Index: test/cctest/test-utils-a64.cc |
diff --git a/test/cctest/test-utils-a64.cc b/test/cctest/test-utils-a64.cc |
deleted file mode 100644 |
index 7179d5db2ff335d4bc831abfaccb4e7a91c6665e..0000000000000000000000000000000000000000 |
--- a/test/cctest/test-utils-a64.cc |
+++ /dev/null |
@@ -1,425 +0,0 @@ |
-// Copyright 2013 the V8 project authors. All rights reserved. |
-// Redistribution and use in source and binary forms, with or without |
-// modification, are permitted provided that the following conditions are |
-// met: |
-// |
-// * Redistributions of source code must retain the above copyright |
-// notice, this list of conditions and the following disclaimer. |
-// * Redistributions in binary form must reproduce the above |
-// copyright notice, this list of conditions and the following |
-// disclaimer in the documentation and/or other materials provided |
-// with the distribution. |
-// * Neither the name of Google Inc. nor the names of its |
-// contributors may be used to endorse or promote products derived |
-// from this software without specific prior written permission. |
-// |
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- |
-#include "v8.h" |
- |
-#include "macro-assembler.h" |
-#include "a64/utils-a64.h" |
-#include "cctest.h" |
-#include "test-utils-a64.h" |
- |
-using namespace v8::internal; |
- |
- |
-#define __ masm-> |
- |
- |
-bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) { |
- if (result != expected) { |
- printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", |
- expected, result); |
- } |
- |
- return expected == result; |
-} |
- |
- |
-bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) { |
- if (result != expected) { |
- printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
- expected, result); |
- } |
- |
- return expected == result; |
-} |
- |
- |
-bool EqualFP32(float expected, const RegisterDump*, float result) { |
- if (float_to_rawbits(expected) == float_to_rawbits(result)) { |
- return true; |
- } else { |
- if (std::isnan(expected) || (expected == 0.0)) { |
- printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", |
- float_to_rawbits(expected), float_to_rawbits(result)); |
- } else { |
- printf("Expected %.9f (0x%08" PRIx32 ")\t " |
- "Found %.9f (0x%08" PRIx32 ")\n", |
- expected, float_to_rawbits(expected), |
- result, float_to_rawbits(result)); |
- } |
- return false; |
- } |
-} |
- |
- |
-bool EqualFP64(double expected, const RegisterDump*, double result) { |
- if (double_to_rawbits(expected) == double_to_rawbits(result)) { |
- return true; |
- } |
- |
- if (std::isnan(expected) || (expected == 0.0)) { |
- printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
- double_to_rawbits(expected), double_to_rawbits(result)); |
- } else { |
- printf("Expected %.17f (0x%016" PRIx64 ")\t " |
- "Found %.17f (0x%016" PRIx64 ")\n", |
- expected, double_to_rawbits(expected), |
- result, double_to_rawbits(result)); |
- } |
- return false; |
-} |
- |
- |
-bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) { |
- ASSERT(reg.Is32Bits()); |
- // Retrieve the corresponding X register so we can check that the upper part |
- // was properly cleared. |
- int64_t result_x = core->xreg(reg.code()); |
- if ((result_x & 0xffffffff00000000L) != 0) { |
- printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n", |
- expected, result_x); |
- return false; |
- } |
- uint32_t result_w = core->wreg(reg.code()); |
- return Equal32(expected, core, result_w); |
-} |
- |
- |
-bool Equal64(uint64_t expected, |
- const RegisterDump* core, |
- const Register& reg) { |
- ASSERT(reg.Is64Bits()); |
- uint64_t result = core->xreg(reg.code()); |
- return Equal64(expected, core, result); |
-} |
- |
- |
-bool EqualFP32(float expected, |
- const RegisterDump* core, |
- const FPRegister& fpreg) { |
- ASSERT(fpreg.Is32Bits()); |
- // Retrieve the corresponding D register so we can check that the upper part |
- // was properly cleared. |
- uint64_t result_64 = core->dreg_bits(fpreg.code()); |
- if ((result_64 & 0xffffffff00000000L) != 0) { |
- printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n", |
- float_to_rawbits(expected), expected, result_64); |
- return false; |
- } |
- |
- return EqualFP32(expected, core, core->sreg(fpreg.code())); |
-} |
- |
- |
-bool EqualFP64(double expected, |
- const RegisterDump* core, |
- const FPRegister& fpreg) { |
- ASSERT(fpreg.Is64Bits()); |
- return EqualFP64(expected, core, core->dreg(fpreg.code())); |
-} |
- |
- |
-bool Equal64(const Register& reg0, |
- const RegisterDump* core, |
- const Register& reg1) { |
- ASSERT(reg0.Is64Bits() && reg1.Is64Bits()); |
- int64_t expected = core->xreg(reg0.code()); |
- int64_t result = core->xreg(reg1.code()); |
- return Equal64(expected, core, result); |
-} |
- |
- |
-static char FlagN(uint32_t flags) { |
- return (flags & NFlag) ? 'N' : 'n'; |
-} |
- |
- |
-static char FlagZ(uint32_t flags) { |
- return (flags & ZFlag) ? 'Z' : 'z'; |
-} |
- |
- |
-static char FlagC(uint32_t flags) { |
- return (flags & CFlag) ? 'C' : 'c'; |
-} |
- |
- |
-static char FlagV(uint32_t flags) { |
- return (flags & VFlag) ? 'V' : 'v'; |
-} |
- |
- |
-bool EqualNzcv(uint32_t expected, uint32_t result) { |
- ASSERT((expected & ~NZCVFlag) == 0); |
- ASSERT((result & ~NZCVFlag) == 0); |
- if (result != expected) { |
- printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n", |
- FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected), |
- FlagN(result), FlagZ(result), FlagC(result), FlagV(result)); |
- return false; |
- } |
- |
- return true; |
-} |
- |
- |
-bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) { |
- for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
- if (a->xreg(i) != b->xreg(i)) { |
- printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
- i, a->xreg(i), b->xreg(i)); |
- return false; |
- } |
- } |
- |
- for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { |
- uint64_t a_bits = a->dreg_bits(i); |
- uint64_t b_bits = b->dreg_bits(i); |
- if (a_bits != b_bits) { |
- printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
- i, a_bits, b_bits); |
- return false; |
- } |
- } |
- |
- return true; |
-} |
- |
- |
-RegList PopulateRegisterArray(Register* w, Register* x, Register* r, |
- int reg_size, int reg_count, RegList allowed) { |
- RegList list = 0; |
- int i = 0; |
- for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) { |
- if (((1UL << n) & allowed) != 0) { |
- // Only assign allowed registers. |
- if (r) { |
- r[i] = Register::Create(n, reg_size); |
- } |
- if (x) { |
- x[i] = Register::Create(n, kXRegSizeInBits); |
- } |
- if (w) { |
- w[i] = Register::Create(n, kWRegSizeInBits); |
- } |
- list |= (1UL << n); |
- i++; |
- } |
- } |
- // Check that we got enough registers. |
- ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count); |
- |
- return list; |
-} |
- |
- |
-RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v, |
- int reg_size, int reg_count, RegList allowed) { |
- RegList list = 0; |
- int i = 0; |
- for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) { |
- if (((1UL << n) & allowed) != 0) { |
- // Only assigned allowed registers. |
- if (v) { |
- v[i] = FPRegister::Create(n, reg_size); |
- } |
- if (d) { |
- d[i] = FPRegister::Create(n, kDRegSizeInBits); |
- } |
- if (s) { |
- s[i] = FPRegister::Create(n, kSRegSizeInBits); |
- } |
- list |= (1UL << n); |
- i++; |
- } |
- } |
- // Check that we got enough registers. |
- ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count); |
- |
- return list; |
-} |
- |
- |
-void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) { |
- Register first = NoReg; |
- for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
- if (reg_list & (1UL << i)) { |
- Register xn = Register::Create(i, kXRegSizeInBits); |
- // We should never write into csp here. |
- ASSERT(!xn.Is(csp)); |
- if (!xn.IsZero()) { |
- if (!first.IsValid()) { |
- // This is the first register we've hit, so construct the literal. |
- __ Mov(xn, value); |
- first = xn; |
- } else { |
- // We've already loaded the literal, so re-use the value already |
- // loaded into the first register we hit. |
- __ Mov(xn, first); |
- } |
- } |
- } |
- } |
-} |
- |
- |
-void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) { |
- FPRegister first = NoFPReg; |
- for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { |
- if (reg_list & (1UL << i)) { |
- FPRegister dn = FPRegister::Create(i, kDRegSizeInBits); |
- if (!first.IsValid()) { |
- // This is the first register we've hit, so construct the literal. |
- __ Fmov(dn, value); |
- first = dn; |
- } else { |
- // We've already loaded the literal, so re-use the value already loaded |
- // into the first register we hit. |
- __ Fmov(dn, first); |
- } |
- } |
- } |
-} |
- |
- |
-void Clobber(MacroAssembler* masm, CPURegList reg_list) { |
- if (reg_list.type() == CPURegister::kRegister) { |
- // This will always clobber X registers. |
- Clobber(masm, reg_list.list()); |
- } else if (reg_list.type() == CPURegister::kFPRegister) { |
- // This will always clobber D registers. |
- ClobberFP(masm, reg_list.list()); |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void RegisterDump::Dump(MacroAssembler* masm) { |
- ASSERT(__ StackPointer().Is(csp)); |
- |
- // Ensure that we don't unintentionally clobber any registers. |
- RegList old_tmp_list = masm->TmpList()->list(); |
- RegList old_fptmp_list = masm->FPTmpList()->list(); |
- masm->TmpList()->set_list(0); |
- masm->FPTmpList()->set_list(0); |
- |
- // Preserve some temporary registers. |
- Register dump_base = x0; |
- Register dump = x1; |
- Register tmp = x2; |
- Register dump_base_w = dump_base.W(); |
- Register dump_w = dump.W(); |
- Register tmp_w = tmp.W(); |
- |
- // Offsets into the dump_ structure. |
- const int x_offset = offsetof(dump_t, x_); |
- const int w_offset = offsetof(dump_t, w_); |
- const int d_offset = offsetof(dump_t, d_); |
- const int s_offset = offsetof(dump_t, s_); |
- const int sp_offset = offsetof(dump_t, sp_); |
- const int wsp_offset = offsetof(dump_t, wsp_); |
- const int flags_offset = offsetof(dump_t, flags_); |
- |
- __ Push(xzr, dump_base, dump, tmp); |
- |
- // Load the address where we will dump the state. |
- __ Mov(dump_base, reinterpret_cast<uint64_t>(&dump_)); |
- |
- // Dump the stack pointer (csp and wcsp). |
- // The stack pointer cannot be stored directly; it needs to be moved into |
- // another register first. Also, we pushed four X registers, so we need to |
- // compensate here. |
- __ Add(tmp, csp, 4 * kXRegSize); |
- __ Str(tmp, MemOperand(dump_base, sp_offset)); |
- __ Add(tmp_w, wcsp, 4 * kXRegSize); |
- __ Str(tmp_w, MemOperand(dump_base, wsp_offset)); |
- |
- // Dump X registers. |
- __ Add(dump, dump_base, x_offset); |
- for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { |
- __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1), |
- MemOperand(dump, i * kXRegSize)); |
- } |
- |
- // Dump W registers. |
- __ Add(dump, dump_base, w_offset); |
- for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { |
- __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1), |
- MemOperand(dump, i * kWRegSize)); |
- } |
- |
- // Dump D registers. |
- __ Add(dump, dump_base, d_offset); |
- for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { |
- __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1), |
- MemOperand(dump, i * kDRegSize)); |
- } |
- |
- // Dump S registers. |
- __ Add(dump, dump_base, s_offset); |
- for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { |
- __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1), |
- MemOperand(dump, i * kSRegSize)); |
- } |
- |
- // Dump the flags. |
- __ Mrs(tmp, NZCV); |
- __ Str(tmp, MemOperand(dump_base, flags_offset)); |
- |
- // To dump the values that were in tmp amd dump, we need a new scratch |
- // register. We can use any of the already dumped registers since we can |
- // easily restore them. |
- Register dump2_base = x10; |
- Register dump2 = x11; |
- ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2)); |
- |
- // Don't lose the dump_ address. |
- __ Mov(dump2_base, dump_base); |
- |
- __ Pop(tmp, dump, dump_base, xzr); |
- |
- __ Add(dump2, dump2_base, w_offset); |
- __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSize)); |
- __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSize)); |
- __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSize)); |
- |
- __ Add(dump2, dump2_base, x_offset); |
- __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSize)); |
- __ Str(dump, MemOperand(dump2, dump.code() * kXRegSize)); |
- __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSize)); |
- |
- // Finally, restore dump2_base and dump2. |
- __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSize)); |
- __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSize)); |
- |
- // Restore the MacroAssembler's scratch registers. |
- masm->TmpList()->set_list(old_tmp_list); |
- masm->FPTmpList()->set_list(old_fptmp_list); |
- |
- completed_ = true; |
-} |