| Index: nss/lib/freebl/ecl/ecp_aff.c
|
| diff --git a/nss/lib/freebl/ecl/ecp_aff.c b/nss/lib/freebl/ecl/ecp_aff.c
|
| deleted file mode 100644
|
| index 41381073be055e301f9d2efd341b4e74655005d2..0000000000000000000000000000000000000000
|
| --- a/nss/lib/freebl/ecl/ecp_aff.c
|
| +++ /dev/null
|
| @@ -1,317 +0,0 @@
|
| -/* This Source Code Form is subject to the terms of the Mozilla Public
|
| - * License, v. 2.0. If a copy of the MPL was not distributed with this
|
| - * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
| -
|
| -#include "ecp.h"
|
| -#include "mplogic.h"
|
| -#include <stdlib.h>
|
| -
|
| -/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
|
| -mp_err
|
| -ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
|
| -{
|
| -
|
| - if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
|
| - return MP_YES;
|
| - } else {
|
| - return MP_NO;
|
| - }
|
| -
|
| -}
|
| -
|
| -/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
|
| -mp_err
|
| -ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
|
| -{
|
| - mp_zero(px);
|
| - mp_zero(py);
|
| - return MP_OKAY;
|
| -}
|
| -
|
| -/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
|
| - * Q, and R can all be identical. Uses affine coordinates. Assumes input
|
| - * is already field-encoded using field_enc, and returns output that is
|
| - * still field-encoded. */
|
| -mp_err
|
| -ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
|
| - const mp_int *qy, mp_int *rx, mp_int *ry,
|
| - const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int lambda, temp, tempx, tempy;
|
| -
|
| - MP_DIGITS(&lambda) = 0;
|
| - MP_DIGITS(&temp) = 0;
|
| - MP_DIGITS(&tempx) = 0;
|
| - MP_DIGITS(&tempy) = 0;
|
| - MP_CHECKOK(mp_init(&lambda));
|
| - MP_CHECKOK(mp_init(&temp));
|
| - MP_CHECKOK(mp_init(&tempx));
|
| - MP_CHECKOK(mp_init(&tempy));
|
| - /* if P = inf, then R = Q */
|
| - if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
|
| - MP_CHECKOK(mp_copy(qx, rx));
|
| - MP_CHECKOK(mp_copy(qy, ry));
|
| - res = MP_OKAY;
|
| - goto CLEANUP;
|
| - }
|
| - /* if Q = inf, then R = P */
|
| - if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
|
| - MP_CHECKOK(mp_copy(px, rx));
|
| - MP_CHECKOK(mp_copy(py, ry));
|
| - res = MP_OKAY;
|
| - goto CLEANUP;
|
| - }
|
| - /* if px != qx, then lambda = (py-qy) / (px-qx) */
|
| - if (mp_cmp(px, qx) != 0) {
|
| - MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_div(&tempy, &tempx, &lambda, group->meth));
|
| - } else {
|
| - /* if py != qy or qy = 0, then R = inf */
|
| - if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
|
| - mp_zero(rx);
|
| - mp_zero(ry);
|
| - res = MP_OKAY;
|
| - goto CLEANUP;
|
| - }
|
| - /* lambda = (3qx^2+a) / (2qy) */
|
| - MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
|
| - MP_CHECKOK(mp_set_int(&temp, 3));
|
| - if (group->meth->field_enc) {
|
| - MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
|
| - }
|
| - MP_CHECKOK(group->meth->
|
| - field_mul(&tempx, &temp, &tempx, group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_add(&tempx, &group->curvea, &tempx, group->meth));
|
| - MP_CHECKOK(mp_set_int(&temp, 2));
|
| - if (group->meth->field_enc) {
|
| - MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
|
| - }
|
| - MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_div(&tempx, &tempy, &lambda, group->meth));
|
| - }
|
| - /* rx = lambda^2 - px - qx */
|
| - MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
|
| - /* ry = (x1-x2) * lambda - y1 */
|
| - MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
|
| - MP_CHECKOK(group->meth->
|
| - field_mul(&tempy, &lambda, &tempy, group->meth));
|
| - MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
|
| - MP_CHECKOK(mp_copy(&tempx, rx));
|
| - MP_CHECKOK(mp_copy(&tempy, ry));
|
| -
|
| - CLEANUP:
|
| - mp_clear(&lambda);
|
| - mp_clear(&temp);
|
| - mp_clear(&tempx);
|
| - mp_clear(&tempy);
|
| - return res;
|
| -}
|
| -
|
| -/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
|
| - * identical. Uses affine coordinates. Assumes input is already
|
| - * field-encoded using field_enc, and returns output that is still
|
| - * field-encoded. */
|
| -mp_err
|
| -ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
|
| - const mp_int *qy, mp_int *rx, mp_int *ry,
|
| - const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int nqy;
|
| -
|
| - MP_DIGITS(&nqy) = 0;
|
| - MP_CHECKOK(mp_init(&nqy));
|
| - /* nqy = -qy */
|
| - MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
|
| - res = group->point_add(px, py, qx, &nqy, rx, ry, group);
|
| - CLEANUP:
|
| - mp_clear(&nqy);
|
| - return res;
|
| -}
|
| -
|
| -/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
|
| - * affine coordinates. Assumes input is already field-encoded using
|
| - * field_enc, and returns output that is still field-encoded. */
|
| -mp_err
|
| -ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
|
| - mp_int *ry, const ECGroup *group)
|
| -{
|
| - return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
|
| -}
|
| -
|
| -/* by default, this routine is unused and thus doesn't need to be compiled */
|
| -#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
|
| -/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
|
| - * R can be identical. Uses affine coordinates. Assumes input is already
|
| - * field-encoded using field_enc, and returns output that is still
|
| - * field-encoded. */
|
| -mp_err
|
| -ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
|
| - mp_int *rx, mp_int *ry, const ECGroup *group)
|
| -{
|
| - mp_err res = MP_OKAY;
|
| - mp_int k, k3, qx, qy, sx, sy;
|
| - int b1, b3, i, l;
|
| -
|
| - MP_DIGITS(&k) = 0;
|
| - MP_DIGITS(&k3) = 0;
|
| - MP_DIGITS(&qx) = 0;
|
| - MP_DIGITS(&qy) = 0;
|
| - MP_DIGITS(&sx) = 0;
|
| - MP_DIGITS(&sy) = 0;
|
| - MP_CHECKOK(mp_init(&k));
|
| - MP_CHECKOK(mp_init(&k3));
|
| - MP_CHECKOK(mp_init(&qx));
|
| - MP_CHECKOK(mp_init(&qy));
|
| - MP_CHECKOK(mp_init(&sx));
|
| - MP_CHECKOK(mp_init(&sy));
|
| -
|
| - /* if n = 0 then r = inf */
|
| - if (mp_cmp_z(n) == 0) {
|
| - mp_zero(rx);
|
| - mp_zero(ry);
|
| - res = MP_OKAY;
|
| - goto CLEANUP;
|
| - }
|
| - /* Q = P, k = n */
|
| - MP_CHECKOK(mp_copy(px, &qx));
|
| - MP_CHECKOK(mp_copy(py, &qy));
|
| - MP_CHECKOK(mp_copy(n, &k));
|
| - /* if n < 0 then Q = -Q, k = -k */
|
| - if (mp_cmp_z(n) < 0) {
|
| - MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
|
| - MP_CHECKOK(mp_neg(&k, &k));
|
| - }
|
| -#ifdef ECL_DEBUG /* basic double and add method */
|
| - l = mpl_significant_bits(&k) - 1;
|
| - MP_CHECKOK(mp_copy(&qx, &sx));
|
| - MP_CHECKOK(mp_copy(&qy, &sy));
|
| - for (i = l - 1; i >= 0; i--) {
|
| - /* S = 2S */
|
| - MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
|
| - /* if k_i = 1, then S = S + Q */
|
| - if (mpl_get_bit(&k, i) != 0) {
|
| - MP_CHECKOK(group->
|
| - point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
|
| - }
|
| - }
|
| -#else /* double and add/subtract method from
|
| - * standard */
|
| - /* k3 = 3 * k */
|
| - MP_CHECKOK(mp_set_int(&k3, 3));
|
| - MP_CHECKOK(mp_mul(&k, &k3, &k3));
|
| - /* S = Q */
|
| - MP_CHECKOK(mp_copy(&qx, &sx));
|
| - MP_CHECKOK(mp_copy(&qy, &sy));
|
| - /* l = index of high order bit in binary representation of 3*k */
|
| - l = mpl_significant_bits(&k3) - 1;
|
| - /* for i = l-1 downto 1 */
|
| - for (i = l - 1; i >= 1; i--) {
|
| - /* S = 2S */
|
| - MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
|
| - b3 = MP_GET_BIT(&k3, i);
|
| - b1 = MP_GET_BIT(&k, i);
|
| - /* if k3_i = 1 and k_i = 0, then S = S + Q */
|
| - if ((b3 == 1) && (b1 == 0)) {
|
| - MP_CHECKOK(group->
|
| - point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
|
| - /* if k3_i = 0 and k_i = 1, then S = S - Q */
|
| - } else if ((b3 == 0) && (b1 == 1)) {
|
| - MP_CHECKOK(group->
|
| - point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
|
| - }
|
| - }
|
| -#endif
|
| - /* output S */
|
| - MP_CHECKOK(mp_copy(&sx, rx));
|
| - MP_CHECKOK(mp_copy(&sy, ry));
|
| -
|
| - CLEANUP:
|
| - mp_clear(&k);
|
| - mp_clear(&k3);
|
| - mp_clear(&qx);
|
| - mp_clear(&qy);
|
| - mp_clear(&sx);
|
| - mp_clear(&sy);
|
| - return res;
|
| -}
|
| -#endif
|
| -
|
| -/* Validates a point on a GFp curve. */
|
| -mp_err
|
| -ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
|
| -{
|
| - mp_err res = MP_NO;
|
| - mp_int accl, accr, tmp, pxt, pyt;
|
| -
|
| - MP_DIGITS(&accl) = 0;
|
| - MP_DIGITS(&accr) = 0;
|
| - MP_DIGITS(&tmp) = 0;
|
| - MP_DIGITS(&pxt) = 0;
|
| - MP_DIGITS(&pyt) = 0;
|
| - MP_CHECKOK(mp_init(&accl));
|
| - MP_CHECKOK(mp_init(&accr));
|
| - MP_CHECKOK(mp_init(&tmp));
|
| - MP_CHECKOK(mp_init(&pxt));
|
| - MP_CHECKOK(mp_init(&pyt));
|
| -
|
| - /* 1: Verify that publicValue is not the point at infinity */
|
| - if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
|
| - res = MP_NO;
|
| - goto CLEANUP;
|
| - }
|
| - /* 2: Verify that the coordinates of publicValue are elements
|
| - * of the field.
|
| - */
|
| - if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
|
| - (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
|
| - res = MP_NO;
|
| - goto CLEANUP;
|
| - }
|
| - /* 3: Verify that publicValue is on the curve. */
|
| - if (group->meth->field_enc) {
|
| - group->meth->field_enc(px, &pxt, group->meth);
|
| - group->meth->field_enc(py, &pyt, group->meth);
|
| - } else {
|
| - MP_CHECKOK( mp_copy(px, &pxt) );
|
| - MP_CHECKOK( mp_copy(py, &pyt) );
|
| - }
|
| - /* left-hand side: y^2 */
|
| - MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
|
| - /* right-hand side: x^3 + a*x + b = (x^2 + a)*x + b by Horner's rule */
|
| - MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
|
| - MP_CHECKOK( group->meth->field_add(&tmp, &group->curvea, &tmp, group->meth) );
|
| - MP_CHECKOK( group->meth->field_mul(&tmp, &pxt, &accr, group->meth) );
|
| - MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
|
| - /* check LHS - RHS == 0 */
|
| - MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
|
| - if (mp_cmp_z(&accr) != 0) {
|
| - res = MP_NO;
|
| - goto CLEANUP;
|
| - }
|
| - /* 4: Verify that the order of the curve times the publicValue
|
| - * is the point at infinity.
|
| - */
|
| - MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
|
| - if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
|
| - res = MP_NO;
|
| - goto CLEANUP;
|
| - }
|
| -
|
| - res = MP_YES;
|
| -
|
| -CLEANUP:
|
| - mp_clear(&accl);
|
| - mp_clear(&accr);
|
| - mp_clear(&tmp);
|
| - mp_clear(&pxt);
|
| - mp_clear(&pyt);
|
| - return res;
|
| -}
|
|
|