| OLD | NEW |
| (Empty) |
| 1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
| 2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
| 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
| 4 | |
| 5 #ifdef FREEBL_NO_DEPEND | |
| 6 #include "stubs.h" | |
| 7 #endif | |
| 8 #include "blapit.h" | |
| 9 #include "blapii.h" | |
| 10 #include "cts.h" | |
| 11 #include "secerr.h" | |
| 12 | |
| 13 struct CTSContextStr { | |
| 14 freeblCipherFunc cipher; | |
| 15 void *context; | |
| 16 /* iv stores the last ciphertext block of the previous message. | |
| 17 * Only used by decrypt. */ | |
| 18 unsigned char iv[MAX_BLOCK_SIZE]; | |
| 19 }; | |
| 20 | |
| 21 CTSContext * | |
| 22 CTS_CreateContext(void *context, freeblCipherFunc cipher, | |
| 23 const unsigned char *iv, unsigned int blocksize) | |
| 24 { | |
| 25 CTSContext *cts; | |
| 26 | |
| 27 if (blocksize > MAX_BLOCK_SIZE) { | |
| 28 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | |
| 29 return NULL; | |
| 30 } | |
| 31 cts = PORT_ZNew(CTSContext); | |
| 32 if (cts == NULL) { | |
| 33 return NULL; | |
| 34 } | |
| 35 PORT_Memcpy(cts->iv, iv, blocksize); | |
| 36 cts->cipher = cipher; | |
| 37 cts->context = context; | |
| 38 return cts; | |
| 39 } | |
| 40 | |
| 41 void | |
| 42 CTS_DestroyContext(CTSContext *cts, PRBool freeit) | |
| 43 { | |
| 44 if (freeit) { | |
| 45 PORT_Free(cts); | |
| 46 } | |
| 47 } | |
| 48 | |
| 49 /* | |
| 50 * See addemdum to NIST SP 800-38A | |
| 51 * Generically handle cipher text stealing. Basically this is doing CBC | |
| 52 * operations except someone can pass us a partial block. | |
| 53 * | |
| 54 * Output Order: | |
| 55 * CS-1: C1||C2||C3..Cn-1(could be partial)||Cn (NIST) | |
| 56 * CS-2: pad == 0 C1||C2||C3...Cn-1(is full)||Cn (Schneier) | |
| 57 * CS-2: pad != 0 C1||C2||C3...Cn||Cn-1(is partial)(Schneier) | |
| 58 * CS-3: C1||C2||C3...Cn||Cn-1(could be partial) (Kerberos) | |
| 59 * | |
| 60 * The characteristics of these three options: | |
| 61 * - NIST & Schneier (CS-1 & CS-2) are identical to CBC if there are no | |
| 62 * partial blocks on input. | |
| 63 * - Scheier and Kerberos (CS-2 and CS-3) have no embedded partial blocks, | |
| 64 * which make decoding easier. | |
| 65 * - NIST & Kerberos (CS-1 and CS-3) have consistent block order independent | |
| 66 * of padding. | |
| 67 * | |
| 68 * PKCS #11 did not specify which version to implement, but points to the NIST | |
| 69 * spec, so this code implements CTS-CS-1 from NIST. | |
| 70 * | |
| 71 * To convert the returned buffer to: | |
| 72 * CS-2 (Schneier): do | |
| 73 * unsigned char tmp[MAX_BLOCK_SIZE]; | |
| 74 * pad = *outlen % blocksize; | |
| 75 * if (pad) { | |
| 76 * memcpy(tmp, outbuf+*outlen-blocksize, blocksize); | |
| 77 * memcpy(outbuf+*outlen-pad,outbuf+*outlen-blocksize-pad, pad); | |
| 78 * memcpy(outbuf+*outlen-blocksize-pad, tmp, blocksize); | |
| 79 * } | |
| 80 * CS-3 (Kerberos): do | |
| 81 * unsigned char tmp[MAX_BLOCK_SIZE]; | |
| 82 * pad = *outlen % blocksize; | |
| 83 * if (pad == 0) { | |
| 84 * pad = blocksize; | |
| 85 * } | |
| 86 * memcpy(tmp, outbuf+*outlen-blocksize, blocksize); | |
| 87 * memcpy(outbuf+*outlen-pad,outbuf+*outlen-blocksize-pad, pad); | |
| 88 * memcpy(outbuf+*outlen-blocksize-pad, tmp, blocksize); | |
| 89 */ | |
| 90 SECStatus | |
| 91 CTS_EncryptUpdate(CTSContext *cts, unsigned char *outbuf, | |
| 92 unsigned int *outlen, unsigned int maxout, | |
| 93 const unsigned char *inbuf, unsigned int inlen, | |
| 94 unsigned int blocksize) | |
| 95 { | |
| 96 unsigned char lastBlock[MAX_BLOCK_SIZE]; | |
| 97 unsigned int tmp; | |
| 98 int fullblocks; | |
| 99 int written; | |
| 100 SECStatus rv; | |
| 101 | |
| 102 if (inlen < blocksize) { | |
| 103 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
| 104 return SECFailure; | |
| 105 } | |
| 106 | |
| 107 if (maxout < inlen) { | |
| 108 *outlen = inlen; | |
| 109 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 110 return SECFailure; | |
| 111 } | |
| 112 fullblocks = (inlen/blocksize)*blocksize; | |
| 113 rv = (*cts->cipher)(cts->context, outbuf, outlen, maxout, inbuf, | |
| 114 fullblocks, blocksize); | |
| 115 if (rv != SECSuccess) { | |
| 116 return SECFailure; | |
| 117 } | |
| 118 *outlen = fullblocks; /* AES low level doesn't set outlen */ | |
| 119 inbuf += fullblocks; | |
| 120 inlen -= fullblocks; | |
| 121 if (inlen == 0) { | |
| 122 return SECSuccess; | |
| 123 } | |
| 124 written = *outlen - (blocksize - inlen); | |
| 125 outbuf += written; | |
| 126 maxout -= written; | |
| 127 | |
| 128 /* | |
| 129 * here's the CTS magic, we pad our final block with zeros, | |
| 130 * then do a CBC encrypt. CBC will xor our plain text with | |
| 131 * the previous block (Cn-1), capturing part of that block (Cn-1**) as it | |
| 132 * xors with the zero pad. We then write this full block, overwritting | |
| 133 * (Cn-1**) in our buffer. This allows us to have input data == output | |
| 134 * data since Cn contains enough information to reconver Cn-1** when | |
| 135 * we decrypt (at the cost of some complexity as you can see in decrypt | |
| 136 * below */ | |
| 137 PORT_Memcpy(lastBlock, inbuf, inlen); | |
| 138 PORT_Memset(lastBlock + inlen, 0, blocksize - inlen); | |
| 139 rv = (*cts->cipher)(cts->context, outbuf, &tmp, maxout, lastBlock, | |
| 140 blocksize, blocksize); | |
| 141 PORT_Memset(lastBlock, 0, blocksize); | |
| 142 if (rv == SECSuccess) { | |
| 143 *outlen = written + blocksize; | |
| 144 } | |
| 145 return rv; | |
| 146 } | |
| 147 | |
| 148 | |
| 149 #define XOR_BLOCK(x,y,count) for(i=0; i < count; i++) x[i] = x[i] ^ y[i] | |
| 150 | |
| 151 /* | |
| 152 * See addemdum to NIST SP 800-38A | |
| 153 * Decrypt, Expect CS-1: input. See the comment on the encrypt side | |
| 154 * to understand what CS-2 and CS-3 mean. | |
| 155 * | |
| 156 * To convert the input buffer to CS-1 from ... | |
| 157 * CS-2 (Schneier): do | |
| 158 * unsigned char tmp[MAX_BLOCK_SIZE]; | |
| 159 * pad = inlen % blocksize; | |
| 160 * if (pad) { | |
| 161 * memcpy(tmp, inbuf+inlen-blocksize-pad, blocksize); | |
| 162 * memcpy(inbuf+inlen-blocksize-pad,inbuf+inlen-pad, pad); | |
| 163 * memcpy(inbuf+inlen-blocksize, tmp, blocksize); | |
| 164 * } | |
| 165 * CS-3 (Kerberos): do | |
| 166 * unsigned char tmp[MAX_BLOCK_SIZE]; | |
| 167 * pad = inlen % blocksize; | |
| 168 * if (pad == 0) { | |
| 169 * pad = blocksize; | |
| 170 * } | |
| 171 * memcpy(tmp, inbuf+inlen-blocksize-pad, blocksize); | |
| 172 * memcpy(inbuf+inlen-blocksize-pad,inbuf+inlen-pad, pad); | |
| 173 * memcpy(inbuf+inlen-blocksize, tmp, blocksize); | |
| 174 */ | |
| 175 SECStatus | |
| 176 CTS_DecryptUpdate(CTSContext *cts, unsigned char *outbuf, | |
| 177 unsigned int *outlen, unsigned int maxout, | |
| 178 const unsigned char *inbuf, unsigned int inlen, | |
| 179 unsigned int blocksize) | |
| 180 { | |
| 181 unsigned char *Pn; | |
| 182 unsigned char Cn_2[MAX_BLOCK_SIZE]; /* block Cn-2 */ | |
| 183 unsigned char Cn_1[MAX_BLOCK_SIZE]; /* block Cn-1 */ | |
| 184 unsigned char Cn[MAX_BLOCK_SIZE]; /* block Cn */ | |
| 185 unsigned char lastBlock[MAX_BLOCK_SIZE]; | |
| 186 const unsigned char *tmp; | |
| 187 unsigned int tmpLen; | |
| 188 unsigned int fullblocks, pad; | |
| 189 unsigned int i; | |
| 190 SECStatus rv; | |
| 191 | |
| 192 if (inlen < blocksize) { | |
| 193 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
| 194 return SECFailure; | |
| 195 } | |
| 196 | |
| 197 if (maxout < inlen) { | |
| 198 *outlen = inlen; | |
| 199 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 200 return SECFailure; | |
| 201 } | |
| 202 | |
| 203 fullblocks = (inlen/blocksize)*blocksize; | |
| 204 | |
| 205 /* even though we expect the input to be CS-1, CS-2 is easier to parse, | |
| 206 * so convert to CS-2 immediately. NOTE: this is the same code as in | |
| 207 * the comment for encrypt. NOTE2: since we can't modify inbuf unless | |
| 208 * inbuf and outbuf overlap, just copy inbuf to outbuf and modify it there | |
| 209 */ | |
| 210 pad = inlen - fullblocks; | |
| 211 if (pad != 0) { | |
| 212 if (inbuf != outbuf) { | |
| 213 memcpy(outbuf, inbuf, inlen); | |
| 214 /* keep the names so we logically know how we are using the | |
| 215 * buffers */ | |
| 216 inbuf = outbuf; | |
| 217 } | |
| 218 memcpy(lastBlock, inbuf+inlen-blocksize, blocksize); | |
| 219 /* we know inbuf == outbuf now, inbuf is declared const and can't | |
| 220 * be the target, so use outbuf for the target here */ | |
| 221 memcpy(outbuf+inlen-pad, inbuf+inlen-blocksize-pad, pad); | |
| 222 memcpy(outbuf+inlen-blocksize-pad, lastBlock, blocksize); | |
| 223 } | |
| 224 /* save the previous to last block so we can undo the misordered | |
| 225 * chaining */ | |
| 226 tmp = (fullblocks < blocksize*2) ? cts->iv : | |
| 227 inbuf+fullblocks-blocksize*2; | |
| 228 PORT_Memcpy(Cn_2, tmp, blocksize); | |
| 229 PORT_Memcpy(Cn, inbuf+fullblocks-blocksize, blocksize); | |
| 230 rv = (*cts->cipher)(cts->context, outbuf, outlen, maxout, inbuf, | |
| 231 fullblocks, blocksize); | |
| 232 if (rv != SECSuccess) { | |
| 233 return SECFailure; | |
| 234 } | |
| 235 *outlen = fullblocks; /* AES low level doesn't set outlen */ | |
| 236 inbuf += fullblocks; | |
| 237 inlen -= fullblocks; | |
| 238 if (inlen == 0) { | |
| 239 return SECSuccess; | |
| 240 } | |
| 241 outbuf += fullblocks; | |
| 242 | |
| 243 /* recover the stolen text */ | |
| 244 PORT_Memset(lastBlock, 0, blocksize); | |
| 245 PORT_Memcpy(lastBlock, inbuf, inlen); | |
| 246 PORT_Memcpy(Cn_1, inbuf, inlen); | |
| 247 Pn = outbuf-blocksize; | |
| 248 /* inbuf points to Cn-1* in the input buffer */ | |
| 249 /* NOTE: below there are 2 sections marked "make up for the out of order | |
| 250 * cbc decryption". You may ask, what is going on here. | |
| 251 * Short answer: CBC automatically xors the plain text with the previous | |
| 252 * encrypted block. We are decrypting the last 2 blocks out of order, so | |
| 253 * we have to 'back out' the decrypt xor and 'add back' the encrypt xor. | |
| 254 * Long answer: When we encrypted, we encrypted as follows: | |
| 255 * Pn-2, Pn-1, (Pn || 0), but on decryption we can't | |
| 256 * decrypt Cn-1 until we decrypt Cn because part of Cn-1 is stored in | |
| 257 * Cn (see below). So above we decrypted all the full blocks: | |
| 258 * Cn-2, Cn, | |
| 259 * to get: | |
| 260 * Pn-2, Pn, Except that Pn is not yet corect. On encrypt, we | |
| 261 * xor'd Pn || 0 with Cn-1, but on decrypt we xor'd it with Cn-2 | |
| 262 * To recover Pn, we xor the block with Cn-1* || 0 (in last block) and | |
| 263 * Cn-2 to get Pn || Cn-1**. Pn can then be written to the output buffer | |
| 264 * and we can now reunite Cn-1. With the full Cn-1 we can decrypt it, | |
| 265 * but now decrypt is going to xor the decrypted data with Cn instead of | |
| 266 * Cn-2. xoring Cn and Cn-2 restores the original Pn-1 and we can now | |
| 267 * write that oout to the buffer */ | |
| 268 | |
| 269 /* make up for the out of order CBC decryption */ | |
| 270 XOR_BLOCK(lastBlock, Cn_2, blocksize); | |
| 271 XOR_BLOCK(lastBlock, Pn, blocksize); | |
| 272 /* last buf now has Pn || Cn-1**, copy out Pn */ | |
| 273 PORT_Memcpy(outbuf, lastBlock, inlen); | |
| 274 *outlen += inlen; | |
| 275 /* copy Cn-1* into last buf to recover Cn-1 */ | |
| 276 PORT_Memcpy(lastBlock, Cn_1, inlen); | |
| 277 /* note: because Cn and Cn-1 were out of order, our pointer to Pn also | |
| 278 * points to where Pn-1 needs to reside. From here on out read Pn in | |
| 279 * the code as really Pn-1. */ | |
| 280 rv = (*cts->cipher)(cts->context, Pn, &tmpLen, blocksize, lastBlock, | |
| 281 blocksize, blocksize); | |
| 282 if (rv != SECSuccess) { | |
| 283 return SECFailure; | |
| 284 } | |
| 285 /* make up for the out of order CBC decryption */ | |
| 286 XOR_BLOCK(Pn, Cn_2, blocksize); | |
| 287 XOR_BLOCK(Pn, Cn, blocksize); | |
| 288 /* reset iv to Cn */ | |
| 289 PORT_Memcpy(cts->iv, Cn, blocksize); | |
| 290 /* This makes Cn the last block for the next decrypt operation, which | |
| 291 * matches the encrypt. We don't care about the contexts of last block, | |
| 292 * only the side effect of setting the internal IV */ | |
| 293 (void) (*cts->cipher)(cts->context, lastBlock, &tmpLen, blocksize, Cn, | |
| 294 blocksize, blocksize); | |
| 295 /* clear last block. At this point last block contains Pn xor Cn_1 xor | |
| 296 * Cn_2, both of with an attacker would know, so we need to clear this | |
| 297 * buffer out */ | |
| 298 PORT_Memset(lastBlock, 0, blocksize); | |
| 299 /* Cn, Cn_1, and Cn_2 have encrypted data, so no need to clear them */ | |
| 300 return SECSuccess; | |
| 301 } | |
| OLD | NEW |