| OLD | NEW |
| (Empty) |
| 1 /* arcfour.c - the arc four algorithm. | |
| 2 * | |
| 3 * This Source Code Form is subject to the terms of the Mozilla Public | |
| 4 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
| 5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
| 6 | |
| 7 #ifdef FREEBL_NO_DEPEND | |
| 8 #include "stubs.h" | |
| 9 #endif | |
| 10 | |
| 11 #include "prerr.h" | |
| 12 #include "secerr.h" | |
| 13 | |
| 14 #include "prtypes.h" | |
| 15 #include "blapi.h" | |
| 16 | |
| 17 /* Architecture-dependent defines */ | |
| 18 | |
| 19 #if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \ | |
| 20 defined(_WIN64) | |
| 21 /* Convert the byte-stream to a word-stream */ | |
| 22 #define CONVERT_TO_WORDS | |
| 23 #endif | |
| 24 | |
| 25 #if defined(AIX) || defined(OSF1) || defined(NSS_BEVAND_ARCFOUR) | |
| 26 /* Treat array variables as words, not bytes, on CPUs that take | |
| 27 * much longer to write bytes than to write words, or when using | |
| 28 * assembler code that required it. | |
| 29 */ | |
| 30 #define USE_WORD | |
| 31 #endif | |
| 32 | |
| 33 #if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR) | |
| 34 typedef PRUint64 WORD; | |
| 35 #else | |
| 36 typedef PRUint32 WORD; | |
| 37 #endif | |
| 38 #define WORDSIZE sizeof(WORD) | |
| 39 | |
| 40 #if defined(USE_WORD) | |
| 41 typedef WORD Stype; | |
| 42 #else | |
| 43 typedef PRUint8 Stype; | |
| 44 #endif | |
| 45 | |
| 46 #define ARCFOUR_STATE_SIZE 256 | |
| 47 | |
| 48 #define MASK1BYTE (WORD)(0xff) | |
| 49 | |
| 50 #define SWAP(a, b) \ | |
| 51 tmp = a; \ | |
| 52 a = b; \ | |
| 53 b = tmp; | |
| 54 | |
| 55 /* | |
| 56 * State information for stream cipher. | |
| 57 */ | |
| 58 struct RC4ContextStr | |
| 59 { | |
| 60 #if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR) | |
| 61 Stype i; | |
| 62 Stype j; | |
| 63 Stype S[ARCFOUR_STATE_SIZE]; | |
| 64 #else | |
| 65 Stype S[ARCFOUR_STATE_SIZE]; | |
| 66 Stype i; | |
| 67 Stype j; | |
| 68 #endif | |
| 69 }; | |
| 70 | |
| 71 /* | |
| 72 * array indices [0..255] to initialize cx->S array (faster than loop). | |
| 73 */ | |
| 74 static const Stype Kinit[256] = { | |
| 75 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | |
| 76 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, | |
| 77 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, | |
| 78 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, | |
| 79 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, | |
| 80 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, | |
| 81 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, | |
| 82 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, | |
| 83 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, | |
| 84 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, | |
| 85 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, | |
| 86 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, | |
| 87 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, | |
| 88 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, | |
| 89 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, | |
| 90 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, | |
| 91 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | |
| 92 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, | |
| 93 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, | |
| 94 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, | |
| 95 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | |
| 96 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, | |
| 97 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, | |
| 98 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, | |
| 99 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, | |
| 100 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, | |
| 101 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, | |
| 102 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, | |
| 103 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, | |
| 104 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, | |
| 105 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, | |
| 106 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff | |
| 107 }; | |
| 108 | |
| 109 RC4Context * | |
| 110 RC4_AllocateContext(void) | |
| 111 { | |
| 112 return PORT_ZNew(RC4Context); | |
| 113 } | |
| 114 | |
| 115 SECStatus | |
| 116 RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len, | |
| 117 const unsigned char * unused1, int unused2, | |
| 118 unsigned int unused3, unsigned int unused4) | |
| 119 { | |
| 120 unsigned int i; | |
| 121 PRUint8 j, tmp; | |
| 122 PRUint8 K[256]; | |
| 123 PRUint8 *L; | |
| 124 | |
| 125 /* verify the key length. */ | |
| 126 PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE); | |
| 127 if (len == 0 || len >= ARCFOUR_STATE_SIZE) { | |
| 128 PORT_SetError(SEC_ERROR_BAD_KEY); | |
| 129 return SECFailure; | |
| 130 } | |
| 131 if (cx == NULL) { | |
| 132 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 133 return SECFailure; | |
| 134 } | |
| 135 /* Initialize the state using array indices. */ | |
| 136 memcpy(cx->S, Kinit, sizeof cx->S); | |
| 137 /* Fill in K repeatedly with values from key. */ | |
| 138 L = K; | |
| 139 for (i = sizeof K; i > len; i-= len) { | |
| 140 memcpy(L, key, len); | |
| 141 L += len; | |
| 142 } | |
| 143 memcpy(L, key, i); | |
| 144 /* Stir the state of the generator. At this point it is assumed | |
| 145 * that the key is the size of the state buffer. If this is not | |
| 146 * the case, the key bytes are repeated to fill the buffer. | |
| 147 */ | |
| 148 j = 0; | |
| 149 #define ARCFOUR_STATE_STIR(ii) \ | |
| 150 j = j + cx->S[ii] + K[ii]; \ | |
| 151 SWAP(cx->S[ii], cx->S[j]); | |
| 152 for (i=0; i<ARCFOUR_STATE_SIZE; i++) { | |
| 153 ARCFOUR_STATE_STIR(i); | |
| 154 } | |
| 155 cx->i = 0; | |
| 156 cx->j = 0; | |
| 157 return SECSuccess; | |
| 158 } | |
| 159 | |
| 160 | |
| 161 /* | |
| 162 * Initialize a new generator. | |
| 163 */ | |
| 164 RC4Context * | |
| 165 RC4_CreateContext(const unsigned char *key, int len) | |
| 166 { | |
| 167 RC4Context *cx = RC4_AllocateContext(); | |
| 168 if (cx) { | |
| 169 SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0); | |
| 170 if (rv != SECSuccess) { | |
| 171 PORT_ZFree(cx, sizeof(*cx)); | |
| 172 cx = NULL; | |
| 173 } | |
| 174 } | |
| 175 return cx; | |
| 176 } | |
| 177 | |
| 178 void | |
| 179 RC4_DestroyContext(RC4Context *cx, PRBool freeit) | |
| 180 { | |
| 181 if (freeit) | |
| 182 PORT_ZFree(cx, sizeof(*cx)); | |
| 183 } | |
| 184 | |
| 185 #if defined(NSS_BEVAND_ARCFOUR) | |
| 186 extern void ARCFOUR(RC4Context *cx, WORD inputLen, | |
| 187 const unsigned char *input, unsigned char *output); | |
| 188 #else | |
| 189 /* | |
| 190 * Generate the next byte in the stream. | |
| 191 */ | |
| 192 #define ARCFOUR_NEXT_BYTE() \ | |
| 193 tmpSi = cx->S[++tmpi]; \ | |
| 194 tmpj += tmpSi; \ | |
| 195 tmpSj = cx->S[tmpj]; \ | |
| 196 cx->S[tmpi] = tmpSj; \ | |
| 197 cx->S[tmpj] = tmpSi; \ | |
| 198 t = tmpSi + tmpSj; | |
| 199 | |
| 200 #ifdef CONVERT_TO_WORDS | |
| 201 /* | |
| 202 * Straight ARCFOUR op. No optimization. | |
| 203 */ | |
| 204 static SECStatus | |
| 205 rc4_no_opt(RC4Context *cx, unsigned char *output, | |
| 206 unsigned int *outputLen, unsigned int maxOutputLen, | |
| 207 const unsigned char *input, unsigned int inputLen) | |
| 208 { | |
| 209 PRUint8 t; | |
| 210 Stype tmpSi, tmpSj; | |
| 211 register PRUint8 tmpi = cx->i; | |
| 212 register PRUint8 tmpj = cx->j; | |
| 213 unsigned int index; | |
| 214 PORT_Assert(maxOutputLen >= inputLen); | |
| 215 if (maxOutputLen < inputLen) { | |
| 216 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 217 return SECFailure; | |
| 218 } | |
| 219 for (index=0; index < inputLen; index++) { | |
| 220 /* Generate next byte from stream. */ | |
| 221 ARCFOUR_NEXT_BYTE(); | |
| 222 /* output = next stream byte XOR next input byte */ | |
| 223 output[index] = cx->S[t] ^ input[index]; | |
| 224 } | |
| 225 *outputLen = inputLen; | |
| 226 cx->i = tmpi; | |
| 227 cx->j = tmpj; | |
| 228 return SECSuccess; | |
| 229 } | |
| 230 | |
| 231 #else | |
| 232 /* !CONVERT_TO_WORDS */ | |
| 233 | |
| 234 /* | |
| 235 * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces. | |
| 236 */ | |
| 237 static SECStatus | |
| 238 rc4_unrolled(RC4Context *cx, unsigned char *output, | |
| 239 unsigned int *outputLen, unsigned int maxOutputLen, | |
| 240 const unsigned char *input, unsigned int inputLen) | |
| 241 { | |
| 242 PRUint8 t; | |
| 243 Stype tmpSi, tmpSj; | |
| 244 register PRUint8 tmpi = cx->i; | |
| 245 register PRUint8 tmpj = cx->j; | |
| 246 int index; | |
| 247 PORT_Assert(maxOutputLen >= inputLen); | |
| 248 if (maxOutputLen < inputLen) { | |
| 249 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 250 return SECFailure; | |
| 251 } | |
| 252 for (index = inputLen / 8; index-- > 0; input += 8, output += 8) { | |
| 253 ARCFOUR_NEXT_BYTE(); | |
| 254 output[0] = cx->S[t] ^ input[0]; | |
| 255 ARCFOUR_NEXT_BYTE(); | |
| 256 output[1] = cx->S[t] ^ input[1]; | |
| 257 ARCFOUR_NEXT_BYTE(); | |
| 258 output[2] = cx->S[t] ^ input[2]; | |
| 259 ARCFOUR_NEXT_BYTE(); | |
| 260 output[3] = cx->S[t] ^ input[3]; | |
| 261 ARCFOUR_NEXT_BYTE(); | |
| 262 output[4] = cx->S[t] ^ input[4]; | |
| 263 ARCFOUR_NEXT_BYTE(); | |
| 264 output[5] = cx->S[t] ^ input[5]; | |
| 265 ARCFOUR_NEXT_BYTE(); | |
| 266 output[6] = cx->S[t] ^ input[6]; | |
| 267 ARCFOUR_NEXT_BYTE(); | |
| 268 output[7] = cx->S[t] ^ input[7]; | |
| 269 } | |
| 270 index = inputLen % 8; | |
| 271 if (index) { | |
| 272 input += index; | |
| 273 output += index; | |
| 274 switch (index) { | |
| 275 case 7: | |
| 276 ARCFOUR_NEXT_BYTE(); | |
| 277 output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */ | |
| 278 case 6: | |
| 279 ARCFOUR_NEXT_BYTE(); | |
| 280 output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */ | |
| 281 case 5: | |
| 282 ARCFOUR_NEXT_BYTE(); | |
| 283 output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */ | |
| 284 case 4: | |
| 285 ARCFOUR_NEXT_BYTE(); | |
| 286 output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */ | |
| 287 case 3: | |
| 288 ARCFOUR_NEXT_BYTE(); | |
| 289 output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */ | |
| 290 case 2: | |
| 291 ARCFOUR_NEXT_BYTE(); | |
| 292 output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */ | |
| 293 case 1: | |
| 294 ARCFOUR_NEXT_BYTE(); | |
| 295 output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */ | |
| 296 default: | |
| 297 /* FALLTHRU */ | |
| 298 ; /* hp-ux build breaks without this */ | |
| 299 } | |
| 300 } | |
| 301 cx->i = tmpi; | |
| 302 cx->j = tmpj; | |
| 303 *outputLen = inputLen; | |
| 304 return SECSuccess; | |
| 305 } | |
| 306 #endif | |
| 307 | |
| 308 #ifdef IS_LITTLE_ENDIAN | |
| 309 #define ARCFOUR_NEXT4BYTES_L(n) \ | |
| 310 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); \ | |
| 311 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \ | |
| 312 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \ | |
| 313 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); | |
| 314 #else | |
| 315 #define ARCFOUR_NEXT4BYTES_B(n) \ | |
| 316 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 24); \ | |
| 317 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 16); \ | |
| 318 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n + 8); \ | |
| 319 ARCFOUR_NEXT_BYTE(); streamWord |= (WORD)cx->S[t] << (n ); | |
| 320 #endif | |
| 321 | |
| 322 #if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64) | |
| 323 /* 64-bit wordsize */ | |
| 324 #ifdef IS_LITTLE_ENDIAN | |
| 325 #define ARCFOUR_NEXT_WORD() \ | |
| 326 { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); ARCFOUR_NEXT4BYTES_L(32); } | |
| 327 #else | |
| 328 #define ARCFOUR_NEXT_WORD() \ | |
| 329 { streamWord = 0; ARCFOUR_NEXT4BYTES_B(32); ARCFOUR_NEXT4BYTES_B(0); } | |
| 330 #endif | |
| 331 #else | |
| 332 /* 32-bit wordsize */ | |
| 333 #ifdef IS_LITTLE_ENDIAN | |
| 334 #define ARCFOUR_NEXT_WORD() \ | |
| 335 { streamWord = 0; ARCFOUR_NEXT4BYTES_L(0); } | |
| 336 #else | |
| 337 #define ARCFOUR_NEXT_WORD() \ | |
| 338 { streamWord = 0; ARCFOUR_NEXT4BYTES_B(0); } | |
| 339 #endif | |
| 340 #endif | |
| 341 | |
| 342 #ifdef IS_LITTLE_ENDIAN | |
| 343 #define RSH << | |
| 344 #define LSH >> | |
| 345 #else | |
| 346 #define RSH >> | |
| 347 #define LSH << | |
| 348 #endif | |
| 349 | |
| 350 #ifdef IS_LITTLE_ENDIAN | |
| 351 #define LEFTMOST_BYTE_SHIFT 0 | |
| 352 #define NEXT_BYTE_SHIFT(shift) shift + 8 | |
| 353 #else | |
| 354 #define LEFTMOST_BYTE_SHIFT 8*(WORDSIZE - 1) | |
| 355 #define NEXT_BYTE_SHIFT(shift) shift - 8 | |
| 356 #endif | |
| 357 | |
| 358 #ifdef CONVERT_TO_WORDS | |
| 359 static SECStatus | |
| 360 rc4_wordconv(RC4Context *cx, unsigned char *output, | |
| 361 unsigned int *outputLen, unsigned int maxOutputLen, | |
| 362 const unsigned char *input, unsigned int inputLen) | |
| 363 { | |
| 364 PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t)); | |
| 365 unsigned int inOffset = (PRUword)input % WORDSIZE; | |
| 366 unsigned int outOffset = (PRUword)output % WORDSIZE; | |
| 367 register WORD streamWord; | |
| 368 register const WORD *pInWord; | |
| 369 register WORD *pOutWord; | |
| 370 register WORD inWord, nextInWord; | |
| 371 PRUint8 t; | |
| 372 register Stype tmpSi, tmpSj; | |
| 373 register PRUint8 tmpi = cx->i; | |
| 374 register PRUint8 tmpj = cx->j; | |
| 375 unsigned int bufShift, invBufShift; | |
| 376 unsigned int i; | |
| 377 const unsigned char *finalIn; | |
| 378 unsigned char *finalOut; | |
| 379 | |
| 380 PORT_Assert(maxOutputLen >= inputLen); | |
| 381 if (maxOutputLen < inputLen) { | |
| 382 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 383 return SECFailure; | |
| 384 } | |
| 385 if (inputLen < 2*WORDSIZE) { | |
| 386 /* Ignore word conversion, do byte-at-a-time */ | |
| 387 return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, in
putLen); | |
| 388 } | |
| 389 *outputLen = inputLen; | |
| 390 pInWord = (const WORD *)(input - inOffset); | |
| 391 pOutWord = (WORD *)(output - outOffset); | |
| 392 if (inOffset <= outOffset) { | |
| 393 bufShift = 8*(outOffset - inOffset); | |
| 394 invBufShift = 8*WORDSIZE - bufShift; | |
| 395 } else { | |
| 396 invBufShift = 8*(inOffset - outOffset); | |
| 397 bufShift = 8*WORDSIZE - invBufShift; | |
| 398 } | |
| 399 /*****************************************************************/ | |
| 400 /* Step 1: */ | |
| 401 /* If the first output word is partial, consume the bytes in the */ | |
| 402 /* first partial output word by loading one or two words of */ | |
| 403 /* input and shifting them accordingly. Otherwise, just load */ | |
| 404 /* in the first word of input. At the end of this block, at */ | |
| 405 /* least one partial word of input should ALWAYS be loaded. */ | |
| 406 /*****************************************************************/ | |
| 407 if (outOffset) { | |
| 408 unsigned int byteCount = WORDSIZE - outOffset; | |
| 409 for (i = 0; i < byteCount; i++) { | |
| 410 ARCFOUR_NEXT_BYTE(); | |
| 411 output[i] = cx->S[t] ^ input[i]; | |
| 412 } | |
| 413 /* Consumed byteCount bytes of input */ | |
| 414 inputLen -= byteCount; | |
| 415 pInWord++; | |
| 416 | |
| 417 /* move to next word of output */ | |
| 418 pOutWord++; | |
| 419 | |
| 420 /* If buffers are relatively misaligned, shift the bytes in inWo
rd | |
| 421 * to be aligned to the output buffer. | |
| 422 */ | |
| 423 if (inOffset < outOffset) { | |
| 424 /* The first input word (which may be partial) has more
bytes | |
| 425 * than needed. Copy the remainder to inWord. | |
| 426 */ | |
| 427 unsigned int shift = LEFTMOST_BYTE_SHIFT; | |
| 428 inWord = 0; | |
| 429 for (i = 0; i < outOffset - inOffset; i++) { | |
| 430 inWord |= (WORD)input[byteCount + i] << shift; | |
| 431 shift = NEXT_BYTE_SHIFT(shift); | |
| 432 } | |
| 433 } else if (inOffset > outOffset) { | |
| 434 /* Consumed some bytes in the second input word. Copy t
he | |
| 435 * remainder to inWord. | |
| 436 */ | |
| 437 inWord = *pInWord++; | |
| 438 inWord = inWord LSH invBufShift; | |
| 439 } else { | |
| 440 inWord = 0; | |
| 441 } | |
| 442 } else { | |
| 443 /* output is word-aligned */ | |
| 444 if (inOffset) { | |
| 445 /* Input is not word-aligned. The first word load of in
put | |
| 446 * will not produce a full word of input bytes, so one w
ord | |
| 447 * must be pre-loaded. The main loop below will load in
the | |
| 448 * next input word and shift some of its bytes into inWo
rd | |
| 449 * in order to create a full input word. Note that the
main | |
| 450 * loop must execute at least once because the input mus
t | |
| 451 * be at least two words. | |
| 452 */ | |
| 453 unsigned int shift = LEFTMOST_BYTE_SHIFT; | |
| 454 inWord = 0; | |
| 455 for (i = 0; i < WORDSIZE - inOffset; i++) { | |
| 456 inWord |= (WORD)input[i] << shift; | |
| 457 shift = NEXT_BYTE_SHIFT(shift); | |
| 458 } | |
| 459 pInWord++; | |
| 460 } else { | |
| 461 /* Input is word-aligned. The first word load of input | |
| 462 * will produce a full word of input bytes, so nothing | |
| 463 * needs to be loaded here. | |
| 464 */ | |
| 465 inWord = 0; | |
| 466 } | |
| 467 } | |
| 468 /*****************************************************************/ | |
| 469 /* Step 2: main loop */ | |
| 470 /* At this point the output buffer is word-aligned. Any unused */ | |
| 471 /* bytes from above will be in inWord (shifted correctly). If */ | |
| 472 /* the input buffer is unaligned relative to the output buffer, */ | |
| 473 /* shifting has to be done. */ | |
| 474 /*****************************************************************/ | |
| 475 if (bufShift) { | |
| 476 /* preloadedByteCount is the number of input bytes pre-loaded | |
| 477 * in inWord. | |
| 478 */ | |
| 479 unsigned int preloadedByteCount = bufShift/8; | |
| 480 for (; inputLen >= preloadedByteCount + WORDSIZE; | |
| 481 inputLen -= WORDSIZE) { | |
| 482 nextInWord = *pInWord++; | |
| 483 inWord |= nextInWord RSH bufShift; | |
| 484 nextInWord = nextInWord LSH invBufShift; | |
| 485 ARCFOUR_NEXT_WORD(); | |
| 486 *pOutWord++ = inWord ^ streamWord; | |
| 487 inWord = nextInWord; | |
| 488 } | |
| 489 if (inputLen == 0) { | |
| 490 /* Nothing left to do. */ | |
| 491 cx->i = tmpi; | |
| 492 cx->j = tmpj; | |
| 493 return SECSuccess; | |
| 494 } | |
| 495 finalIn = (const unsigned char *)pInWord - preloadedByteCount; | |
| 496 } else { | |
| 497 for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) { | |
| 498 inWord = *pInWord++; | |
| 499 ARCFOUR_NEXT_WORD(); | |
| 500 *pOutWord++ = inWord ^ streamWord; | |
| 501 } | |
| 502 if (inputLen == 0) { | |
| 503 /* Nothing left to do. */ | |
| 504 cx->i = tmpi; | |
| 505 cx->j = tmpj; | |
| 506 return SECSuccess; | |
| 507 } | |
| 508 finalIn = (const unsigned char *)pInWord; | |
| 509 } | |
| 510 /*****************************************************************/ | |
| 511 /* Step 3: */ | |
| 512 /* Do the remaining partial word of input one byte at a time. */ | |
| 513 /*****************************************************************/ | |
| 514 finalOut = (unsigned char *)pOutWord; | |
| 515 for (i = 0; i < inputLen; i++) { | |
| 516 ARCFOUR_NEXT_BYTE(); | |
| 517 finalOut[i] = cx->S[t] ^ finalIn[i]; | |
| 518 } | |
| 519 cx->i = tmpi; | |
| 520 cx->j = tmpj; | |
| 521 return SECSuccess; | |
| 522 } | |
| 523 #endif | |
| 524 #endif /* NSS_BEVAND_ARCFOUR */ | |
| 525 | |
| 526 SECStatus | |
| 527 RC4_Encrypt(RC4Context *cx, unsigned char *output, | |
| 528 unsigned int *outputLen, unsigned int maxOutputLen, | |
| 529 const unsigned char *input, unsigned int inputLen) | |
| 530 { | |
| 531 PORT_Assert(maxOutputLen >= inputLen); | |
| 532 if (maxOutputLen < inputLen) { | |
| 533 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 534 return SECFailure; | |
| 535 } | |
| 536 #if defined(NSS_BEVAND_ARCFOUR) | |
| 537 ARCFOUR(cx, inputLen, input, output); | |
| 538 *outputLen = inputLen; | |
| 539 return SECSuccess; | |
| 540 #elif defined( CONVERT_TO_WORDS ) | |
| 541 /* Convert the byte-stream to a word-stream */ | |
| 542 return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen
); | |
| 543 #else | |
| 544 /* Operate on bytes, but unroll the main loop */ | |
| 545 return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen
); | |
| 546 #endif | |
| 547 } | |
| 548 | |
| 549 SECStatus RC4_Decrypt(RC4Context *cx, unsigned char *output, | |
| 550 unsigned int *outputLen, unsigned int maxOutputLen, | |
| 551 const unsigned char *input, unsigned int inputLen) | |
| 552 { | |
| 553 PORT_Assert(maxOutputLen >= inputLen); | |
| 554 if (maxOutputLen < inputLen) { | |
| 555 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 556 return SECFailure; | |
| 557 } | |
| 558 /* decrypt and encrypt are same operation. */ | |
| 559 #if defined(NSS_BEVAND_ARCFOUR) | |
| 560 ARCFOUR(cx, inputLen, input, output); | |
| 561 *outputLen = inputLen; | |
| 562 return SECSuccess; | |
| 563 #elif defined( CONVERT_TO_WORDS ) | |
| 564 /* Convert the byte-stream to a word-stream */ | |
| 565 return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen
); | |
| 566 #else | |
| 567 /* Operate on bytes, but unroll the main loop */ | |
| 568 return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen
); | |
| 569 #endif | |
| 570 } | |
| 571 | |
| 572 #undef CONVERT_TO_WORDS | |
| 573 #undef USE_WORD | |
| OLD | NEW |