| Index: src/a64/instructions-a64.cc
|
| diff --git a/src/a64/instructions-a64.cc b/src/a64/instructions-a64.cc
|
| deleted file mode 100644
|
| index 17f4f2fb199ff1a382392966b21e12ce0809828b..0000000000000000000000000000000000000000
|
| --- a/src/a64/instructions-a64.cc
|
| +++ /dev/null
|
| @@ -1,333 +0,0 @@
|
| -// Copyright 2013 the V8 project authors. All rights reserved.
|
| -// Redistribution and use in source and binary forms, with or without
|
| -// modification, are permitted provided that the following conditions are
|
| -// met:
|
| -//
|
| -// * Redistributions of source code must retain the above copyright
|
| -// notice, this list of conditions and the following disclaimer.
|
| -// * Redistributions in binary form must reproduce the above
|
| -// copyright notice, this list of conditions and the following
|
| -// disclaimer in the documentation and/or other materials provided
|
| -// with the distribution.
|
| -// * Neither the name of Google Inc. nor the names of its
|
| -// contributors may be used to endorse or promote products derived
|
| -// from this software without specific prior written permission.
|
| -//
|
| -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| -
|
| -#include "v8.h"
|
| -
|
| -#if V8_TARGET_ARCH_A64
|
| -
|
| -#define A64_DEFINE_FP_STATICS
|
| -
|
| -#include "a64/instructions-a64.h"
|
| -#include "a64/assembler-a64-inl.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -
|
| -bool Instruction::IsLoad() const {
|
| - if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
| - return false;
|
| - }
|
| -
|
| - if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
| - return Mask(LoadStorePairLBit) != 0;
|
| - } else {
|
| - LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
|
| - switch (op) {
|
| - case LDRB_w:
|
| - case LDRH_w:
|
| - case LDR_w:
|
| - case LDR_x:
|
| - case LDRSB_w:
|
| - case LDRSB_x:
|
| - case LDRSH_w:
|
| - case LDRSH_x:
|
| - case LDRSW_x:
|
| - case LDR_s:
|
| - case LDR_d: return true;
|
| - default: return false;
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Instruction::IsStore() const {
|
| - if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
| - return false;
|
| - }
|
| -
|
| - if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
| - return Mask(LoadStorePairLBit) == 0;
|
| - } else {
|
| - LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
|
| - switch (op) {
|
| - case STRB_w:
|
| - case STRH_w:
|
| - case STR_w:
|
| - case STR_x:
|
| - case STR_s:
|
| - case STR_d: return true;
|
| - default: return false;
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -static uint64_t RotateRight(uint64_t value,
|
| - unsigned int rotate,
|
| - unsigned int width) {
|
| - ASSERT(width <= 64);
|
| - rotate &= 63;
|
| - return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
|
| - (value >> rotate);
|
| -}
|
| -
|
| -
|
| -static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
|
| - uint64_t value,
|
| - unsigned width) {
|
| - ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
|
| - (width == 32));
|
| - ASSERT((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
|
| - uint64_t result = value & ((1UL << width) - 1UL);
|
| - for (unsigned i = width; i < reg_size; i *= 2) {
|
| - result |= (result << i);
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -
|
| -// Logical immediates can't encode zero, so a return value of zero is used to
|
| -// indicate a failure case. Specifically, where the constraints on imm_s are not
|
| -// met.
|
| -uint64_t Instruction::ImmLogical() {
|
| - unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
|
| - int64_t n = BitN();
|
| - int64_t imm_s = ImmSetBits();
|
| - int64_t imm_r = ImmRotate();
|
| -
|
| - // An integer is constructed from the n, imm_s and imm_r bits according to
|
| - // the following table:
|
| - //
|
| - // N imms immr size S R
|
| - // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
| - // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
| - // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
| - // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
| - // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
| - // 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
| - // (s bits must not be all set)
|
| - //
|
| - // A pattern is constructed of size bits, where the least significant S+1
|
| - // bits are set. The pattern is rotated right by R, and repeated across a
|
| - // 32 or 64-bit value, depending on destination register width.
|
| - //
|
| -
|
| - if (n == 1) {
|
| - if (imm_s == 0x3F) {
|
| - return 0;
|
| - }
|
| - uint64_t bits = (1UL << (imm_s + 1)) - 1;
|
| - return RotateRight(bits, imm_r, 64);
|
| - } else {
|
| - if ((imm_s >> 1) == 0x1F) {
|
| - return 0;
|
| - }
|
| - for (int width = 0x20; width >= 0x2; width >>= 1) {
|
| - if ((imm_s & width) == 0) {
|
| - int mask = width - 1;
|
| - if ((imm_s & mask) == mask) {
|
| - return 0;
|
| - }
|
| - uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
|
| - return RepeatBitsAcrossReg(reg_size,
|
| - RotateRight(bits, imm_r & mask, width),
|
| - width);
|
| - }
|
| - }
|
| - }
|
| - UNREACHABLE();
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -float Instruction::ImmFP32() {
|
| - // ImmFP: abcdefgh (8 bits)
|
| - // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
|
| - // where B is b ^ 1
|
| - uint32_t bits = ImmFP();
|
| - uint32_t bit7 = (bits >> 7) & 0x1;
|
| - uint32_t bit6 = (bits >> 6) & 0x1;
|
| - uint32_t bit5_to_0 = bits & 0x3f;
|
| - uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
|
| -
|
| - return rawbits_to_float(result);
|
| -}
|
| -
|
| -
|
| -double Instruction::ImmFP64() {
|
| - // ImmFP: abcdefgh (8 bits)
|
| - // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
| - // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
|
| - // where B is b ^ 1
|
| - uint32_t bits = ImmFP();
|
| - uint64_t bit7 = (bits >> 7) & 0x1;
|
| - uint64_t bit6 = (bits >> 6) & 0x1;
|
| - uint64_t bit5_to_0 = bits & 0x3f;
|
| - uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
|
| -
|
| - return rawbits_to_double(result);
|
| -}
|
| -
|
| -
|
| -LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
|
| - switch (op) {
|
| - case STP_x:
|
| - case LDP_x:
|
| - case STP_d:
|
| - case LDP_d: return LSDoubleWord;
|
| - default: return LSWord;
|
| - }
|
| -}
|
| -
|
| -
|
| -ptrdiff_t Instruction::ImmPCOffset() {
|
| - ptrdiff_t offset;
|
| - if (IsPCRelAddressing()) {
|
| - // PC-relative addressing. Only ADR is supported.
|
| - offset = ImmPCRel();
|
| - } else if (BranchType() != UnknownBranchType) {
|
| - // All PC-relative branches.
|
| - // Relative branch offsets are instruction-size-aligned.
|
| - offset = ImmBranch() << kInstructionSizeLog2;
|
| - } else {
|
| - // Load literal (offset from PC).
|
| - ASSERT(IsLdrLiteral());
|
| - // The offset is always shifted by 2 bits, even for loads to 64-bits
|
| - // registers.
|
| - offset = ImmLLiteral() << kInstructionSizeLog2;
|
| - }
|
| - return offset;
|
| -}
|
| -
|
| -
|
| -Instruction* Instruction::ImmPCOffsetTarget() {
|
| - return InstructionAtOffset(ImmPCOffset());
|
| -}
|
| -
|
| -
|
| -bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
|
| - int32_t offset) {
|
| - return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
|
| -}
|
| -
|
| -
|
| -bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
|
| - return IsValidImmPCOffset(BranchType(), DistanceTo(target));
|
| -}
|
| -
|
| -
|
| -void Instruction::SetImmPCOffsetTarget(Instruction* target) {
|
| - if (IsPCRelAddressing()) {
|
| - SetPCRelImmTarget(target);
|
| - } else if (BranchType() != UnknownBranchType) {
|
| - SetBranchImmTarget(target);
|
| - } else {
|
| - SetImmLLiteral(target);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Instruction::SetPCRelImmTarget(Instruction* target) {
|
| - // ADRP is not supported, so 'this' must point to an ADR instruction.
|
| - ASSERT(Mask(PCRelAddressingMask) == ADR);
|
| -
|
| - Instr imm = Assembler::ImmPCRelAddress(DistanceTo(target));
|
| -
|
| - SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
|
| -}
|
| -
|
| -
|
| -void Instruction::SetBranchImmTarget(Instruction* target) {
|
| - ASSERT(IsAligned(DistanceTo(target), kInstructionSize));
|
| - Instr branch_imm = 0;
|
| - uint32_t imm_mask = 0;
|
| - ptrdiff_t offset = DistanceTo(target) >> kInstructionSizeLog2;
|
| - switch (BranchType()) {
|
| - case CondBranchType: {
|
| - branch_imm = Assembler::ImmCondBranch(offset);
|
| - imm_mask = ImmCondBranch_mask;
|
| - break;
|
| - }
|
| - case UncondBranchType: {
|
| - branch_imm = Assembler::ImmUncondBranch(offset);
|
| - imm_mask = ImmUncondBranch_mask;
|
| - break;
|
| - }
|
| - case CompareBranchType: {
|
| - branch_imm = Assembler::ImmCmpBranch(offset);
|
| - imm_mask = ImmCmpBranch_mask;
|
| - break;
|
| - }
|
| - case TestBranchType: {
|
| - branch_imm = Assembler::ImmTestBranch(offset);
|
| - imm_mask = ImmTestBranch_mask;
|
| - break;
|
| - }
|
| - default: UNREACHABLE();
|
| - }
|
| - SetInstructionBits(Mask(~imm_mask) | branch_imm);
|
| -}
|
| -
|
| -
|
| -void Instruction::SetImmLLiteral(Instruction* source) {
|
| - ASSERT(IsAligned(DistanceTo(source), kInstructionSize));
|
| - ptrdiff_t offset = DistanceTo(source) >> kLiteralEntrySizeLog2;
|
| - Instr imm = Assembler::ImmLLiteral(offset);
|
| - Instr mask = ImmLLiteral_mask;
|
| -
|
| - SetInstructionBits(Mask(~mask) | imm);
|
| -}
|
| -
|
| -
|
| -// TODO(jbramley): We can't put this inline in the class because things like
|
| -// xzr and Register are not defined in that header. Consider adding
|
| -// instructions-a64-inl.h to work around this.
|
| -bool InstructionSequence::IsInlineData() const {
|
| - // Inline data is encoded as a single movz instruction which writes to xzr
|
| - // (x31).
|
| - return IsMovz() && SixtyFourBits() && (Rd() == xzr.code());
|
| - // TODO(all): If we extend ::InlineData() to support bigger data, we need
|
| - // to update this method too.
|
| -}
|
| -
|
| -
|
| -// TODO(jbramley): We can't put this inline in the class because things like
|
| -// xzr and Register are not defined in that header. Consider adding
|
| -// instructions-a64-inl.h to work around this.
|
| -uint64_t InstructionSequence::InlineData() const {
|
| - ASSERT(IsInlineData());
|
| - uint64_t payload = ImmMoveWide();
|
| - // TODO(all): If we extend ::InlineData() to support bigger data, we need
|
| - // to update this method too.
|
| - return payload;
|
| -}
|
| -
|
| -
|
| -} } // namespace v8::internal
|
| -
|
| -#endif // V8_TARGET_ARCH_A64
|
|
|