| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * aeskeywrap.c - implement AES Key Wrap algorithm from RFC 3394 | |
| 3 * | |
| 4 * This Source Code Form is subject to the terms of the Mozilla Public | |
| 5 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
| 6 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
| 7 | |
| 8 #ifdef FREEBL_NO_DEPEND | |
| 9 #include "stubs.h" | |
| 10 #endif | |
| 11 | |
| 12 #include "prcpucfg.h" | |
| 13 #if defined(IS_LITTLE_ENDIAN) || defined(SHA_NO_LONG_LONG) | |
| 14 #define BIG_ENDIAN_WITH_64_BIT_REGISTERS 0 | |
| 15 #else | |
| 16 #define BIG_ENDIAN_WITH_64_BIT_REGISTERS 1 | |
| 17 #endif | |
| 18 #include "prtypes.h" /* for PRUintXX */ | |
| 19 #include "secport.h" /* for PORT_XXX */ | |
| 20 #include "secerr.h" | |
| 21 #include "blapi.h" /* for AES_ functions */ | |
| 22 #include "rijndael.h" | |
| 23 | |
| 24 struct AESKeyWrapContextStr { | |
| 25 unsigned char iv[AES_KEY_WRAP_IV_BYTES]; | |
| 26 AESContext aescx; | |
| 27 }; | |
| 28 | |
| 29 /******************************************/ | |
| 30 /* | |
| 31 ** AES key wrap algorithm, RFC 3394 | |
| 32 */ | |
| 33 | |
| 34 AESKeyWrapContext * | |
| 35 AESKeyWrap_AllocateContext(void) | |
| 36 { | |
| 37 AESKeyWrapContext * cx = PORT_New(AESKeyWrapContext); | |
| 38 return cx; | |
| 39 } | |
| 40 | |
| 41 SECStatus | |
| 42 AESKeyWrap_InitContext(AESKeyWrapContext *cx, | |
| 43 const unsigned char *key, | |
| 44 unsigned int keylen, | |
| 45 const unsigned char *iv, | |
| 46 int x1, | |
| 47 unsigned int encrypt, | |
| 48 unsigned int x2) | |
| 49 { | |
| 50 SECStatus rv = SECFailure; | |
| 51 if (!cx) { | |
| 52 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 53 return SECFailure; | |
| 54 } | |
| 55 if (iv) { | |
| 56 memcpy(cx->iv, iv, sizeof cx->iv); | |
| 57 } else { | |
| 58 memset(cx->iv, 0xA6, sizeof cx->iv); | |
| 59 } | |
| 60 rv = AES_InitContext(&cx->aescx, key, keylen, NULL, NSS_AES, encrypt, | |
| 61 AES_BLOCK_SIZE); | |
| 62 return rv; | |
| 63 } | |
| 64 | |
| 65 /* | |
| 66 ** Create a new AES context suitable for AES encryption/decryption. | |
| 67 ** "key" raw key data | |
| 68 ** "keylen" the number of bytes of key data (16, 24, or 32) | |
| 69 */ | |
| 70 extern AESKeyWrapContext * | |
| 71 AESKeyWrap_CreateContext(const unsigned char *key, const unsigned char *iv, | |
| 72 int encrypt, unsigned int keylen) | |
| 73 { | |
| 74 SECStatus rv; | |
| 75 AESKeyWrapContext * cx = AESKeyWrap_AllocateContext(); | |
| 76 if (!cx) | |
| 77 return NULL; /* error is already set */ | |
| 78 rv = AESKeyWrap_InitContext(cx, key, keylen, iv, 0, encrypt, 0); | |
| 79 if (rv != SECSuccess) { | |
| 80 PORT_Free(cx); | |
| 81 cx = NULL; /* error should already be set */ | |
| 82 } | |
| 83 return cx; | |
| 84 } | |
| 85 | |
| 86 /* | |
| 87 ** Destroy a AES KeyWrap context. | |
| 88 ** "cx" the context | |
| 89 ** "freeit" if PR_TRUE then free the object as well as its sub-objects | |
| 90 */ | |
| 91 extern void | |
| 92 AESKeyWrap_DestroyContext(AESKeyWrapContext *cx, PRBool freeit) | |
| 93 { | |
| 94 if (cx) { | |
| 95 AES_DestroyContext(&cx->aescx, PR_FALSE); | |
| 96 /* memset(cx, 0, sizeof *cx); */ | |
| 97 if (freeit) | |
| 98 PORT_Free(cx); | |
| 99 } | |
| 100 } | |
| 101 | |
| 102 #if !BIG_ENDIAN_WITH_64_BIT_REGISTERS | |
| 103 | |
| 104 /* The AES Key Wrap algorithm has 64-bit values that are ALWAYS big-endian | |
| 105 ** (Most significant byte first) in memory. The only ALU operations done | |
| 106 ** on them are increment, decrement, and XOR. So, on little-endian CPUs, | |
| 107 ** and on CPUs that lack 64-bit registers, these big-endian 64-bit operations | |
| 108 ** are simulated in the following code. This is thought to be faster and | |
| 109 ** simpler than trying to convert the data to little-endian and back. | |
| 110 */ | |
| 111 | |
| 112 /* A and T point to two 64-bit values stored most signficant byte first | |
| 113 ** (big endian). This function increments the 64-bit value T, and then | |
| 114 ** XORs it with A, changing A. | |
| 115 */ | |
| 116 static void | |
| 117 increment_and_xor(unsigned char *A, unsigned char *T) | |
| 118 { | |
| 119 if (!++T[7]) | |
| 120 if (!++T[6]) | |
| 121 if (!++T[5]) | |
| 122 if (!++T[4]) | |
| 123 if (!++T[3]) | |
| 124 if (!++T[2]) | |
| 125 if (!++T[1]) | |
| 126 ++T[0]; | |
| 127 | |
| 128 A[0] ^= T[0]; | |
| 129 A[1] ^= T[1]; | |
| 130 A[2] ^= T[2]; | |
| 131 A[3] ^= T[3]; | |
| 132 A[4] ^= T[4]; | |
| 133 A[5] ^= T[5]; | |
| 134 A[6] ^= T[6]; | |
| 135 A[7] ^= T[7]; | |
| 136 } | |
| 137 | |
| 138 /* A and T point to two 64-bit values stored most signficant byte first | |
| 139 ** (big endian). This function XORs T with A, giving a new A, then | |
| 140 ** decrements the 64-bit value T. | |
| 141 */ | |
| 142 static void | |
| 143 xor_and_decrement(unsigned char *A, unsigned char *T) | |
| 144 { | |
| 145 A[0] ^= T[0]; | |
| 146 A[1] ^= T[1]; | |
| 147 A[2] ^= T[2]; | |
| 148 A[3] ^= T[3]; | |
| 149 A[4] ^= T[4]; | |
| 150 A[5] ^= T[5]; | |
| 151 A[6] ^= T[6]; | |
| 152 A[7] ^= T[7]; | |
| 153 | |
| 154 if (!T[7]--) | |
| 155 if (!T[6]--) | |
| 156 if (!T[5]--) | |
| 157 if (!T[4]--) | |
| 158 if (!T[3]--) | |
| 159 if (!T[2]--) | |
| 160 if (!T[1]--) | |
| 161 T[0]--; | |
| 162 | |
| 163 } | |
| 164 | |
| 165 /* Given an unsigned long t (in host byte order), store this value as a | |
| 166 ** 64-bit big-endian value (MSB first) in *pt. | |
| 167 */ | |
| 168 static void | |
| 169 set_t(unsigned char *pt, unsigned long t) | |
| 170 { | |
| 171 pt[7] = (unsigned char)t; t >>= 8; | |
| 172 pt[6] = (unsigned char)t; t >>= 8; | |
| 173 pt[5] = (unsigned char)t; t >>= 8; | |
| 174 pt[4] = (unsigned char)t; t >>= 8; | |
| 175 pt[3] = (unsigned char)t; t >>= 8; | |
| 176 pt[2] = (unsigned char)t; t >>= 8; | |
| 177 pt[1] = (unsigned char)t; t >>= 8; | |
| 178 pt[0] = (unsigned char)t; | |
| 179 } | |
| 180 | |
| 181 #endif | |
| 182 | |
| 183 /* | |
| 184 ** Perform AES key wrap. | |
| 185 ** "cx" the context | |
| 186 ** "output" the output buffer to store the encrypted data. | |
| 187 ** "outputLen" how much data is stored in "output". Set by the routine | |
| 188 ** after some data is stored in output. | |
| 189 ** "maxOutputLen" the maximum amount of data that can ever be | |
| 190 ** stored in "output" | |
| 191 ** "input" the input data | |
| 192 ** "inputLen" the amount of input data | |
| 193 */ | |
| 194 extern SECStatus | |
| 195 AESKeyWrap_Encrypt(AESKeyWrapContext *cx, unsigned char *output, | |
| 196 unsigned int *pOutputLen, unsigned int maxOutputLen, | |
| 197 const unsigned char *input, unsigned int inputLen) | |
| 198 { | |
| 199 PRUint64 * R = NULL; | |
| 200 unsigned int nBlocks; | |
| 201 unsigned int i, j; | |
| 202 unsigned int aesLen = AES_BLOCK_SIZE; | |
| 203 unsigned int outLen = inputLen + AES_KEY_WRAP_BLOCK_SIZE; | |
| 204 SECStatus s = SECFailure; | |
| 205 /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */ | |
| 206 PRUint64 t; | |
| 207 PRUint64 B[2]; | |
| 208 | |
| 209 #define A B[0] | |
| 210 | |
| 211 /* Check args */ | |
| 212 if (!inputLen || 0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) { | |
| 213 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
| 214 return s; | |
| 215 } | |
| 216 #ifdef maybe | |
| 217 if (!output && pOutputLen) { /* caller is asking for output size */ | |
| 218 *pOutputLen = outLen; | |
| 219 return SECSuccess; | |
| 220 } | |
| 221 #endif | |
| 222 if (maxOutputLen < outLen) { | |
| 223 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 224 return s; | |
| 225 } | |
| 226 if (cx == NULL || output == NULL || input == NULL) { | |
| 227 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 228 return s; | |
| 229 } | |
| 230 nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE; | |
| 231 R = PORT_NewArray(PRUint64, nBlocks + 1); | |
| 232 if (!R) | |
| 233 return s; /* error is already set. */ | |
| 234 /* | |
| 235 ** 1) Initialize variables. | |
| 236 */ | |
| 237 memcpy(&A, cx->iv, AES_KEY_WRAP_IV_BYTES); | |
| 238 memcpy(&R[1], input, inputLen); | |
| 239 #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | |
| 240 t = 0; | |
| 241 #else | |
| 242 memset(&t, 0, sizeof t); | |
| 243 #endif | |
| 244 /* | |
| 245 ** 2) Calculate intermediate values. | |
| 246 */ | |
| 247 for (j = 0; j < 6; ++j) { | |
| 248 for (i = 1; i <= nBlocks; ++i) { | |
| 249 B[1] = R[i]; | |
| 250 s = AES_Encrypt(&cx->aescx, (unsigned char *)B, &aesLen, | |
| 251 sizeof B, (unsigned char *)B, sizeof B); | |
| 252 if (s != SECSuccess) | |
| 253 break; | |
| 254 R[i] = B[1]; | |
| 255 /* here, increment t and XOR A with t (in big endian order); */ | |
| 256 #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | |
| 257 A ^= ++t; | |
| 258 #else | |
| 259 increment_and_xor((unsigned char *)&A, (unsigned char *)&t); | |
| 260 #endif | |
| 261 } | |
| 262 } | |
| 263 /* | |
| 264 ** 3) Output the results. | |
| 265 */ | |
| 266 if (s == SECSuccess) { | |
| 267 R[0] = A; | |
| 268 memcpy(output, &R[0], outLen); | |
| 269 if (pOutputLen) | |
| 270 *pOutputLen = outLen; | |
| 271 } else if (pOutputLen) { | |
| 272 *pOutputLen = 0; | |
| 273 } | |
| 274 PORT_ZFree(R, outLen); | |
| 275 return s; | |
| 276 } | |
| 277 #undef A | |
| 278 | |
| 279 /* | |
| 280 ** Perform AES key unwrap. | |
| 281 ** "cx" the context | |
| 282 ** "output" the output buffer to store the decrypted data. | |
| 283 ** "outputLen" how much data is stored in "output". Set by the routine | |
| 284 ** after some data is stored in output. | |
| 285 ** "maxOutputLen" the maximum amount of data that can ever be | |
| 286 ** stored in "output" | |
| 287 ** "input" the input data | |
| 288 ** "inputLen" the amount of input data | |
| 289 */ | |
| 290 extern SECStatus | |
| 291 AESKeyWrap_Decrypt(AESKeyWrapContext *cx, unsigned char *output, | |
| 292 unsigned int *pOutputLen, unsigned int maxOutputLen, | |
| 293 const unsigned char *input, unsigned int inputLen) | |
| 294 { | |
| 295 PRUint64 * R = NULL; | |
| 296 unsigned int nBlocks; | |
| 297 unsigned int i, j; | |
| 298 unsigned int aesLen = AES_BLOCK_SIZE; | |
| 299 unsigned int outLen; | |
| 300 SECStatus s = SECFailure; | |
| 301 /* These PRUint64s are ALWAYS big endian, regardless of CPU orientation. */ | |
| 302 PRUint64 t; | |
| 303 PRUint64 B[2]; | |
| 304 | |
| 305 #define A B[0] | |
| 306 | |
| 307 /* Check args */ | |
| 308 if (inputLen < 3 * AES_KEY_WRAP_BLOCK_SIZE || | |
| 309 0 != inputLen % AES_KEY_WRAP_BLOCK_SIZE) { | |
| 310 PORT_SetError(SEC_ERROR_INPUT_LEN); | |
| 311 return s; | |
| 312 } | |
| 313 outLen = inputLen - AES_KEY_WRAP_BLOCK_SIZE; | |
| 314 #ifdef maybe | |
| 315 if (!output && pOutputLen) { /* caller is asking for output size */ | |
| 316 *pOutputLen = outLen; | |
| 317 return SECSuccess; | |
| 318 } | |
| 319 #endif | |
| 320 if (maxOutputLen < outLen) { | |
| 321 PORT_SetError(SEC_ERROR_OUTPUT_LEN); | |
| 322 return s; | |
| 323 } | |
| 324 if (cx == NULL || output == NULL || input == NULL) { | |
| 325 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
| 326 return s; | |
| 327 } | |
| 328 nBlocks = inputLen / AES_KEY_WRAP_BLOCK_SIZE; | |
| 329 R = PORT_NewArray(PRUint64, nBlocks); | |
| 330 if (!R) | |
| 331 return s; /* error is already set. */ | |
| 332 nBlocks--; | |
| 333 /* | |
| 334 ** 1) Initialize variables. | |
| 335 */ | |
| 336 memcpy(&R[0], input, inputLen); | |
| 337 A = R[0]; | |
| 338 #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | |
| 339 t = 6UL * nBlocks; | |
| 340 #else | |
| 341 set_t((unsigned char *)&t, 6UL * nBlocks); | |
| 342 #endif | |
| 343 /* | |
| 344 ** 2) Calculate intermediate values. | |
| 345 */ | |
| 346 for (j = 0; j < 6; ++j) { | |
| 347 for (i = nBlocks; i; --i) { | |
| 348 /* here, XOR A with t (in big endian order) and decrement t; */ | |
| 349 #if BIG_ENDIAN_WITH_64_BIT_REGISTERS | |
| 350 A ^= t--; | |
| 351 #else | |
| 352 xor_and_decrement((unsigned char *)&A, (unsigned char *)&t); | |
| 353 #endif | |
| 354 B[1] = R[i]; | |
| 355 s = AES_Decrypt(&cx->aescx, (unsigned char *)B, &aesLen, | |
| 356 sizeof B, (unsigned char *)B, sizeof B); | |
| 357 if (s != SECSuccess) | |
| 358 break; | |
| 359 R[i] = B[1]; | |
| 360 } | |
| 361 } | |
| 362 /* | |
| 363 ** 3) Output the results. | |
| 364 */ | |
| 365 if (s == SECSuccess) { | |
| 366 int bad = memcmp(&A, cx->iv, AES_KEY_WRAP_IV_BYTES); | |
| 367 if (!bad) { | |
| 368 memcpy(output, &R[1], outLen); | |
| 369 if (pOutputLen) | |
| 370 *pOutputLen = outLen; | |
| 371 } else { | |
| 372 s = SECFailure; | |
| 373 PORT_SetError(SEC_ERROR_BAD_DATA); | |
| 374 if (pOutputLen) | |
| 375 *pOutputLen = 0; | |
| 376 } | |
| 377 } else if (pOutputLen) { | |
| 378 *pOutputLen = 0; | |
| 379 } | |
| 380 PORT_ZFree(R, inputLen); | |
| 381 return s; | |
| 382 } | |
| 383 #undef A | |
| OLD | NEW |