| OLD | NEW |
| (Empty) |
| 1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
| 2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
| 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
| 4 | |
| 5 #ifdef FREEBL_NO_DEPEND | |
| 6 #include "stubs.h" | |
| 7 #endif | |
| 8 | |
| 9 #include <memory.h> | |
| 10 #include "blapi.h" | |
| 11 #include "sha_fast.h" | |
| 12 #include "prerror.h" | |
| 13 | |
| 14 #ifdef TRACING_SSL | |
| 15 #include "ssl.h" | |
| 16 #include "ssltrace.h" | |
| 17 #endif | |
| 18 | |
| 19 static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain); | |
| 20 | |
| 21 #define W u.w | |
| 22 #define B u.b | |
| 23 | |
| 24 | |
| 25 #define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z)) | |
| 26 #define SHA_F2(X,Y,Z) ((X)^(Y)^(Z)) | |
| 27 #define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y)))) | |
| 28 #define SHA_F4(X,Y,Z) ((X)^(Y)^(Z)) | |
| 29 | |
| 30 #define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1) | |
| 31 | |
| 32 /* | |
| 33 * SHA: initialize context | |
| 34 */ | |
| 35 void | |
| 36 SHA1_Begin(SHA1Context *ctx) | |
| 37 { | |
| 38 ctx->size = 0; | |
| 39 /* | |
| 40 * Initialize H with constants from FIPS180-1. | |
| 41 */ | |
| 42 ctx->H[0] = 0x67452301L; | |
| 43 ctx->H[1] = 0xefcdab89L; | |
| 44 ctx->H[2] = 0x98badcfeL; | |
| 45 ctx->H[3] = 0x10325476L; | |
| 46 ctx->H[4] = 0xc3d2e1f0L; | |
| 47 } | |
| 48 | |
| 49 /* Explanation of H array and index values: | |
| 50 * The context's H array is actually the concatenation of two arrays | |
| 51 * defined by SHA1, the H array of state variables (5 elements), | |
| 52 * and the W array of intermediate values, of which there are 16 elements. | |
| 53 * The W array starts at H[5], that is W[0] is H[5]. | |
| 54 * Although these values are defined as 32-bit values, we use 64-bit | |
| 55 * variables to hold them because the AMD64 stores 64 bit values in | |
| 56 * memory MUCH faster than it stores any smaller values. | |
| 57 * | |
| 58 * Rather than passing the context structure to shaCompress, we pass | |
| 59 * this combined array of H and W values. We do not pass the address | |
| 60 * of the first element of this array, but rather pass the address of an | |
| 61 * element in the middle of the array, element X. Presently X[0] is H[11]. | |
| 62 * So we pass the address of H[11] as the address of array X to shaCompress. | |
| 63 * Then shaCompress accesses the members of the array using positive AND | |
| 64 * negative indexes. | |
| 65 * | |
| 66 * Pictorially: (each element is 8 bytes) | |
| 67 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf | | |
| 68 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 | | |
| 69 * | |
| 70 * The byte offset from X[0] to any member of H and W is always | |
| 71 * representable in a signed 8-bit value, which will be encoded | |
| 72 * as a single byte offset in the X86-64 instruction set. | |
| 73 * If we didn't pass the address of H[11], and instead passed the | |
| 74 * address of H[0], the offsets to elements H[16] and above would be | |
| 75 * greater than 127, not representable in a signed 8-bit value, and the | |
| 76 * x86-64 instruction set would encode every such offset as a 32-bit | |
| 77 * signed number in each instruction that accessed element H[16] or | |
| 78 * higher. This results in much bigger and slower code. | |
| 79 */ | |
| 80 #if !defined(SHA_PUT_W_IN_STACK) | |
| 81 #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */ | |
| 82 #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */ | |
| 83 #else | |
| 84 #define H2X 0 | |
| 85 #endif | |
| 86 | |
| 87 /* | |
| 88 * SHA: Add data to context. | |
| 89 */ | |
| 90 void | |
| 91 SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len) | |
| 92 { | |
| 93 register unsigned int lenB; | |
| 94 register unsigned int togo; | |
| 95 | |
| 96 if (!len) | |
| 97 return; | |
| 98 | |
| 99 /* accumulate the byte count. */ | |
| 100 lenB = (unsigned int)(ctx->size) & 63U; | |
| 101 | |
| 102 ctx->size += len; | |
| 103 | |
| 104 /* | |
| 105 * Read the data into W and process blocks as they get full | |
| 106 */ | |
| 107 if (lenB > 0) { | |
| 108 togo = 64U - lenB; | |
| 109 if (len < togo) | |
| 110 togo = len; | |
| 111 memcpy(ctx->B + lenB, dataIn, togo); | |
| 112 len -= togo; | |
| 113 dataIn += togo; | |
| 114 lenB = (lenB + togo) & 63U; | |
| 115 if (!lenB) { | |
| 116 shaCompress(&ctx->H[H2X], ctx->W); | |
| 117 } | |
| 118 } | |
| 119 #if !defined(SHA_ALLOW_UNALIGNED_ACCESS) | |
| 120 if ((ptrdiff_t)dataIn % sizeof(PRUint32)) { | |
| 121 while (len >= 64U) { | |
| 122 memcpy(ctx->B, dataIn, 64); | |
| 123 len -= 64U; | |
| 124 shaCompress(&ctx->H[H2X], ctx->W); | |
| 125 dataIn += 64U; | |
| 126 } | |
| 127 } else | |
| 128 #endif | |
| 129 { | |
| 130 while (len >= 64U) { | |
| 131 len -= 64U; | |
| 132 shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn); | |
| 133 dataIn += 64U; | |
| 134 } | |
| 135 } | |
| 136 if (len) { | |
| 137 memcpy(ctx->B, dataIn, len); | |
| 138 } | |
| 139 } | |
| 140 | |
| 141 | |
| 142 /* | |
| 143 * SHA: Generate hash value from context | |
| 144 */ | |
| 145 void | |
| 146 SHA1_End(SHA1Context *ctx, unsigned char *hashout, | |
| 147 unsigned int *pDigestLen, unsigned int maxDigestLen) | |
| 148 { | |
| 149 register PRUint64 size; | |
| 150 register PRUint32 lenB; | |
| 151 | |
| 152 static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0, | |
| 153 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | |
| 154 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; | |
| 155 #define tmp lenB | |
| 156 | |
| 157 PORT_Assert (maxDigestLen >= SHA1_LENGTH); | |
| 158 | |
| 159 /* | |
| 160 * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits | |
| 161 */ | |
| 162 size = ctx->size; | |
| 163 | |
| 164 lenB = (PRUint32)size & 63; | |
| 165 SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1); | |
| 166 PORT_Assert(((PRUint32)ctx->size & 63) == 56); | |
| 167 /* Convert size from bytes to bits. */ | |
| 168 size <<= 3; | |
| 169 ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32)); | |
| 170 ctx->W[15] = SHA_HTONL((PRUint32)size); | |
| 171 shaCompress(&ctx->H[H2X], ctx->W); | |
| 172 | |
| 173 /* | |
| 174 * Output hash | |
| 175 */ | |
| 176 SHA_STORE_RESULT; | |
| 177 if (pDigestLen) { | |
| 178 *pDigestLen = SHA1_LENGTH; | |
| 179 } | |
| 180 #undef tmp | |
| 181 } | |
| 182 | |
| 183 void | |
| 184 SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout, | |
| 185 unsigned int *pDigestLen, unsigned int maxDigestLen) | |
| 186 { | |
| 187 #if defined(SHA_NEED_TMP_VARIABLE) | |
| 188 register PRUint32 tmp; | |
| 189 #endif | |
| 190 PORT_Assert (maxDigestLen >= SHA1_LENGTH); | |
| 191 | |
| 192 SHA_STORE_RESULT; | |
| 193 if (pDigestLen) | |
| 194 *pDigestLen = SHA1_LENGTH; | |
| 195 } | |
| 196 | |
| 197 #undef B | |
| 198 /* | |
| 199 * SHA: Compression function, unrolled. | |
| 200 * | |
| 201 * Some operations in shaCompress are done as 5 groups of 16 operations. | |
| 202 * Others are done as 4 groups of 20 operations. | |
| 203 * The code below shows that structure. | |
| 204 * | |
| 205 * The functions that compute the new values of the 5 state variables | |
| 206 * A-E are done in 4 groups of 20 operations (or you may also think | |
| 207 * of them as being done in 16 groups of 5 operations). They are | |
| 208 * done by the SHA_RNDx macros below, in the right column. | |
| 209 * | |
| 210 * The functions that set the 16 values of the W array are done in | |
| 211 * 5 groups of 16 operations. The first group is done by the | |
| 212 * LOAD macros below, the latter 4 groups are done by SHA_MIX below, | |
| 213 * in the left column. | |
| 214 * | |
| 215 * gcc's optimizer observes that each member of the W array is assigned | |
| 216 * a value 5 times in this code. It reduces the number of store | |
| 217 * operations done to the W array in the context (that is, in the X array) | |
| 218 * by creating a W array on the stack, and storing the W values there for | |
| 219 * the first 4 groups of operations on W, and storing the values in the | |
| 220 * context's W array only in the fifth group. This is undesirable. | |
| 221 * It is MUCH bigger code than simply using the context's W array, because | |
| 222 * all the offsets to the W array in the stack are 32-bit signed offsets, | |
| 223 * and it is no faster than storing the values in the context's W array. | |
| 224 * | |
| 225 * The original code for sha_fast.c prevented this creation of a separate | |
| 226 * W array in the stack by creating a W array of 80 members, each of | |
| 227 * whose elements is assigned only once. It also separated the computations | |
| 228 * of the W array values and the computations of the values for the 5 | |
| 229 * state variables into two separate passes, W's, then A-E's so that the | |
| 230 * second pass could be done all in registers (except for accessing the W | |
| 231 * array) on machines with fewer registers. The method is suboptimal | |
| 232 * for machines with enough registers to do it all in one pass, and it | |
| 233 * necessitates using many instructions with 32-bit offsets. | |
| 234 * | |
| 235 * This code eliminates the separate W array on the stack by a completely | |
| 236 * different means: by declaring the X array volatile. This prevents | |
| 237 * the optimizer from trying to reduce the use of the X array by the | |
| 238 * creation of a MORE expensive W array on the stack. The result is | |
| 239 * that all instructions use signed 8-bit offsets and not 32-bit offsets. | |
| 240 * | |
| 241 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3 | |
| 242 * results in code that is 3 times faster than the previous NSS sha_fast | |
| 243 * code on AMD64. | |
| 244 */ | |
| 245 static void | |
| 246 shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf) | |
| 247 { | |
| 248 register SHA_HW_t A, B, C, D, E; | |
| 249 | |
| 250 #if defined(SHA_NEED_TMP_VARIABLE) | |
| 251 register PRUint32 tmp; | |
| 252 #endif | |
| 253 | |
| 254 #if !defined(SHA_PUT_W_IN_STACK) | |
| 255 #define XH(n) X[n-H2X] | |
| 256 #define XW(n) X[n-W2X] | |
| 257 #else | |
| 258 SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, | |
| 259 w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; | |
| 260 #define XW(n) w_ ## n | |
| 261 #define XH(n) X[n] | |
| 262 #endif | |
| 263 | |
| 264 #define K0 0x5a827999L | |
| 265 #define K1 0x6ed9eba1L | |
| 266 #define K2 0x8f1bbcdcL | |
| 267 #define K3 0xca62c1d6L | |
| 268 | |
| 269 #define SHA_RND1(a,b,c,d,e,n) \ | |
| 270 a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) | |
| 271 #define SHA_RND2(a,b,c,d,e,n) \ | |
| 272 a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) | |
| 273 #define SHA_RND3(a,b,c,d,e,n) \ | |
| 274 a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) | |
| 275 #define SHA_RND4(a,b,c,d,e,n) \ | |
| 276 a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) | |
| 277 | |
| 278 #define LOAD(n) XW(n) = SHA_HTONL(inbuf[n]) | |
| 279 | |
| 280 A = XH(0); | |
| 281 B = XH(1); | |
| 282 C = XH(2); | |
| 283 D = XH(3); | |
| 284 E = XH(4); | |
| 285 | |
| 286 LOAD(0); SHA_RND1(E,A,B,C,D, 0); | |
| 287 LOAD(1); SHA_RND1(D,E,A,B,C, 1); | |
| 288 LOAD(2); SHA_RND1(C,D,E,A,B, 2); | |
| 289 LOAD(3); SHA_RND1(B,C,D,E,A, 3); | |
| 290 LOAD(4); SHA_RND1(A,B,C,D,E, 4); | |
| 291 LOAD(5); SHA_RND1(E,A,B,C,D, 5); | |
| 292 LOAD(6); SHA_RND1(D,E,A,B,C, 6); | |
| 293 LOAD(7); SHA_RND1(C,D,E,A,B, 7); | |
| 294 LOAD(8); SHA_RND1(B,C,D,E,A, 8); | |
| 295 LOAD(9); SHA_RND1(A,B,C,D,E, 9); | |
| 296 LOAD(10); SHA_RND1(E,A,B,C,D,10); | |
| 297 LOAD(11); SHA_RND1(D,E,A,B,C,11); | |
| 298 LOAD(12); SHA_RND1(C,D,E,A,B,12); | |
| 299 LOAD(13); SHA_RND1(B,C,D,E,A,13); | |
| 300 LOAD(14); SHA_RND1(A,B,C,D,E,14); | |
| 301 LOAD(15); SHA_RND1(E,A,B,C,D,15); | |
| 302 | |
| 303 SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0); | |
| 304 SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1); | |
| 305 SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2); | |
| 306 SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3); | |
| 307 | |
| 308 SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4); | |
| 309 SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5); | |
| 310 SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6); | |
| 311 SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7); | |
| 312 SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8); | |
| 313 SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9); | |
| 314 SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10); | |
| 315 SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11); | |
| 316 SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12); | |
| 317 SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13); | |
| 318 SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14); | |
| 319 SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15); | |
| 320 | |
| 321 SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0); | |
| 322 SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1); | |
| 323 SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2); | |
| 324 SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3); | |
| 325 SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4); | |
| 326 SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5); | |
| 327 SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6); | |
| 328 SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7); | |
| 329 | |
| 330 SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8); | |
| 331 SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9); | |
| 332 SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10); | |
| 333 SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11); | |
| 334 SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12); | |
| 335 SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13); | |
| 336 SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14); | |
| 337 SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15); | |
| 338 | |
| 339 SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0); | |
| 340 SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1); | |
| 341 SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2); | |
| 342 SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3); | |
| 343 SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4); | |
| 344 SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5); | |
| 345 SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6); | |
| 346 SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7); | |
| 347 SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8); | |
| 348 SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9); | |
| 349 SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10); | |
| 350 SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11); | |
| 351 | |
| 352 SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12); | |
| 353 SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13); | |
| 354 SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14); | |
| 355 SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15); | |
| 356 | |
| 357 SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0); | |
| 358 SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1); | |
| 359 SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2); | |
| 360 SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3); | |
| 361 SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4); | |
| 362 SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5); | |
| 363 SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6); | |
| 364 SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7); | |
| 365 SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8); | |
| 366 SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9); | |
| 367 SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10); | |
| 368 SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11); | |
| 369 SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12); | |
| 370 SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13); | |
| 371 SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14); | |
| 372 SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15); | |
| 373 | |
| 374 XH(0) += A; | |
| 375 XH(1) += B; | |
| 376 XH(2) += C; | |
| 377 XH(3) += D; | |
| 378 XH(4) += E; | |
| 379 } | |
| 380 | |
| 381 /************************************************************************* | |
| 382 ** Code below this line added to make SHA code support BLAPI interface | |
| 383 */ | |
| 384 | |
| 385 SHA1Context * | |
| 386 SHA1_NewContext(void) | |
| 387 { | |
| 388 SHA1Context *cx; | |
| 389 | |
| 390 /* no need to ZNew, SHA1_Begin will init the context */ | |
| 391 cx = PORT_New(SHA1Context); | |
| 392 return cx; | |
| 393 } | |
| 394 | |
| 395 /* Zero and free the context */ | |
| 396 void | |
| 397 SHA1_DestroyContext(SHA1Context *cx, PRBool freeit) | |
| 398 { | |
| 399 memset(cx, 0, sizeof *cx); | |
| 400 if (freeit) { | |
| 401 PORT_Free(cx); | |
| 402 } | |
| 403 } | |
| 404 | |
| 405 SECStatus | |
| 406 SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length) | |
| 407 { | |
| 408 SHA1Context ctx; | |
| 409 unsigned int outLen; | |
| 410 | |
| 411 SHA1_Begin(&ctx); | |
| 412 SHA1_Update(&ctx, src, src_length); | |
| 413 SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH); | |
| 414 memset(&ctx, 0, sizeof ctx); | |
| 415 return SECSuccess; | |
| 416 } | |
| 417 | |
| 418 /* Hash a null-terminated character string. */ | |
| 419 SECStatus | |
| 420 SHA1_Hash(unsigned char *dest, const char *src) | |
| 421 { | |
| 422 return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src)); | |
| 423 } | |
| 424 | |
| 425 /* | |
| 426 * need to support save/restore state in pkcs11. Stores all the info necessary | |
| 427 * for a structure into just a stream of bytes. | |
| 428 */ | |
| 429 unsigned int | |
| 430 SHA1_FlattenSize(SHA1Context *cx) | |
| 431 { | |
| 432 return sizeof(SHA1Context); | |
| 433 } | |
| 434 | |
| 435 SECStatus | |
| 436 SHA1_Flatten(SHA1Context *cx,unsigned char *space) | |
| 437 { | |
| 438 PORT_Memcpy(space,cx, sizeof(SHA1Context)); | |
| 439 return SECSuccess; | |
| 440 } | |
| 441 | |
| 442 SHA1Context * | |
| 443 SHA1_Resurrect(unsigned char *space,void *arg) | |
| 444 { | |
| 445 SHA1Context *cx = SHA1_NewContext(); | |
| 446 if (cx == NULL) return NULL; | |
| 447 | |
| 448 PORT_Memcpy(cx,space, sizeof(SHA1Context)); | |
| 449 return cx; | |
| 450 } | |
| 451 | |
| 452 void SHA1_Clone(SHA1Context *dest, SHA1Context *src) | |
| 453 { | |
| 454 memcpy(dest, src, sizeof *dest); | |
| 455 } | |
| 456 | |
| 457 void | |
| 458 SHA1_TraceState(SHA1Context *ctx) | |
| 459 { | |
| 460 PORT_SetError(PR_NOT_IMPLEMENTED_ERROR); | |
| 461 } | |
| OLD | NEW |