OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #ifndef SkColorXform_opts_DEFINED | 8 #ifndef SkColorXform_opts_DEFINED |
9 #define SkColorXform_opts_DEFINED | 9 #define SkColorXform_opts_DEFINED |
10 | 10 |
(...skipping 139 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
150 static Sk4f linear_to_2dot2(const Sk4f& x) { | 150 static Sk4f linear_to_2dot2(const Sk4f& x) { |
151 // x^(29/64) is a very good approximation of the true value, x^(1/2.2). | 151 // x^(29/64) is a very good approximation of the true value, x^(1/2.2). |
152 auto x2 = x.rsqrt(), // x^(-1/2) | 152 auto x2 = x.rsqrt(), // x^(-1/2) |
153 x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32) | 153 x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32) |
154 x64 = x32.rsqrt(); // x^(+1/64) | 154 x64 = x32.rsqrt(); // x^(+1/64) |
155 | 155 |
156 // 29 = 32 - 2 - 1 | 156 // 29 = 32 - 2 - 1 |
157 return 255.0f * x2.invert() * x32 * x64.invert(); | 157 return 255.0f * x2.invert() * x32 * x64.invert(); |
158 } | 158 } |
159 | 159 |
| 160 static Sk4f linear_to_srgb(const Sk4f& x) { |
| 161 // Approximation of the sRGB gamma curve (within 1 when scaled to 8-bit pixe
ls). |
| 162 // For 0.00000f <= x < 0.00349f, 12.92 * x |
| 163 // For 0.00349f <= x <= 1.00000f, 0.679*(x.^0.5) + 0.423*x.^(0.25) - 0.10
1 |
| 164 // Note that 0.00349 was selected because it is a point where both functions
produce the |
| 165 // same pixel value when rounded. |
| 166 auto rsqrt = x.rsqrt(), |
| 167 sqrt = rsqrt.invert(), |
| 168 ftrt = rsqrt.rsqrt(); |
| 169 |
| 170 auto hi = (-0.101115084998961f * 255.0f) + |
| 171 (+0.678513029959381f * 255.0f) * sqrt + |
| 172 (+0.422602055039580f * 255.0f) * ftrt; |
| 173 |
| 174 auto lo = (12.92f * 255.0f) * x; |
| 175 |
| 176 auto mask = (x < 0.00349f); |
| 177 return mask.thenElse(lo, hi); |
| 178 } |
| 179 |
160 static Sk4f clamp_0_to_255(const Sk4f& x) { | 180 static Sk4f clamp_0_to_255(const Sk4f& x) { |
161 // The order of the arguments is important here. We want to make sure that
NaN | 181 // The order of the arguments is important here. We want to make sure that
NaN |
162 // clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN. | 182 // clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN. |
163 return Sk4f::Min(Sk4f::Max(x, 0.0f), 255.0f); | 183 return Sk4f::Min(Sk4f::Max(x, 0.0f), 255.0f); |
164 } | 184 } |
165 | 185 |
166 template <const float (&linear_from_curve)[256]> | 186 template <const float (&linear_from_curve)[256], Sk4f (*linear_to_curve)(const S
k4f&)> |
167 static void color_xform_RGB1(uint32_t* dst, const uint32_t* src, int len, | 187 static void color_xform_RGB1(uint32_t* dst, const uint32_t* src, int len, |
168 const float matrix[16]) { | 188 const float matrix[16]) { |
169 // Load transformation matrix. | 189 // Load transformation matrix. |
170 auto rXgXbX = Sk4f::Load(matrix + 0), | 190 auto rXgXbX = Sk4f::Load(matrix + 0), |
171 rYgYbY = Sk4f::Load(matrix + 4), | 191 rYgYbY = Sk4f::Load(matrix + 4), |
172 rZgZbZ = Sk4f::Load(matrix + 8); | 192 rZgZbZ = Sk4f::Load(matrix + 8); |
173 | 193 |
174 while (len >= 4) { | 194 while (len >= 4) { |
175 // Convert to linear. The look-up table has perfect accuracy. | 195 // Convert to linear. The look-up table has perfect accuracy. |
176 auto reds = Sk4f{linear_from_curve[(src[0] >> 0) & 0xFF], | 196 auto reds = Sk4f{linear_from_curve[(src[0] >> 0) & 0xFF], |
177 linear_from_curve[(src[1] >> 0) & 0xFF], | 197 linear_from_curve[(src[1] >> 0) & 0xFF], |
178 linear_from_curve[(src[2] >> 0) & 0xFF], | 198 linear_from_curve[(src[2] >> 0) & 0xFF], |
179 linear_from_curve[(src[3] >> 0) & 0xFF]}; | 199 linear_from_curve[(src[3] >> 0) & 0xFF]}; |
180 auto greens = Sk4f{linear_from_curve[(src[0] >> 8) & 0xFF], | 200 auto greens = Sk4f{linear_from_curve[(src[0] >> 8) & 0xFF], |
181 linear_from_curve[(src[1] >> 8) & 0xFF], | 201 linear_from_curve[(src[1] >> 8) & 0xFF], |
182 linear_from_curve[(src[2] >> 8) & 0xFF], | 202 linear_from_curve[(src[2] >> 8) & 0xFF], |
183 linear_from_curve[(src[3] >> 8) & 0xFF]}; | 203 linear_from_curve[(src[3] >> 8) & 0xFF]}; |
184 auto blues = Sk4f{linear_from_curve[(src[0] >> 16) & 0xFF], | 204 auto blues = Sk4f{linear_from_curve[(src[0] >> 16) & 0xFF], |
185 linear_from_curve[(src[1] >> 16) & 0xFF], | 205 linear_from_curve[(src[1] >> 16) & 0xFF], |
186 linear_from_curve[(src[2] >> 16) & 0xFF], | 206 linear_from_curve[(src[2] >> 16) & 0xFF], |
187 linear_from_curve[(src[3] >> 16) & 0xFF]}; | 207 linear_from_curve[(src[3] >> 16) & 0xFF]}; |
188 | 208 |
189 // Apply the transformation matrix to dst gamut. | 209 // Apply the transformation matrix to dst gamut. |
190 auto dstReds = rXgXbX[0]*reds + rYgYbY[0]*greens + rZgZbZ[0]*blues, | 210 auto dstReds = rXgXbX[0]*reds + rYgYbY[0]*greens + rZgZbZ[0]*blues, |
191 dstGreens = rXgXbX[1]*reds + rYgYbY[1]*greens + rZgZbZ[1]*blues, | 211 dstGreens = rXgXbX[1]*reds + rYgYbY[1]*greens + rZgZbZ[1]*blues, |
192 dstBlues = rXgXbX[2]*reds + rYgYbY[2]*greens + rZgZbZ[2]*blues; | 212 dstBlues = rXgXbX[2]*reds + rYgYbY[2]*greens + rZgZbZ[2]*blues; |
193 | 213 |
194 // Convert to dst gamma. | 214 // Convert to dst gamma. |
195 dstReds = linear_to_2dot2(dstReds); | 215 dstReds = linear_to_curve(dstReds); |
196 dstGreens = linear_to_2dot2(dstGreens); | 216 dstGreens = linear_to_curve(dstGreens); |
197 dstBlues = linear_to_2dot2(dstBlues); | 217 dstBlues = linear_to_curve(dstBlues); |
198 | 218 |
199 // Clamp floats to byte range. | 219 // Clamp floats to byte range. |
200 dstReds = clamp_0_to_255(dstReds); | 220 dstReds = clamp_0_to_255(dstReds); |
201 dstGreens = clamp_0_to_255(dstGreens); | 221 dstGreens = clamp_0_to_255(dstGreens); |
202 dstBlues = clamp_0_to_255(dstBlues); | 222 dstBlues = clamp_0_to_255(dstBlues); |
203 | 223 |
204 // Convert to bytes and store to memory. | 224 // Convert to bytes and store to memory. |
205 auto rgba = (Sk4i{(int)0xFF000000} ) | 225 auto rgba = (Sk4i{(int)0xFF000000} ) |
206 | (SkNx_cast<int>(dstReds) ) | 226 | (SkNx_cast<int>(dstReds) ) |
207 | (SkNx_cast<int>(dstGreens) << 8) | 227 | (SkNx_cast<int>(dstGreens) << 8) |
208 | (SkNx_cast<int>(dstBlues) << 16); | 228 | (SkNx_cast<int>(dstBlues) << 16); |
209 rgba.store(dst); | 229 rgba.store(dst); |
210 | 230 |
211 dst += 4; | 231 dst += 4; |
212 src += 4; | 232 src += 4; |
213 len -= 4; | 233 len -= 4; |
214 } | 234 } |
215 | 235 |
216 while (len > 0) { | 236 while (len > 0) { |
217 // Splat r,g,b across a register each. | 237 // Splat r,g,b across a register each. |
218 auto r = Sk4f{linear_from_curve[(*src >> 0) & 0xFF]}, | 238 auto r = Sk4f{linear_from_curve[(*src >> 0) & 0xFF]}, |
219 g = Sk4f{linear_from_curve[(*src >> 8) & 0xFF]}, | 239 g = Sk4f{linear_from_curve[(*src >> 8) & 0xFF]}, |
220 b = Sk4f{linear_from_curve[(*src >> 16) & 0xFF]}; | 240 b = Sk4f{linear_from_curve[(*src >> 16) & 0xFF]}; |
221 | 241 |
222 // Apply transformation matrix to dst gamut. | 242 // Apply transformation matrix to dst gamut. |
223 auto dstPixel = rXgXbX*r + rYgYbY*g + rZgZbZ*b; | 243 auto dstPixel = rXgXbX*r + rYgYbY*g + rZgZbZ*b; |
224 | 244 |
225 // Convert to dst gamma. | 245 // Convert to dst gamma. |
226 dstPixel = linear_to_2dot2(dstPixel); | 246 dstPixel = linear_to_curve(dstPixel); |
227 | 247 |
228 // Clamp floats to byte range. | 248 // Clamp floats to byte range. |
229 dstPixel = clamp_0_to_255(dstPixel); | 249 dstPixel = clamp_0_to_255(dstPixel); |
230 | 250 |
231 // Convert to bytes and store to memory. | 251 // Convert to bytes and store to memory. |
232 uint32_t rgba; | 252 uint32_t rgba; |
233 SkNx_cast<uint8_t>(dstPixel).store(&rgba); | 253 SkNx_cast<uint8_t>(dstPixel).store(&rgba); |
234 rgba |= 0xFF000000; | 254 rgba |= 0xFF000000; |
235 *dst = rgba; | 255 *dst = rgba; |
236 | 256 |
237 dst += 1; | 257 dst += 1; |
238 src += 1; | 258 src += 1; |
239 len -= 1; | 259 len -= 1; |
240 } | 260 } |
241 } | 261 } |
242 | 262 |
243 static void color_xform_RGB1_srgb_to_2dot2(uint32_t* dst, const uint32_t* src, i
nt len, | 263 static void color_xform_RGB1_srgb_to_2dot2(uint32_t* dst, const uint32_t* src, i
nt len, |
244 const float matrix[16]) { | 264 const float matrix[16]) { |
245 color_xform_RGB1<linear_from_srgb>(dst, src, len, matrix); | 265 color_xform_RGB1<linear_from_srgb, linear_to_2dot2>(dst, src, len, matrix); |
246 } | 266 } |
247 | 267 |
248 static void color_xform_RGB1_2dot2_to_2dot2(uint32_t* dst, const uint32_t* src,
int len, | 268 static void color_xform_RGB1_2dot2_to_2dot2(uint32_t* dst, const uint32_t* src,
int len, |
249 const float matrix[16]) { | 269 const float matrix[16]) { |
250 color_xform_RGB1<linear_from_2dot2>(dst, src, len, matrix); | 270 color_xform_RGB1<linear_from_2dot2, linear_to_2dot2>(dst, src, len, matrix); |
| 271 } |
| 272 |
| 273 static void color_xform_RGB1_srgb_to_srgb(uint32_t* dst, const uint32_t* src, in
t len, |
| 274 const float matrix[16]) { |
| 275 color_xform_RGB1<linear_from_srgb, linear_to_srgb>(dst, src, len, matrix); |
| 276 } |
| 277 |
| 278 static void color_xform_RGB1_2dot2_to_srgb(uint32_t* dst, const uint32_t* src, i
nt len, |
| 279 const float matrix[16]) { |
| 280 color_xform_RGB1<linear_from_2dot2, linear_to_srgb>(dst, src, len, matrix); |
251 } | 281 } |
252 | 282 |
253 } // namespace SK_OPTS_NS | 283 } // namespace SK_OPTS_NS |
254 | 284 |
255 #endif // SkColorXform_opts_DEFINED | 285 #endif // SkColorXform_opts_DEFINED |
OLD | NEW |