Index: src/third_party/fdlibm/fdlibm.js |
diff --git a/src/third_party/fdlibm/fdlibm.js b/src/third_party/fdlibm/fdlibm.js |
index 26ef126f6850ac5ef0a980decd0fe48c60956f1d..ffb67de7f1b63ee5f7ef4dc160a061c2cedd1a50 100644 |
--- a/src/third_party/fdlibm/fdlibm.js |
+++ b/src/third_party/fdlibm/fdlibm.js |
@@ -26,178 +26,11 @@ |
// Imports |
var GlobalMath = global.Math; |
-var MathAbs; |
-var MathExpm1; |
-utils.Import(function(from) { |
- MathAbs = from.MathAbs; |
- MathExpm1 = from.MathExpm1; |
-}); |
- |
-// ES6 draft 09-27-13, section 20.2.2.30. |
-// Math.sinh |
-// Method : |
-// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |
-// 1. Replace x by |x| (sinh(-x) = -sinh(x)). |
-// 2. |
-// E + E/(E+1) |
-// 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) |
-// 2 |
-// |
-// 22 <= x <= lnovft : sinh(x) := exp(x)/2 |
-// lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) |
-// ln2ovft < x : sinh(x) := x*shuge (overflow) |
-// |
-// Special cases: |
-// sinh(x) is |x| if x is +Infinity, -Infinity, or NaN. |
-// only sinh(0)=0 is exact for finite x. |
-// |
-define KSINH_OVERFLOW = 710.4758600739439; |
-define TWO_M28 = 3.725290298461914e-9; // 2^-28, empty lower half |
-define LOG_MAXD = 709.7822265625; // 0x40862e42 00000000, empty lower half |
- |
-function MathSinh(x) { |
- x = x * 1; // Convert to number. |
- var h = (x < 0) ? -0.5 : 0.5; |
- // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1)) |
- var ax = MathAbs(x); |
- if (ax < 22) { |
- // For |x| < 2^-28, sinh(x) = x |
- if (ax < TWO_M28) return x; |
- var t = MathExpm1(ax); |
- if (ax < 1) return h * (2 * t - t * t / (t + 1)); |
- return h * (t + t / (t + 1)); |
- } |
- // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|) |
- if (ax < LOG_MAXD) return h * %math_exp(ax); |
- // |x| in [log(maxdouble), overflowthreshold] |
- // overflowthreshold = 710.4758600739426 |
- if (ax <= KSINH_OVERFLOW) { |
- var w = %math_exp(0.5 * ax); |
- var t = h * w; |
- return t * w; |
- } |
- // |x| > overflowthreshold or is NaN. |
- // Return Infinity of the appropriate sign or NaN. |
- return x * INFINITY; |
-} |
- |
- |
-// ES6 draft 09-27-13, section 20.2.2.12. |
-// Math.cosh |
-// Method : |
-// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 |
-// 1. Replace x by |x| (cosh(x) = cosh(-x)). |
-// 2. |
-// [ exp(x) - 1 ]^2 |
-// 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- |
-// 2*exp(x) |
-// |
-// exp(x) + 1/exp(x) |
-// ln2/2 <= x <= 22 : cosh(x) := ------------------- |
-// 2 |
-// 22 <= x <= lnovft : cosh(x) := exp(x)/2 |
-// lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) |
-// ln2ovft < x : cosh(x) := huge*huge (overflow) |
-// |
-// Special cases: |
-// cosh(x) is |x| if x is +INF, -INF, or NaN. |
-// only cosh(0)=1 is exact for finite x. |
-// |
-define KCOSH_OVERFLOW = 710.4758600739439; |
- |
-function MathCosh(x) { |
- x = x * 1; // Convert to number. |
- var ix = %_DoubleHi(x) & 0x7fffffff; |
- // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|)) |
- if (ix < 0x3fd62e43) { |
- var t = MathExpm1(MathAbs(x)); |
- var w = 1 + t; |
- // For |x| < 2^-55, cosh(x) = 1 |
- if (ix < 0x3c800000) return w; |
- return 1 + (t * t) / (w + w); |
- } |
- // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2 |
- if (ix < 0x40360000) { |
- var t = %math_exp(MathAbs(x)); |
- return 0.5 * t + 0.5 / t; |
- } |
- // |x| in [22, log(maxdouble)], return half*exp(|x|) |
- if (ix < 0x40862e42) return 0.5 * %math_exp(MathAbs(x)); |
- // |x| in [log(maxdouble), overflowthreshold] |
- if (MathAbs(x) <= KCOSH_OVERFLOW) { |
- var w = %math_exp(0.5 * MathAbs(x)); |
- var t = 0.5 * w; |
- return t * w; |
- } |
- if (NUMBER_IS_NAN(x)) return x; |
- // |x| > overflowthreshold. |
- return INFINITY; |
-} |
- |
-// ES6 draft 09-27-13, section 20.2.2.33. |
-// Math.tanh(x) |
-// Method : |
-// x -x |
-// e - e |
-// 0. tanh(x) is defined to be ----------- |
-// x -x |
-// e + e |
-// 1. reduce x to non-negative by tanh(-x) = -tanh(x). |
-// 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) |
-// -t |
-// 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) |
-// t + 2 |
-// 2 |
-// 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t = expm1(2x) |
-// t + 2 |
-// 22.0 < x <= INF : tanh(x) := 1. |
-// |
-// Special cases: |
-// tanh(NaN) is NaN; |
-// only tanh(0) = 0 is exact for finite argument. |
-// |
- |
-define TWO_M55 = 2.77555756156289135105e-17; // 2^-55, empty lower half |
- |
-function MathTanh(x) { |
- x = x * 1; // Convert to number. |
- // x is Infinity or NaN |
- if (!NUMBER_IS_FINITE(x)) { |
- if (x > 0) return 1; |
- if (x < 0) return -1; |
- return x; |
- } |
- |
- var ax = MathAbs(x); |
- var z; |
- // |x| < 22 |
- if (ax < 22) { |
- if (ax < TWO_M55) { |
- // |x| < 2^-55, tanh(small) = small. |
- return x; |
- } |
- if (ax >= 1) { |
- // |x| >= 1 |
- var t = MathExpm1(2 * ax); |
- z = 1 - 2 / (t + 2); |
- } else { |
- var t = MathExpm1(-2 * ax); |
- z = -t / (t + 2); |
- } |
- } else { |
- // |x| > 22, return +/- 1 |
- z = 1; |
- } |
- return (x >= 0) ? z : -z; |
-} |
+utils.Import(function(from) {}); |
//------------------------------------------------------------------- |
-utils.InstallFunctions(GlobalMath, DONT_ENUM, [ |
- "sinh", MathSinh, |
- "cosh", MathCosh, |
- "tanh", MathTanh |
-]); |
+utils.InstallFunctions(GlobalMath, DONT_ENUM, []); |
}) |