OLD | NEW |
(Empty) | |
| 1 # Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 # Use of this source code is governed by a BSD-style license that can be |
| 3 # found in the LICENSE file. |
| 4 |
| 5 import unittest |
| 6 |
| 7 # Special import necessary because filename contains dash characters. |
| 8 bisect_perf_module = __import__('bisect-perf-regression') |
| 9 |
| 10 |
| 11 class BisectPerfRegressionTest(unittest.TestCase): |
| 12 """Test case for top-level functions in the bisect-perf-regrssion module.""" |
| 13 |
| 14 def setUp(self): |
| 15 """Sets up the test environment before each test method.""" |
| 16 pass |
| 17 |
| 18 def tearDown(self): |
| 19 """Cleans up the test environment after each test method.""" |
| 20 pass |
| 21 |
| 22 def testCalculateTruncatedMeanRaisesError(self): |
| 23 """CalculateTrunctedMean raises an error when passed an empty list.""" |
| 24 with self.assertRaises(TypeError): |
| 25 bisect_perf_module.CalculateTruncatedMean([], 0) |
| 26 |
| 27 def testCalculateMeanSingleNum(self): |
| 28 """Tests the CalculateMean function with a single number.""" |
| 29 self.assertEqual(3.0, bisect_perf_module.CalculateMean([3])) |
| 30 |
| 31 def testCalculateMeanShortList(self): |
| 32 """Tests the CalculateMean function with a short list.""" |
| 33 self.assertEqual(0.5, bisect_perf_module.CalculateMean([-3, 0, 1, 4])) |
| 34 |
| 35 def testCalculateMeanCompareAlternateImplementation(self): |
| 36 """Tests CalculateMean by comparing against an alternate implementation.""" |
| 37 def AlternateMeanFunction(values): |
| 38 """Simple arithmetic mean function.""" |
| 39 return sum(values) / float(len(values)) |
| 40 test_values_lists = [[1], [5, 6.5, 1.2, 3], [-3, 0, 1, 4], |
| 41 [-3, -1, 0.12, 0.752, 3.33, 8, 16, 32, 439]] |
| 42 for values in test_values_lists: |
| 43 self.assertEqual( |
| 44 AlternateMeanFunction(values), |
| 45 bisect_perf_module.CalculateMean(values)) |
| 46 |
| 47 def testCalculateConfidence(self): |
| 48 """Tests the confidence calculation.""" |
| 49 bad_values = [[0, 1], [1, 2]] |
| 50 good_values = [[6, 7], [7, 8]] |
| 51 # Closest means are mean(1, 2) and mean(6, 7). |
| 52 distance = 6.5 - 1.5 |
| 53 # Standard deviation of [n-1, n, n, n+1] is 0.8165. |
| 54 stddev_sum = 0.8165 + 0.8165 |
| 55 # Expected confidence is an int in the range [0, 100]. |
| 56 expected_confidence = min(100, int(100 * distance / float(stddev_sum))) |
| 57 self.assertEqual( |
| 58 expected_confidence, |
| 59 bisect_perf_module.CalculateConfidence(bad_values, good_values)) |
| 60 |
| 61 def testCalculateConfidence0(self): |
| 62 """Tests the confidence calculation when it's expected to be 0.""" |
| 63 bad_values = [[0, 1], [1, 2], [4, 5], [0, 2]] |
| 64 good_values = [[4, 5], [6, 7], [7, 8]] |
| 65 # Both groups have value lists with means of 4.5, which means distance |
| 66 # between groups is zero, and thus confidence is zero. |
| 67 self.assertEqual( |
| 68 0, bisect_perf_module.CalculateConfidence(bad_values, good_values)) |
| 69 |
| 70 def testCalculateConfidence100(self): |
| 71 """Tests the confidence calculation when it's expected to be 100.""" |
| 72 bad_values = [[1, 1], [1, 1]] |
| 73 good_values = [[1.2, 1.2], [1.2, 1.2]] |
| 74 # Standard deviation in both groups is zero, so confidence is 100. |
| 75 self.assertEqual( |
| 76 100, bisect_perf_module.CalculateConfidence(bad_values, good_values)) |
| 77 |
| 78 if __name__ == '__main__': |
| 79 unittest.main() |
OLD | NEW |