Index: src/base/ieee754.cc |
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
index 67c0c89671aaf9a9ba7b89eeb81399eb12f3b99b..81a6fd5649d9c628b6cb719734b5950b9c9af1ec 100644 |
--- a/src/base/ieee754.cc |
+++ b/src/base/ieee754.cc |
@@ -761,6 +761,143 @@ V8_INLINE double __kernel_sin(double x, double y, int iy) { |
} |
} |
+/* __kernel_tan( x, y, k ) |
+ * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
+ * Input x is assumed to be bounded by ~pi/4 in magnitude. |
+ * Input y is the tail of x. |
+ * Input k indicates whether tan (if k=1) or |
+ * -1/tan (if k= -1) is returned. |
+ * |
+ * Algorithm |
+ * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
+ * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
+ * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
+ * [0,0.67434] |
+ * 3 27 |
+ * tan(x) ~ x + T1*x + ... + T13*x |
+ * where |
+ * |
+ * |tan(x) 2 4 26 | -59.2 |
+ * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
+ * | x | |
+ * |
+ * Note: tan(x+y) = tan(x) + tan'(x)*y |
+ * ~ tan(x) + (1+x*x)*y |
+ * Therefore, for better accuracy in computing tan(x+y), let |
+ * 3 2 2 2 2 |
+ * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
+ * then |
+ * 3 2 |
+ * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
+ * |
+ * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
+ * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
+ * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
+ */ |
+double __kernel_tan(double x, double y, int iy) { |
+ static const double xxx[] = { |
+ 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ |
+ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ |
+ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ |
+ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ |
+ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ |
+ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ |
+ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ |
+ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ |
+ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ |
+ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ |
+ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ |
+ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ |
+ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ |
+ /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ |
+ /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ |
+ /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ |
+ }; |
+#define one xxx[13] |
+#define pio4 xxx[14] |
+#define pio4lo xxx[15] |
+#define T xxx |
+ |
+ double z, r, v, w, s; |
+ int32_t ix, hx; |
+ |
+ GET_HIGH_WORD(hx, x); /* high word of x */ |
+ ix = hx & 0x7fffffff; /* high word of |x| */ |
+ if (ix < 0x3e300000) { /* x < 2**-28 */ |
+ if (static_cast<int>(x) == 0) { /* generate inexact */ |
+ u_int32_t low; |
+ GET_LOW_WORD(low, x); |
+ if (((ix | low) | (iy + 1)) == 0) { |
+ return one / fabs(x); |
+ } else { |
+ if (iy == 1) { |
+ return x; |
+ } else { /* compute -1 / (x+y) carefully */ |
+ double a, t; |
+ |
+ z = w = x + y; |
+ SET_LOW_WORD(z, 0); |
+ v = y - (z - x); |
+ t = a = -one / w; |
+ SET_LOW_WORD(t, 0); |
+ s = one + t * z; |
+ return t + a * (s + t * v); |
+ } |
+ } |
+ } |
+ } |
+ if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ |
+ if (hx < 0) { |
+ x = -x; |
+ y = -y; |
+ } |
+ z = pio4 - x; |
+ w = pio4lo - y; |
+ x = z + w; |
+ y = 0.0; |
+ } |
+ z = x * x; |
+ w = z * z; |
+ /* |
+ * Break x^5*(T[1]+x^2*T[2]+...) into |
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
+ */ |
+ r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); |
+ v = z * |
+ (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); |
+ s = z * x; |
+ r = y + z * (s * (r + v) + y); |
+ r += T[0] * s; |
+ w = x + r; |
+ if (ix >= 0x3FE59428) { |
+ v = iy; |
+ return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r))); |
+ } |
+ if (iy == 1) { |
+ return w; |
+ } else { |
+ /* |
+ * if allow error up to 2 ulp, simply return |
+ * -1.0 / (x+r) here |
+ */ |
+ /* compute -1.0 / (x+r) accurately */ |
+ double a, t; |
+ z = w; |
+ SET_LOW_WORD(z, 0); |
+ v = r - (z - x); /* z+v = r+x */ |
+ t = a = -1.0 / w; /* a = -1.0/w */ |
+ SET_LOW_WORD(t, 0); |
+ s = 1.0 + t * z; |
+ return t + a * (s + t * v); |
+ } |
+ |
+#undef one |
+#undef pio4 |
+#undef pio4lo |
+#undef T |
+} |
+ |
} // namespace |
/* atan(x) |
@@ -2123,6 +2260,57 @@ double sin(double x) { |
} |
} |
+/* tan(x) |
+ * Return tangent function of x. |
+ * |
+ * kernel function: |
+ * __kernel_tan ... tangent function on [-pi/4,pi/4] |
+ * __ieee754_rem_pio2 ... argument reduction routine |
+ * |
+ * Method. |
+ * Let S,C and T denote the sin, cos and tan respectively on |
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
+ * in [-pi/4 , +pi/4], and let n = k mod 4. |
+ * We have |
+ * |
+ * n sin(x) cos(x) tan(x) |
+ * ---------------------------------------------------------- |
+ * 0 S C T |
+ * 1 C -S -1/T |
+ * 2 -S -C T |
+ * 3 -C S -1/T |
+ * ---------------------------------------------------------- |
+ * |
+ * Special cases: |
+ * Let trig be any of sin, cos, or tan. |
+ * trig(+-INF) is NaN, with signals; |
+ * trig(NaN) is that NaN; |
+ * |
+ * Accuracy: |
+ * TRIG(x) returns trig(x) nearly rounded |
+ */ |
+double tan(double x) { |
+ double y[2], z = 0.0; |
+ int32_t n, ix; |
+ |
+ /* High word of x. */ |
+ GET_HIGH_WORD(ix, x); |
+ |
+ /* |x| ~< pi/4 */ |
+ ix &= 0x7fffffff; |
+ if (ix <= 0x3fe921fb) { |
+ return __kernel_tan(x, z, 1); |
+ } else if (ix >= 0x7ff00000) { |
+ /* tan(Inf or NaN) is NaN */ |
+ return x - x; /* NaN */ |
+ } else { |
+ /* argument reduction needed */ |
+ n = __ieee754_rem_pio2(x, y); |
+ /* 1 -> n even, -1 -> n odd */ |
+ return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1)); |
+ } |
+} |
+ |
} // namespace ieee754 |
} // namespace base |
} // namespace v8 |