Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(288)

Unified Diff: nss/lib/freebl/rsa.c

Issue 2078763002: Delete bundled copy of NSS and replace with README. (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/nss@master
Patch Set: Delete bundled copy of NSS and replace with README. Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « nss/lib/freebl/rijndael32.tab ('k') | nss/lib/freebl/rsapkcs.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: nss/lib/freebl/rsa.c
diff --git a/nss/lib/freebl/rsa.c b/nss/lib/freebl/rsa.c
deleted file mode 100644
index 48b557b42178cadd7a5694c1e35610244115c86e..0000000000000000000000000000000000000000
--- a/nss/lib/freebl/rsa.c
+++ /dev/null
@@ -1,1551 +0,0 @@
-/* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
-
-/*
- * RSA key generation, public key op, private key op.
- */
-#ifdef FREEBL_NO_DEPEND
-#include "stubs.h"
-#endif
-
-#include "secerr.h"
-
-#include "prclist.h"
-#include "nssilock.h"
-#include "prinit.h"
-#include "blapi.h"
-#include "mpi.h"
-#include "mpprime.h"
-#include "mplogic.h"
-#include "secmpi.h"
-#include "secitem.h"
-#include "blapii.h"
-
-/*
-** Number of times to attempt to generate a prime (p or q) from a random
-** seed (the seed changes for each iteration).
-*/
-#define MAX_PRIME_GEN_ATTEMPTS 10
-/*
-** Number of times to attempt to generate a key. The primes p and q change
-** for each attempt.
-*/
-#define MAX_KEY_GEN_ATTEMPTS 10
-
-/* Blinding Parameters max cache size */
-#define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20
-
-/* exponent should not be greater than modulus */
-#define BAD_RSA_KEY_SIZE(modLen, expLen) \
- ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \
- (expLen) > RSA_MAX_EXPONENT_BITS/8)
-
-struct blindingParamsStr;
-typedef struct blindingParamsStr blindingParams;
-
-struct blindingParamsStr {
- blindingParams *next;
- mp_int f, g; /* blinding parameter */
- int counter; /* number of remaining uses of (f, g) */
-};
-
-/*
-** RSABlindingParamsStr
-**
-** For discussion of Paul Kocher's timing attack against an RSA private key
-** operation, see http://www.cryptography.com/timingattack/paper.html. The
-** countermeasure to this attack, known as blinding, is also discussed in
-** the Handbook of Applied Cryptography, 11.118-11.119.
-*/
-struct RSABlindingParamsStr
-{
- /* Blinding-specific parameters */
- PRCList link; /* link to list of structs */
- SECItem modulus; /* list element "key" */
- blindingParams *free, *bp; /* Blinding parameters queue */
- blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE];
-};
-typedef struct RSABlindingParamsStr RSABlindingParams;
-
-/*
-** RSABlindingParamsListStr
-**
-** List of key-specific blinding params. The arena holds the volatile pool
-** of memory for each entry and the list itself. The lock is for list
-** operations, in this case insertions and iterations, as well as control
-** of the counter for each set of blinding parameters.
-*/
-struct RSABlindingParamsListStr
-{
- PZLock *lock; /* Lock for the list */
- PRCondVar *cVar; /* Condidtion Variable */
- int waitCount; /* Number of threads waiting on cVar */
- PRCList head; /* Pointer to the list */
-};
-
-/*
-** The master blinding params list.
-*/
-static struct RSABlindingParamsListStr blindingParamsList = { 0 };
-
-/* Number of times to reuse (f, g). Suggested by Paul Kocher */
-#define RSA_BLINDING_PARAMS_MAX_REUSE 50
-
-/* Global, allows optional use of blinding. On by default. */
-/* Cannot be changed at the moment, due to thread-safety issues. */
-static PRBool nssRSAUseBlinding = PR_TRUE;
-
-static SECStatus
-rsa_build_from_primes(const mp_int *p, const mp_int *q,
- mp_int *e, PRBool needPublicExponent,
- mp_int *d, PRBool needPrivateExponent,
- RSAPrivateKey *key, unsigned int keySizeInBits)
-{
- mp_int n, phi;
- mp_int psub1, qsub1, tmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&phi) = 0;
- MP_DIGITS(&psub1) = 0;
- MP_DIGITS(&qsub1) = 0;
- MP_DIGITS(&tmp) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&phi) );
- CHECK_MPI_OK( mp_init(&psub1) );
- CHECK_MPI_OK( mp_init(&qsub1) );
- CHECK_MPI_OK( mp_init(&tmp) );
- /* p and q must be distinct. */
- if (mp_cmp(p, q) == 0) {
- PORT_SetError(SEC_ERROR_NEED_RANDOM);
- rv = SECFailure;
- goto cleanup;
- }
- /* 1. Compute n = p*q */
- CHECK_MPI_OK( mp_mul(p, q, &n) );
- /* verify that the modulus has the desired number of bits */
- if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
- PORT_SetError(SEC_ERROR_NEED_RANDOM);
- rv = SECFailure;
- goto cleanup;
- }
-
- /* at least one exponent must be given */
- PORT_Assert(!(needPublicExponent && needPrivateExponent));
-
- /* 2. Compute phi = (p-1)*(q-1) */
- CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
- CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
- if (needPublicExponent || needPrivateExponent) {
- CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
- /* 3. Compute d = e**-1 mod(phi) */
- /* or e = d**-1 mod(phi) as necessary */
- if (needPublicExponent) {
- err = mp_invmod(d, &phi, e);
- } else {
- err = mp_invmod(e, &phi, d);
- }
- } else {
- err = MP_OKAY;
- }
- /* Verify that phi(n) and e have no common divisors */
- if (err != MP_OKAY) {
- if (err == MP_UNDEF) {
- PORT_SetError(SEC_ERROR_NEED_RANDOM);
- err = MP_OKAY; /* to keep PORT_SetError from being called again */
- rv = SECFailure;
- }
- goto cleanup;
- }
-
- /* 4. Compute exponent1 = d mod (p-1) */
- CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
- /* 5. Compute exponent2 = d mod (q-1) */
- CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
- /* 6. Compute coefficient = q**-1 mod p */
- CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
-
- /* copy our calculated results, overwrite what is there */
- key->modulus.data = NULL;
- MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
- key->privateExponent.data = NULL;
- MPINT_TO_SECITEM(d, &key->privateExponent, key->arena);
- key->publicExponent.data = NULL;
- MPINT_TO_SECITEM(e, &key->publicExponent, key->arena);
- key->prime1.data = NULL;
- MPINT_TO_SECITEM(p, &key->prime1, key->arena);
- key->prime2.data = NULL;
- MPINT_TO_SECITEM(q, &key->prime2, key->arena);
-cleanup:
- mp_clear(&n);
- mp_clear(&phi);
- mp_clear(&psub1);
- mp_clear(&qsub1);
- mp_clear(&tmp);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-static SECStatus
-generate_prime(mp_int *prime, int primeLen)
-{
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- unsigned long counter = 0;
- int piter;
- unsigned char *pb = NULL;
- pb = PORT_Alloc(primeLen);
- if (!pb) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
- for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
- pb[0] |= 0xC0; /* set two high-order bits */
- pb[primeLen-1] |= 0x01; /* set low-order bit */
- CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
- err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
- if (err != MP_NO)
- goto cleanup;
- /* keep going while err == MP_NO */
- }
-cleanup:
- if (pb)
- PORT_ZFree(pb, primeLen);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-/*
-** Generate and return a new RSA public and private key.
-** Both keys are encoded in a single RSAPrivateKey structure.
-** "cx" is the random number generator context
-** "keySizeInBits" is the size of the key to be generated, in bits.
-** 512, 1024, etc.
-** "publicExponent" when not NULL is a pointer to some data that
-** represents the public exponent to use. The data is a byte
-** encoded integer, in "big endian" order.
-*/
-RSAPrivateKey *
-RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
-{
- unsigned int primeLen;
- mp_int p, q, e, d;
- int kiter;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- int prerr = 0;
- RSAPrivateKey *key = NULL;
- PLArenaPool *arena = NULL;
- /* Require key size to be a multiple of 16 bits. */
- if (!publicExponent || keySizeInBits % 16 != 0 ||
- BAD_RSA_KEY_SIZE((unsigned int)keySizeInBits/8, publicExponent->len)) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return NULL;
- }
- /* 1. Allocate arena & key */
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
- if (!arena) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return NULL;
- }
- key = PORT_ArenaZNew(arena, RSAPrivateKey);
- if (!key) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- PORT_FreeArena(arena, PR_TRUE);
- return NULL;
- }
- key->arena = arena;
- /* length of primes p and q (in bytes) */
- primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE);
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&d) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&d) );
- /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */
- SECITEM_AllocItem(arena, &key->version, 1);
- key->version.data[0] = 0;
- /* 3. Set the public exponent */
- SECITEM_TO_MPINT(*publicExponent, &e);
- kiter = 0;
- do {
- prerr = 0;
- PORT_SetError(0);
- CHECK_SEC_OK( generate_prime(&p, primeLen) );
- CHECK_SEC_OK( generate_prime(&q, primeLen) );
- /* Assure p > q */
- /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any
- * implementation optimization that requires p > q. We can remove
- * this code in the future.
- */
- if (mp_cmp(&p, &q) < 0)
- mp_exch(&p, &q);
- /* Attempt to use these primes to generate a key */
- rv = rsa_build_from_primes(&p, &q,
- &e, PR_FALSE, /* needPublicExponent=false */
- &d, PR_TRUE, /* needPrivateExponent=true */
- key, keySizeInBits);
- if (rv == SECSuccess)
- break; /* generated two good primes */
- prerr = PORT_GetError();
- kiter++;
- /* loop until have primes */
- } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
- if (prerr)
- goto cleanup;
-cleanup:
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&e);
- mp_clear(&d);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- if (rv && arena) {
- PORT_FreeArena(arena, PR_TRUE);
- key = NULL;
- }
- return key;
-}
-
-mp_err
-rsa_is_prime(mp_int *p) {
- int res;
-
- /* run a Fermat test */
- res = mpp_fermat(p, 2);
- if (res != MP_OKAY) {
- return res;
- }
-
- /* If that passed, run some Miller-Rabin tests */
- res = mpp_pprime(p, 2);
- return res;
-}
-
-/*
- * Try to find the two primes based on 2 exponents plus either a prime
- * or a modulus.
- *
- * In: e, d and either p or n (depending on the setting of hasModulus).
- * Out: p,q.
- *
- * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or
- * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is
- * usually less than d, then k must be an integer between e-1 and 1
- * (probably on the order of e).
- * Step 1a, If we were passed just a prime, we can divide k*phi by that
- * prime-1 and get k*(q-1). This will reduce the size of our division
- * through the rest of the loop.
- * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on
- * the order or e, and e is typically small. This may take a while for
- * a large random e. We are looking for a k that divides kphi
- * evenly. Once we find a k that divides kphi evenly, we assume it
- * is the true k. It's possible this k is not the 'true' k but has
- * swapped factors of p-1 and/or q-1. Because of this, we
- * tentatively continue Steps 3-6 inside this loop, and may return looking
- * for another k on failure.
- * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1).
- * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative
- * q-1. q = phi+1. If k is correct, q should be the right length and
- * prime.
- * Step 4b, It's possible q-1 and k could have swapped factors. We now have a
- * possible solution that meets our criteria. It may not be the only
- * solution, however, so we keep looking. If we find more than one,
- * we will fail since we cannot determine which is the correct
- * solution, and returning the wrong modulus will compromise both
- * moduli. If no other solution is found, we return the unique solution.
- * Step 5a, If we have the modulus (n=pq), then use the following formula to
- * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so
- * s=n-phi+1.
- * Step 5b, Use n=pq and s=p+q to solve for p and q as follows:
- * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0.
- * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and
- * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE.
- * If it is not, continue in our look looking for another k. NOTE: the
- * code actually distributes the 1/2 and results in the equations:
- * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us
- * and extra divide by 2 and a multiply by 4.
- *
- * This will return p & q. q may be larger than p in the case that p was given
- * and it was the smaller prime.
- */
-static mp_err
-rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q,
- mp_int *n, PRBool hasModulus,
- unsigned int keySizeInBits)
-{
- mp_int kphi; /* k*phi */
- mp_int k; /* current guess at 'k' */
- mp_int phi; /* (p-1)(q-1) */
- mp_int s; /* p+q/2 (s/2 in the algebra) */
- mp_int r; /* remainder */
- mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */
- mp_int sqrt; /* sqrt(s/2*s/2-n) */
- mp_err err = MP_OKAY;
- unsigned int order_k;
-
- MP_DIGITS(&kphi) = 0;
- MP_DIGITS(&phi) = 0;
- MP_DIGITS(&s) = 0;
- MP_DIGITS(&k) = 0;
- MP_DIGITS(&r) = 0;
- MP_DIGITS(&tmp) = 0;
- MP_DIGITS(&sqrt) = 0;
- CHECK_MPI_OK( mp_init(&kphi) );
- CHECK_MPI_OK( mp_init(&phi) );
- CHECK_MPI_OK( mp_init(&s) );
- CHECK_MPI_OK( mp_init(&k) );
- CHECK_MPI_OK( mp_init(&r) );
- CHECK_MPI_OK( mp_init(&tmp) );
- CHECK_MPI_OK( mp_init(&sqrt) );
-
- /* our algorithm looks for a factor k whose maximum size is dependent
- * on the size of our smallest exponent, which had better be the public
- * exponent (if it's the private, the key is vulnerable to a brute force
- * attack).
- *
- * since our factor search is linear, we need to limit the maximum
- * size of the public key. this should not be a problem normally, since
- * public keys are usually small.
- *
- * if we want to handle larger public key sizes, we should have
- * a version which tries to 'completely' factor k*phi (where completely
- * means 'factor into primes, or composites with which are products of
- * large primes). Once we have all the factors, we can sort them out and
- * try different combinations to form our phi. The risk is if (p-1)/2,
- * (q-1)/2, and k are all large primes. In any case if the public key
- * is small (order of 20 some bits), then a linear search for k is
- * manageable.
- */
- if (mpl_significant_bits(e) > 23) {
- err=MP_RANGE;
- goto cleanup;
- }
-
- /* calculate k*phi = e*d - 1 */
- CHECK_MPI_OK( mp_mul(e, d, &kphi) );
- CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) );
-
-
- /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1)
- * d < (p-1)(q-1), therefor k must be less than e-1
- * We can narrow down k even more, though. Since p and q are odd and both
- * have their high bit set, then we know that phi must be on order of
- * keySizeBits.
- */
- order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits;
-
- /* for (k=kinit; order(k) >= order_k; k--) { */
- /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */
- CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) );
- CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL));
- if (mp_cmp(&k,e) >= 0) {
- /* also can't be bigger then e-1 */
- CHECK_MPI_OK( mp_sub_d(e, 1, &k) );
- }
-
- /* calculate our temp value */
- /* This saves recalculating this value when the k guess is wrong, which
- * is reasonably frequent. */
- /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */
- /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */
- if (hasModulus) {
- CHECK_MPI_OK( mp_add_d(n, 1, &tmp) );
- } else {
- CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) );
- CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r));
- if (mp_cmp_z(&r) != 0) {
- /* p-1 doesn't divide kphi, some parameter wasn't correct */
- err=MP_RANGE;
- goto cleanup;
- }
- mp_zero(q);
- /* kphi is now k*(q-1) */
- }
-
- /* rest of the for loop */
- for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k);
- err = mp_sub_d(&k, 1, &k)) {
- /* looking for k as a factor of kphi */
- CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r));
- if (mp_cmp_z(&r) != 0) {
- /* not a factor, try the next one */
- continue;
- }
- /* we have a possible phi, see if it works */
- if (!hasModulus) {
- if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) {
- /* phi is not the right size */
- continue;
- }
- /* phi should be divisible by 2, since
- * q is odd and phi=(q-1). */
- if (mpp_divis_d(&phi,2) == MP_NO) {
- /* phi is not divisible by 4 */
- continue;
- }
- /* we now have a candidate for the second prime */
- CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp));
-
- /* check to make sure it is prime */
- err = rsa_is_prime(&tmp);
- if (err != MP_OKAY) {
- if (err == MP_NO) {
- /* No, then we still have the wrong phi */
- err = MP_OKAY;
- continue;
- }
- goto cleanup;
- }
- /*
- * It is possible that we have the wrong phi if
- * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors).
- * since our q_quess is prime, however. We have found a valid
- * rsa key because:
- * q is the correct order of magnitude.
- * phi = (p-1)(q-1) where p and q are both primes.
- * e*d mod phi = 1.
- * There is no way to know from the info given if this is the
- * original key. We never want to return the wrong key because if
- * two moduli with the same factor is known, then euclid's gcd
- * algorithm can be used to find that factor. Even though the
- * caller didn't pass the original modulus, it doesn't mean the
- * modulus wasn't known or isn't available somewhere. So to be safe
- * if we can't be sure we have the right q, we don't return any.
- *
- * So to make sure we continue looking for other valid q's. If none
- * are found, then we can safely return this one, otherwise we just
- * fail */
- if (mp_cmp_z(q) != 0) {
- /* this is the second valid q, don't return either,
- * just fail */
- err = MP_RANGE;
- break;
- }
- /* we only have one q so far, save it and if no others are found,
- * it's safe to return it */
- CHECK_MPI_OK(mp_copy(&tmp, q));
- continue;
- }
- /* test our tentative phi */
- /* phi should be the correct order */
- if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) {
- /* phi is not the right size */
- continue;
- }
- /* phi should be divisible by 4, since
- * p and q are odd and phi=(p-1)(q-1). */
- if (mpp_divis_d(&phi,4) == MP_NO) {
- /* phi is not divisible by 4 */
- continue;
- }
- /* n was given, calculate s/2=(p+q)/2 */
- CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) );
- CHECK_MPI_OK( mp_div_2(&s, &s) );
-
- /* calculate sqrt(s/2*s/2-n) */
- CHECK_MPI_OK(mp_sqr(&s,&sqrt));
- CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */
- CHECK_MPI_OK(mp_sqrt(&r,&sqrt));
- /* make sure it's a perfect square */
- /* r is our original value we took the square root of */
- /* q is the square of our tentative square root. They should be equal*/
- CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */
- if (mp_cmp(&r,q) != 0) {
- /* sigh according to the doc, mp_sqrt could return sqrt-1 */
- CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt));
- CHECK_MPI_OK(mp_sqr(&sqrt,q));
- if (mp_cmp(&r,q) != 0) {
- /* s*s-n not a perfect square, this phi isn't valid, find * another.*/
- continue;
- }
- }
-
- /* NOTE: In this case we know we have the one and only answer.
- * "Why?", you ask. Because:
- * 1) n is a composite of two large primes (or it wasn't a
- * valid RSA modulus).
- * 2) If we know any number such that x^2-n is a perfect square
- * and x is not (n+1)/2, then we can calculate 2 non-trivial
- * factors of n.
- * 3) Since we know that n has only 2 non-trivial prime factors,
- * we know the two factors we have are the only possible factors.
- */
-
- /* Now we are home free to calculate p and q */
- /* p = s/2 + sqrt, q= s/2 - sqrt */
- CHECK_MPI_OK(mp_add(&s,&sqrt,p));
- CHECK_MPI_OK(mp_sub(&s,&sqrt,q));
- break;
- }
- if ((unsigned)mpl_significant_bits(&k) < order_k) {
- if (hasModulus || (mp_cmp_z(q) == 0)) {
- /* If we get here, something was wrong with the parameters we
- * were given */
- err = MP_RANGE;
- }
- }
-cleanup:
- mp_clear(&kphi);
- mp_clear(&phi);
- mp_clear(&s);
- mp_clear(&k);
- mp_clear(&r);
- mp_clear(&tmp);
- mp_clear(&sqrt);
- return err;
-}
-
-/*
- * take a private key with only a few elements and fill out the missing pieces.
- *
- * All the entries will be overwritten with data allocated out of the arena
- * If no arena is supplied, one will be created.
- *
- * The following fields must be supplied in order for this function
- * to succeed:
- * one of either publicExponent or privateExponent
- * two more of the following 5 parameters.
- * modulus (n)
- * prime1 (p)
- * prime2 (q)
- * publicExponent (e)
- * privateExponent (d)
- *
- * NOTE: if only the publicExponent, privateExponent, and one prime is given,
- * then there may be more than one RSA key that matches that combination.
- *
- * All parameters will be replaced in the key structure with new parameters
- * Allocated out of the arena. There is no attempt to free the old structures.
- * Prime1 will always be greater than prime2 (even if the caller supplies the
- * smaller prime as prime1 or the larger prime as prime2). The parameters are
- * not overwritten on failure.
- *
- * How it works:
- * We can generate all the parameters from:
- * one of the exponents, plus the two primes. (rsa_build_key_from_primes) *
- * If we are given one of the exponents and both primes, we are done.
- * If we are given one of the exponents, the modulus and one prime, we
- * caclulate the second prime by dividing the modulus by the given
- * prime, giving us and exponent and 2 primes.
- * If we are given 2 exponents and either the modulus or one of the primes
- * we calculate k*phi = d*e-1, where k is an integer less than d which
- * divides d*e-1. We find factor k so we can isolate phi.
- * phi = (p-1)(q-1)
- * If one of the primes are given, we can use phi to find the other prime
- * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an
- * exponent. (NOTE: if more then one prime meets this condition, the
- * operation will fail. See comments elsewhere in this file about this).
- * If the modulus is given, then we can calculate the sum of the primes
- * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n ->
- * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq,
- * we can solve our 2 equations and 2 unknowns as follows: q=s-p ->
- * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for
- * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have
- * 2 primes and an exponent.
- *
- */
-SECStatus
-RSA_PopulatePrivateKey(RSAPrivateKey *key)
-{
- PLArenaPool *arena = NULL;
- PRBool needPublicExponent = PR_TRUE;
- PRBool needPrivateExponent = PR_TRUE;
- PRBool hasModulus = PR_FALSE;
- unsigned int keySizeInBits = 0;
- int prime_count = 0;
- /* standard RSA nominclature */
- mp_int p, q, e, d, n;
- /* remainder */
- mp_int r;
- mp_err err = 0;
- SECStatus rv = SECFailure;
-
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&d) = 0;
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&r) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&d) );
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&r) );
-
- /* if the key didn't already have an arena, create one. */
- if (key->arena == NULL) {
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
- if (!arena) {
- goto cleanup;
- }
- key->arena = arena;
- }
-
- /* load up the known exponents */
- if (key->publicExponent.data) {
- SECITEM_TO_MPINT(key->publicExponent, &e);
- needPublicExponent = PR_FALSE;
- }
- if (key->privateExponent.data) {
- SECITEM_TO_MPINT(key->privateExponent, &d);
- needPrivateExponent = PR_FALSE;
- }
- if (needPrivateExponent && needPublicExponent) {
- /* Not enough information, we need at least one exponent */
- err = MP_BADARG;
- goto cleanup;
- }
-
- /* load up the known primes. If only one prime is given, it will be
- * assigned 'p'. Once we have both primes, well make sure p is the larger.
- * The value prime_count tells us howe many we have acquired.
- */
- if (key->prime1.data) {
- int primeLen = key->prime1.len;
- if (key->prime1.data[0] == 0) {
- primeLen--;
- }
- keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE;
- SECITEM_TO_MPINT(key->prime1, &p);
- prime_count++;
- }
- if (key->prime2.data) {
- int primeLen = key->prime2.len;
- if (key->prime2.data[0] == 0) {
- primeLen--;
- }
- keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE;
- SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p);
- prime_count++;
- }
- /* load up the modulus */
- if (key->modulus.data) {
- int modLen = key->modulus.len;
- if (key->modulus.data[0] == 0) {
- modLen--;
- }
- keySizeInBits = modLen * PR_BITS_PER_BYTE;
- SECITEM_TO_MPINT(key->modulus, &n);
- hasModulus = PR_TRUE;
- }
- /* if we have the modulus and one prime, calculate the second. */
- if ((prime_count == 1) && (hasModulus)) {
- if (mp_div(&n,&p,&q,&r) != MP_OKAY || mp_cmp_z(&r) != 0) {
- /* p is not a factor or n, fail */
- err = MP_BADARG;
- goto cleanup;
- }
- prime_count++;
- }
-
- /* If we didn't have enough primes try to calculate the primes from
- * the exponents */
- if (prime_count < 2) {
- /* if we don't have at least 2 primes at this point, then we need both
- * exponents and one prime or a modulus*/
- if (!needPublicExponent && !needPrivateExponent &&
- ((prime_count > 0) || hasModulus)) {
- CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q,
- &n,hasModulus,keySizeInBits));
- } else {
- /* not enough given parameters to get both primes */
- err = MP_BADARG;
- goto cleanup;
- }
- }
-
- /* Assure p > q */
- /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any
- * implementation optimization that requires p > q. We can remove
- * this code in the future.
- */
- if (mp_cmp(&p, &q) < 0)
- mp_exch(&p, &q);
-
- /* we now have our 2 primes and at least one exponent, we can fill
- * in the key */
- rv = rsa_build_from_primes(&p, &q,
- &e, needPublicExponent,
- &d, needPrivateExponent,
- key, keySizeInBits);
-cleanup:
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&e);
- mp_clear(&d);
- mp_clear(&n);
- mp_clear(&r);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- if (rv && arena) {
- PORT_FreeArena(arena, PR_TRUE);
- key->arena = NULL;
- }
- return rv;
-}
-
-static unsigned int
-rsa_modulusLen(SECItem *modulus)
-{
- unsigned char byteZero = modulus->data[0];
- unsigned int modLen = modulus->len - !byteZero;
- return modLen;
-}
-
-/*
-** Perform a raw public-key operation
-** Length of input and output buffers are equal to key's modulus len.
-*/
-SECStatus
-RSA_PublicKeyOp(RSAPublicKey *key,
- unsigned char *output,
- const unsigned char *input)
-{
- unsigned int modLen, expLen, offset;
- mp_int n, e, m, c;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- if (!key || !output || !input) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&c) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&m) );
- CHECK_MPI_OK( mp_init(&c) );
- modLen = rsa_modulusLen(&key->modulus);
- expLen = rsa_modulusLen(&key->publicExponent);
- /* 1. Obtain public key (n, e) */
- if (BAD_RSA_KEY_SIZE(modLen, expLen)) {
- PORT_SetError(SEC_ERROR_INVALID_KEY);
- rv = SECFailure;
- goto cleanup;
- }
- SECITEM_TO_MPINT(key->modulus, &n);
- SECITEM_TO_MPINT(key->publicExponent, &e);
- if (e.used > n.used) {
- /* exponent should not be greater than modulus */
- PORT_SetError(SEC_ERROR_INVALID_KEY);
- rv = SECFailure;
- goto cleanup;
- }
- /* 2. check input out of range (needs to be in range [0..n-1]) */
- offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
- if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
- PORT_SetError(SEC_ERROR_INPUT_LEN);
- rv = SECFailure;
- goto cleanup;
- }
- /* 2 bis. Represent message as integer in range [0..n-1] */
- CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
- /* 3. Compute c = m**e mod n */
-#ifdef USE_MPI_EXPT_D
- /* XXX see which is faster */
- if (MP_USED(&e) == 1) {
- CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
- } else
-#endif
- CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
- /* 4. result c is ciphertext */
- err = mp_to_fixlen_octets(&c, output, modLen);
- if (err >= 0) err = MP_OKAY;
-cleanup:
- mp_clear(&n);
- mp_clear(&e);
- mp_clear(&m);
- mp_clear(&c);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-/*
-** RSA Private key operation (no CRT).
-*/
-static SECStatus
-rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
- unsigned int modLen)
-{
- mp_int d;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&d) = 0;
- CHECK_MPI_OK( mp_init(&d) );
- SECITEM_TO_MPINT(key->privateExponent, &d);
- /* 1. m = c**d mod n */
- CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
-cleanup:
- mp_clear(&d);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-/*
-** RSA Private key operation using CRT.
-*/
-static SECStatus
-rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c)
-{
- mp_int p, q, d_p, d_q, qInv;
- mp_int m1, m2, h, ctmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&d_p) = 0;
- MP_DIGITS(&d_q) = 0;
- MP_DIGITS(&qInv) = 0;
- MP_DIGITS(&m1) = 0;
- MP_DIGITS(&m2) = 0;
- MP_DIGITS(&h) = 0;
- MP_DIGITS(&ctmp) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&d_p) );
- CHECK_MPI_OK( mp_init(&d_q) );
- CHECK_MPI_OK( mp_init(&qInv) );
- CHECK_MPI_OK( mp_init(&m1) );
- CHECK_MPI_OK( mp_init(&m2) );
- CHECK_MPI_OK( mp_init(&h) );
- CHECK_MPI_OK( mp_init(&ctmp) );
- /* copy private key parameters into mp integers */
- SECITEM_TO_MPINT(key->prime1, &p); /* p */
- SECITEM_TO_MPINT(key->prime2, &q); /* q */
- SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */
- SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */
- SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
- /* 1. m1 = c**d_p mod p */
- CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
- /* 2. m2 = c**d_q mod q */
- CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
- /* 3. h = (m1 - m2) * qInv mod p */
- CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
- CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) );
- /* 4. m = m2 + h * q */
- CHECK_MPI_OK( mp_mul(&h, &q, m) );
- CHECK_MPI_OK( mp_add(m, &m2, m) );
-cleanup:
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&d_p);
- mp_clear(&d_q);
- mp_clear(&qInv);
- mp_clear(&m1);
- mp_clear(&m2);
- mp_clear(&h);
- mp_clear(&ctmp);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-/*
-** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in:
-** "On the Importance of Eliminating Errors in Cryptographic Computations",
-** http://theory.stanford.edu/~dabo/papers/faults.ps.gz
-**
-** As a defense against the attack, carry out the private key operation,
-** followed up with a public key operation to invert the result.
-** Verify that result against the input.
-*/
-static SECStatus
-rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c)
-{
- mp_int n, e, v;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&v) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&v) );
- CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) );
- SECITEM_TO_MPINT(key->modulus, &n);
- SECITEM_TO_MPINT(key->publicExponent, &e);
- /* Perform a public key operation v = m ** e mod n */
- CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) );
- if (mp_cmp(&v, c) != 0) {
- rv = SECFailure;
- }
-cleanup:
- mp_clear(&n);
- mp_clear(&e);
- mp_clear(&v);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-static PRCallOnceType coBPInit = { 0, 0, 0 };
-static PRStatus
-init_blinding_params_list(void)
-{
- blindingParamsList.lock = PZ_NewLock(nssILockOther);
- if (!blindingParamsList.lock) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return PR_FAILURE;
- }
- blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock );
- if (!blindingParamsList.cVar) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return PR_FAILURE;
- }
- blindingParamsList.waitCount = 0;
- PR_INIT_CLIST(&blindingParamsList.head);
- return PR_SUCCESS;
-}
-
-static SECStatus
-generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n,
- unsigned int modLen)
-{
- SECStatus rv = SECSuccess;
- mp_int e, k;
- mp_err err = MP_OKAY;
- unsigned char *kb = NULL;
-
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&k) = 0;
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&k) );
- SECITEM_TO_MPINT(key->publicExponent, &e);
- /* generate random k < n */
- kb = PORT_Alloc(modLen);
- if (!kb) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
- CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
- /* k < n */
- CHECK_MPI_OK( mp_mod(&k, n, &k) );
- /* f = k**e mod n */
- CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) );
- /* g = k**-1 mod n */
- CHECK_MPI_OK( mp_invmod(&k, n, g) );
-cleanup:
- if (kb)
- PORT_ZFree(kb, modLen);
- mp_clear(&k);
- mp_clear(&e);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-static SECStatus
-init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key,
- mp_int *n, unsigned int modLen)
-{
- blindingParams * bp = rsabp->array;
- int i = 0;
-
- /* Initialize the list pointer for the element */
- PR_INIT_CLIST(&rsabp->link);
- for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) {
- bp->next = bp + 1;
- MP_DIGITS(&bp->f) = 0;
- MP_DIGITS(&bp->g) = 0;
- bp->counter = 0;
- }
- /* The last bp->next value was initialized with out
- * of rsabp->array pointer and must be set to NULL
- */
- rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL;
-
- bp = rsabp->array;
- rsabp->bp = NULL;
- rsabp->free = bp;
-
- /* List elements are keyed using the modulus */
- return SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
-}
-
-static SECStatus
-get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
- mp_int *f, mp_int *g)
-{
- RSABlindingParams *rsabp = NULL;
- blindingParams *bpUnlinked = NULL;
- blindingParams *bp;
- PRCList *el;
- SECStatus rv = SECSuccess;
- mp_err err = MP_OKAY;
- int cmp = -1;
- PRBool holdingLock = PR_FALSE;
-
- do {
- if (blindingParamsList.lock == NULL) {
- PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
- return SECFailure;
- }
- /* Acquire the list lock */
- PZ_Lock(blindingParamsList.lock);
- holdingLock = PR_TRUE;
-
- /* Walk the list looking for the private key */
- for (el = PR_NEXT_LINK(&blindingParamsList.head);
- el != &blindingParamsList.head;
- el = PR_NEXT_LINK(el)) {
- rsabp = (RSABlindingParams *)el;
- cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
- if (cmp >= 0) {
- /* The key is found or not in the list. */
- break;
- }
- }
-
- if (cmp) {
- /* At this point, the key is not in the list. el should point to
- ** the list element before which this key should be inserted.
- */
- rsabp = PORT_ZNew(RSABlindingParams);
- if (!rsabp) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- goto cleanup;
- }
-
- rv = init_blinding_params(rsabp, key, n, modLen);
- if (rv != SECSuccess) {
- PORT_ZFree(rsabp, sizeof(RSABlindingParams));
- goto cleanup;
- }
-
- /* Insert the new element into the list
- ** If inserting in the middle of the list, el points to the link
- ** to insert before. Otherwise, the link needs to be appended to
- ** the end of the list, which is the same as inserting before the
- ** head (since el would have looped back to the head).
- */
- PR_INSERT_BEFORE(&rsabp->link, el);
- }
-
- /* We've found (or created) the RSAblindingParams struct for this key.
- * Now, search its list of ready blinding params for a usable one.
- */
- while (0 != (bp = rsabp->bp)) {
- if (--(bp->counter) > 0) {
- /* Found a match and there are still remaining uses left */
- /* Return the parameters */
- CHECK_MPI_OK( mp_copy(&bp->f, f) );
- CHECK_MPI_OK( mp_copy(&bp->g, g) );
-
- PZ_Unlock(blindingParamsList.lock);
- return SECSuccess;
- }
- /* exhausted this one, give its values to caller, and
- * then retire it.
- */
- mp_exch(&bp->f, f);
- mp_exch(&bp->g, g);
- mp_clear( &bp->f );
- mp_clear( &bp->g );
- bp->counter = 0;
- /* Move to free list */
- rsabp->bp = bp->next;
- bp->next = rsabp->free;
- rsabp->free = bp;
- /* In case there're threads waiting for new blinding
- * value - notify 1 thread the value is ready
- */
- if (blindingParamsList.waitCount > 0) {
- PR_NotifyCondVar( blindingParamsList.cVar );
- blindingParamsList.waitCount--;
- }
- PZ_Unlock(blindingParamsList.lock);
- return SECSuccess;
- }
- /* We did not find a usable set of blinding params. Can we make one? */
- /* Find a free bp struct. */
- if ((bp = rsabp->free) != NULL) {
- /* unlink this bp */
- rsabp->free = bp->next;
- bp->next = NULL;
- bpUnlinked = bp; /* In case we fail */
-
- PZ_Unlock(blindingParamsList.lock);
- holdingLock = PR_FALSE;
- /* generate blinding parameter values for the current thread */
- CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) );
-
- /* put the blinding parameter values into cache */
- CHECK_MPI_OK( mp_init( &bp->f) );
- CHECK_MPI_OK( mp_init( &bp->g) );
- CHECK_MPI_OK( mp_copy( f, &bp->f) );
- CHECK_MPI_OK( mp_copy( g, &bp->g) );
-
- /* Put this at head of queue of usable params. */
- PZ_Lock(blindingParamsList.lock);
- holdingLock = PR_TRUE;
- /* initialize RSABlindingParamsStr */
- bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
- bp->next = rsabp->bp;
- rsabp->bp = bp;
- bpUnlinked = NULL;
- /* In case there're threads waiting for new blinding value
- * just notify them the value is ready
- */
- if (blindingParamsList.waitCount > 0) {
- PR_NotifyAllCondVar( blindingParamsList.cVar );
- blindingParamsList.waitCount = 0;
- }
- PZ_Unlock(blindingParamsList.lock);
- return SECSuccess;
- }
- /* Here, there are no usable blinding parameters available,
- * and no free bp blocks, presumably because they're all
- * actively having parameters generated for them.
- * So, we need to wait here and not eat up CPU until some
- * change happens.
- */
- blindingParamsList.waitCount++;
- PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT );
- PZ_Unlock(blindingParamsList.lock);
- holdingLock = PR_FALSE;
- } while (1);
-
-cleanup:
- /* It is possible to reach this after the lock is already released. */
- if (bpUnlinked) {
- if (!holdingLock) {
- PZ_Lock(blindingParamsList.lock);
- holdingLock = PR_TRUE;
- }
- bp = bpUnlinked;
- mp_clear( &bp->f );
- mp_clear( &bp->g );
- bp->counter = 0;
- /* Must put the unlinked bp back on the free list */
- bp->next = rsabp->free;
- rsabp->free = bp;
- }
- if (holdingLock) {
- PZ_Unlock(blindingParamsList.lock);
- holdingLock = PR_FALSE;
- }
- if (err) {
- MP_TO_SEC_ERROR(err);
- }
- return SECFailure;
-}
-
-/*
-** Perform a raw private-key operation
-** Length of input and output buffers are equal to key's modulus len.
-*/
-static SECStatus
-rsa_PrivateKeyOp(RSAPrivateKey *key,
- unsigned char *output,
- const unsigned char *input,
- PRBool check)
-{
- unsigned int modLen;
- unsigned int offset;
- SECStatus rv = SECSuccess;
- mp_err err;
- mp_int n, c, m;
- mp_int f, g;
- if (!key || !output || !input) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- /* check input out of range (needs to be in range [0..n-1]) */
- modLen = rsa_modulusLen(&key->modulus);
- offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
- if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&c) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&f) = 0;
- MP_DIGITS(&g) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&c) );
- CHECK_MPI_OK( mp_init(&m) );
- CHECK_MPI_OK( mp_init(&f) );
- CHECK_MPI_OK( mp_init(&g) );
- SECITEM_TO_MPINT(key->modulus, &n);
- OCTETS_TO_MPINT(input, &c, modLen);
- /* If blinding, compute pre-image of ciphertext by multiplying by
- ** blinding factor
- */
- if (nssRSAUseBlinding) {
- CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
- /* c' = c*f mod n */
- CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
- }
- /* Do the private key operation m = c**d mod n */
- if ( key->prime1.len == 0 ||
- key->prime2.len == 0 ||
- key->exponent1.len == 0 ||
- key->exponent2.len == 0 ||
- key->coefficient.len == 0) {
- CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) );
- } else if (check) {
- CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) );
- } else {
- CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) );
- }
- /* If blinding, compute post-image of plaintext by multiplying by
- ** blinding factor
- */
- if (nssRSAUseBlinding) {
- /* m = m'*g mod n */
- CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
- }
- err = mp_to_fixlen_octets(&m, output, modLen);
- if (err >= 0) err = MP_OKAY;
-cleanup:
- mp_clear(&n);
- mp_clear(&c);
- mp_clear(&m);
- mp_clear(&f);
- mp_clear(&g);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-SECStatus
-RSA_PrivateKeyOp(RSAPrivateKey *key,
- unsigned char *output,
- const unsigned char *input)
-{
- return rsa_PrivateKeyOp(key, output, input, PR_FALSE);
-}
-
-SECStatus
-RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key,
- unsigned char *output,
- const unsigned char *input)
-{
- return rsa_PrivateKeyOp(key, output, input, PR_TRUE);
-}
-
-SECStatus
-RSA_PrivateKeyCheck(const RSAPrivateKey *key)
-{
- mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&psub1)= 0;
- MP_DIGITS(&qsub1)= 0;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&d) = 0;
- MP_DIGITS(&d_p) = 0;
- MP_DIGITS(&d_q) = 0;
- MP_DIGITS(&qInv) = 0;
- MP_DIGITS(&res) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&psub1));
- CHECK_MPI_OK( mp_init(&qsub1));
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&d) );
- CHECK_MPI_OK( mp_init(&d_p) );
- CHECK_MPI_OK( mp_init(&d_q) );
- CHECK_MPI_OK( mp_init(&qInv) );
- CHECK_MPI_OK( mp_init(&res) );
-
- if (!key->modulus.data || !key->prime1.data || !key->prime2.data ||
- !key->publicExponent.data || !key->privateExponent.data ||
- !key->exponent1.data || !key->exponent2.data ||
- !key->coefficient.data) {
- /* call RSA_PopulatePrivateKey first, if the application wishes to
- * recover these parameters */
- err = MP_BADARG;
- goto cleanup;
- }
-
- SECITEM_TO_MPINT(key->modulus, &n);
- SECITEM_TO_MPINT(key->prime1, &p);
- SECITEM_TO_MPINT(key->prime2, &q);
- SECITEM_TO_MPINT(key->publicExponent, &e);
- SECITEM_TO_MPINT(key->privateExponent, &d);
- SECITEM_TO_MPINT(key->exponent1, &d_p);
- SECITEM_TO_MPINT(key->exponent2, &d_q);
- SECITEM_TO_MPINT(key->coefficient, &qInv);
- /* p and q must be distinct. */
- if (mp_cmp(&p, &q) == 0) {
- rv = SECFailure;
- goto cleanup;
- }
-#define VERIFY_MPI_EQUAL(m1, m2) \
- if (mp_cmp(m1, m2) != 0) { \
- rv = SECFailure; \
- goto cleanup; \
- }
-#define VERIFY_MPI_EQUAL_1(m) \
- if (mp_cmp_d(m, 1) != 0) { \
- rv = SECFailure; \
- goto cleanup; \
- }
- /* n == p * q */
- CHECK_MPI_OK( mp_mul(&p, &q, &res) );
- VERIFY_MPI_EQUAL(&res, &n);
- /* gcd(e, p-1) == 1 */
- CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
- CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) );
- VERIFY_MPI_EQUAL_1(&res);
- /* gcd(e, q-1) == 1 */
- CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) );
- CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) );
- VERIFY_MPI_EQUAL_1(&res);
- /* d*e == 1 mod p-1 */
- CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) );
- VERIFY_MPI_EQUAL_1(&res);
- /* d*e == 1 mod q-1 */
- CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) );
- VERIFY_MPI_EQUAL_1(&res);
- /* d_p == d mod p-1 */
- CHECK_MPI_OK( mp_mod(&d, &psub1, &res) );
- VERIFY_MPI_EQUAL(&res, &d_p);
- /* d_q == d mod q-1 */
- CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) );
- VERIFY_MPI_EQUAL(&res, &d_q);
- /* q * q**-1 == 1 mod p */
- CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) );
- VERIFY_MPI_EQUAL_1(&res);
-
-cleanup:
- mp_clear(&n);
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&psub1);
- mp_clear(&qsub1);
- mp_clear(&e);
- mp_clear(&d);
- mp_clear(&d_p);
- mp_clear(&d_q);
- mp_clear(&qInv);
- mp_clear(&res);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
-}
-
-static SECStatus RSA_Init(void)
-{
- if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
- PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
- return SECFailure;
- }
- return SECSuccess;
-}
-
-SECStatus BL_Init(void)
-{
- return RSA_Init();
-}
-
-/* cleanup at shutdown */
-void RSA_Cleanup(void)
-{
- blindingParams * bp = NULL;
- if (!coBPInit.initialized)
- return;
-
- while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) {
- RSABlindingParams *rsabp =
- (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head);
- PR_REMOVE_LINK(&rsabp->link);
- /* clear parameters cache */
- while (rsabp->bp != NULL) {
- bp = rsabp->bp;
- rsabp->bp = rsabp->bp->next;
- mp_clear( &bp->f );
- mp_clear( &bp->g );
- }
- SECITEM_FreeItem(&rsabp->modulus,PR_FALSE);
- PORT_Free(rsabp);
- }
-
- if (blindingParamsList.cVar) {
- PR_DestroyCondVar(blindingParamsList.cVar);
- blindingParamsList.cVar = NULL;
- }
-
- if (blindingParamsList.lock) {
- SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock));
- blindingParamsList.lock = NULL;
- }
-
- coBPInit.initialized = 0;
- coBPInit.inProgress = 0;
- coBPInit.status = 0;
-}
-
-/*
- * need a central place for this function to free up all the memory that
- * free_bl may have allocated along the way. Currently only RSA does this,
- * so I've put it here for now.
- */
-void BL_Cleanup(void)
-{
- RSA_Cleanup();
-}
-
-#ifdef NSS_STATIC
-void
-BL_Unload(void)
-{
-}
-#endif
-
-PRBool bl_parentForkedAfterC_Initialize;
-
-/*
- * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms.
- */
-void BL_SetForkState(PRBool forked)
-{
- bl_parentForkedAfterC_Initialize = forked;
-}
-
« no previous file with comments | « nss/lib/freebl/rijndael32.tab ('k') | nss/lib/freebl/rsapkcs.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698