| OLD | NEW |
| (Empty) |
| 1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
| 2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
| 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
| 4 | |
| 5 #ifndef __ecp_h_ | |
| 6 #define __ecp_h_ | |
| 7 | |
| 8 #include "ecl-priv.h" | |
| 9 | |
| 10 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ | |
| 11 mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); | |
| 12 | |
| 13 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ | |
| 14 mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); | |
| 15 | |
| 16 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, | |
| 17 * qy). Uses affine coordinates. */ | |
| 18 mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, | |
| 19 const mp_int *qx, const mp_int
*qy, mp_int *rx, | |
| 20 mp_int *ry, const ECGroup *grou
p); | |
| 21 | |
| 22 /* Computes R = P - Q. Uses affine coordinates. */ | |
| 23 mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, | |
| 24 const mp_int *qx, const mp_int
*qy, mp_int *rx, | |
| 25 mp_int *ry, const ECGroup *grou
p); | |
| 26 | |
| 27 /* Computes R = 2P. Uses affine coordinates. */ | |
| 28 mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, | |
| 29 mp_int *ry, const ECGroup *grou
p); | |
| 30 | |
| 31 /* Validates a point on a GFp curve. */ | |
| 32 mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *
group); | |
| 33 | |
| 34 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF | |
| 35 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters | |
| 36 * a, b and p are the elliptic curve coefficients and the prime that | |
| 37 * determines the field GFp. Uses affine coordinates. */ | |
| 38 mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, | |
| 39 const mp_int *py, mp_int *rx, m
p_int *ry, | |
| 40 const ECGroup *group); | |
| 41 #endif | |
| 42 | |
| 43 /* Converts a point P(px, py) from affine coordinates to Jacobian | |
| 44 * projective coordinates R(rx, ry, rz). */ | |
| 45 mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, | |
| 46 mp_int *ry, mp_int *rz, const E
CGroup *group); | |
| 47 | |
| 48 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to | |
| 49 * affine coordinates R(rx, ry). */ | |
| 50 mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, | |
| 51 const mp_int *pz, mp_int *rx, m
p_int *ry, | |
| 52 const ECGroup *group); | |
| 53 | |
| 54 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian | |
| 55 * coordinates. */ | |
| 56 mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, | |
| 57 const mp_int *pz); | |
| 58 | |
| 59 /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian | |
| 60 * coordinates. */ | |
| 61 mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); | |
| 62 | |
| 63 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is | |
| 64 * (qx, qy, qz). Uses Jacobian coordinates. */ | |
| 65 mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, | |
| 66 const mp_int *pz, const
mp_int *qx, | |
| 67 const mp_int *qy, mp_in
t *rx, mp_int *ry, | |
| 68 mp_int *rz, const ECGro
up *group); | |
| 69 | |
| 70 /* Computes R = 2P. Uses Jacobian coordinates. */ | |
| 71 mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, | |
| 72 const mp_int *pz, mp_int *rx, m
p_int *ry, | |
| 73 mp_int *rz, const ECGroup *grou
p); | |
| 74 | |
| 75 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC | |
| 76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters | |
| 77 * a, b and p are the elliptic curve coefficients and the prime that | |
| 78 * determines the field GFp. Uses Jacobian coordinates. */ | |
| 79 mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, | |
| 80 const mp_int *py, mp_int *rx, m
p_int *ry, | |
| 81 const ECGroup *group); | |
| 82 #endif | |
| 83 | |
| 84 /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator | |
| 85 * (base point) of the group of points on the elliptic curve. Allows k1 = | |
| 86 * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine | |
| 87 * coordinates. Input and output values are assumed to be NOT | |
| 88 * field-encoded and are in affine form. */ | |
| 89 mp_err | |
| 90 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, | |
| 91 const mp_int *py, mp_int *rx, mp_int *ry
, | |
| 92 const ECGroup *group); | |
| 93 | |
| 94 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic | |
| 95 * curve points P and R can be identical. Uses mixed Modified-Jacobian | |
| 96 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for | |
| 97 * additions. Assumes input is already field-encoded using field_enc, and | |
| 98 * returns output that is still field-encoded. Uses 5-bit window NAF | |
| 99 * method (algorithm 11) for scalar-point multiplication from Brown, | |
| 100 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic | |
| 101 * Curves Over Prime Fields. */ | |
| 102 mp_err | |
| 103 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, | |
| 104 mp_int *rx, mp_int *ry, const ECGroup
*group); | |
| 105 | |
| 106 #endif /* __ecp_h_ */ | |
| OLD | NEW |