Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(119)

Unified Diff: src/core/SkColorSpaceXform.cpp

Issue 2084673002: Use a table-based implementation of SkDefaultXform (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/core/SkColorSpaceXform.cpp
diff --git a/src/core/SkColorSpaceXform.cpp b/src/core/SkColorSpaceXform.cpp
index f42811a549ddaa682ae028872c25b1768c2b9044..f8377db2c9f56c769fd01ab60eebccdc7f0d4bca 100644
--- a/src/core/SkColorSpaceXform.cpp
+++ b/src/core/SkColorSpaceXform.cpp
@@ -8,6 +8,7 @@
#include "SkColorPriv.h"
#include "SkColorSpace_Base.h"
#include "SkColorSpaceXform.h"
+#include "SkColorXform_opts.h"
#include "SkOpts.h"
static inline bool compute_gamut_xform(SkMatrix44* srcToDst, const SkMatrix44& srcToXYZ,
@@ -70,7 +71,7 @@ std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform::New(const sk_sp<SkColorSpa
}
return std::unique_ptr<SkColorSpaceXform>(
- new SkDefaultXform(as_CSB(srcSpace)->gammas(), srcToDst, as_CSB(dstSpace)->gammas()));
+ new SkDefaultXform(srcSpace, srcToDst, dstSpace));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
@@ -146,12 +147,12 @@ void SkFastXform<SkColorSpace::k2Dot2Curve_GammaNamed, SkColorSpace::k2Dot2Curve
///////////////////////////////////////////////////////////////////////////////////////////////////
-static inline float byte_to_float(uint8_t v) {
+static float byte_to_float(uint8_t v) {
return ((float) v) * (1.0f / 255.0f);
}
// Expand range from 0-1 to 0-255, then convert.
-static inline uint8_t clamp_normalized_float_to_byte(float v) {
+static uint8_t clamp_normalized_float_to_byte(float v) {
// The ordering of the logic is a little strange here in order
// to make sure we convert NaNs to 0.
v = v * 255.0f;
@@ -164,23 +165,178 @@ static inline uint8_t clamp_normalized_float_to_byte(float v) {
}
}
+static void build_table_linear_from_gamma(float* outTable, float exponent) {
+ for (int i = 0; i < 256; i++) {
+ outTable[i] = powf(byte_to_float(i), exponent);
mtklein_C 2016/06/21 20:32:52 Might be clearer and/or faster to just walk the fl
Brian Osman 2016/06/21 20:38:17 But 1/255 isn't exact in float, so you could be se
msarett 2016/06/21 21:24:47 Interesting thoughts. I would guess not "faster"
+ }
+}
+
// Interpolating lookup in a variably sized table.
-static inline float interp_lut(uint8_t byte, float* table, size_t tableSize) {
- float index = byte_to_float(byte) * (tableSize - 1);
+static float interp_lut(float input, float* table, uint32_t tableSize) {
mtklein_C 2016/06/21 20:32:52 const float* table?
msarett 2016/06/21 21:24:47 Done.
+ float index = input * (tableSize - 1);
float diff = index - sk_float_floor2int(index);
return table[(int) sk_float_floor2int(index)] * (1.0f - diff) +
table[(int) sk_float_ceil2int(index)] * diff;
}
+static void build_table_linear_from_gamma(float* outTable, float* inTable, uint32_t inTableSize) {
mtklein_C 2016/06/21 20:32:52 // outTable is always 256 entries. inTable can be
msarett 2016/06/21 21:24:47 Done.
+ if (256 == inTableSize) {
+ memcpy(outTable, inTable, sizeof(float) * 256);
+ return;
+ }
+
+ for (int i = 0; i < 256; i++) {
+ outTable[i] = interp_lut(byte_to_float(i), inTable, inTableSize);
+ }
+}
+
+static void build_table_linear_from_gamma(float* outTable, float g, float a, float b, float c,
+ float d, float e, float f) {
+ // Y = (aX + b)^g + c for X >= d
+ // Y = eX + f otherwise
+ for (int i = 0; i < 256; i++) {
+ float x = byte_to_float(i);
+ if (x >= d) {
+ outTable[i] = powf(a * x + b, g) + c;
+ } else {
+ outTable[i] = e * x + f;
+ }
+ }
+}
+
+static constexpr uint8_t linear_to_srgb[1024] = {
+ 0, 3, 6, 10, 13, 15, 18, 20, 22, 23, 25, 27, 28, 30, 31, 32, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 49, 50, 51, 52,
+ 53, 53, 54, 55, 56, 56, 57, 58, 58, 59, 60, 61, 61, 62, 62, 63, 64, 64,
+ 65, 66, 66, 67, 67, 68, 68, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74,
+ 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 83,
+ 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91,
+ 91, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 98, 98,
+ 98, 99, 99, 99, 100, 100, 101, 101, 101, 102, 102, 102, 103, 103, 103, 104, 104, 104,
+ 105, 105, 106, 106, 106, 107, 107, 107, 108, 108, 108, 109, 109, 109, 110, 110, 110, 110,
+ 111, 111, 111, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 115, 116, 116,
+ 116, 117, 117, 117, 118, 118, 118, 118, 119, 119, 119, 120, 120, 120, 121, 121, 121, 121,
+ 122, 122, 122, 123, 123, 123, 123, 124, 124, 124, 125, 125, 125, 125, 126, 126, 126, 126,
+ 127, 127, 127, 128, 128, 128, 128, 129, 129, 129, 129, 130, 130, 130, 130, 131, 131, 131,
+ 131, 132, 132, 132, 133, 133, 133, 133, 134, 134, 134, 134, 135, 135, 135, 135, 136, 136,
+ 136, 136, 137, 137, 137, 137, 138, 138, 138, 138, 138, 139, 139, 139, 139, 140, 140, 140,
+ 140, 141, 141, 141, 141, 142, 142, 142, 142, 143, 143, 143, 143, 143, 144, 144, 144, 144,
+ 145, 145, 145, 145, 146, 146, 146, 146, 146, 147, 147, 147, 147, 148, 148, 148, 148, 148,
+ 149, 149, 149, 149, 150, 150, 150, 150, 150, 151, 151, 151, 151, 152, 152, 152, 152, 152,
+ 153, 153, 153, 153, 153, 154, 154, 154, 154, 155, 155, 155, 155, 155, 156, 156, 156, 156,
+ 156, 157, 157, 157, 157, 157, 158, 158, 158, 158, 158, 159, 159, 159, 159, 159, 160, 160,
+ 160, 160, 160, 161, 161, 161, 161, 161, 162, 162, 162, 162, 162, 163, 163, 163, 163, 163,
+ 164, 164, 164, 164, 164, 165, 165, 165, 165, 165, 166, 166, 166, 166, 166, 167, 167, 167,
+ 167, 167, 168, 168, 168, 168, 168, 168, 169, 169, 169, 169, 169, 170, 170, 170, 170, 170,
+ 171, 171, 171, 171, 171, 171, 172, 172, 172, 172, 172, 173, 173, 173, 173, 173, 173, 174,
+ 174, 174, 174, 174, 175, 175, 175, 175, 175, 175, 176, 176, 176, 176, 176, 177, 177, 177,
+ 177, 177, 177, 178, 178, 178, 178, 178, 178, 179, 179, 179, 179, 179, 179, 180, 180, 180,
+ 180, 180, 181, 181, 181, 181, 181, 181, 182, 182, 182, 182, 182, 182, 183, 183, 183, 183,
+ 183, 183, 184, 184, 184, 184, 184, 184, 185, 185, 185, 185, 185, 185, 186, 186, 186, 186,
+ 186, 186, 187, 187, 187, 187, 187, 187, 188, 188, 188, 188, 188, 188, 189, 189, 189, 189,
+ 189, 189, 190, 190, 190, 190, 190, 190, 191, 191, 191, 191, 191, 191, 191, 192, 192, 192,
+ 192, 192, 192, 193, 193, 193, 193, 193, 193, 194, 194, 194, 194, 194, 194, 194, 195, 195,
+ 195, 195, 195, 195, 196, 196, 196, 196, 196, 196, 197, 197, 197, 197, 197, 197, 197, 198,
+ 198, 198, 198, 198, 198, 199, 199, 199, 199, 199, 199, 199, 200, 200, 200, 200, 200, 200,
+ 200, 201, 201, 201, 201, 201, 201, 202, 202, 202, 202, 202, 202, 202, 203, 203, 203, 203,
+ 203, 203, 203, 204, 204, 204, 204, 204, 204, 204, 205, 205, 205, 205, 205, 205, 206, 206,
+ 206, 206, 206, 206, 206, 207, 207, 207, 207, 207, 207, 207, 208, 208, 208, 208, 208, 208,
+ 208, 209, 209, 209, 209, 209, 209, 209, 210, 210, 210, 210, 210, 210, 210, 211, 211, 211,
+ 211, 211, 211, 211, 212, 212, 212, 212, 212, 212, 212, 212, 213, 213, 213, 213, 213, 213,
+ 213, 214, 214, 214, 214, 214, 214, 214, 215, 215, 215, 215, 215, 215, 215, 216, 216, 216,
+ 216, 216, 216, 216, 216, 217, 217, 217, 217, 217, 217, 217, 218, 218, 218, 218, 218, 218,
+ 218, 219, 219, 219, 219, 219, 219, 219, 219, 220, 220, 220, 220, 220, 220, 220, 221, 221,
+ 221, 221, 221, 221, 221, 221, 222, 222, 222, 222, 222, 222, 222, 222, 223, 223, 223, 223,
+ 223, 223, 223, 224, 224, 224, 224, 224, 224, 224, 224, 225, 225, 225, 225, 225, 225, 225,
+ 225, 226, 226, 226, 226, 226, 226, 226, 227, 227, 227, 227, 227, 227, 227, 227, 228, 228,
+ 228, 228, 228, 228, 228, 228, 229, 229, 229, 229, 229, 229, 229, 229, 230, 230, 230, 230,
+ 230, 230, 230, 230, 231, 231, 231, 231, 231, 231, 231, 231, 232, 232, 232, 232, 232, 232,
+ 232, 232, 233, 233, 233, 233, 233, 233, 233, 233, 234, 234, 234, 234, 234, 234, 234, 234,
+ 235, 235, 235, 235, 235, 235, 235, 235, 236, 236, 236, 236, 236, 236, 236, 236, 236, 237,
+ 237, 237, 237, 237, 237, 237, 237, 238, 238, 238, 238, 238, 238, 238, 238, 239, 239, 239,
+ 239, 239, 239, 239, 239, 239, 240, 240, 240, 240, 240, 240, 240, 240, 241, 241, 241, 241,
+ 241, 241, 241, 241, 241, 242, 242, 242, 242, 242, 242, 242, 242, 243, 243, 243, 243, 243,
+ 243, 243, 243, 243, 244, 244, 244, 244, 244, 244, 244, 244, 245, 245, 245, 245, 245, 245,
+ 245, 245, 245, 246, 246, 246, 246, 246, 246, 246, 246, 246, 247, 247, 247, 247, 247, 247,
+ 247, 247, 248, 248, 248, 248, 248, 248, 248, 248, 248, 249, 249, 249, 249, 249, 249, 249,
+ 249, 249, 250, 250, 250, 250, 250, 250, 250, 250, 250, 251, 251, 251, 251, 251, 251, 251,
+ 251, 251, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253, 253, 253, 253, 253, 253,
+ 253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255
+};
+
+static constexpr uint8_t linear_to_2dot2[1024] = {
+ 0, 11, 15, 18, 21, 23, 25, 26, 28, 30, 31, 32, 34, 35, 36, 37, 39, 40,
+ 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 54, 55,
+ 56, 56, 57, 58, 58, 59, 60, 60, 61, 62, 62, 63, 63, 64, 65, 65, 66, 66,
+ 67, 68, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76,
+ 76, 77, 77, 78, 78, 79, 79, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 84,
+ 84, 85, 85, 86, 86, 87, 87, 87, 88, 88, 89, 89, 89, 90, 90, 91, 91, 91,
+ 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 96, 96, 96, 97, 97, 97, 98, 98,
+ 98, 99, 99, 99, 100, 100, 101, 101, 101, 102, 102, 102, 103, 103, 103, 104, 104, 104,
+ 105, 105, 105, 106, 106, 106, 107, 107, 107, 108, 108, 108, 108, 109, 109, 109, 110, 110,
+ 110, 111, 111, 111, 112, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 115,
+ 116, 116, 116, 117, 117, 117, 117, 118, 118, 118, 119, 119, 119, 119, 120, 120, 120, 121,
+ 121, 121, 121, 122, 122, 122, 123, 123, 123, 123, 124, 124, 124, 124, 125, 125, 125, 125,
+ 126, 126, 126, 127, 127, 127, 127, 128, 128, 128, 128, 129, 129, 129, 129, 130, 130, 130,
+ 130, 131, 131, 131, 131, 132, 132, 132, 132, 133, 133, 133, 133, 134, 134, 134, 134, 135,
+ 135, 135, 135, 136, 136, 136, 136, 137, 137, 137, 137, 138, 138, 138, 138, 138, 139, 139,
+ 139, 139, 140, 140, 140, 140, 141, 141, 141, 141, 142, 142, 142, 142, 142, 143, 143, 143,
+ 143, 144, 144, 144, 144, 144, 145, 145, 145, 145, 146, 146, 146, 146, 146, 147, 147, 147,
+ 147, 148, 148, 148, 148, 148, 149, 149, 149, 149, 149, 150, 150, 150, 150, 151, 151, 151,
+ 151, 151, 152, 152, 152, 152, 152, 153, 153, 153, 153, 154, 154, 154, 154, 154, 155, 155,
+ 155, 155, 155, 156, 156, 156, 156, 156, 157, 157, 157, 157, 157, 158, 158, 158, 158, 158,
+ 159, 159, 159, 159, 159, 160, 160, 160, 160, 160, 161, 161, 161, 161, 161, 162, 162, 162,
+ 162, 162, 163, 163, 163, 163, 163, 164, 164, 164, 164, 164, 165, 165, 165, 165, 165, 165,
+ 166, 166, 166, 166, 166, 167, 167, 167, 167, 167, 168, 168, 168, 168, 168, 168, 169, 169,
+ 169, 169, 169, 170, 170, 170, 170, 170, 171, 171, 171, 171, 171, 171, 172, 172, 172, 172,
+ 172, 173, 173, 173, 173, 173, 173, 174, 174, 174, 174, 174, 174, 175, 175, 175, 175, 175,
+ 176, 176, 176, 176, 176, 176, 177, 177, 177, 177, 177, 177, 178, 178, 178, 178, 178, 179,
+ 179, 179, 179, 179, 179, 180, 180, 180, 180, 180, 180, 181, 181, 181, 181, 181, 181, 182,
+ 182, 182, 182, 182, 182, 183, 183, 183, 183, 183, 183, 184, 184, 184, 184, 184, 185, 185,
+ 185, 185, 185, 185, 186, 186, 186, 186, 186, 186, 186, 187, 187, 187, 187, 187, 187, 188,
+ 188, 188, 188, 188, 188, 189, 189, 189, 189, 189, 189, 190, 190, 190, 190, 190, 190, 191,
+ 191, 191, 191, 191, 191, 192, 192, 192, 192, 192, 192, 192, 193, 193, 193, 193, 193, 193,
+ 194, 194, 194, 194, 194, 194, 195, 195, 195, 195, 195, 195, 195, 196, 196, 196, 196, 196,
+ 196, 197, 197, 197, 197, 197, 197, 197, 198, 198, 198, 198, 198, 198, 199, 199, 199, 199,
+ 199, 199, 199, 200, 200, 200, 200, 200, 200, 201, 201, 201, 201, 201, 201, 201, 202, 202,
+ 202, 202, 202, 202, 202, 203, 203, 203, 203, 203, 203, 204, 204, 204, 204, 204, 204, 204,
+ 205, 205, 205, 205, 205, 205, 205, 206, 206, 206, 206, 206, 206, 206, 207, 207, 207, 207,
+ 207, 207, 207, 208, 208, 208, 208, 208, 208, 209, 209, 209, 209, 209, 209, 209, 210, 210,
+ 210, 210, 210, 210, 210, 211, 211, 211, 211, 211, 211, 211, 212, 212, 212, 212, 212, 212,
+ 212, 213, 213, 213, 213, 213, 213, 213, 213, 214, 214, 214, 214, 214, 214, 214, 215, 215,
+ 215, 215, 215, 215, 215, 216, 216, 216, 216, 216, 216, 216, 217, 217, 217, 217, 217, 217,
+ 217, 218, 218, 218, 218, 218, 218, 218, 218, 219, 219, 219, 219, 219, 219, 219, 220, 220,
+ 220, 220, 220, 220, 220, 221, 221, 221, 221, 221, 221, 221, 221, 222, 222, 222, 222, 222,
+ 222, 222, 223, 223, 223, 223, 223, 223, 223, 223, 224, 224, 224, 224, 224, 224, 224, 225,
+ 225, 225, 225, 225, 225, 225, 225, 226, 226, 226, 226, 226, 226, 226, 226, 227, 227, 227,
+ 227, 227, 227, 227, 228, 228, 228, 228, 228, 228, 228, 228, 229, 229, 229, 229, 229, 229,
+ 229, 229, 230, 230, 230, 230, 230, 230, 230, 230, 231, 231, 231, 231, 231, 231, 231, 232,
+ 232, 232, 232, 232, 232, 232, 232, 233, 233, 233, 233, 233, 233, 233, 233, 234, 234, 234,
+ 234, 234, 234, 234, 234, 235, 235, 235, 235, 235, 235, 235, 235, 236, 236, 236, 236, 236,
+ 236, 236, 236, 237, 237, 237, 237, 237, 237, 237, 237, 238, 238, 238, 238, 238, 238, 238,
+ 238, 238, 239, 239, 239, 239, 239, 239, 239, 239, 240, 240, 240, 240, 240, 240, 240, 240,
+ 241, 241, 241, 241, 241, 241, 241, 241, 242, 242, 242, 242, 242, 242, 242, 242, 243, 243,
+ 243, 243, 243, 243, 243, 243, 243, 244, 244, 244, 244, 244, 244, 244, 244, 245, 245, 245,
+ 245, 245, 245, 245, 245, 245, 246, 246, 246, 246, 246, 246, 246, 246, 247, 247, 247, 247,
+ 247, 247, 247, 247, 248, 248, 248, 248, 248, 248, 248, 248, 248, 249, 249, 249, 249, 249,
+ 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, 250, 250, 251, 251, 251, 251, 251, 251,
+ 251, 251, 251, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253, 253, 253, 253, 253,
+ 253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255,
+};
+
+static void build_table_linear_to_gamma(uint8_t* outTable, uint32_t outTableSize, float exponent) {
+ float toGammaExp = 1.0f / exponent;
+
+ for (uint32_t i = 0; i < outTableSize; i++) {
+ float x = ((float) i) * (1.0f / ((float) (outTableSize - 1)));
+ outTable[i] = clamp_normalized_float_to_byte(powf(x, toGammaExp));
+ }
+}
+
// Inverse table lookup. Ex: what index corresponds to the input value? This will
// have strange results when the table is non-increasing. But any sane gamma
// function will be increasing.
-// FIXME (msarett):
-// This is a placeholder implementation for inverting table gammas. First, I need to
-// verify if there are actually destination profiles that require this functionality.
-// Next, there are certainly faster and more robust approaches to solving this problem.
-// The LUT based approach in QCMS would be a good place to start.
-static inline float interp_lut_inv(float input, float* table, size_t tableSize) {
+static float inverse_interp_lut(float input, float* table, uint32_t tableSize) {
if (input <= table[0]) {
return table[0];
} else if (input >= table[tableSize - 1]) {
@@ -203,46 +359,228 @@ static inline float interp_lut_inv(float input, float* table, size_t tableSize)
return 0.0f;
}
-SkDefaultXform::SkDefaultXform(const sk_sp<SkGammas>& srcGammas, const SkMatrix44& srcToDst,
- const sk_sp<SkGammas>& dstGammas)
- : fSrcGammas(srcGammas)
- , fSrcToDst(srcToDst)
- , fDstGammas(dstGammas)
-{}
+static void build_table_linear_to_gamma(uint8_t* outTable, uint32_t outTableSize, float* inTable,
+ uint32_t inTableSize) {
+ for (uint32_t i = 0; i < outTableSize; i++) {
+ float x = ((float) i) * (1.0f / ((float) (outTableSize - 1)));
+ float y = inverse_interp_lut(x, inTable, inTableSize);
+ outTable[i] = clamp_normalized_float_to_byte(y);
+ }
+}
-void SkDefaultXform::xform_RGB1_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const {
- while (len-- > 0) {
- // Convert to linear.
- // FIXME (msarett):
- // Rather than support three different strategies of transforming gamma, QCMS
- // builds a 256 entry float lookup table from the gamma info. This handles
- // the gamma transform and the conversion from bytes to floats. This may
- // be simpler and faster than our current approach.
- float srcFloats[3];
- for (int i = 0; i < 3; i++) {
- uint8_t byte = (*src >> (8 * i)) & 0xFF;
- if (fSrcGammas) {
- const SkGammaCurve& gamma = (*fSrcGammas)[i];
- if (gamma.isValue()) {
- srcFloats[i] = powf(byte_to_float(byte), gamma.fValue);
- } else if (gamma.isTable()) {
- srcFloats[i] = interp_lut(byte, gamma.fTable.get(), gamma.fTableSize);
+static float inverse_parametric(float x, float g, float a, float b, float c, float d, float e,
+ float f) {
+ // We need to take the inverse of the following piecewise function.
+ // Y = (aX + b)^g + c for X >= d
+ // Y = eX + f otherwise
+
+ // Assume that the gamma function is continuous, or this won't make much sense anyway.
+ // Plug in |d| to the first equation to calculate the new piecewise interval.
+ // Then simply use the inverse of the original functions.
+ float interval = e * d + f;
+ if (x < interval) {
+ // X = (Y - F) / E
+ if (0.0f == e) {
+ // The gamma curve for this segment is constant, so the inverse is undefined.
+ // Since this is the lower segment, guess zero.
+ return 0.0f;
+ }
+
+ return (x - f) / e;
+ }
+
+ // X = ((Y - C)^(1 / G) - B) / A
+ if (0.0f == a || 0.0f == g) {
+ // The gamma curve for this segment is constant, so the inverse is undefined.
+ // Since this is the upper segment, guess one.
+ return 1.0f;
+ }
+
+ return (powf(x - c, 1.0f / g) - b) / a;
+}
+
+static void build_table_linear_to_gamma(uint8_t* outTable, uint32_t outTableSize, float g, float a,
+ float b, float c, float d, float e, float f) {
+ for (uint32_t i = 0; i < outTableSize; i++) {
+ float x = ((float) i) * (1.0f / ((float) (outTableSize - 1)));
+ float y = inverse_parametric(x, g, a, b, c, d, e, f);
+ outTable[i] = clamp_normalized_float_to_byte(y);
+ }
+}
+
+SkDefaultXform::SkDefaultXform(const sk_sp<SkColorSpace>& srcSpace, const SkMatrix44& srcToDst,
+ const sk_sp<SkColorSpace>& dstSpace)
+ : fSrcToDst(srcToDst)
+{
+ // Build tables to transform src gamma to linear.
+ switch (srcSpace->gammaNamed()) {
+ case SkColorSpace::kSRGB_GammaNamed:
+ fSrcGammaTables[0] = fSrcGammaTables[1] = fSrcGammaTables[2] =
+ (float*) SK_OPTS_NS::linear_from_srgb;
mtklein_C 2016/06/21 20:32:52 This is weird to refer to symbols in SK_OPTS_NS.
msarett 2016/06/21 21:24:47 SGTM. Done.
+ break;
+ case SkColorSpace::k2Dot2Curve_GammaNamed:
+ fSrcGammaTables[0] = fSrcGammaTables[1] = fSrcGammaTables[2] =
+ (float*) SK_OPTS_NS::linear_from_2dot2;
+ break;
+ case SkColorSpace::kLinear_GammaNamed:
+ build_table_linear_from_gamma(fSrcGammaTableStorage, 1.0f);
+ fSrcGammaTables[0] = fSrcGammaTables[1] = fSrcGammaTables[2] = fSrcGammaTableStorage;
+ break;
+ default: {
+ SkGammas* gammas = as_CSB(srcSpace)->gammas();
+ SkASSERT(gammas);
+
+ for (int i = 0; i < 3; i++) {
+ const SkGammaCurve& curve = (*gammas)[i];
+
+ if (i > 0) {
+ // Check if this curve matches the first curve. In this case, we can
+ // share the same table pointer. Logically, this should almost always
+ // be true. I've never seen a profile where all three gamma curves
+ // didn't match. But it is possible that they won't.
+ // TODO (msarett):
+ // This comparison won't catch the case where each gamma curve has a
+ // pointer to its own look-up table, but the tables actually match.
+ // Should we perform a deep compare of gamma tables here? Or should
+ // we catch this when parsing the profile? Or should we not worry
+ // about a bit of redundant work?
+ const SkGammaCurve& firstCurve = (*gammas)[0];
+ if (curve == firstCurve) {
+ fSrcGammaTables[i] = fSrcGammaTables[0];
+ continue;
+ }
+ }
+
+ if (curve.isNamed()) {
+ switch (curve.fNamed) {
+ case SkColorSpace::kSRGB_GammaNamed:
+ fSrcGammaTables[i] = (float*) SK_OPTS_NS::linear_from_srgb;
+ break;
+ case SkColorSpace::k2Dot2Curve_GammaNamed:
+ fSrcGammaTables[i] = (float*) SK_OPTS_NS::linear_from_2dot2;
+ break;
+ case SkColorSpace::kLinear_GammaNamed:
+ build_table_linear_from_gamma(&fSrcGammaTableStorage[i * 256], 1.0f);
+ fSrcGammaTables[i] = &fSrcGammaTableStorage[i * 256];
+ break;
+ default:
+ SkASSERT(false);
+ break;
+ }
+ } else if (curve.isValue()) {
+ build_table_linear_from_gamma(&fSrcGammaTableStorage[i * 256], curve.fValue);
+ fSrcGammaTables[i] = &fSrcGammaTableStorage[i * 256];
+ } else if (curve.isTable()) {
+ build_table_linear_from_gamma(&fSrcGammaTableStorage[i * 256],
+ curve.fTable.get(), curve.fTableSize);
+ fSrcGammaTables[i] = &fSrcGammaTableStorage[i * 256];
} else {
- SkASSERT(gamma.isParametric());
- float component = byte_to_float(byte);
- if (component < gamma.fD) {
- // Y = E * X + F
- srcFloats[i] = gamma.fE * component + gamma.fF;
- } else {
- // Y = (A * X + B)^G + C
- srcFloats[i] = powf(gamma.fA * component + gamma.fB, gamma.fG) + gamma.fC;
+ SkASSERT(curve.isParametric());
+ build_table_linear_from_gamma(&fSrcGammaTableStorage[i * 256], curve.fG,
+ curve.fA, curve.fB, curve.fC, curve.fD, curve.fE,
+ curve.fF);
+ fSrcGammaTables[i] = &fSrcGammaTableStorage[i * 256];
+ }
+ }
+ }
+ }
+
+ // Build tables to transform linear to dst gamma.
+ switch (dstSpace->gammaNamed()) {
+ case SkColorSpace::kSRGB_GammaNamed:
+ fDstGammaTables[0] = fDstGammaTables[1] = fDstGammaTables[2] =
+ (uint8_t*) linear_to_srgb;
+ break;
+ case SkColorSpace::k2Dot2Curve_GammaNamed:
+ fDstGammaTables[0] = fDstGammaTables[1] = fDstGammaTables[2] =
+ (uint8_t*) linear_to_2dot2;
+ break;
+ case SkColorSpace::kLinear_GammaNamed:
+ build_table_linear_to_gamma(fDstGammaTableStorage, kDstGammaTableSize, 1.0f);
+ fDstGammaTables[0] = fDstGammaTables[1] = fDstGammaTables[2] = fDstGammaTableStorage;
+ break;
+ default: {
+ SkGammas* gammas = as_CSB(dstSpace)->gammas();
+ SkASSERT(gammas);
+
+ for (int i = 0; i < 3; i++) {
+ const SkGammaCurve& curve = (*gammas)[i];
+
+ if (i > 0) {
+ // Check if this curve matches the first curve. In this case, we can
+ // share the same table pointer. Logically, this should almost always
+ // be true. I've never seen a profile where all three gamma curves
+ // didn't match. But it is possible that they won't.
+ // TODO (msarett):
+ // This comparison won't catch the case where each gamma curve has a
+ // pointer to its own look-up table (but the tables actually match).
+ // Should we perform a deep compare of gamma tables here? Or should
+ // we catch this when parsing the profile? Or should we not worry
+ // about a bit of redundant work?
+ const SkGammaCurve& firstCurve = (*gammas)[0];
+ if (curve == firstCurve) {
+ fDstGammaTables[i] = fDstGammaTables[0];
+ continue;
}
}
- } else {
- // FIXME: Handle named gammas.
- srcFloats[i] = powf(byte_to_float(byte), 2.2f);
+
+ if (curve.isNamed()) {
+ switch (curve.fNamed) {
+ case SkColorSpace::kSRGB_GammaNamed:
+ fDstGammaTables[i] = (uint8_t*) linear_to_srgb;
+ break;
+ case SkColorSpace::k2Dot2Curve_GammaNamed:
+ fDstGammaTables[i] = (uint8_t*) linear_to_2dot2;
+ break;
+ case SkColorSpace::kLinear_GammaNamed:
+ build_table_linear_to_gamma(
+ &fDstGammaTableStorage[i * kDstGammaTableSize],
+ kDstGammaTableSize, 1.0f);
+ fDstGammaTables[i] = &fDstGammaTableStorage[i * kDstGammaTableSize];
+ break;
+ default:
+ SkASSERT(false);
+ break;
+ }
+ } else if (curve.isValue()) {
+ build_table_linear_to_gamma(&fDstGammaTableStorage[i * kDstGammaTableSize],
+ kDstGammaTableSize, curve.fValue);
+ fDstGammaTables[i] = &fDstGammaTableStorage[i * kDstGammaTableSize];
+ } else if (curve.isTable()) {
+ build_table_linear_to_gamma(&fDstGammaTableStorage[i * kDstGammaTableSize],
+ kDstGammaTableSize, curve.fTable.get(),
+ curve.fTableSize);
+ fDstGammaTables[i] = &fDstGammaTableStorage[i * kDstGammaTableSize];
+ } else {
+ SkASSERT(curve.isParametric());
+ build_table_linear_to_gamma(&fDstGammaTableStorage[i * kDstGammaTableSize],
+ kDstGammaTableSize, curve.fG, curve.fA, curve.fB,
+ curve.fC, curve.fD, curve.fE, curve.fF);
+ fDstGammaTables[i] = &fDstGammaTableStorage[i * kDstGammaTableSize];
+ }
}
}
+ }
+}
+
+// Clamp to the 0-1 range.
+static float clamp_normalized_float(float v) {
+ if (v > 1.0f) {
+ return 1.0f;
+ } else if ((v < 0.0f) || (v != v)) {
+ return 0.0f;
+ } else {
+ return v;
+ }
+}
+
+void SkDefaultXform::xform_RGB1_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const {
msarett 2016/06/20 19:18:53 This is a functions that we can actually optimize.
+ while (len-- > 0) {
+ // Convert to linear.
+ float srcFloats[3];
+ srcFloats[0] = fSrcGammaTables[0][(*src >> 0) & 0xFF];
+ srcFloats[1] = fSrcGammaTables[1][(*src >> 8) & 0xFF];
+ srcFloats[2] = fSrcGammaTables[2][(*src >> 16) & 0xFF];
// Convert to dst gamut.
float dstFloats[3];
@@ -256,67 +594,17 @@ void SkDefaultXform::xform_RGB1_8888(uint32_t* dst, const uint32_t* src, uint32_
srcFloats[1] * fSrcToDst.getFloat(1, 2) +
srcFloats[2] * fSrcToDst.getFloat(2, 2) + fSrcToDst.getFloat(3, 2);
+ // Clamp to 0-1.
+ dstFloats[0] = clamp_normalized_float(dstFloats[0]);
+ dstFloats[1] = clamp_normalized_float(dstFloats[1]);
+ dstFloats[2] = clamp_normalized_float(dstFloats[2]);
+
// Convert to dst gamma.
- // FIXME (msarett):
- // Rather than support three different strategies of transforming inverse gamma,
- // QCMS builds a large float lookup table from the gamma info. Is this faster or
- // better than our approach?
- for (int i = 0; i < 3; i++) {
- if (fDstGammas) {
- const SkGammaCurve& gamma = (*fDstGammas)[i];
- if (gamma.isValue()) {
- dstFloats[i] = powf(dstFloats[i], 1.0f / gamma.fValue);
- } else if (gamma.isTable()) {
- // FIXME (msarett):
- // An inverse table lookup is particularly strange and non-optimal.
- dstFloats[i] = interp_lut_inv(dstFloats[i], gamma.fTable.get(),
- gamma.fTableSize);
- } else {
- SkASSERT(gamma.isParametric());
- // FIXME (msarett):
- // This is a placeholder implementation for inverting parametric gammas.
- // First, I need to verify if there are actually destination profiles that
- // require this functionality. Next, I need to explore other possibilities
- // for this implementation. The LUT based approach in QCMS would be a good
- // place to start.
-
- // We need to take the inverse of a piecewise function. Assume that
- // the gamma function is continuous, or this won't make much sense
- // anyway.
- // Plug in |fD| to the first equation to calculate the new piecewise
- // interval. Then simply use the inverse of the original functions.
- float interval = gamma.fE * gamma.fD + gamma.fF;
- if (dstFloats[i] < interval) {
- // X = (Y - F) / E
- if (0.0f == gamma.fE) {
- // The gamma curve for this segment is constant, so the inverse
- // is undefined.
- dstFloats[i] = 0.0f;
- } else {
- dstFloats[i] = (dstFloats[i] - gamma.fF) / gamma.fE;
- }
- } else {
- // X = ((Y - C)^(1 / G) - B) / A
- if (0.0f == gamma.fA || 0.0f == gamma.fG) {
- // The gamma curve for this segment is constant, so the inverse
- // is undefined.
- dstFloats[i] = 0.0f;
- } else {
- dstFloats[i] = (powf(dstFloats[i] - gamma.fC, 1.0f / gamma.fG) -
- gamma.fB) / gamma.fA;
- }
- }
- }
- } else {
- // FIXME: Handle named gammas.
- dstFloats[i] = powf(dstFloats[i], 1.0f / 2.2f);
- }
- }
+ uint8_t r = fDstGammaTables[0][sk_float_round2int((kDstGammaTableSize - 1) * dstFloats[0])];
+ uint8_t g = fDstGammaTables[1][sk_float_round2int((kDstGammaTableSize - 1) * dstFloats[1])];
+ uint8_t b = fDstGammaTables[2][sk_float_round2int((kDstGammaTableSize - 1) * dstFloats[2])];
- *dst = SkPackARGB32NoCheck(((*src >> 24) & 0xFF),
- clamp_normalized_float_to_byte(dstFloats[0]),
- clamp_normalized_float_to_byte(dstFloats[1]),
- clamp_normalized_float_to_byte(dstFloats[2]));
+ *dst = SkPackARGB32NoCheck(0xFF, r, g, b);
dst++;
src++;

Powered by Google App Engine
This is Rietveld 408576698