Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(678)

Unified Diff: nss/lib/freebl/mpi/mp_gf2m.c

Issue 2078763002: Delete bundled copy of NSS and replace with README. (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/nss@master
Patch Set: Delete bundled copy of NSS and replace with README. Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « nss/lib/freebl/mpi/mp_gf2m.h ('k') | nss/lib/freebl/mpi/mp_gf2m-priv.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: nss/lib/freebl/mpi/mp_gf2m.c
diff --git a/nss/lib/freebl/mpi/mp_gf2m.c b/nss/lib/freebl/mpi/mp_gf2m.c
deleted file mode 100644
index e84f3a0440d1a46bce333e41f331c82b4ce7914c..0000000000000000000000000000000000000000
--- a/nss/lib/freebl/mpi/mp_gf2m.c
+++ /dev/null
@@ -1,579 +0,0 @@
-/* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
-
-#include "mp_gf2m.h"
-#include "mp_gf2m-priv.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-
-const mp_digit mp_gf2m_sqr_tb[16] =
-{
- 0, 1, 4, 5, 16, 17, 20, 21,
- 64, 65, 68, 69, 80, 81, 84, 85
-};
-
-/* Multiply two binary polynomials mp_digits a, b.
- * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
- * Output in two mp_digits rh, rl.
- */
-#if MP_DIGIT_BITS == 32
-void
-s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
-{
- register mp_digit h, l, s;
- mp_digit tab[8], top2b = a >> 30;
- register mp_digit a1, a2, a4;
-
- a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
-
- tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
- tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
-
- s = tab[b & 0x7]; l = s;
- s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
- s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
- s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
- s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
- s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
- s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
- s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
- s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
- s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
- s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
-
- /* compensate for the top two bits of a */
-
- if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
- if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
-
- *rh = h; *rl = l;
-}
-#else
-void
-s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
-{
- register mp_digit h, l, s;
- mp_digit tab[16], top3b = a >> 61;
- register mp_digit a1, a2, a4, a8;
-
- a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1;
- a4 = a2 << 1; a8 = a4 << 1;
- tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
- tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
- tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
- tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
-
- s = tab[b & 0xF]; l = s;
- s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
- s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
- s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
- s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
- s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
- s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
- s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
- s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
- s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
- s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
- s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
- s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
- s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
- s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
- s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
-
- /* compensate for the top three bits of a */
-
- if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
- if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
- if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
-
- *rh = h; *rl = l;
-}
-#endif
-
-/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
- * result is a binary polynomial in 4 mp_digits r[4].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void
-s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
- const mp_digit b0)
-{
- mp_digit m1, m0;
- /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
- s_bmul_1x1(r+3, r+2, a1, b1);
- s_bmul_1x1(r+1, r, a0, b0);
- s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
- /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
- r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
- r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
-}
-
-/* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0)
- * result is a binary polynomial in 6 mp_digits r[6].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void
-s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
- const mp_digit b2, const mp_digit b1, const mp_digit b0)
-{
- mp_digit zm[4];
-
- s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */
- s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */
- s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
-
- zm[3] ^= r[3];
- zm[2] ^= r[2];
- zm[1] ^= r[1] ^ r[5];
- zm[0] ^= r[0] ^ r[4];
-
- r[5] ^= zm[3];
- r[4] ^= zm[2];
- r[3] ^= zm[1];
- r[2] ^= zm[0];
-}
-
-/* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0)
- * result is a binary polynomial in 8 mp_digits r[8].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
- const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
- const mp_digit b0)
-{
- mp_digit zm[4];
-
- s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */
- s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */
- s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
-
- zm[3] ^= r[3] ^ r[7];
- zm[2] ^= r[2] ^ r[6];
- zm[1] ^= r[1] ^ r[5];
- zm[0] ^= r[0] ^ r[4];
-
- r[5] ^= zm[3];
- r[4] ^= zm[2];
- r[3] ^= zm[1];
- r[2] ^= zm[0];
-}
-
-/* Compute addition of two binary polynomials a and b,
- * store result in c; c could be a or b, a and b could be equal;
- * c is the bitwise XOR of a and b.
- */
-mp_err
-mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
-{
- mp_digit *pa, *pb, *pc;
- mp_size ix;
- mp_size used_pa, used_pb;
- mp_err res = MP_OKAY;
-
- /* Add all digits up to the precision of b. If b had more
- * precision than a initially, swap a, b first
- */
- if (MP_USED(a) >= MP_USED(b)) {
- pa = MP_DIGITS(a);
- pb = MP_DIGITS(b);
- used_pa = MP_USED(a);
- used_pb = MP_USED(b);
- } else {
- pa = MP_DIGITS(b);
- pb = MP_DIGITS(a);
- used_pa = MP_USED(b);
- used_pb = MP_USED(a);
- }
-
- /* Make sure c has enough precision for the output value */
- MP_CHECKOK( s_mp_pad(c, used_pa) );
-
- /* Do word-by-word xor */
- pc = MP_DIGITS(c);
- for (ix = 0; ix < used_pb; ix++) {
- (*pc++) = (*pa++) ^ (*pb++);
- }
-
- /* Finish the rest of digits until we're actually done */
- for (; ix < used_pa; ++ix) {
- *pc++ = *pa++;
- }
-
- MP_USED(c) = used_pa;
- MP_SIGN(c) = ZPOS;
- s_mp_clamp(c);
-
-CLEANUP:
- return res;
-}
-
-#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );
-
-/* Compute binary polynomial multiply d = a * b */
-static void
-s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
-{
- mp_digit a_i, a0b0, a1b1, carry = 0;
- while (a_len--) {
- a_i = *a++;
- s_bmul_1x1(&a1b1, &a0b0, a_i, b);
- *d++ = a0b0 ^ carry;
- carry = a1b1;
- }
- *d = carry;
-}
-
-/* Compute binary polynomial xor multiply accumulate d ^= a * b */
-static void
-s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
-{
- mp_digit a_i, a0b0, a1b1, carry = 0;
- while (a_len--) {
- a_i = *a++;
- s_bmul_1x1(&a1b1, &a0b0, a_i, b);
- *d++ ^= a0b0 ^ carry;
- carry = a1b1;
- }
- *d ^= carry;
-}
-
-/* Compute binary polynomial xor multiply c = a * b.
- * All parameters may be identical.
- */
-mp_err
-mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
-{
- mp_digit *pb, b_i;
- mp_int tmp;
- mp_size ib, a_used, b_used;
- mp_err res = MP_OKAY;
-
- MP_DIGITS(&tmp) = 0;
-
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
- if (a == c) {
- MP_CHECKOK( mp_init_copy(&tmp, a) );
- if (a == b)
- b = &tmp;
- a = &tmp;
- } else if (b == c) {
- MP_CHECKOK( mp_init_copy(&tmp, b) );
- b = &tmp;
- }
-
- if (MP_USED(a) < MP_USED(b)) {
- const mp_int *xch = b; /* switch a and b if b longer */
- b = a;
- a = xch;
- }
-
- MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
- MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );
-
- pb = MP_DIGITS(b);
- s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
-
- /* Outer loop: Digits of b */
- a_used = MP_USED(a);
- b_used = MP_USED(b);
- MP_USED(c) = a_used + b_used;
- for (ib = 1; ib < b_used; ib++) {
- b_i = *pb++;
-
- /* Inner product: Digits of a */
- if (b_i)
- s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
- else
- MP_DIGIT(c, ib + a_used) = b_i;
- }
-
- s_mp_clamp(c);
-
- SIGN(c) = ZPOS;
-
-CLEANUP:
- mp_clear(&tmp);
- return res;
-}
-
-
-/* Compute modular reduction of a and store result in r.
- * r could be a.
- * For modular arithmetic, the irreducible polynomial f(t) is represented
- * as an array of int[], where f(t) is of the form:
- * f(t) = t^p[0] + t^p[1] + ... + t^p[k]
- * where m = p[0] > p[1] > ... > p[k] = 0.
- */
-mp_err
-mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
-{
- int j, k;
- int n, dN, d0, d1;
- mp_digit zz, *z, tmp;
- mp_size used;
- mp_err res = MP_OKAY;
-
- /* The algorithm does the reduction in place in r,
- * if a != r, copy a into r first so reduction can be done in r
- */
- if (a != r) {
- MP_CHECKOK( mp_copy(a, r) );
- }
- z = MP_DIGITS(r);
-
- /* start reduction */
- /*dN = p[0] / MP_DIGIT_BITS; */
- dN = p[0] >> MP_DIGIT_BITS_LOG_2;
- used = MP_USED(r);
-
- for (j = used - 1; j > dN;) {
-
- zz = z[j];
- if (zz == 0) {
- j--; continue;
- }
- z[j] = 0;
-
- for (k = 1; p[k] > 0; k++) {
- /* reducing component t^p[k] */
- n = p[0] - p[k];
- /*d0 = n % MP_DIGIT_BITS; */
- d0 = n & MP_DIGIT_BITS_MASK;
- d1 = MP_DIGIT_BITS - d0;
- /*n /= MP_DIGIT_BITS; */
- n >>= MP_DIGIT_BITS_LOG_2;
- z[j-n] ^= (zz>>d0);
- if (d0)
- z[j-n-1] ^= (zz<<d1);
- }
-
- /* reducing component t^0 */
- n = dN;
- /*d0 = p[0] % MP_DIGIT_BITS;*/
- d0 = p[0] & MP_DIGIT_BITS_MASK;
- d1 = MP_DIGIT_BITS - d0;
- z[j-n] ^= (zz >> d0);
- if (d0)
- z[j-n-1] ^= (zz << d1);
-
- }
-
- /* final round of reduction */
- while (j == dN) {
-
- /* d0 = p[0] % MP_DIGIT_BITS; */
- d0 = p[0] & MP_DIGIT_BITS_MASK;
- zz = z[dN] >> d0;
- if (zz == 0) break;
- d1 = MP_DIGIT_BITS - d0;
-
- /* clear up the top d1 bits */
- if (d0) {
- z[dN] = (z[dN] << d1) >> d1;
- } else {
- z[dN] = 0;
- }
- *z ^= zz; /* reduction t^0 component */
-
- for (k = 1; p[k] > 0; k++) {
- /* reducing component t^p[k]*/
- /* n = p[k] / MP_DIGIT_BITS; */
- n = p[k] >> MP_DIGIT_BITS_LOG_2;
- /* d0 = p[k] % MP_DIGIT_BITS; */
- d0 = p[k] & MP_DIGIT_BITS_MASK;
- d1 = MP_DIGIT_BITS - d0;
- z[n] ^= (zz << d0);
- tmp = zz >> d1;
- if (d0 && tmp)
- z[n+1] ^= tmp;
- }
- }
-
- s_mp_clamp(r);
-CLEANUP:
- return res;
-}
-
-/* Compute the product of two polynomials a and b, reduce modulo p,
- * Store the result in r. r could be a or b; a could be b.
- */
-mp_err
-mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
-{
- mp_err res;
-
- if (a == b) return mp_bsqrmod(a, p, r);
- if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
- return res;
- return mp_bmod(r, p, r);
-}
-
-/* Compute binary polynomial squaring c = a*a mod p .
- * Parameter r and a can be identical.
- */
-
-mp_err
-mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
-{
- mp_digit *pa, *pr, a_i;
- mp_int tmp;
- mp_size ia, a_used;
- mp_err res;
-
- ARGCHK(a != NULL && r != NULL, MP_BADARG);
- MP_DIGITS(&tmp) = 0;
-
- if (a == r) {
- MP_CHECKOK( mp_init_copy(&tmp, a) );
- a = &tmp;
- }
-
- MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
- MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );
-
- pa = MP_DIGITS(a);
- pr = MP_DIGITS(r);
- a_used = MP_USED(a);
- MP_USED(r) = 2 * a_used;
-
- for (ia = 0; ia < a_used; ia++) {
- a_i = *pa++;
- *pr++ = gf2m_SQR0(a_i);
- *pr++ = gf2m_SQR1(a_i);
- }
-
- MP_CHECKOK( mp_bmod(r, p, r) );
- s_mp_clamp(r);
- SIGN(r) = ZPOS;
-
-CLEANUP:
- mp_clear(&tmp);
- return res;
-}
-
-/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
- * Store the result in r. r could be x or y, and x could equal y.
- * Uses algorithm Modular_Division_GF(2^m) from
- * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
- * the Great Divide".
- */
-int
-mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
- const unsigned int p[], mp_int *r)
-{
- mp_int aa, bb, uu;
- mp_int *a, *b, *u, *v;
- mp_err res = MP_OKAY;
-
- MP_DIGITS(&aa) = 0;
- MP_DIGITS(&bb) = 0;
- MP_DIGITS(&uu) = 0;
-
- MP_CHECKOK( mp_init_copy(&aa, x) );
- MP_CHECKOK( mp_init_copy(&uu, y) );
- MP_CHECKOK( mp_init_copy(&bb, pp) );
- MP_CHECKOK( s_mp_pad(r, USED(pp)) );
- MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
-
- a = &aa; b= &bb; u=&uu; v=r;
- /* reduce x and y mod p */
- MP_CHECKOK( mp_bmod(a, p, a) );
- MP_CHECKOK( mp_bmod(u, p, u) );
-
- while (!mp_isodd(a)) {
- s_mp_div2(a);
- if (mp_isodd(u)) {
- MP_CHECKOK( mp_badd(u, pp, u) );
- }
- s_mp_div2(u);
- }
-
- do {
- if (mp_cmp_mag(b, a) > 0) {
- MP_CHECKOK( mp_badd(b, a, b) );
- MP_CHECKOK( mp_badd(v, u, v) );
- do {
- s_mp_div2(b);
- if (mp_isodd(v)) {
- MP_CHECKOK( mp_badd(v, pp, v) );
- }
- s_mp_div2(v);
- } while (!mp_isodd(b));
- }
- else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
- break;
- else {
- MP_CHECKOK( mp_badd(a, b, a) );
- MP_CHECKOK( mp_badd(u, v, u) );
- do {
- s_mp_div2(a);
- if (mp_isodd(u)) {
- MP_CHECKOK( mp_badd(u, pp, u) );
- }
- s_mp_div2(u);
- } while (!mp_isodd(a));
- }
- } while (1);
-
- MP_CHECKOK( mp_copy(u, r) );
-
-CLEANUP:
- mp_clear(&aa);
- mp_clear(&bb);
- mp_clear(&uu);
- return res;
-
-}
-
-/* Convert the bit-string representation of a polynomial a into an array
- * of integers corresponding to the bits with non-zero coefficient.
- * Up to max elements of the array will be filled. Return value is total
- * number of coefficients that would be extracted if array was large enough.
- */
-int
-mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
-{
- int i, j, k;
- mp_digit top_bit, mask;
-
- top_bit = 1;
- top_bit <<= MP_DIGIT_BIT - 1;
-
- for (k = 0; k < max; k++) p[k] = 0;
- k = 0;
-
- for (i = MP_USED(a) - 1; i >= 0; i--) {
- mask = top_bit;
- for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
- if (MP_DIGITS(a)[i] & mask) {
- if (k < max) p[k] = MP_DIGIT_BIT * i + j;
- k++;
- }
- mask >>= 1;
- }
- }
-
- return k;
-}
-
-/* Convert the coefficient array representation of a polynomial to a
- * bit-string. The array must be terminated by 0.
- */
-mp_err
-mp_barr2poly(const unsigned int p[], mp_int *a)
-{
-
- mp_err res = MP_OKAY;
- int i;
-
- mp_zero(a);
- for (i = 0; p[i] > 0; i++) {
- MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
- }
- MP_CHECKOK( mpl_set_bit(a, 0, 1) );
-
-CLEANUP:
- return res;
-}
« no previous file with comments | « nss/lib/freebl/mpi/mp_gf2m.h ('k') | nss/lib/freebl/mpi/mp_gf2m-priv.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698