| OLD | NEW |
| (Empty) |
| 1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
| 2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
| 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
| 4 | |
| 5 #ifdef FREEBL_NO_DEPEND | |
| 6 #include "stubs.h" | |
| 7 #endif | |
| 8 | |
| 9 | |
| 10 #include "blapi.h" | |
| 11 #include "prerr.h" | |
| 12 #include "secerr.h" | |
| 13 #include "secmpi.h" | |
| 14 #include "secitem.h" | |
| 15 #include "mplogic.h" | |
| 16 #include "ec.h" | |
| 17 #include "ecl.h" | |
| 18 | |
| 19 #ifndef NSS_DISABLE_ECC | |
| 20 | |
| 21 /* | |
| 22 * Returns true if pointP is the point at infinity, false otherwise | |
| 23 */ | |
| 24 PRBool | |
| 25 ec_point_at_infinity(SECItem *pointP) | |
| 26 { | |
| 27 unsigned int i; | |
| 28 | |
| 29 for (i = 1; i < pointP->len; i++) { | |
| 30 if (pointP->data[i] != 0x00) return PR_FALSE; | |
| 31 } | |
| 32 | |
| 33 return PR_TRUE; | |
| 34 } | |
| 35 | |
| 36 /* | |
| 37 * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for | |
| 38 * the curve whose parameters are encoded in params with base point G. | |
| 39 */ | |
| 40 SECStatus | |
| 41 ec_points_mul(const ECParams *params, const mp_int *k1, const mp_int *k2, | |
| 42 const SECItem *pointP, SECItem *pointQ) | |
| 43 { | |
| 44 mp_int Px, Py, Qx, Qy; | |
| 45 mp_int Gx, Gy, order, irreducible, a, b; | |
| 46 #if 0 /* currently don't support non-named curves */ | |
| 47 unsigned int irr_arr[5]; | |
| 48 #endif | |
| 49 ECGroup *group = NULL; | |
| 50 SECStatus rv = SECFailure; | |
| 51 mp_err err = MP_OKAY; | |
| 52 int len; | |
| 53 | |
| 54 #if EC_DEBUG | |
| 55 int i; | |
| 56 char mpstr[256]; | |
| 57 | |
| 58 printf("ec_points_mul: params [len=%d]:", params->DEREncoding.len); | |
| 59 for (i = 0; i < params->DEREncoding.len; i++) | |
| 60 printf("%02x:", params->DEREncoding.data[i]); | |
| 61 printf("\n"); | |
| 62 | |
| 63 if (k1 != NULL) { | |
| 64 mp_tohex(k1, mpstr); | |
| 65 printf("ec_points_mul: scalar k1: %s\n", mpstr); | |
| 66 mp_todecimal(k1, mpstr); | |
| 67 printf("ec_points_mul: scalar k1: %s (dec)\n", mpstr); | |
| 68 } | |
| 69 | |
| 70 if (k2 != NULL) { | |
| 71 mp_tohex(k2, mpstr); | |
| 72 printf("ec_points_mul: scalar k2: %s\n", mpstr); | |
| 73 mp_todecimal(k2, mpstr); | |
| 74 printf("ec_points_mul: scalar k2: %s (dec)\n", mpstr); | |
| 75 } | |
| 76 | |
| 77 if (pointP != NULL) { | |
| 78 printf("ec_points_mul: pointP [len=%d]:", pointP->len); | |
| 79 for (i = 0; i < pointP->len; i++) | |
| 80 printf("%02x:", pointP->data[i]); | |
| 81 printf("\n"); | |
| 82 } | |
| 83 #endif | |
| 84 | |
| 85 /* NOTE: We only support uncompressed points for now */ | |
| 86 len = (params->fieldID.size + 7) >> 3; | |
| 87 if (pointP != NULL) { | |
| 88 if ((pointP->data[0] != EC_POINT_FORM_UNCOMPRESSED) || | |
| 89 (pointP->len != (2 * len + 1))) { | |
| 90 PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); | |
| 91 return SECFailure; | |
| 92 }; | |
| 93 } | |
| 94 | |
| 95 MP_DIGITS(&Px) = 0; | |
| 96 MP_DIGITS(&Py) = 0; | |
| 97 MP_DIGITS(&Qx) = 0; | |
| 98 MP_DIGITS(&Qy) = 0; | |
| 99 MP_DIGITS(&Gx) = 0; | |
| 100 MP_DIGITS(&Gy) = 0; | |
| 101 MP_DIGITS(&order) = 0; | |
| 102 MP_DIGITS(&irreducible) = 0; | |
| 103 MP_DIGITS(&a) = 0; | |
| 104 MP_DIGITS(&b) = 0; | |
| 105 CHECK_MPI_OK( mp_init(&Px) ); | |
| 106 CHECK_MPI_OK( mp_init(&Py) ); | |
| 107 CHECK_MPI_OK( mp_init(&Qx) ); | |
| 108 CHECK_MPI_OK( mp_init(&Qy) ); | |
| 109 CHECK_MPI_OK( mp_init(&Gx) ); | |
| 110 CHECK_MPI_OK( mp_init(&Gy) ); | |
| 111 CHECK_MPI_OK( mp_init(&order) ); | |
| 112 CHECK_MPI_OK( mp_init(&irreducible) ); | |
| 113 CHECK_MPI_OK( mp_init(&a) ); | |
| 114 CHECK_MPI_OK( mp_init(&b) ); | |
| 115 | |
| 116 if ((k2 != NULL) && (pointP != NULL)) { | |
| 117 /* Initialize Px and Py */ | |
| 118 CHECK_MPI_OK( mp_read_unsigned_octets(&Px, pointP->data + 1, (mp
_size) len) ); | |
| 119 CHECK_MPI_OK( mp_read_unsigned_octets(&Py, pointP->data + 1 + le
n, (mp_size) len) ); | |
| 120 } | |
| 121 | |
| 122 /* construct from named params, if possible */ | |
| 123 if (params->name != ECCurve_noName) { | |
| 124 group = ECGroup_fromName(params->name); | |
| 125 } | |
| 126 | |
| 127 #if 0 /* currently don't support non-named curves */ | |
| 128 if (group == NULL) { | |
| 129 /* Set up mp_ints containing the curve coefficients */ | |
| 130 CHECK_MPI_OK( mp_read_unsigned_octets(&Gx, params->base.data + 1
, | |
| 131
(mp_size) len) ); | |
| 132 CHECK_MPI_OK( mp_read_unsigned_octets(&Gy, params->base.data + 1
+ len, | |
| 133
(mp_size) len) ); | |
| 134 SECITEM_TO_MPINT( params->order, &order ); | |
| 135 SECITEM_TO_MPINT( params->curve.a, &a ); | |
| 136 SECITEM_TO_MPINT( params->curve.b, &b ); | |
| 137 if (params->fieldID.type == ec_field_GFp) { | |
| 138 SECITEM_TO_MPINT( params->fieldID.u.prime, &irreducible
); | |
| 139 group = ECGroup_consGFp(&irreducible, &a, &b, &Gx, &Gy,
&order, params->cofactor); | |
| 140 } else { | |
| 141 SECITEM_TO_MPINT( params->fieldID.u.poly, &irreducible )
; | |
| 142 irr_arr[0] = params->fieldID.size; | |
| 143 irr_arr[1] = params->fieldID.k1; | |
| 144 irr_arr[2] = params->fieldID.k2; | |
| 145 irr_arr[3] = params->fieldID.k3; | |
| 146 irr_arr[4] = 0; | |
| 147 group = ECGroup_consGF2m(&irreducible, irr_arr, &a, &b,
&Gx, &Gy, &order, params->cofactor); | |
| 148 } | |
| 149 } | |
| 150 #endif | |
| 151 if (group == NULL) | |
| 152 goto cleanup; | |
| 153 | |
| 154 if ((k2 != NULL) && (pointP != NULL)) { | |
| 155 CHECK_MPI_OK( ECPoints_mul(group, k1, k2, &Px, &Py, &Qx, &Qy) ); | |
| 156 } else { | |
| 157 CHECK_MPI_OK( ECPoints_mul(group, k1, NULL, NULL, NULL, &Qx, &Qy
) ); | |
| 158 } | |
| 159 | |
| 160 /* Construct the SECItem representation of point Q */ | |
| 161 pointQ->data[0] = EC_POINT_FORM_UNCOMPRESSED; | |
| 162 CHECK_MPI_OK( mp_to_fixlen_octets(&Qx, pointQ->data + 1, | |
| 163 (mp_size) len) ); | |
| 164 CHECK_MPI_OK( mp_to_fixlen_octets(&Qy, pointQ->data + 1 + len, | |
| 165 (mp_size) len) ); | |
| 166 | |
| 167 rv = SECSuccess; | |
| 168 | |
| 169 #if EC_DEBUG | |
| 170 printf("ec_points_mul: pointQ [len=%d]:", pointQ->len); | |
| 171 for (i = 0; i < pointQ->len; i++) | |
| 172 printf("%02x:", pointQ->data[i]); | |
| 173 printf("\n"); | |
| 174 #endif | |
| 175 | |
| 176 cleanup: | |
| 177 ECGroup_free(group); | |
| 178 mp_clear(&Px); | |
| 179 mp_clear(&Py); | |
| 180 mp_clear(&Qx); | |
| 181 mp_clear(&Qy); | |
| 182 mp_clear(&Gx); | |
| 183 mp_clear(&Gy); | |
| 184 mp_clear(&order); | |
| 185 mp_clear(&irreducible); | |
| 186 mp_clear(&a); | |
| 187 mp_clear(&b); | |
| 188 if (err) { | |
| 189 MP_TO_SEC_ERROR(err); | |
| 190 rv = SECFailure; | |
| 191 } | |
| 192 | |
| 193 return rv; | |
| 194 } | |
| 195 #endif /* NSS_DISABLE_ECC */ | |
| 196 | |
| 197 /* Generates a new EC key pair. The private key is a supplied | |
| 198 * value and the public key is the result of performing a scalar | |
| 199 * point multiplication of that value with the curve's base point. | |
| 200 */ | |
| 201 SECStatus | |
| 202 ec_NewKey(ECParams *ecParams, ECPrivateKey **privKey, | |
| 203 const unsigned char *privKeyBytes, int privKeyLen) | |
| 204 { | |
| 205 SECStatus rv = SECFailure; | |
| 206 #ifndef NSS_DISABLE_ECC | |
| 207 PLArenaPool *arena; | |
| 208 ECPrivateKey *key; | |
| 209 mp_int k; | |
| 210 mp_err err = MP_OKAY; | |
| 211 int len; | |
| 212 | |
| 213 #if EC_DEBUG | |
| 214 printf("ec_NewKey called\n"); | |
| 215 #endif | |
| 216 MP_DIGITS(&k) = 0; | |
| 217 | |
| 218 if (!ecParams || !privKey || !privKeyBytes || (privKeyLen < 0)) { | |
| 219 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 220 return SECFailure; | |
| 221 } | |
| 222 | |
| 223 /* Initialize an arena for the EC key. */ | |
| 224 if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE))) | |
| 225 return SECFailure; | |
| 226 | |
| 227 key = (ECPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(ECPrivateKey)); | |
| 228 if (!key) { | |
| 229 PORT_FreeArena(arena, PR_TRUE); | |
| 230 return SECFailure; | |
| 231 } | |
| 232 | |
| 233 /* Set the version number (SEC 1 section C.4 says it should be 1) */ | |
| 234 SECITEM_AllocItem(arena, &key->version, 1); | |
| 235 key->version.data[0] = 1; | |
| 236 | |
| 237 /* Copy all of the fields from the ECParams argument to the | |
| 238 * ECParams structure within the private key. | |
| 239 */ | |
| 240 key->ecParams.arena = arena; | |
| 241 key->ecParams.type = ecParams->type; | |
| 242 key->ecParams.fieldID.size = ecParams->fieldID.size; | |
| 243 key->ecParams.fieldID.type = ecParams->fieldID.type; | |
| 244 if (ecParams->fieldID.type == ec_field_GFp) { | |
| 245 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.prime, | |
| 246 &ecParams->fieldID.u.prime)); | |
| 247 } else { | |
| 248 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.poly, | |
| 249 &ecParams->fieldID.u.poly)); | |
| 250 } | |
| 251 key->ecParams.fieldID.k1 = ecParams->fieldID.k1; | |
| 252 key->ecParams.fieldID.k2 = ecParams->fieldID.k2; | |
| 253 key->ecParams.fieldID.k3 = ecParams->fieldID.k3; | |
| 254 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.a, | |
| 255 &ecParams->curve.a)); | |
| 256 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.b, | |
| 257 &ecParams->curve.b)); | |
| 258 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.seed, | |
| 259 &ecParams->curve.seed)); | |
| 260 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.base, | |
| 261 &ecParams->base)); | |
| 262 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.order, | |
| 263 &ecParams->order)); | |
| 264 key->ecParams.cofactor = ecParams->cofactor; | |
| 265 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.DEREncoding, | |
| 266 &ecParams->DEREncoding)); | |
| 267 key->ecParams.name = ecParams->name; | |
| 268 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curveOID, | |
| 269 &ecParams->curveOID)); | |
| 270 | |
| 271 len = (ecParams->fieldID.size + 7) >> 3; | |
| 272 SECITEM_AllocItem(arena, &key->publicValue, 2*len + 1); | |
| 273 len = ecParams->order.len; | |
| 274 SECITEM_AllocItem(arena, &key->privateValue, len); | |
| 275 | |
| 276 /* Copy private key */ | |
| 277 if (privKeyLen >= len) { | |
| 278 memcpy(key->privateValue.data, privKeyBytes, len); | |
| 279 } else { | |
| 280 memset(key->privateValue.data, 0, (len - privKeyLen)); | |
| 281 memcpy(key->privateValue.data + (len - privKeyLen), privKeyBytes, privKe
yLen); | |
| 282 } | |
| 283 | |
| 284 /* Compute corresponding public key */ | |
| 285 CHECK_MPI_OK( mp_init(&k) ); | |
| 286 CHECK_MPI_OK( mp_read_unsigned_octets(&k, key->privateValue.data, | |
| 287 (mp_size) len) ); | |
| 288 | |
| 289 rv = ec_points_mul(ecParams, &k, NULL, NULL, &(key->publicValue)); | |
| 290 if (rv != SECSuccess) goto cleanup; | |
| 291 *privKey = key; | |
| 292 | |
| 293 cleanup: | |
| 294 mp_clear(&k); | |
| 295 if (rv) | |
| 296 PORT_FreeArena(arena, PR_TRUE); | |
| 297 | |
| 298 #if EC_DEBUG | |
| 299 printf("ec_NewKey returning %s\n", | |
| 300 (rv == SECSuccess) ? "success" : "failure"); | |
| 301 #endif | |
| 302 #else | |
| 303 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 304 #endif /* NSS_DISABLE_ECC */ | |
| 305 | |
| 306 return rv; | |
| 307 | |
| 308 } | |
| 309 | |
| 310 /* Generates a new EC key pair. The private key is a supplied | |
| 311 * random value (in seed) and the public key is the result of | |
| 312 * performing a scalar point multiplication of that value with | |
| 313 * the curve's base point. | |
| 314 */ | |
| 315 SECStatus | |
| 316 EC_NewKeyFromSeed(ECParams *ecParams, ECPrivateKey **privKey, | |
| 317 const unsigned char *seed, int seedlen) | |
| 318 { | |
| 319 SECStatus rv = SECFailure; | |
| 320 #ifndef NSS_DISABLE_ECC | |
| 321 rv = ec_NewKey(ecParams, privKey, seed, seedlen); | |
| 322 #else | |
| 323 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 324 #endif /* NSS_DISABLE_ECC */ | |
| 325 return rv; | |
| 326 } | |
| 327 | |
| 328 #ifndef NSS_DISABLE_ECC | |
| 329 /* Generate a random private key using the algorithm A.4.1 of ANSI X9.62, | |
| 330 * modified a la FIPS 186-2 Change Notice 1 to eliminate the bias in the | |
| 331 * random number generator. | |
| 332 * | |
| 333 * Parameters | |
| 334 * - order: a buffer that holds the curve's group order | |
| 335 * - len: the length in octets of the order buffer | |
| 336 * | |
| 337 * Return Value | |
| 338 * Returns a buffer of len octets that holds the private key. The caller | |
| 339 * is responsible for freeing the buffer with PORT_ZFree. | |
| 340 */ | |
| 341 static unsigned char * | |
| 342 ec_GenerateRandomPrivateKey(const unsigned char *order, int len) | |
| 343 { | |
| 344 SECStatus rv = SECSuccess; | |
| 345 mp_err err; | |
| 346 unsigned char *privKeyBytes = NULL; | |
| 347 mp_int privKeyVal, order_1, one; | |
| 348 | |
| 349 MP_DIGITS(&privKeyVal) = 0; | |
| 350 MP_DIGITS(&order_1) = 0; | |
| 351 MP_DIGITS(&one) = 0; | |
| 352 CHECK_MPI_OK( mp_init(&privKeyVal) ); | |
| 353 CHECK_MPI_OK( mp_init(&order_1) ); | |
| 354 CHECK_MPI_OK( mp_init(&one) ); | |
| 355 | |
| 356 /* Generates 2*len random bytes using the global random bit generator | |
| 357 * (which implements Algorithm 1 of FIPS 186-2 Change Notice 1) then | |
| 358 * reduces modulo the group order. | |
| 359 */ | |
| 360 if ((privKeyBytes = PORT_Alloc(2*len)) == NULL) goto cleanup; | |
| 361 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(privKeyBytes, 2*len) ); | |
| 362 CHECK_MPI_OK( mp_read_unsigned_octets(&privKeyVal, privKeyBytes, 2*len) ); | |
| 363 CHECK_MPI_OK( mp_read_unsigned_octets(&order_1, order, len) ); | |
| 364 CHECK_MPI_OK( mp_set_int(&one, 1) ); | |
| 365 CHECK_MPI_OK( mp_sub(&order_1, &one, &order_1) ); | |
| 366 CHECK_MPI_OK( mp_mod(&privKeyVal, &order_1, &privKeyVal) ); | |
| 367 CHECK_MPI_OK( mp_add(&privKeyVal, &one, &privKeyVal) ); | |
| 368 CHECK_MPI_OK( mp_to_fixlen_octets(&privKeyVal, privKeyBytes, len) ); | |
| 369 memset(privKeyBytes+len, 0, len); | |
| 370 cleanup: | |
| 371 mp_clear(&privKeyVal); | |
| 372 mp_clear(&order_1); | |
| 373 mp_clear(&one); | |
| 374 if (err < MP_OKAY) { | |
| 375 MP_TO_SEC_ERROR(err); | |
| 376 rv = SECFailure; | |
| 377 } | |
| 378 if (rv != SECSuccess && privKeyBytes) { | |
| 379 PORT_Free(privKeyBytes); | |
| 380 privKeyBytes = NULL; | |
| 381 } | |
| 382 return privKeyBytes; | |
| 383 } | |
| 384 #endif /* NSS_DISABLE_ECC */ | |
| 385 | |
| 386 /* Generates a new EC key pair. The private key is a random value and | |
| 387 * the public key is the result of performing a scalar point multiplication | |
| 388 * of that value with the curve's base point. | |
| 389 */ | |
| 390 SECStatus | |
| 391 EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey) | |
| 392 { | |
| 393 SECStatus rv = SECFailure; | |
| 394 #ifndef NSS_DISABLE_ECC | |
| 395 int len; | |
| 396 unsigned char *privKeyBytes = NULL; | |
| 397 | |
| 398 if (!ecParams) { | |
| 399 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 400 return SECFailure; | |
| 401 } | |
| 402 | |
| 403 len = ecParams->order.len; | |
| 404 privKeyBytes = ec_GenerateRandomPrivateKey(ecParams->order.data, len); | |
| 405 if (privKeyBytes == NULL) goto cleanup; | |
| 406 /* generate public key */ | |
| 407 CHECK_SEC_OK( ec_NewKey(ecParams, privKey, privKeyBytes, len) ); | |
| 408 | |
| 409 cleanup: | |
| 410 if (privKeyBytes) { | |
| 411 PORT_ZFree(privKeyBytes, len); | |
| 412 } | |
| 413 #if EC_DEBUG | |
| 414 printf("EC_NewKey returning %s\n", | |
| 415 (rv == SECSuccess) ? "success" : "failure"); | |
| 416 #endif | |
| 417 #else | |
| 418 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 419 #endif /* NSS_DISABLE_ECC */ | |
| 420 | |
| 421 return rv; | |
| 422 } | |
| 423 | |
| 424 /* Validates an EC public key as described in Section 5.2.2 of | |
| 425 * X9.62. The ECDH primitive when used without the cofactor does | |
| 426 * not address small subgroup attacks, which may occur when the | |
| 427 * public key is not valid. These attacks can be prevented by | |
| 428 * validating the public key before using ECDH. | |
| 429 */ | |
| 430 SECStatus | |
| 431 EC_ValidatePublicKey(ECParams *ecParams, SECItem *publicValue) | |
| 432 { | |
| 433 #ifndef NSS_DISABLE_ECC | |
| 434 mp_int Px, Py; | |
| 435 ECGroup *group = NULL; | |
| 436 SECStatus rv = SECFailure; | |
| 437 mp_err err = MP_OKAY; | |
| 438 int len; | |
| 439 | |
| 440 if (!ecParams || !publicValue) { | |
| 441 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 442 return SECFailure; | |
| 443 } | |
| 444 | |
| 445 /* NOTE: We only support uncompressed points for now */ | |
| 446 len = (ecParams->fieldID.size + 7) >> 3; | |
| 447 if (publicValue->data[0] != EC_POINT_FORM_UNCOMPRESSED) { | |
| 448 PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); | |
| 449 return SECFailure; | |
| 450 } else if (publicValue->len != (2 * len + 1)) { | |
| 451 PORT_SetError(SEC_ERROR_BAD_KEY); | |
| 452 return SECFailure; | |
| 453 } | |
| 454 | |
| 455 MP_DIGITS(&Px) = 0; | |
| 456 MP_DIGITS(&Py) = 0; | |
| 457 CHECK_MPI_OK( mp_init(&Px) ); | |
| 458 CHECK_MPI_OK( mp_init(&Py) ); | |
| 459 | |
| 460 /* Initialize Px and Py */ | |
| 461 CHECK_MPI_OK( mp_read_unsigned_octets(&Px, publicValue->data + 1, (mp_size)
len) ); | |
| 462 CHECK_MPI_OK( mp_read_unsigned_octets(&Py, publicValue->data + 1 + len, (mp_
size) len) ); | |
| 463 | |
| 464 /* construct from named params */ | |
| 465 group = ECGroup_fromName(ecParams->name); | |
| 466 if (group == NULL) { | |
| 467 /* | |
| 468 * ECGroup_fromName fails if ecParams->name is not a valid | |
| 469 * ECCurveName value, or if we run out of memory, or perhaps | |
| 470 * for other reasons. Unfortunately if ecParams->name is a | |
| 471 * valid ECCurveName value, we don't know what the right error | |
| 472 * code should be because ECGroup_fromName doesn't return an | |
| 473 * error code to the caller. Set err to MP_UNDEF because | |
| 474 * that's what ECGroup_fromName uses internally. | |
| 475 */ | |
| 476 if ((ecParams->name <= ECCurve_noName) || | |
| 477 (ecParams->name >= ECCurve_pastLastCurve)) { | |
| 478 err = MP_BADARG; | |
| 479 } else { | |
| 480 err = MP_UNDEF; | |
| 481 } | |
| 482 goto cleanup; | |
| 483 } | |
| 484 | |
| 485 /* validate public point */ | |
| 486 if ((err = ECPoint_validate(group, &Px, &Py)) < MP_YES) { | |
| 487 if (err == MP_NO) { | |
| 488 PORT_SetError(SEC_ERROR_BAD_KEY); | |
| 489 rv = SECFailure; | |
| 490 err = MP_OKAY; /* don't change the error code */ | |
| 491 } | |
| 492 goto cleanup; | |
| 493 } | |
| 494 | |
| 495 rv = SECSuccess; | |
| 496 | |
| 497 cleanup: | |
| 498 ECGroup_free(group); | |
| 499 mp_clear(&Px); | |
| 500 mp_clear(&Py); | |
| 501 if (err) { | |
| 502 MP_TO_SEC_ERROR(err); | |
| 503 rv = SECFailure; | |
| 504 } | |
| 505 return rv; | |
| 506 #else | |
| 507 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 508 return SECFailure; | |
| 509 #endif /* NSS_DISABLE_ECC */ | |
| 510 } | |
| 511 | |
| 512 /* | |
| 513 ** Performs an ECDH key derivation by computing the scalar point | |
| 514 ** multiplication of privateValue and publicValue (with or without the | |
| 515 ** cofactor) and returns the x-coordinate of the resulting elliptic | |
| 516 ** curve point in derived secret. If successful, derivedSecret->data | |
| 517 ** is set to the address of the newly allocated buffer containing the | |
| 518 ** derived secret, and derivedSecret->len is the size of the secret | |
| 519 ** produced. It is the caller's responsibility to free the allocated | |
| 520 ** buffer containing the derived secret. | |
| 521 */ | |
| 522 SECStatus | |
| 523 ECDH_Derive(SECItem *publicValue, | |
| 524 ECParams *ecParams, | |
| 525 SECItem *privateValue, | |
| 526 PRBool withCofactor, | |
| 527 SECItem *derivedSecret) | |
| 528 { | |
| 529 SECStatus rv = SECFailure; | |
| 530 #ifndef NSS_DISABLE_ECC | |
| 531 unsigned int len = 0; | |
| 532 SECItem pointQ = {siBuffer, NULL, 0}; | |
| 533 mp_int k; /* to hold the private value */ | |
| 534 mp_int cofactor; | |
| 535 mp_err err = MP_OKAY; | |
| 536 #if EC_DEBUG | |
| 537 int i; | |
| 538 #endif | |
| 539 | |
| 540 if (!publicValue || !ecParams || !privateValue || | |
| 541 !derivedSecret) { | |
| 542 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 543 return SECFailure; | |
| 544 } | |
| 545 | |
| 546 /* | |
| 547 * We fail if the public value is the point at infinity, since | |
| 548 * this produces predictable results. | |
| 549 */ | |
| 550 if (ec_point_at_infinity(publicValue)) { | |
| 551 PORT_SetError(SEC_ERROR_BAD_KEY); | |
| 552 return SECFailure; | |
| 553 } | |
| 554 | |
| 555 MP_DIGITS(&k) = 0; | |
| 556 memset(derivedSecret, 0, sizeof *derivedSecret); | |
| 557 len = (ecParams->fieldID.size + 7) >> 3; | |
| 558 pointQ.len = 2*len + 1; | |
| 559 if ((pointQ.data = PORT_Alloc(2*len + 1)) == NULL) goto cleanup; | |
| 560 | |
| 561 CHECK_MPI_OK( mp_init(&k) ); | |
| 562 CHECK_MPI_OK( mp_read_unsigned_octets(&k, privateValue->data, | |
| 563 (mp_size) privateValue->len) ); | |
| 564 | |
| 565 if (withCofactor && (ecParams->cofactor != 1)) { | |
| 566 /* multiply k with the cofactor */ | |
| 567 MP_DIGITS(&cofactor) = 0; | |
| 568 CHECK_MPI_OK( mp_init(&cofactor) ); | |
| 569 mp_set(&cofactor, ecParams->cofactor); | |
| 570 CHECK_MPI_OK( mp_mul(&k, &cofactor, &k) ); | |
| 571 } | |
| 572 | |
| 573 /* Multiply our private key and peer's public point */ | |
| 574 if (ec_points_mul(ecParams, NULL, &k, publicValue, &pointQ) != SECSuccess) | |
| 575 goto cleanup; | |
| 576 if (ec_point_at_infinity(&pointQ)) { | |
| 577 PORT_SetError(SEC_ERROR_BAD_KEY); /* XXX better error code? */ | |
| 578 goto cleanup; | |
| 579 } | |
| 580 | |
| 581 /* Allocate memory for the derived secret and copy | |
| 582 * the x co-ordinate of pointQ into it. | |
| 583 */ | |
| 584 SECITEM_AllocItem(NULL, derivedSecret, len); | |
| 585 memcpy(derivedSecret->data, pointQ.data + 1, len); | |
| 586 | |
| 587 rv = SECSuccess; | |
| 588 | |
| 589 #if EC_DEBUG | |
| 590 printf("derived_secret:\n"); | |
| 591 for (i = 0; i < derivedSecret->len; i++) | |
| 592 printf("%02x:", derivedSecret->data[i]); | |
| 593 printf("\n"); | |
| 594 #endif | |
| 595 | |
| 596 cleanup: | |
| 597 mp_clear(&k); | |
| 598 | |
| 599 if (err) { | |
| 600 MP_TO_SEC_ERROR(err); | |
| 601 } | |
| 602 | |
| 603 if (pointQ.data) { | |
| 604 PORT_ZFree(pointQ.data, 2*len + 1); | |
| 605 } | |
| 606 #else | |
| 607 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 608 #endif /* NSS_DISABLE_ECC */ | |
| 609 | |
| 610 return rv; | |
| 611 } | |
| 612 | |
| 613 /* Computes the ECDSA signature (a concatenation of two values r and s) | |
| 614 * on the digest using the given key and the random value kb (used in | |
| 615 * computing s). | |
| 616 */ | |
| 617 SECStatus | |
| 618 ECDSA_SignDigestWithSeed(ECPrivateKey *key, SECItem *signature, | |
| 619 const SECItem *digest, const unsigned char *kb, const int kblen) | |
| 620 { | |
| 621 SECStatus rv = SECFailure; | |
| 622 #ifndef NSS_DISABLE_ECC | |
| 623 mp_int x1; | |
| 624 mp_int d, k; /* private key, random integer */ | |
| 625 mp_int r, s; /* tuple (r, s) is the signature */ | |
| 626 mp_int n; | |
| 627 mp_err err = MP_OKAY; | |
| 628 ECParams *ecParams = NULL; | |
| 629 SECItem kGpoint = { siBuffer, NULL, 0}; | |
| 630 int flen = 0; /* length in bytes of the field size */ | |
| 631 unsigned olen; /* length in bytes of the base point order */ | |
| 632 unsigned obits; /* length in bits of the base point order */ | |
| 633 | |
| 634 #if EC_DEBUG | |
| 635 char mpstr[256]; | |
| 636 #endif | |
| 637 | |
| 638 /* Initialize MPI integers. */ | |
| 639 /* must happen before the first potential call to cleanup */ | |
| 640 MP_DIGITS(&x1) = 0; | |
| 641 MP_DIGITS(&d) = 0; | |
| 642 MP_DIGITS(&k) = 0; | |
| 643 MP_DIGITS(&r) = 0; | |
| 644 MP_DIGITS(&s) = 0; | |
| 645 MP_DIGITS(&n) = 0; | |
| 646 | |
| 647 /* Check args */ | |
| 648 if (!key || !signature || !digest || !kb || (kblen < 0)) { | |
| 649 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 650 goto cleanup; | |
| 651 } | |
| 652 | |
| 653 ecParams = &(key->ecParams); | |
| 654 flen = (ecParams->fieldID.size + 7) >> 3; | |
| 655 olen = ecParams->order.len; | |
| 656 if (signature->data == NULL) { | |
| 657 /* a call to get the signature length only */ | |
| 658 goto finish; | |
| 659 } | |
| 660 if (signature->len < 2*olen) { | |
| 661 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 662 goto cleanup; | |
| 663 } | |
| 664 | |
| 665 | |
| 666 CHECK_MPI_OK( mp_init(&x1) ); | |
| 667 CHECK_MPI_OK( mp_init(&d) ); | |
| 668 CHECK_MPI_OK( mp_init(&k) ); | |
| 669 CHECK_MPI_OK( mp_init(&r) ); | |
| 670 CHECK_MPI_OK( mp_init(&s) ); | |
| 671 CHECK_MPI_OK( mp_init(&n) ); | |
| 672 | |
| 673 SECITEM_TO_MPINT( ecParams->order, &n ); | |
| 674 SECITEM_TO_MPINT( key->privateValue, &d ); | |
| 675 | |
| 676 CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, kblen) ); | |
| 677 /* Make sure k is in the interval [1, n-1] */ | |
| 678 if ((mp_cmp_z(&k) <= 0) || (mp_cmp(&k, &n) >= 0)) { | |
| 679 #if EC_DEBUG | |
| 680 printf("k is outside [1, n-1]\n"); | |
| 681 mp_tohex(&k, mpstr); | |
| 682 printf("k : %s \n", mpstr); | |
| 683 mp_tohex(&n, mpstr); | |
| 684 printf("n : %s \n", mpstr); | |
| 685 #endif | |
| 686 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
| 687 goto cleanup; | |
| 688 } | |
| 689 | |
| 690 /* | |
| 691 ** We do not want timing information to leak the length of k, | |
| 692 ** so we compute k*G using an equivalent scalar of fixed | |
| 693 ** bit-length. | |
| 694 ** Fix based on patch for ECDSA timing attack in the paper | |
| 695 ** by Billy Bob Brumley and Nicola Tuveri at | |
| 696 ** http://eprint.iacr.org/2011/232 | |
| 697 ** | |
| 698 ** How do we convert k to a value of a fixed bit-length? | |
| 699 ** k starts off as an integer satisfying 0 <= k < n. Hence, | |
| 700 ** n <= k+n < 2n, which means k+n has either the same number | |
| 701 ** of bits as n or one more bit than n. If k+n has the same | |
| 702 ** number of bits as n, the second addition ensures that the | |
| 703 ** final value has exactly one more bit than n. Thus, we | |
| 704 ** always end up with a value that exactly one more bit than n. | |
| 705 */ | |
| 706 CHECK_MPI_OK( mp_add(&k, &n, &k) ); | |
| 707 if (mpl_significant_bits(&k) <= mpl_significant_bits(&n)) { | |
| 708 CHECK_MPI_OK( mp_add(&k, &n, &k) ); | |
| 709 } | |
| 710 | |
| 711 /* | |
| 712 ** ANSI X9.62, Section 5.3.2, Step 2 | |
| 713 ** | |
| 714 ** Compute kG | |
| 715 */ | |
| 716 kGpoint.len = 2*flen + 1; | |
| 717 kGpoint.data = PORT_Alloc(2*flen + 1); | |
| 718 if ((kGpoint.data == NULL) || | |
| 719 (ec_points_mul(ecParams, &k, NULL, NULL, &kGpoint) | |
| 720 != SECSuccess)) | |
| 721 goto cleanup; | |
| 722 | |
| 723 /* | |
| 724 ** ANSI X9.62, Section 5.3.3, Step 1 | |
| 725 ** | |
| 726 ** Extract the x co-ordinate of kG into x1 | |
| 727 */ | |
| 728 CHECK_MPI_OK( mp_read_unsigned_octets(&x1, kGpoint.data + 1, | |
| 729 (mp_size) flen) ); | |
| 730 | |
| 731 /* | |
| 732 ** ANSI X9.62, Section 5.3.3, Step 2 | |
| 733 ** | |
| 734 ** r = x1 mod n NOTE: n is the order of the curve | |
| 735 */ | |
| 736 CHECK_MPI_OK( mp_mod(&x1, &n, &r) ); | |
| 737 | |
| 738 /* | |
| 739 ** ANSI X9.62, Section 5.3.3, Step 3 | |
| 740 ** | |
| 741 ** verify r != 0 | |
| 742 */ | |
| 743 if (mp_cmp_z(&r) == 0) { | |
| 744 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
| 745 goto cleanup; | |
| 746 } | |
| 747 | |
| 748 /* | |
| 749 ** ANSI X9.62, Section 5.3.3, Step 4 | |
| 750 ** | |
| 751 ** s = (k**-1 * (HASH(M) + d*r)) mod n | |
| 752 */ | |
| 753 SECITEM_TO_MPINT(*digest, &s); /* s = HASH(M) */ | |
| 754 | |
| 755 /* In the definition of EC signing, digests are truncated | |
| 756 * to the length of n in bits. | |
| 757 * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ | |
| 758 CHECK_MPI_OK( (obits = mpl_significant_bits(&n)) ); | |
| 759 if (digest->len*8 > obits) { | |
| 760 mpl_rsh(&s,&s,digest->len*8 - obits); | |
| 761 } | |
| 762 | |
| 763 #if EC_DEBUG | |
| 764 mp_todecimal(&n, mpstr); | |
| 765 printf("n : %s (dec)\n", mpstr); | |
| 766 mp_todecimal(&d, mpstr); | |
| 767 printf("d : %s (dec)\n", mpstr); | |
| 768 mp_tohex(&x1, mpstr); | |
| 769 printf("x1: %s\n", mpstr); | |
| 770 mp_todecimal(&s, mpstr); | |
| 771 printf("digest: %s (decimal)\n", mpstr); | |
| 772 mp_todecimal(&r, mpstr); | |
| 773 printf("r : %s (dec)\n", mpstr); | |
| 774 mp_tohex(&r, mpstr); | |
| 775 printf("r : %s\n", mpstr); | |
| 776 #endif | |
| 777 | |
| 778 CHECK_MPI_OK( mp_invmod(&k, &n, &k) ); /* k = k**-1 mod n */ | |
| 779 CHECK_MPI_OK( mp_mulmod(&d, &r, &n, &d) ); /* d = d * r mod n */ | |
| 780 CHECK_MPI_OK( mp_addmod(&s, &d, &n, &s) ); /* s = s + d mod n */ | |
| 781 CHECK_MPI_OK( mp_mulmod(&s, &k, &n, &s) ); /* s = s * k mod n */ | |
| 782 | |
| 783 #if EC_DEBUG | |
| 784 mp_todecimal(&s, mpstr); | |
| 785 printf("s : %s (dec)\n", mpstr); | |
| 786 mp_tohex(&s, mpstr); | |
| 787 printf("s : %s\n", mpstr); | |
| 788 #endif | |
| 789 | |
| 790 /* | |
| 791 ** ANSI X9.62, Section 5.3.3, Step 5 | |
| 792 ** | |
| 793 ** verify s != 0 | |
| 794 */ | |
| 795 if (mp_cmp_z(&s) == 0) { | |
| 796 PORT_SetError(SEC_ERROR_NEED_RANDOM); | |
| 797 goto cleanup; | |
| 798 } | |
| 799 | |
| 800 /* | |
| 801 ** | |
| 802 ** Signature is tuple (r, s) | |
| 803 */ | |
| 804 CHECK_MPI_OK( mp_to_fixlen_octets(&r, signature->data, olen) ); | |
| 805 CHECK_MPI_OK( mp_to_fixlen_octets(&s, signature->data + olen, olen) ); | |
| 806 finish: | |
| 807 signature->len = 2*olen; | |
| 808 | |
| 809 rv = SECSuccess; | |
| 810 err = MP_OKAY; | |
| 811 cleanup: | |
| 812 mp_clear(&x1); | |
| 813 mp_clear(&d); | |
| 814 mp_clear(&k); | |
| 815 mp_clear(&r); | |
| 816 mp_clear(&s); | |
| 817 mp_clear(&n); | |
| 818 | |
| 819 if (kGpoint.data) { | |
| 820 PORT_ZFree(kGpoint.data, 2*flen + 1); | |
| 821 } | |
| 822 | |
| 823 if (err) { | |
| 824 MP_TO_SEC_ERROR(err); | |
| 825 rv = SECFailure; | |
| 826 } | |
| 827 | |
| 828 #if EC_DEBUG | |
| 829 printf("ECDSA signing with seed %s\n", | |
| 830 (rv == SECSuccess) ? "succeeded" : "failed"); | |
| 831 #endif | |
| 832 #else | |
| 833 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 834 #endif /* NSS_DISABLE_ECC */ | |
| 835 | |
| 836 return rv; | |
| 837 } | |
| 838 | |
| 839 /* | |
| 840 ** Computes the ECDSA signature on the digest using the given key | |
| 841 ** and a random seed. | |
| 842 */ | |
| 843 SECStatus | |
| 844 ECDSA_SignDigest(ECPrivateKey *key, SECItem *signature, const SECItem *digest) | |
| 845 { | |
| 846 SECStatus rv = SECFailure; | |
| 847 #ifndef NSS_DISABLE_ECC | |
| 848 int len; | |
| 849 unsigned char *kBytes= NULL; | |
| 850 | |
| 851 if (!key) { | |
| 852 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 853 return SECFailure; | |
| 854 } | |
| 855 | |
| 856 /* Generate random value k */ | |
| 857 len = key->ecParams.order.len; | |
| 858 kBytes = ec_GenerateRandomPrivateKey(key->ecParams.order.data, len); | |
| 859 if (kBytes == NULL) goto cleanup; | |
| 860 | |
| 861 /* Generate ECDSA signature with the specified k value */ | |
| 862 rv = ECDSA_SignDigestWithSeed(key, signature, digest, kBytes, len); | |
| 863 | |
| 864 cleanup: | |
| 865 if (kBytes) { | |
| 866 PORT_ZFree(kBytes, len); | |
| 867 } | |
| 868 | |
| 869 #if EC_DEBUG | |
| 870 printf("ECDSA signing %s\n", | |
| 871 (rv == SECSuccess) ? "succeeded" : "failed"); | |
| 872 #endif | |
| 873 #else | |
| 874 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 875 #endif /* NSS_DISABLE_ECC */ | |
| 876 | |
| 877 return rv; | |
| 878 } | |
| 879 | |
| 880 /* | |
| 881 ** Checks the signature on the given digest using the key provided. | |
| 882 ** | |
| 883 ** The key argument must represent a valid EC public key (a point on | |
| 884 ** the relevant curve). If it is not a valid point, then the behavior | |
| 885 ** of this function is undefined. In cases where a public key might | |
| 886 ** not be valid, use EC_ValidatePublicKey to check. | |
| 887 */ | |
| 888 SECStatus | |
| 889 ECDSA_VerifyDigest(ECPublicKey *key, const SECItem *signature, | |
| 890 const SECItem *digest) | |
| 891 { | |
| 892 SECStatus rv = SECFailure; | |
| 893 #ifndef NSS_DISABLE_ECC | |
| 894 mp_int r_, s_; /* tuple (r', s') is received signature) */ | |
| 895 mp_int c, u1, u2, v; /* intermediate values used in verification */ | |
| 896 mp_int x1; | |
| 897 mp_int n; | |
| 898 mp_err err = MP_OKAY; | |
| 899 ECParams *ecParams = NULL; | |
| 900 SECItem pointC = { siBuffer, NULL, 0 }; | |
| 901 int slen; /* length in bytes of a half signature (r or s) */ | |
| 902 int flen; /* length in bytes of the field size */ | |
| 903 unsigned olen; /* length in bytes of the base point order */ | |
| 904 unsigned obits; /* length in bits of the base point order */ | |
| 905 | |
| 906 #if EC_DEBUG | |
| 907 char mpstr[256]; | |
| 908 printf("ECDSA verification called\n"); | |
| 909 #endif | |
| 910 | |
| 911 /* Initialize MPI integers. */ | |
| 912 /* must happen before the first potential call to cleanup */ | |
| 913 MP_DIGITS(&r_) = 0; | |
| 914 MP_DIGITS(&s_) = 0; | |
| 915 MP_DIGITS(&c) = 0; | |
| 916 MP_DIGITS(&u1) = 0; | |
| 917 MP_DIGITS(&u2) = 0; | |
| 918 MP_DIGITS(&x1) = 0; | |
| 919 MP_DIGITS(&v) = 0; | |
| 920 MP_DIGITS(&n) = 0; | |
| 921 | |
| 922 /* Check args */ | |
| 923 if (!key || !signature || !digest) { | |
| 924 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 925 goto cleanup; | |
| 926 } | |
| 927 | |
| 928 ecParams = &(key->ecParams); | |
| 929 flen = (ecParams->fieldID.size + 7) >> 3; | |
| 930 olen = ecParams->order.len; | |
| 931 if (signature->len == 0 || signature->len%2 != 0 || | |
| 932 signature->len > 2*olen) { | |
| 933 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
| 934 goto cleanup; | |
| 935 } | |
| 936 slen = signature->len/2; | |
| 937 | |
| 938 SECITEM_AllocItem(NULL, &pointC, 2*flen + 1); | |
| 939 if (pointC.data == NULL) | |
| 940 goto cleanup; | |
| 941 | |
| 942 CHECK_MPI_OK( mp_init(&r_) ); | |
| 943 CHECK_MPI_OK( mp_init(&s_) ); | |
| 944 CHECK_MPI_OK( mp_init(&c) ); | |
| 945 CHECK_MPI_OK( mp_init(&u1) ); | |
| 946 CHECK_MPI_OK( mp_init(&u2) ); | |
| 947 CHECK_MPI_OK( mp_init(&x1) ); | |
| 948 CHECK_MPI_OK( mp_init(&v) ); | |
| 949 CHECK_MPI_OK( mp_init(&n) ); | |
| 950 | |
| 951 /* | |
| 952 ** Convert received signature (r', s') into MPI integers. | |
| 953 */ | |
| 954 CHECK_MPI_OK( mp_read_unsigned_octets(&r_, signature->data, slen) ); | |
| 955 CHECK_MPI_OK( mp_read_unsigned_octets(&s_, signature->data + slen, slen) ); | |
| 956 | |
| 957 /* | |
| 958 ** ANSI X9.62, Section 5.4.2, Steps 1 and 2 | |
| 959 ** | |
| 960 ** Verify that 0 < r' < n and 0 < s' < n | |
| 961 */ | |
| 962 SECITEM_TO_MPINT(ecParams->order, &n); | |
| 963 if (mp_cmp_z(&r_) <= 0 || mp_cmp_z(&s_) <= 0 || | |
| 964 mp_cmp(&r_, &n) >= 0 || mp_cmp(&s_, &n) >= 0) { | |
| 965 PORT_SetError(SEC_ERROR_BAD_SIGNATURE); | |
| 966 goto cleanup; /* will return rv == SECFailure */ | |
| 967 } | |
| 968 | |
| 969 /* | |
| 970 ** ANSI X9.62, Section 5.4.2, Step 3 | |
| 971 ** | |
| 972 ** c = (s')**-1 mod n | |
| 973 */ | |
| 974 CHECK_MPI_OK( mp_invmod(&s_, &n, &c) ); /* c = (s')**-1 mod n */ | |
| 975 | |
| 976 /* | |
| 977 ** ANSI X9.62, Section 5.4.2, Step 4 | |
| 978 ** | |
| 979 ** u1 = ((HASH(M')) * c) mod n | |
| 980 */ | |
| 981 SECITEM_TO_MPINT(*digest, &u1); /* u1 = HASH(M) */ | |
| 982 | |
| 983 /* In the definition of EC signing, digests are truncated | |
| 984 * to the length of n in bits. | |
| 985 * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ | |
| 986 CHECK_MPI_OK( (obits = mpl_significant_bits(&n)) ); | |
| 987 if (digest->len*8 > obits) { /* u1 = HASH(M') */ | |
| 988 mpl_rsh(&u1,&u1,digest->len*8 - obits); | |
| 989 } | |
| 990 | |
| 991 #if EC_DEBUG | |
| 992 mp_todecimal(&r_, mpstr); | |
| 993 printf("r_: %s (dec)\n", mpstr); | |
| 994 mp_todecimal(&s_, mpstr); | |
| 995 printf("s_: %s (dec)\n", mpstr); | |
| 996 mp_todecimal(&c, mpstr); | |
| 997 printf("c : %s (dec)\n", mpstr); | |
| 998 mp_todecimal(&u1, mpstr); | |
| 999 printf("digest: %s (dec)\n", mpstr); | |
| 1000 #endif | |
| 1001 | |
| 1002 CHECK_MPI_OK( mp_mulmod(&u1, &c, &n, &u1) ); /* u1 = u1 * c mod n */ | |
| 1003 | |
| 1004 /* | |
| 1005 ** ANSI X9.62, Section 5.4.2, Step 4 | |
| 1006 ** | |
| 1007 ** u2 = ((r') * c) mod n | |
| 1008 */ | |
| 1009 CHECK_MPI_OK( mp_mulmod(&r_, &c, &n, &u2) ); | |
| 1010 | |
| 1011 /* | |
| 1012 ** ANSI X9.62, Section 5.4.3, Step 1 | |
| 1013 ** | |
| 1014 ** Compute u1*G + u2*Q | |
| 1015 ** Here, A = u1.G B = u2.Q and C = A + B | |
| 1016 ** If the result, C, is the point at infinity, reject the signature | |
| 1017 */ | |
| 1018 if (ec_points_mul(ecParams, &u1, &u2, &key->publicValue, &pointC) | |
| 1019 != SECSuccess) { | |
| 1020 rv = SECFailure; | |
| 1021 goto cleanup; | |
| 1022 } | |
| 1023 if (ec_point_at_infinity(&pointC)) { | |
| 1024 PORT_SetError(SEC_ERROR_BAD_SIGNATURE); | |
| 1025 rv = SECFailure; | |
| 1026 goto cleanup; | |
| 1027 } | |
| 1028 | |
| 1029 CHECK_MPI_OK( mp_read_unsigned_octets(&x1, pointC.data + 1, flen) ); | |
| 1030 | |
| 1031 /* | |
| 1032 ** ANSI X9.62, Section 5.4.4, Step 2 | |
| 1033 ** | |
| 1034 ** v = x1 mod n | |
| 1035 */ | |
| 1036 CHECK_MPI_OK( mp_mod(&x1, &n, &v) ); | |
| 1037 | |
| 1038 #if EC_DEBUG | |
| 1039 mp_todecimal(&r_, mpstr); | |
| 1040 printf("r_: %s (dec)\n", mpstr); | |
| 1041 mp_todecimal(&v, mpstr); | |
| 1042 printf("v : %s (dec)\n", mpstr); | |
| 1043 #endif | |
| 1044 | |
| 1045 /* | |
| 1046 ** ANSI X9.62, Section 5.4.4, Step 3 | |
| 1047 ** | |
| 1048 ** Verification: v == r' | |
| 1049 */ | |
| 1050 if (mp_cmp(&v, &r_)) { | |
| 1051 PORT_SetError(SEC_ERROR_BAD_SIGNATURE); | |
| 1052 rv = SECFailure; /* Signature failed to verify. */ | |
| 1053 } else { | |
| 1054 rv = SECSuccess; /* Signature verified. */ | |
| 1055 } | |
| 1056 | |
| 1057 #if EC_DEBUG | |
| 1058 mp_todecimal(&u1, mpstr); | |
| 1059 printf("u1: %s (dec)\n", mpstr); | |
| 1060 mp_todecimal(&u2, mpstr); | |
| 1061 printf("u2: %s (dec)\n", mpstr); | |
| 1062 mp_tohex(&x1, mpstr); | |
| 1063 printf("x1: %s\n", mpstr); | |
| 1064 mp_todecimal(&v, mpstr); | |
| 1065 printf("v : %s (dec)\n", mpstr); | |
| 1066 #endif | |
| 1067 | |
| 1068 cleanup: | |
| 1069 mp_clear(&r_); | |
| 1070 mp_clear(&s_); | |
| 1071 mp_clear(&c); | |
| 1072 mp_clear(&u1); | |
| 1073 mp_clear(&u2); | |
| 1074 mp_clear(&x1); | |
| 1075 mp_clear(&v); | |
| 1076 mp_clear(&n); | |
| 1077 | |
| 1078 if (pointC.data) SECITEM_FreeItem(&pointC, PR_FALSE); | |
| 1079 if (err) { | |
| 1080 MP_TO_SEC_ERROR(err); | |
| 1081 rv = SECFailure; | |
| 1082 } | |
| 1083 | |
| 1084 #if EC_DEBUG | |
| 1085 printf("ECDSA verification %s\n", | |
| 1086 (rv == SECSuccess) ? "succeeded" : "failed"); | |
| 1087 #endif | |
| 1088 #else | |
| 1089 PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); | |
| 1090 #endif /* NSS_DISABLE_ECC */ | |
| 1091 | |
| 1092 return rv; | |
| 1093 } | |
| 1094 | |
| OLD | NEW |