| Index: src/base/ieee754.cc
|
| diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc
|
| index 67c0c89671aaf9a9ba7b89eeb81399eb12f3b99b..81a6fd5649d9c628b6cb719734b5950b9c9af1ec 100644
|
| --- a/src/base/ieee754.cc
|
| +++ b/src/base/ieee754.cc
|
| @@ -761,6 +761,143 @@ V8_INLINE double __kernel_sin(double x, double y, int iy) {
|
| }
|
| }
|
|
|
| +/* __kernel_tan( x, y, k )
|
| + * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
| + * Input x is assumed to be bounded by ~pi/4 in magnitude.
|
| + * Input y is the tail of x.
|
| + * Input k indicates whether tan (if k=1) or
|
| + * -1/tan (if k= -1) is returned.
|
| + *
|
| + * Algorithm
|
| + * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
| + * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
| + * 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
| + * [0,0.67434]
|
| + * 3 27
|
| + * tan(x) ~ x + T1*x + ... + T13*x
|
| + * where
|
| + *
|
| + * |tan(x) 2 4 26 | -59.2
|
| + * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
| + * | x |
|
| + *
|
| + * Note: tan(x+y) = tan(x) + tan'(x)*y
|
| + * ~ tan(x) + (1+x*x)*y
|
| + * Therefore, for better accuracy in computing tan(x+y), let
|
| + * 3 2 2 2 2
|
| + * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
| + * then
|
| + * 3 2
|
| + * tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
| + *
|
| + * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
| + * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
| + * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
| + */
|
| +double __kernel_tan(double x, double y, int iy) {
|
| + static const double xxx[] = {
|
| + 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
| + 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
| + 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
| + 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
| + 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
| + 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
| + 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
| + 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
| + 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
| + 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
| + 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
| + -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
| + 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
| + /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
|
| + /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
|
| + /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
|
| + };
|
| +#define one xxx[13]
|
| +#define pio4 xxx[14]
|
| +#define pio4lo xxx[15]
|
| +#define T xxx
|
| +
|
| + double z, r, v, w, s;
|
| + int32_t ix, hx;
|
| +
|
| + GET_HIGH_WORD(hx, x); /* high word of x */
|
| + ix = hx & 0x7fffffff; /* high word of |x| */
|
| + if (ix < 0x3e300000) { /* x < 2**-28 */
|
| + if (static_cast<int>(x) == 0) { /* generate inexact */
|
| + u_int32_t low;
|
| + GET_LOW_WORD(low, x);
|
| + if (((ix | low) | (iy + 1)) == 0) {
|
| + return one / fabs(x);
|
| + } else {
|
| + if (iy == 1) {
|
| + return x;
|
| + } else { /* compute -1 / (x+y) carefully */
|
| + double a, t;
|
| +
|
| + z = w = x + y;
|
| + SET_LOW_WORD(z, 0);
|
| + v = y - (z - x);
|
| + t = a = -one / w;
|
| + SET_LOW_WORD(t, 0);
|
| + s = one + t * z;
|
| + return t + a * (s + t * v);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
|
| + if (hx < 0) {
|
| + x = -x;
|
| + y = -y;
|
| + }
|
| + z = pio4 - x;
|
| + w = pio4lo - y;
|
| + x = z + w;
|
| + y = 0.0;
|
| + }
|
| + z = x * x;
|
| + w = z * z;
|
| + /*
|
| + * Break x^5*(T[1]+x^2*T[2]+...) into
|
| + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
| + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
| + */
|
| + r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
|
| + v = z *
|
| + (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
|
| + s = z * x;
|
| + r = y + z * (s * (r + v) + y);
|
| + r += T[0] * s;
|
| + w = x + r;
|
| + if (ix >= 0x3FE59428) {
|
| + v = iy;
|
| + return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r)));
|
| + }
|
| + if (iy == 1) {
|
| + return w;
|
| + } else {
|
| + /*
|
| + * if allow error up to 2 ulp, simply return
|
| + * -1.0 / (x+r) here
|
| + */
|
| + /* compute -1.0 / (x+r) accurately */
|
| + double a, t;
|
| + z = w;
|
| + SET_LOW_WORD(z, 0);
|
| + v = r - (z - x); /* z+v = r+x */
|
| + t = a = -1.0 / w; /* a = -1.0/w */
|
| + SET_LOW_WORD(t, 0);
|
| + s = 1.0 + t * z;
|
| + return t + a * (s + t * v);
|
| + }
|
| +
|
| +#undef one
|
| +#undef pio4
|
| +#undef pio4lo
|
| +#undef T
|
| +}
|
| +
|
| } // namespace
|
|
|
| /* atan(x)
|
| @@ -2123,6 +2260,57 @@ double sin(double x) {
|
| }
|
| }
|
|
|
| +/* tan(x)
|
| + * Return tangent function of x.
|
| + *
|
| + * kernel function:
|
| + * __kernel_tan ... tangent function on [-pi/4,pi/4]
|
| + * __ieee754_rem_pio2 ... argument reduction routine
|
| + *
|
| + * Method.
|
| + * Let S,C and T denote the sin, cos and tan respectively on
|
| + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
| + * in [-pi/4 , +pi/4], and let n = k mod 4.
|
| + * We have
|
| + *
|
| + * n sin(x) cos(x) tan(x)
|
| + * ----------------------------------------------------------
|
| + * 0 S C T
|
| + * 1 C -S -1/T
|
| + * 2 -S -C T
|
| + * 3 -C S -1/T
|
| + * ----------------------------------------------------------
|
| + *
|
| + * Special cases:
|
| + * Let trig be any of sin, cos, or tan.
|
| + * trig(+-INF) is NaN, with signals;
|
| + * trig(NaN) is that NaN;
|
| + *
|
| + * Accuracy:
|
| + * TRIG(x) returns trig(x) nearly rounded
|
| + */
|
| +double tan(double x) {
|
| + double y[2], z = 0.0;
|
| + int32_t n, ix;
|
| +
|
| + /* High word of x. */
|
| + GET_HIGH_WORD(ix, x);
|
| +
|
| + /* |x| ~< pi/4 */
|
| + ix &= 0x7fffffff;
|
| + if (ix <= 0x3fe921fb) {
|
| + return __kernel_tan(x, z, 1);
|
| + } else if (ix >= 0x7ff00000) {
|
| + /* tan(Inf or NaN) is NaN */
|
| + return x - x; /* NaN */
|
| + } else {
|
| + /* argument reduction needed */
|
| + n = __ieee754_rem_pio2(x, y);
|
| + /* 1 -> n even, -1 -> n odd */
|
| + return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1));
|
| + }
|
| +}
|
| +
|
| } // namespace ieee754
|
| } // namespace base
|
| } // namespace v8
|
|
|