].fX - p[2].fX; |
- const float y0My1 = p[0].fY - p[1].fY; |
- const float y1My2 = p[1].fY - p[2].fY; |
- const float y0My2 = p[0].fY - p[2].fY; |
- const float x0y1Mx1y0 = p[0].fX*p[1].fY - p[1].fX*p[0].fY; |
- const float x1y2Mx2y1 = p[1].fX*p[2].fY - p[2].fX*p[1].fY; |
- const float x0y2Mx2y0 = p[0].fX*p[2].fY - p[2].fX*p[0].fY; |
- const float a = ww4 * y0My1 * y1My2 - y0My2 * y0My2; |
- const float b = -ww4 * (x0Mx1 * y1My2 + x1Mx2 * y0My1) + 2 * x0Mx2 * y0My2; |
- const float c = ww4 * x0Mx1 * x1Mx2 - x0Mx2 * x0Mx2; |
- const float d = ww4 * (x0y1Mx1y0 * y1My2 + x1y2Mx2y1 * y0My1) - 2 * y0My2 * x0y2Mx2y0; |
- const float e = -ww4 * (x0y1Mx1y0 * x1Mx2 + x1y2Mx2y1 * x0Mx1) + 2 * x0Mx2 * x0y2Mx2y0; |
- const float f = ww4 * x1y2Mx2y1 * x0y1Mx1y0 - x0y2Mx2y0 * x0y2Mx2y0; |
+ SkScalar k[3]; |
+ SkScalar l[3]; |
+ SkScalar m[3]; |
+ |
+ calc_conic_klm(p, weight, k, l, m); |
for (int i = 0; i < kVertsPerQuad; ++i) { |
- verts[i].fConic.fA = a/f; |
- verts[i].fConic.fB = b/f; |
- verts[i].fConic.fC = c/f; |
- verts[i].fConic.fD = d/f; |
- verts[i].fConic.fE = e/f; |
- verts[i].fConic.fF = f/f; |
+ const SkPoint pnt = verts[i].fPos; |
+ verts[i].fConic.fK = pnt.fX * k[0] + pnt.fY * k[1] + k[2]; |
+ verts[i].fConic.fL = pnt.fX * l[0] + pnt.fY * l[1] + l[2]; |
+ verts[i].fConic.fM = pnt.fX * m[0] + pnt.fY * m[1] + m[2]; |
} |
} |
@@ -651,12 +689,47 @@ void add_line(const SkPoint p[2], |
} |
/** |
+ * Shader is based off of Loop-Blinn Quadratic GPU Rendering |
* The output of this effect is a hairline edge for conics. |
- * Conics specified by implicit equation Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0. |
- * A, B, C, D are the first vec4 of vertex attributes and |
- * E and F are the vec2 attached to 2nd vertex attrribute. |
+ * Conics specified by implicit equation K^2 - LM. |
+ * K, L, and M, are the first three values of the vertex attribute, |
+ * the fourth value is not used. Distance is calculated using a |
+ * first order approximation from the taylor series. |
* Coverage is max(0, 1-distance). |
*/ |
+ |
+/** |
+ * Test were also run using a second order distance approximation. |
+ * There were two versions of the second order approx. The first version |
+ * is of roughly the form: |
+ * f(q) = |f(p)| - ||f'(p)||*||q-p|| - ||f''(p)||*||q-p||^2. |
+ * The second is similar: |
+ * f(q) = |f(p)| + ||f'(p)||*||q-p|| + ||f''(p)||*||q-p||^2. |
+ * The exact version of the equations can be found in the paper |
+ * "Distance Approximations for Rasterizing Implicit Curves" by Gabriel Taubin |
+ * |
+ * In both versions we solve the quadratic for ||q-p||. |
+ * Version 1: |
+ * gFM is magnitude of first partials and gFM2 is magnitude of 2nd partials (as derived from paper) |
+ * builder->fsCodeAppend("\t\tedgeAlpha = (sqrt(gFM*gFM+4.0*func*gF2M) - gFM)/(2.0*gF2M);\n"); |
+ * Version 2: |
+ * builder->fsCodeAppend("\t\tedgeAlpha = (gFM - sqrt(gFM*gFM-4.0*func*gF2M))/(2.0*gF2M);\n"); |
+ * |
+ * Also note that 2nd partials of k,l,m are zero |
+ * |
+ * When comparing the two second order approximations to the first order approximations, |
+ * the following results were found. Version 1 tends to underestimate the distances, thus it |
+ * basically increases all the error that we were already seeing in the first order |
+ * approx. So this version is not the one to use. Version 2 has the opposite effect |
+ * and tends to overestimate the distances. This is much closer to what we are |
+ * looking for. It is able to render ellipses (even thin ones) without the need to chop. |
+ * However, it can not handle thin hyperbolas well and thus would still rely on |
+ * chopping to tighten the clipping. Another side effect of the overestimating is |
+ * that the curves become much thinner and "ropey". If all that was ever rendered |
+ * were "not too thin" curves and ellipses then 2nd order may have an advantage since |
+ * only one geometry would need to be rendered. However no benches were run comparing |
+ * chopped first order and non chopped 2nd order. |
+ */ |
class HairConicEdgeEffect : public GrEffect { |
public: |
static GrEffectRef* Create() { |
@@ -689,38 +762,32 @@ public: |
const char* outputColor, |
const char* inputColor, |
const TextureSamplerArray& samplers) SK_OVERRIDE { |
- const char *vsCoeffABCDName, *fsCoeffABCDName; |
- const char *vsCoeffEFName, *fsCoeffEFName; |
+ const char *vsName, *fsName; |
SkAssertResult(builder->enableFeature( |
GrGLShaderBuilder::kStandardDerivatives_GLSLFeature)); |
- builder->addVarying(kVec4f_GrSLType, "ConicCoeffsABCD", |
- &vsCoeffABCDName, &fsCoeffABCDName); |
+ builder->addVarying(kVec4f_GrSLType, "ConicCoeffs", |
+ &vsName, &fsName); |
const SkString* attr0Name = |
builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); |
- builder->vsCodeAppendf("\t%s = %s;\n", vsCoeffABCDName, attr0Name->c_str()); |
- |
- builder->addVarying(kVec2f_GrSLType, "ConicCoeffsEF", |
- &vsCoeffEFName, &fsCoeffEFName); |
- const SkString* attr1Name = |
- builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[1]); |
- builder->vsCodeAppendf("\t%s = %s;\n", vsCoeffEFName, attr1Name->c_str()); |
- |
- // Based on Gustavson 2006: "Beyond the Pixel: towards infinite resolution textures" |
- builder->fsCodeAppendf("\t\tfloat edgeAlpha;\n"); |
- |
- builder->fsCodeAppendf("\t\tvec3 uv1 = vec3(%s.xy, 1);\n", builder->fragmentPosition()); |
- builder->fsCodeAppend("\t\tvec3 u2uvv2 = uv1.xxy * uv1.xyy;\n"); |
- builder->fsCodeAppendf("\t\tvec3 ABC = %s.xyz;\n", fsCoeffABCDName); |
- builder->fsCodeAppendf("\t\tvec3 DEF = vec3(%s.w, %s.xy);\n", |
- fsCoeffABCDName, fsCoeffEFName); |
- |
- builder->fsCodeAppend("\t\tfloat dfdx = dot(uv1,vec3(2.0*ABC.x,ABC.y,DEF.x));\n"); |
- builder->fsCodeAppend("\t\tfloat dfdy = dot(uv1,vec3(ABC.y, 2.0*ABC.z,DEF.y));\n"); |
- builder->fsCodeAppend("\t\tfloat gF = dfdx*dfdx + dfdy*dfdy;\n"); |
- builder->fsCodeAppend("\t\tedgeAlpha = dot(ABC,u2uvv2) + dot(DEF,uv1);\n"); |
- builder->fsCodeAppend("\t\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / gF);\n"); |
- builder->fsCodeAppend("\t\tedgeAlpha = max((1.0 - edgeAlpha), 0.0);\n"); |
+ builder->vsCodeAppendf("\t%s = %s;\n", vsName, attr0Name->c_str()); |
+ |
+ builder->fsCodeAppend("\t\tfloat edgeAlpha;\n"); |
+ |
+ builder->fsCodeAppendf("\t\tvec3 dklmdx = dFdx(%s.xyz);\n", fsName); |
+ builder->fsCodeAppendf("\t\tvec3 dklmdy = dFdy(%s.xyz);\n", fsName); |
+ builder->fsCodeAppendf("\t\tfloat dfdx =\n" |
+ "\t\t\t2.0*%s.x*dklmdx.x - %s.y*dklmdx.z - %s.z*dklmdx.y;\n", |
+ fsName, fsName, fsName); |
+ builder->fsCodeAppendf("\t\tfloat dfdy =\n" |
+ "\t\t\t2.0*%s.x*dklmdy.x - %s.y*dklmdy.z - %s.z*dklmdy.y;\n", |
+ fsName, fsName, fsName); |
+ builder->fsCodeAppend("\t\tvec2 gF = vec2(dfdx, dfdy);\n"); |
+ builder->fsCodeAppend("\t\tfloat gFM = sqrt(dot(gF, gF));\n"); |
+ builder->fsCodeAppendf("\t\tfloat func = abs(%s.x*%s.x - %s.y*%s.z);\n", fsName, fsName, |
+ fsName, fsName); |
+ builder->fsCodeAppend("\t\tedgeAlpha = func / gFM;\n"); |
+ builder->fsCodeAppend("\t\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); |
// Add line below for smooth cubic ramp |
// builder->fsCodeAppend("\t\tedgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);\n"); |
@@ -742,8 +809,6 @@ public: |
private: |
HairConicEdgeEffect() { |
this->addVertexAttrib(kVec4f_GrSLType); |
- this->addVertexAttrib(kVec2f_GrSLType); |
- this->setWillReadFragmentPosition(); |
} |
virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { |
@@ -761,9 +826,8 @@ GrEffectRef* HairConicEdgeEffect::TestCreate(SkMWCRandom* random, |
GrContext*, |
const GrDrawTargetCaps& caps, |
GrTexture*[]) { |
- return HairConicEdgeEffect::Create(); |
+ return caps.shaderDerivativeSupport() ? HairConicEdgeEffect::Create() : NULL; |
} |
-/////////////////////////////////////////////////////////////////////////////// |
/** |
* The output of this effect is a hairline edge for quadratics. |
@@ -965,14 +1029,6 @@ extern const GrVertexAttrib gHairlineAttribs[] = { |
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
{kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding} |
}; |
- |
-// Conic |
-// position + ABCD + EF |
-extern const GrVertexAttrib gConicVertexAttribs[] = { |
- { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, |
- { kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding }, |
- { kVec2f_GrVertexAttribType, 3*sizeof(GrPoint), kEffect_GrVertexAttribBinding } |
-}; |
}; |
bool GrAAHairLinePathRenderer::createGeom( |
@@ -1011,7 +1067,7 @@ bool GrAAHairLinePathRenderer::createGeom( |
int vertCnt = kVertsPerLineSeg * *lineCnt + kVertsPerQuad * *quadCnt + |
kVertsPerQuad * *conicCnt; |
- target->drawState()->setVertexAttribs<gConicVertexAttribs>(SK_ARRAY_COUNT(gConicVertexAttribs)); |
+ target->drawState()->setVertexAttribs<gHairlineAttribs>(SK_ARRAY_COUNT(gHairlineAttribs)); |
GrAssert(sizeof(Vertex) == target->getDrawState().getVertexSize()); |
if (!arg->set(target, vertCnt, 0)) { |
@@ -1056,13 +1112,11 @@ bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path, |
return false; |
} |
- static const uint32_t gReqDerivMask = SkPath::kCubic_SegmentMask | |
- SkPath::kQuad_SegmentMask; |
- if (!target->caps()->shaderDerivativeSupport() && |
- (gReqDerivMask & path.getSegmentMasks())) { |
- return false; |
+ if (SkPath::kLine_SegmentMask == path.getSegmentMasks() || |
+ target->caps()->shaderDerivativeSupport()) { |
+ return true; |
} |
- return true; |
+ return false; |
} |
bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path, |