Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(8)

Unified Diff: src/a64/simulator-a64.cc

Issue 207823003: Rename A64 port to ARM64 port (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: retry Created 6 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/a64/simulator-a64.h ('k') | src/a64/stub-cache-a64.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/simulator-a64.cc
diff --git a/src/a64/simulator-a64.cc b/src/a64/simulator-a64.cc
deleted file mode 100644
index 51650cf08192adf88b74b1bd48ee951157a6a464..0000000000000000000000000000000000000000
--- a/src/a64/simulator-a64.cc
+++ /dev/null
@@ -1,3646 +0,0 @@
-// Copyright 2013 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include <stdlib.h>
-#include <cmath>
-#include <cstdarg>
-#include "v8.h"
-
-#if V8_TARGET_ARCH_A64
-
-#include "disasm.h"
-#include "assembler.h"
-#include "a64/decoder-a64-inl.h"
-#include "a64/simulator-a64.h"
-#include "macro-assembler.h"
-
-namespace v8 {
-namespace internal {
-
-#if defined(USE_SIMULATOR)
-
-
-// This macro provides a platform independent use of sscanf. The reason for
-// SScanF not being implemented in a platform independent way through
-// ::v8::internal::OS in the same way as SNPrintF is that the
-// Windows C Run-Time Library does not provide vsscanf.
-#define SScanF sscanf // NOLINT
-
-
-// Helpers for colors.
-// Depending on your terminal configuration, the colour names may not match the
-// observed colours.
-#define COLOUR(colour_code) "\033[" colour_code "m"
-#define BOLD(colour_code) "1;" colour_code
-#define NORMAL ""
-#define GREY "30"
-#define GREEN "32"
-#define ORANGE "33"
-#define BLUE "34"
-#define PURPLE "35"
-#define INDIGO "36"
-#define WHITE "37"
-typedef char const * const TEXT_COLOUR;
-TEXT_COLOUR clr_normal = FLAG_log_colour ? COLOUR(NORMAL) : "";
-TEXT_COLOUR clr_flag_name = FLAG_log_colour ? COLOUR(BOLD(GREY)) : "";
-TEXT_COLOUR clr_flag_value = FLAG_log_colour ? COLOUR(BOLD(WHITE)) : "";
-TEXT_COLOUR clr_reg_name = FLAG_log_colour ? COLOUR(BOLD(BLUE)) : "";
-TEXT_COLOUR clr_reg_value = FLAG_log_colour ? COLOUR(BOLD(INDIGO)) : "";
-TEXT_COLOUR clr_fpreg_name = FLAG_log_colour ? COLOUR(BOLD(ORANGE)) : "";
-TEXT_COLOUR clr_fpreg_value = FLAG_log_colour ? COLOUR(BOLD(PURPLE)) : "";
-TEXT_COLOUR clr_memory_value = FLAG_log_colour ? COLOUR(BOLD(GREEN)) : "";
-TEXT_COLOUR clr_memory_address = FLAG_log_colour ? COLOUR(GREEN) : "";
-TEXT_COLOUR clr_debug_number = FLAG_log_colour ? COLOUR(BOLD(ORANGE)) : "";
-TEXT_COLOUR clr_debug_message = FLAG_log_colour ? COLOUR(ORANGE) : "";
-TEXT_COLOUR clr_printf = FLAG_log_colour ? COLOUR(GREEN) : "";
-
-
-// This is basically the same as PrintF, with a guard for FLAG_trace_sim.
-void PRINTF_CHECKING TraceSim(const char* format, ...) {
- if (FLAG_trace_sim) {
- va_list arguments;
- va_start(arguments, format);
- OS::VPrint(format, arguments);
- va_end(arguments);
- }
-}
-
-
-const Instruction* Simulator::kEndOfSimAddress = NULL;
-
-
-void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) {
- int width = msb - lsb + 1;
- ASSERT(is_uintn(bits, width) || is_intn(bits, width));
-
- bits <<= lsb;
- uint32_t mask = ((1 << width) - 1) << lsb;
- ASSERT((mask & write_ignore_mask_) == 0);
-
- value_ = (value_ & ~mask) | (bits & mask);
-}
-
-
-SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) {
- switch (id) {
- case NZCV:
- return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask);
- case FPCR:
- return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask);
- default:
- UNREACHABLE();
- return SimSystemRegister();
- }
-}
-
-
-void Simulator::Initialize(Isolate* isolate) {
- if (isolate->simulator_initialized()) return;
- isolate->set_simulator_initialized(true);
- ExternalReference::set_redirector(isolate, &RedirectExternalReference);
-}
-
-
-// Get the active Simulator for the current thread.
-Simulator* Simulator::current(Isolate* isolate) {
- Isolate::PerIsolateThreadData* isolate_data =
- isolate->FindOrAllocatePerThreadDataForThisThread();
- ASSERT(isolate_data != NULL);
-
- Simulator* sim = isolate_data->simulator();
- if (sim == NULL) {
- if (FLAG_trace_sim || FLAG_log_instruction_stats || FLAG_debug_sim) {
- sim = new Simulator(new Decoder<DispatchingDecoderVisitor>(), isolate);
- } else {
- sim = new Decoder<Simulator>();
- sim->isolate_ = isolate;
- }
- isolate_data->set_simulator(sim);
- }
- return sim;
-}
-
-
-void Simulator::CallVoid(byte* entry, CallArgument* args) {
- int index_x = 0;
- int index_d = 0;
-
- std::vector<int64_t> stack_args(0);
- for (int i = 0; !args[i].IsEnd(); i++) {
- CallArgument arg = args[i];
- if (arg.IsX() && (index_x < 8)) {
- set_xreg(index_x++, arg.bits());
- } else if (arg.IsD() && (index_d < 8)) {
- set_dreg_bits(index_d++, arg.bits());
- } else {
- ASSERT(arg.IsD() || arg.IsX());
- stack_args.push_back(arg.bits());
- }
- }
-
- // Process stack arguments, and make sure the stack is suitably aligned.
- uintptr_t original_stack = sp();
- uintptr_t entry_stack = original_stack -
- stack_args.size() * sizeof(stack_args[0]);
- if (OS::ActivationFrameAlignment() != 0) {
- entry_stack &= -OS::ActivationFrameAlignment();
- }
- char * stack = reinterpret_cast<char*>(entry_stack);
- std::vector<int64_t>::const_iterator it;
- for (it = stack_args.begin(); it != stack_args.end(); it++) {
- memcpy(stack, &(*it), sizeof(*it));
- stack += sizeof(*it);
- }
-
- ASSERT(reinterpret_cast<uintptr_t>(stack) <= original_stack);
- set_sp(entry_stack);
-
- // Call the generated code.
- set_pc(entry);
- set_lr(kEndOfSimAddress);
- CheckPCSComplianceAndRun();
-
- set_sp(original_stack);
-}
-
-
-int64_t Simulator::CallInt64(byte* entry, CallArgument* args) {
- CallVoid(entry, args);
- return xreg(0);
-}
-
-
-double Simulator::CallDouble(byte* entry, CallArgument* args) {
- CallVoid(entry, args);
- return dreg(0);
-}
-
-
-int64_t Simulator::CallJS(byte* entry,
- byte* function_entry,
- JSFunction* func,
- Object* revc,
- int64_t argc,
- Object*** argv) {
- CallArgument args[] = {
- CallArgument(function_entry),
- CallArgument(func),
- CallArgument(revc),
- CallArgument(argc),
- CallArgument(argv),
- CallArgument::End()
- };
- return CallInt64(entry, args);
-}
-
-int64_t Simulator::CallRegExp(byte* entry,
- String* input,
- int64_t start_offset,
- const byte* input_start,
- const byte* input_end,
- int* output,
- int64_t output_size,
- Address stack_base,
- int64_t direct_call,
- void* return_address,
- Isolate* isolate) {
- CallArgument args[] = {
- CallArgument(input),
- CallArgument(start_offset),
- CallArgument(input_start),
- CallArgument(input_end),
- CallArgument(output),
- CallArgument(output_size),
- CallArgument(stack_base),
- CallArgument(direct_call),
- CallArgument(return_address),
- CallArgument(isolate),
- CallArgument::End()
- };
- return CallInt64(entry, args);
-}
-
-
-void Simulator::CheckPCSComplianceAndRun() {
-#ifdef DEBUG
- CHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count());
- CHECK_EQ(kNumberOfCalleeSavedFPRegisters, kCalleeSavedFP.Count());
-
- int64_t saved_registers[kNumberOfCalleeSavedRegisters];
- uint64_t saved_fpregisters[kNumberOfCalleeSavedFPRegisters];
-
- CPURegList register_list = kCalleeSaved;
- CPURegList fpregister_list = kCalleeSavedFP;
-
- for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
- // x31 is not a caller saved register, so no need to specify if we want
- // the stack or zero.
- saved_registers[i] = xreg(register_list.PopLowestIndex().code());
- }
- for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
- saved_fpregisters[i] =
- dreg_bits(fpregister_list.PopLowestIndex().code());
- }
- int64_t original_stack = sp();
-#endif
- // Start the simulation!
- Run();
-#ifdef DEBUG
- CHECK_EQ(original_stack, sp());
- // Check that callee-saved registers have been preserved.
- register_list = kCalleeSaved;
- fpregister_list = kCalleeSavedFP;
- for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
- CHECK_EQ(saved_registers[i], xreg(register_list.PopLowestIndex().code()));
- }
- for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
- ASSERT(saved_fpregisters[i] ==
- dreg_bits(fpregister_list.PopLowestIndex().code()));
- }
-
- // Corrupt caller saved register minus the return regiters.
-
- // In theory x0 to x7 can be used for return values, but V8 only uses x0, x1
- // for now .
- register_list = kCallerSaved;
- register_list.Remove(x0);
- register_list.Remove(x1);
-
- // In theory d0 to d7 can be used for return values, but V8 only uses d0
- // for now .
- fpregister_list = kCallerSavedFP;
- fpregister_list.Remove(d0);
-
- CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
- CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
-#endif
-}
-
-
-#ifdef DEBUG
-// The least significant byte of the curruption value holds the corresponding
-// register's code.
-void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) {
- if (list->type() == CPURegister::kRegister) {
- while (!list->IsEmpty()) {
- unsigned code = list->PopLowestIndex().code();
- set_xreg(code, value | code);
- }
- } else {
- ASSERT(list->type() == CPURegister::kFPRegister);
- while (!list->IsEmpty()) {
- unsigned code = list->PopLowestIndex().code();
- set_dreg_bits(code, value | code);
- }
- }
-}
-
-
-void Simulator::CorruptAllCallerSavedCPURegisters() {
- // Corrupt alters its parameter so copy them first.
- CPURegList register_list = kCallerSaved;
- CPURegList fpregister_list = kCallerSavedFP;
-
- CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
- CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
-}
-#endif
-
-
-// Extending the stack by 2 * 64 bits is required for stack alignment purposes.
-uintptr_t Simulator::PushAddress(uintptr_t address) {
- ASSERT(sizeof(uintptr_t) < 2 * kXRegSize);
- intptr_t new_sp = sp() - 2 * kXRegSize;
- uintptr_t* alignment_slot =
- reinterpret_cast<uintptr_t*>(new_sp + kXRegSize);
- memcpy(alignment_slot, &kSlotsZapValue, kPointerSize);
- uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
- memcpy(stack_slot, &address, kPointerSize);
- set_sp(new_sp);
- return new_sp;
-}
-
-
-uintptr_t Simulator::PopAddress() {
- intptr_t current_sp = sp();
- uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
- uintptr_t address = *stack_slot;
- ASSERT(sizeof(uintptr_t) < 2 * kXRegSize);
- set_sp(current_sp + 2 * kXRegSize);
- return address;
-}
-
-
-// Returns the limit of the stack area to enable checking for stack overflows.
-uintptr_t Simulator::StackLimit() const {
- // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
- // pushing values.
- return reinterpret_cast<uintptr_t>(stack_limit_) + 1024;
-}
-
-
-Simulator::Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
- Isolate* isolate, FILE* stream)
- : decoder_(decoder),
- last_debugger_input_(NULL),
- log_parameters_(NO_PARAM),
- isolate_(isolate) {
- // Setup the decoder.
- decoder_->AppendVisitor(this);
-
- Init(stream);
-
- if (FLAG_trace_sim) {
- decoder_->InsertVisitorBefore(print_disasm_, this);
- log_parameters_ = LOG_ALL;
- }
-
- if (FLAG_log_instruction_stats) {
- instrument_ = new Instrument(FLAG_log_instruction_file,
- FLAG_log_instruction_period);
- decoder_->AppendVisitor(instrument_);
- }
-}
-
-
-Simulator::Simulator()
- : decoder_(NULL),
- last_debugger_input_(NULL),
- log_parameters_(NO_PARAM),
- isolate_(NULL) {
- Init(NULL);
- CHECK(!FLAG_trace_sim && !FLAG_log_instruction_stats);
-}
-
-
-void Simulator::Init(FILE* stream) {
- ResetState();
-
- // Allocate and setup the simulator stack.
- stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_);
- stack_ = new byte[stack_size_];
- stack_limit_ = stack_ + stack_protection_size_;
- byte* tos = stack_ + stack_size_ - stack_protection_size_;
- // The stack pointer must be 16 bytes aligned.
- set_sp(reinterpret_cast<int64_t>(tos) & ~0xfUL);
-
- stream_ = stream;
- print_disasm_ = new PrintDisassembler(stream_);
-
- // The debugger needs to disassemble code without the simulator executing an
- // instruction, so we create a dedicated decoder.
- disassembler_decoder_ = new Decoder<DispatchingDecoderVisitor>();
- disassembler_decoder_->AppendVisitor(print_disasm_);
-}
-
-
-void Simulator::ResetState() {
- // Reset the system registers.
- nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
- fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);
-
- // Reset registers to 0.
- pc_ = NULL;
- for (unsigned i = 0; i < kNumberOfRegisters; i++) {
- set_xreg(i, 0xbadbeef);
- }
- for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
- // Set FP registers to a value that is NaN in both 32-bit and 64-bit FP.
- set_dreg_bits(i, 0x7ff000007f800001UL);
- }
- // Returning to address 0 exits the Simulator.
- set_lr(kEndOfSimAddress);
-
- // Reset debug helpers.
- breakpoints_.empty();
- break_on_next_= false;
-}
-
-
-Simulator::~Simulator() {
- delete[] stack_;
- if (FLAG_log_instruction_stats) {
- delete instrument_;
- }
- delete disassembler_decoder_;
- delete print_disasm_;
- DeleteArray(last_debugger_input_);
- delete decoder_;
-}
-
-
-void Simulator::Run() {
- pc_modified_ = false;
- while (pc_ != kEndOfSimAddress) {
- ExecuteInstruction();
- }
-}
-
-
-void Simulator::RunFrom(Instruction* start) {
- set_pc(start);
- Run();
-}
-
-
-// When the generated code calls an external reference we need to catch that in
-// the simulator. The external reference will be a function compiled for the
-// host architecture. We need to call that function instead of trying to
-// execute it with the simulator. We do that by redirecting the external
-// reference to a svc (Supervisor Call) instruction that is handled by
-// the simulator. We write the original destination of the jump just at a known
-// offset from the svc instruction so the simulator knows what to call.
-class Redirection {
- public:
- Redirection(void* external_function, ExternalReference::Type type)
- : external_function_(external_function),
- type_(type),
- next_(NULL) {
- redirect_call_.SetInstructionBits(
- HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall));
- Isolate* isolate = Isolate::Current();
- next_ = isolate->simulator_redirection();
- // TODO(all): Simulator flush I cache
- isolate->set_simulator_redirection(this);
- }
-
- void* address_of_redirect_call() {
- return reinterpret_cast<void*>(&redirect_call_);
- }
-
- template <typename T>
- T external_function() { return reinterpret_cast<T>(external_function_); }
-
- ExternalReference::Type type() { return type_; }
-
- static Redirection* Get(void* external_function,
- ExternalReference::Type type) {
- Isolate* isolate = Isolate::Current();
- Redirection* current = isolate->simulator_redirection();
- for (; current != NULL; current = current->next_) {
- if (current->external_function_ == external_function) {
- ASSERT_EQ(current->type(), type);
- return current;
- }
- }
- return new Redirection(external_function, type);
- }
-
- static Redirection* FromHltInstruction(Instruction* redirect_call) {
- char* addr_of_hlt = reinterpret_cast<char*>(redirect_call);
- char* addr_of_redirection =
- addr_of_hlt - OFFSET_OF(Redirection, redirect_call_);
- return reinterpret_cast<Redirection*>(addr_of_redirection);
- }
-
- static void* ReverseRedirection(int64_t reg) {
- Redirection* redirection =
- FromHltInstruction(reinterpret_cast<Instruction*>(reg));
- return redirection->external_function<void*>();
- }
-
- private:
- void* external_function_;
- Instruction redirect_call_;
- ExternalReference::Type type_;
- Redirection* next_;
-};
-
-
-// Calls into the V8 runtime are based on this very simple interface.
-// Note: To be able to return two values from some calls the code in runtime.cc
-// uses the ObjectPair structure.
-// The simulator assumes all runtime calls return two 64-bits values. If they
-// don't, register x1 is clobbered. This is fine because x1 is caller-saved.
-struct ObjectPair {
- int64_t res0;
- int64_t res1;
-};
-
-
-typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
- int64_t arg1,
- int64_t arg2,
- int64_t arg3,
- int64_t arg4,
- int64_t arg5,
- int64_t arg6,
- int64_t arg7);
-
-typedef int64_t (*SimulatorRuntimeCompareCall)(double arg1, double arg2);
-typedef double (*SimulatorRuntimeFPFPCall)(double arg1, double arg2);
-typedef double (*SimulatorRuntimeFPCall)(double arg1);
-typedef double (*SimulatorRuntimeFPIntCall)(double arg1, int32_t arg2);
-
-// This signature supports direct call in to API function native callback
-// (refer to InvocationCallback in v8.h).
-typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
-typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
-
-// This signature supports direct call to accessor getter callback.
-typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
-typedef void (*SimulatorRuntimeProfilingGetterCall)(int64_t arg0, int64_t arg1,
- void* arg2);
-
-void Simulator::DoRuntimeCall(Instruction* instr) {
- Redirection* redirection = Redirection::FromHltInstruction(instr);
-
- // The called C code might itself call simulated code, so any
- // caller-saved registers (including lr) could still be clobbered by a
- // redirected call.
- Instruction* return_address = lr();
-
- int64_t external = redirection->external_function<int64_t>();
-
- TraceSim("Call to host function at %p\n",
- redirection->external_function<void*>());
-
- // SP must be 16-byte-aligned at the call interface.
- bool stack_alignment_exception = ((sp() & 0xf) != 0);
- if (stack_alignment_exception) {
- TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp());
- FATAL("ALIGNMENT EXCEPTION");
- }
-
- switch (redirection->type()) {
- default:
- TraceSim("Type: Unknown.\n");
- UNREACHABLE();
- break;
-
- case ExternalReference::BUILTIN_CALL: {
- // MaybeObject* f(v8::internal::Arguments).
- TraceSim("Type: BUILTIN_CALL\n");
- SimulatorRuntimeCall target =
- reinterpret_cast<SimulatorRuntimeCall>(external);
-
- // We don't know how many arguments are being passed, but we can
- // pass 8 without touching the stack. They will be ignored by the
- // host function if they aren't used.
- TraceSim("Arguments: "
- "0x%016" PRIx64 ", 0x%016" PRIx64 ", "
- "0x%016" PRIx64 ", 0x%016" PRIx64 ", "
- "0x%016" PRIx64 ", 0x%016" PRIx64 ", "
- "0x%016" PRIx64 ", 0x%016" PRIx64,
- xreg(0), xreg(1), xreg(2), xreg(3),
- xreg(4), xreg(5), xreg(6), xreg(7));
- ObjectPair result = target(xreg(0), xreg(1), xreg(2), xreg(3),
- xreg(4), xreg(5), xreg(6), xreg(7));
- TraceSim("Returned: {0x%" PRIx64 ", 0x%" PRIx64 "}\n",
- result.res0, result.res1);
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- set_xreg(0, result.res0);
- set_xreg(1, result.res1);
- break;
- }
-
- case ExternalReference::DIRECT_API_CALL: {
- // void f(v8::FunctionCallbackInfo&)
- TraceSim("Type: DIRECT_API_CALL\n");
- SimulatorRuntimeDirectApiCall target =
- reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
- TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0));
- target(xreg(0));
- TraceSim("No return value.");
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- break;
- }
-
- case ExternalReference::BUILTIN_COMPARE_CALL: {
- // int f(double, double)
- TraceSim("Type: BUILTIN_COMPARE_CALL\n");
- SimulatorRuntimeCompareCall target =
- reinterpret_cast<SimulatorRuntimeCompareCall>(external);
- TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
- int64_t result = target(dreg(0), dreg(1));
- TraceSim("Returned: %" PRId64 "\n", result);
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- set_xreg(0, result);
- break;
- }
-
- case ExternalReference::BUILTIN_FP_CALL: {
- // double f(double)
- TraceSim("Type: BUILTIN_FP_CALL\n");
- SimulatorRuntimeFPCall target =
- reinterpret_cast<SimulatorRuntimeFPCall>(external);
- TraceSim("Argument: %f\n", dreg(0));
- double result = target(dreg(0));
- TraceSim("Returned: %f\n", result);
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- set_dreg(0, result);
- break;
- }
-
- case ExternalReference::BUILTIN_FP_FP_CALL: {
- // double f(double, double)
- TraceSim("Type: BUILTIN_FP_FP_CALL\n");
- SimulatorRuntimeFPFPCall target =
- reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
- TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
- double result = target(dreg(0), dreg(1));
- TraceSim("Returned: %f\n", result);
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- set_dreg(0, result);
- break;
- }
-
- case ExternalReference::BUILTIN_FP_INT_CALL: {
- // double f(double, int)
- TraceSim("Type: BUILTIN_FP_INT_CALL\n");
- SimulatorRuntimeFPIntCall target =
- reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
- TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0));
- double result = target(dreg(0), wreg(0));
- TraceSim("Returned: %f\n", result);
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- set_dreg(0, result);
- break;
- }
-
- case ExternalReference::DIRECT_GETTER_CALL: {
- // void f(Local<String> property, PropertyCallbackInfo& info)
- TraceSim("Type: DIRECT_GETTER_CALL\n");
- SimulatorRuntimeDirectGetterCall target =
- reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
- TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n",
- xreg(0), xreg(1));
- target(xreg(0), xreg(1));
- TraceSim("No return value.");
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- break;
- }
-
- case ExternalReference::PROFILING_API_CALL: {
- // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
- TraceSim("Type: PROFILING_API_CALL\n");
- SimulatorRuntimeProfilingApiCall target =
- reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
- void* arg1 = Redirection::ReverseRedirection(xreg(1));
- TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1);
- target(xreg(0), arg1);
- TraceSim("No return value.");
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- break;
- }
-
- case ExternalReference::PROFILING_GETTER_CALL: {
- // void f(Local<String> property, PropertyCallbackInfo& info,
- // AccessorGetterCallback callback)
- TraceSim("Type: PROFILING_GETTER_CALL\n");
- SimulatorRuntimeProfilingGetterCall target =
- reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
- external);
- void* arg2 = Redirection::ReverseRedirection(xreg(2));
- TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n",
- xreg(0), xreg(1), arg2);
- target(xreg(0), xreg(1), arg2);
- TraceSim("No return value.");
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
- break;
- }
- }
-
- set_lr(return_address);
- set_pc(return_address);
-}
-
-
-void* Simulator::RedirectExternalReference(void* external_function,
- ExternalReference::Type type) {
- Redirection* redirection = Redirection::Get(external_function, type);
- return redirection->address_of_redirect_call();
-}
-
-
-const char* Simulator::xreg_names[] = {
-"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
-"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
-"ip0", "ip1", "x18", "x19", "x20", "x21", "x22", "x23",
-"x24", "x25", "x26", "cp", "jssp", "fp", "lr", "xzr", "csp"};
-
-const char* Simulator::wreg_names[] = {
-"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7",
-"w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15",
-"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23",
-"w24", "w25", "w26", "wcp", "wjssp", "wfp", "wlr", "wzr", "wcsp"};
-
-const char* Simulator::sreg_names[] = {
-"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
-"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
-"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
-"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};
-
-const char* Simulator::dreg_names[] = {
-"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
-"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
-"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
-"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
-
-const char* Simulator::vreg_names[] = {
-"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
-"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
-"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
-"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"};
-
-
-const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) {
- ASSERT(code < kNumberOfRegisters);
- // If the code represents the stack pointer, index the name after zr.
- if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
- code = kZeroRegCode + 1;
- }
- return wreg_names[code];
-}
-
-
-const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) {
- ASSERT(code < kNumberOfRegisters);
- // If the code represents the stack pointer, index the name after zr.
- if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
- code = kZeroRegCode + 1;
- }
- return xreg_names[code];
-}
-
-
-const char* Simulator::SRegNameForCode(unsigned code) {
- ASSERT(code < kNumberOfFPRegisters);
- return sreg_names[code];
-}
-
-
-const char* Simulator::DRegNameForCode(unsigned code) {
- ASSERT(code < kNumberOfFPRegisters);
- return dreg_names[code];
-}
-
-
-const char* Simulator::VRegNameForCode(unsigned code) {
- ASSERT(code < kNumberOfFPRegisters);
- return vreg_names[code];
-}
-
-
-int Simulator::CodeFromName(const char* name) {
- for (unsigned i = 0; i < kNumberOfRegisters; i++) {
- if ((strcmp(xreg_names[i], name) == 0) ||
- (strcmp(wreg_names[i], name) == 0)) {
- return i;
- }
- }
- for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
- if ((strcmp(vreg_names[i], name) == 0) ||
- (strcmp(dreg_names[i], name) == 0) ||
- (strcmp(sreg_names[i], name) == 0)) {
- return i;
- }
- }
- if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) {
- return kSPRegInternalCode;
- }
- return -1;
-}
-
-
-// Helpers ---------------------------------------------------------------------
-int64_t Simulator::AddWithCarry(unsigned reg_size,
- bool set_flags,
- int64_t src1,
- int64_t src2,
- int64_t carry_in) {
- ASSERT((carry_in == 0) || (carry_in == 1));
- ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
-
- uint64_t u1, u2;
- int64_t result;
- int64_t signed_sum = src1 + src2 + carry_in;
-
- bool N, Z, C, V;
-
- if (reg_size == kWRegSizeInBits) {
- u1 = static_cast<uint64_t>(src1) & kWRegMask;
- u2 = static_cast<uint64_t>(src2) & kWRegMask;
-
- result = signed_sum & kWRegMask;
- // Compute the C flag by comparing the sum to the max unsigned integer.
- C = ((kWMaxUInt - u1) < (u2 + carry_in)) ||
- ((kWMaxUInt - u1 - carry_in) < u2);
- // Overflow iff the sign bit is the same for the two inputs and different
- // for the result.
- int64_t s_src1 = src1 << (kXRegSizeInBits - kWRegSizeInBits);
- int64_t s_src2 = src2 << (kXRegSizeInBits - kWRegSizeInBits);
- int64_t s_result = result << (kXRegSizeInBits - kWRegSizeInBits);
- V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0);
-
- } else {
- u1 = static_cast<uint64_t>(src1);
- u2 = static_cast<uint64_t>(src2);
-
- result = signed_sum;
- // Compute the C flag by comparing the sum to the max unsigned integer.
- C = ((kXMaxUInt - u1) < (u2 + carry_in)) ||
- ((kXMaxUInt - u1 - carry_in) < u2);
- // Overflow iff the sign bit is the same for the two inputs and different
- // for the result.
- V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0);
- }
-
- N = CalcNFlag(result, reg_size);
- Z = CalcZFlag(result);
-
- if (set_flags) {
- nzcv().SetN(N);
- nzcv().SetZ(Z);
- nzcv().SetC(C);
- nzcv().SetV(V);
- }
- return result;
-}
-
-
-int64_t Simulator::ShiftOperand(unsigned reg_size,
- int64_t value,
- Shift shift_type,
- unsigned amount) {
- if (amount == 0) {
- return value;
- }
- int64_t mask = reg_size == kXRegSizeInBits ? kXRegMask : kWRegMask;
- switch (shift_type) {
- case LSL:
- return (value << amount) & mask;
- case LSR:
- return static_cast<uint64_t>(value) >> amount;
- case ASR: {
- // Shift used to restore the sign.
- unsigned s_shift = kXRegSizeInBits - reg_size;
- // Value with its sign restored.
- int64_t s_value = (value << s_shift) >> s_shift;
- return (s_value >> amount) & mask;
- }
- case ROR: {
- if (reg_size == kWRegSizeInBits) {
- value &= kWRegMask;
- }
- return (static_cast<uint64_t>(value) >> amount) |
- ((value & ((1L << amount) - 1L)) << (reg_size - amount));
- }
- default:
- UNIMPLEMENTED();
- return 0;
- }
-}
-
-
-int64_t Simulator::ExtendValue(unsigned reg_size,
- int64_t value,
- Extend extend_type,
- unsigned left_shift) {
- switch (extend_type) {
- case UXTB:
- value &= kByteMask;
- break;
- case UXTH:
- value &= kHalfWordMask;
- break;
- case UXTW:
- value &= kWordMask;
- break;
- case SXTB:
- value = (value << 56) >> 56;
- break;
- case SXTH:
- value = (value << 48) >> 48;
- break;
- case SXTW:
- value = (value << 32) >> 32;
- break;
- case UXTX:
- case SXTX:
- break;
- default:
- UNREACHABLE();
- }
- int64_t mask = (reg_size == kXRegSizeInBits) ? kXRegMask : kWRegMask;
- return (value << left_shift) & mask;
-}
-
-
-template<> double Simulator::FPDefaultNaN<double>() const {
- return kFP64DefaultNaN;
-}
-
-
-template<> float Simulator::FPDefaultNaN<float>() const {
- return kFP32DefaultNaN;
-}
-
-
-void Simulator::FPCompare(double val0, double val1) {
- AssertSupportedFPCR();
-
- // TODO(jbramley): This assumes that the C++ implementation handles
- // comparisons in the way that we expect (as per AssertSupportedFPCR()).
- if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) {
- nzcv().SetRawValue(FPUnorderedFlag);
- } else if (val0 < val1) {
- nzcv().SetRawValue(FPLessThanFlag);
- } else if (val0 > val1) {
- nzcv().SetRawValue(FPGreaterThanFlag);
- } else if (val0 == val1) {
- nzcv().SetRawValue(FPEqualFlag);
- } else {
- UNREACHABLE();
- }
-}
-
-
-void Simulator::SetBreakpoint(Instruction* location) {
- for (unsigned i = 0; i < breakpoints_.size(); i++) {
- if (breakpoints_.at(i).location == location) {
- PrintF("Existing breakpoint at %p was %s\n",
- reinterpret_cast<void*>(location),
- breakpoints_.at(i).enabled ? "disabled" : "enabled");
- breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled;
- return;
- }
- }
- Breakpoint new_breakpoint = {location, true};
- breakpoints_.push_back(new_breakpoint);
- PrintF("Set a breakpoint at %p\n", reinterpret_cast<void*>(location));
-}
-
-
-void Simulator::ListBreakpoints() {
- PrintF("Breakpoints:\n");
- for (unsigned i = 0; i < breakpoints_.size(); i++) {
- PrintF("%p : %s\n",
- reinterpret_cast<void*>(breakpoints_.at(i).location),
- breakpoints_.at(i).enabled ? "enabled" : "disabled");
- }
-}
-
-
-void Simulator::CheckBreakpoints() {
- bool hit_a_breakpoint = false;
- for (unsigned i = 0; i < breakpoints_.size(); i++) {
- if ((breakpoints_.at(i).location == pc_) &&
- breakpoints_.at(i).enabled) {
- hit_a_breakpoint = true;
- // Disable this breakpoint.
- breakpoints_.at(i).enabled = false;
- }
- }
- if (hit_a_breakpoint) {
- PrintF("Hit and disabled a breakpoint at %p.\n",
- reinterpret_cast<void*>(pc_));
- Debug();
- }
-}
-
-
-void Simulator::CheckBreakNext() {
- // If the current instruction is a BL, insert a breakpoint just after it.
- if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) {
- SetBreakpoint(pc_->following());
- break_on_next_ = false;
- }
-}
-
-
-void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) {
- Instruction* end = start->InstructionAtOffset(count * kInstructionSize);
- for (Instruction* pc = start; pc < end; pc = pc->following()) {
- disassembler_decoder_->Decode(pc);
- }
-}
-
-
-void Simulator::PrintSystemRegisters(bool print_all) {
- static bool first_run = true;
-
- static SimSystemRegister last_nzcv;
- if (print_all || first_run || (last_nzcv.RawValue() != nzcv().RawValue())) {
- fprintf(stream_, "# %sFLAGS: %sN:%d Z:%d C:%d V:%d%s\n",
- clr_flag_name,
- clr_flag_value,
- nzcv().N(), nzcv().Z(), nzcv().C(), nzcv().V(),
- clr_normal);
- }
- last_nzcv = nzcv();
-
- static SimSystemRegister last_fpcr;
- if (print_all || first_run || (last_fpcr.RawValue() != fpcr().RawValue())) {
- static const char * rmode[] = {
- "0b00 (Round to Nearest)",
- "0b01 (Round towards Plus Infinity)",
- "0b10 (Round towards Minus Infinity)",
- "0b11 (Round towards Zero)"
- };
- ASSERT(fpcr().RMode() <= (sizeof(rmode) / sizeof(rmode[0])));
- fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n",
- clr_flag_name,
- clr_flag_value,
- fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()],
- clr_normal);
- }
- last_fpcr = fpcr();
-
- first_run = false;
-}
-
-
-void Simulator::PrintRegisters(bool print_all_regs) {
- static bool first_run = true;
- static int64_t last_regs[kNumberOfRegisters];
-
- for (unsigned i = 0; i < kNumberOfRegisters; i++) {
- if (print_all_regs || first_run ||
- (last_regs[i] != xreg(i, Reg31IsStackPointer))) {
- fprintf(stream_,
- "# %s%4s:%s 0x%016" PRIx64 "%s\n",
- clr_reg_name,
- XRegNameForCode(i, Reg31IsStackPointer),
- clr_reg_value,
- xreg(i, Reg31IsStackPointer),
- clr_normal);
- }
- // Cache the new register value so the next run can detect any changes.
- last_regs[i] = xreg(i, Reg31IsStackPointer);
- }
- first_run = false;
-}
-
-
-void Simulator::PrintFPRegisters(bool print_all_regs) {
- static bool first_run = true;
- static uint64_t last_regs[kNumberOfFPRegisters];
-
- // Print as many rows of registers as necessary, keeping each individual
- // register in the same column each time (to make it easy to visually scan
- // for changes).
- for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
- if (print_all_regs || first_run || (last_regs[i] != dreg_bits(i))) {
- fprintf(stream_,
- "# %s %4s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
- clr_fpreg_name,
- VRegNameForCode(i),
- clr_fpreg_value,
- dreg_bits(i),
- clr_normal,
- clr_fpreg_name,
- DRegNameForCode(i),
- clr_fpreg_value,
- dreg(i),
- clr_fpreg_name,
- SRegNameForCode(i),
- clr_fpreg_value,
- sreg(i),
- clr_normal);
- }
- // Cache the new register value so the next run can detect any changes.
- last_regs[i] = dreg_bits(i);
- }
- first_run = false;
-}
-
-
-void Simulator::PrintProcessorState() {
- PrintSystemRegisters();
- PrintRegisters();
- PrintFPRegisters();
-}
-
-
-void Simulator::PrintWrite(uint8_t* address,
- uint64_t value,
- unsigned num_bytes) {
- // The template is "# value -> address". The template is not directly used
- // in the printf since compilers tend to struggle with the parametrized
- // width (%0*).
- const char* format = "# %s0x%0*" PRIx64 "%s -> %s0x%016" PRIx64 "%s\n";
- fprintf(stream_,
- format,
- clr_memory_value,
- num_bytes * 2, // The width in hexa characters.
- value,
- clr_normal,
- clr_memory_address,
- address,
- clr_normal);
-}
-
-
-// Visitors---------------------------------------------------------------------
-
-void Simulator::VisitUnimplemented(Instruction* instr) {
- fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n",
- reinterpret_cast<void*>(instr), instr->InstructionBits());
- UNIMPLEMENTED();
-}
-
-
-void Simulator::VisitUnallocated(Instruction* instr) {
- fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n",
- reinterpret_cast<void*>(instr), instr->InstructionBits());
- UNIMPLEMENTED();
-}
-
-
-void Simulator::VisitPCRelAddressing(Instruction* instr) {
- switch (instr->Mask(PCRelAddressingMask)) {
- case ADR:
- set_reg(instr->Rd(), instr->ImmPCOffsetTarget());
- break;
- case ADRP: // Not implemented in the assembler.
- UNIMPLEMENTED();
- break;
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void Simulator::VisitUnconditionalBranch(Instruction* instr) {
- switch (instr->Mask(UnconditionalBranchMask)) {
- case BL:
- set_lr(instr->following());
- // Fall through.
- case B:
- set_pc(instr->ImmPCOffsetTarget());
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void Simulator::VisitConditionalBranch(Instruction* instr) {
- ASSERT(instr->Mask(ConditionalBranchMask) == B_cond);
- if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) {
- set_pc(instr->ImmPCOffsetTarget());
- }
-}
-
-
-void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) {
- Instruction* target = reg<Instruction*>(instr->Rn());
- switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
- case BLR: {
- set_lr(instr->following());
- if (instr->Rn() == 31) {
- // BLR XZR is used as a guard for the constant pool. We should never hit
- // this, but if we do trap to allow debugging.
- Debug();
- }
- // Fall through.
- }
- case BR:
- case RET: set_pc(target); break;
- default: UNIMPLEMENTED();
- }
-}
-
-
-void Simulator::VisitTestBranch(Instruction* instr) {
- unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) |
- instr->ImmTestBranchBit40();
- bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0);
- switch (instr->Mask(TestBranchMask)) {
- case TBZ: break;
- case TBNZ: take_branch = !take_branch; break;
- default: UNIMPLEMENTED();
- }
- if (take_branch) {
- set_pc(instr->ImmPCOffsetTarget());
- }
-}
-
-
-void Simulator::VisitCompareBranch(Instruction* instr) {
- unsigned rt = instr->Rt();
- bool take_branch = false;
- switch (instr->Mask(CompareBranchMask)) {
- case CBZ_w: take_branch = (wreg(rt) == 0); break;
- case CBZ_x: take_branch = (xreg(rt) == 0); break;
- case CBNZ_w: take_branch = (wreg(rt) != 0); break;
- case CBNZ_x: take_branch = (xreg(rt) != 0); break;
- default: UNIMPLEMENTED();
- }
- if (take_branch) {
- set_pc(instr->ImmPCOffsetTarget());
- }
-}
-
-
-void Simulator::AddSubHelper(Instruction* instr, int64_t op2) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- bool set_flags = instr->FlagsUpdate();
- int64_t new_val = 0;
- Instr operation = instr->Mask(AddSubOpMask);
-
- switch (operation) {
- case ADD:
- case ADDS: {
- new_val = AddWithCarry(reg_size,
- set_flags,
- reg(reg_size, instr->Rn(), instr->RnMode()),
- op2);
- break;
- }
- case SUB:
- case SUBS: {
- new_val = AddWithCarry(reg_size,
- set_flags,
- reg(reg_size, instr->Rn(), instr->RnMode()),
- ~op2,
- 1);
- break;
- }
- default: UNREACHABLE();
- }
-
- set_reg(reg_size, instr->Rd(), new_val, instr->RdMode());
-}
-
-
-void Simulator::VisitAddSubShifted(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- int64_t op2 = ShiftOperand(reg_size,
- reg(reg_size, instr->Rm()),
- static_cast<Shift>(instr->ShiftDP()),
- instr->ImmDPShift());
- AddSubHelper(instr, op2);
-}
-
-
-void Simulator::VisitAddSubImmediate(Instruction* instr) {
- int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0);
- AddSubHelper(instr, op2);
-}
-
-
-void Simulator::VisitAddSubExtended(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- int64_t op2 = ExtendValue(reg_size,
- reg(reg_size, instr->Rm()),
- static_cast<Extend>(instr->ExtendMode()),
- instr->ImmExtendShift());
- AddSubHelper(instr, op2);
-}
-
-
-void Simulator::VisitAddSubWithCarry(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- int64_t op2 = reg(reg_size, instr->Rm());
- int64_t new_val;
-
- if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) {
- op2 = ~op2;
- }
-
- new_val = AddWithCarry(reg_size,
- instr->FlagsUpdate(),
- reg(reg_size, instr->Rn()),
- op2,
- nzcv().C());
-
- set_reg(reg_size, instr->Rd(), new_val);
-}
-
-
-void Simulator::VisitLogicalShifted(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- Shift shift_type = static_cast<Shift>(instr->ShiftDP());
- unsigned shift_amount = instr->ImmDPShift();
- int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type,
- shift_amount);
- if (instr->Mask(NOT) == NOT) {
- op2 = ~op2;
- }
- LogicalHelper(instr, op2);
-}
-
-
-void Simulator::VisitLogicalImmediate(Instruction* instr) {
- LogicalHelper(instr, instr->ImmLogical());
-}
-
-
-void Simulator::LogicalHelper(Instruction* instr, int64_t op2) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- int64_t op1 = reg(reg_size, instr->Rn());
- int64_t result = 0;
- bool update_flags = false;
-
- // Switch on the logical operation, stripping out the NOT bit, as it has a
- // different meaning for logical immediate instructions.
- switch (instr->Mask(LogicalOpMask & ~NOT)) {
- case ANDS: update_flags = true; // Fall through.
- case AND: result = op1 & op2; break;
- case ORR: result = op1 | op2; break;
- case EOR: result = op1 ^ op2; break;
- default:
- UNIMPLEMENTED();
- }
-
- if (update_flags) {
- nzcv().SetN(CalcNFlag(result, reg_size));
- nzcv().SetZ(CalcZFlag(result));
- nzcv().SetC(0);
- nzcv().SetV(0);
- }
-
- set_reg(reg_size, instr->Rd(), result, instr->RdMode());
-}
-
-
-void Simulator::VisitConditionalCompareRegister(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- ConditionalCompareHelper(instr, reg(reg_size, instr->Rm()));
-}
-
-
-void Simulator::VisitConditionalCompareImmediate(Instruction* instr) {
- ConditionalCompareHelper(instr, instr->ImmCondCmp());
-}
-
-
-void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- int64_t op1 = reg(reg_size, instr->Rn());
-
- if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
- // If the condition passes, set the status flags to the result of comparing
- // the operands.
- if (instr->Mask(ConditionalCompareMask) == CCMP) {
- AddWithCarry(reg_size, true, op1, ~op2, 1);
- } else {
- ASSERT(instr->Mask(ConditionalCompareMask) == CCMN);
- AddWithCarry(reg_size, true, op1, op2, 0);
- }
- } else {
- // If the condition fails, set the status flags to the nzcv immediate.
- nzcv().SetFlags(instr->Nzcv());
- }
-}
-
-
-void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) {
- int offset = instr->ImmLSUnsigned() << instr->SizeLS();
- LoadStoreHelper(instr, offset, Offset);
-}
-
-
-void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) {
- LoadStoreHelper(instr, instr->ImmLS(), Offset);
-}
-
-
-void Simulator::VisitLoadStorePreIndex(Instruction* instr) {
- LoadStoreHelper(instr, instr->ImmLS(), PreIndex);
-}
-
-
-void Simulator::VisitLoadStorePostIndex(Instruction* instr) {
- LoadStoreHelper(instr, instr->ImmLS(), PostIndex);
-}
-
-
-void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) {
- Extend ext = static_cast<Extend>(instr->ExtendMode());
- ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
- unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();
-
- int64_t offset = ExtendValue(kXRegSizeInBits, xreg(instr->Rm()), ext,
- shift_amount);
- LoadStoreHelper(instr, offset, Offset);
-}
-
-
-void Simulator::LoadStoreHelper(Instruction* instr,
- int64_t offset,
- AddrMode addrmode) {
- unsigned srcdst = instr->Rt();
- unsigned addr_reg = instr->Rn();
- uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode);
- int num_bytes = 1 << instr->SizeLS();
- uint8_t* stack = NULL;
-
- // Handle the writeback for stores before the store. On a CPU the writeback
- // and the store are atomic, but when running on the simulator it is possible
- // to be interrupted in between. The simulator is not thread safe and V8 does
- // not require it to be to run JavaScript therefore the profiler may sample
- // the "simulated" CPU in the middle of load/store with writeback. The code
- // below ensures that push operations are safe even when interrupted: the
- // stack pointer will be decremented before adding an element to the stack.
- if (instr->IsStore()) {
- LoadStoreWriteBack(addr_reg, offset, addrmode);
-
- // For store the address post writeback is used to check access below the
- // stack.
- stack = reinterpret_cast<uint8_t*>(sp());
- }
-
- LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask));
- switch (op) {
- case LDRB_w:
- case LDRH_w:
- case LDR_w:
- case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break;
- case STRB_w:
- case STRH_w:
- case STR_w:
- case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break;
- case LDRSB_w: {
- set_wreg(srcdst,
- ExtendValue(kWRegSizeInBits, MemoryRead8(address), SXTB));
- break;
- }
- case LDRSB_x: {
- set_xreg(srcdst,
- ExtendValue(kXRegSizeInBits, MemoryRead8(address), SXTB));
- break;
- }
- case LDRSH_w: {
- set_wreg(srcdst,
- ExtendValue(kWRegSizeInBits, MemoryRead16(address), SXTH));
- break;
- }
- case LDRSH_x: {
- set_xreg(srcdst,
- ExtendValue(kXRegSizeInBits, MemoryRead16(address), SXTH));
- break;
- }
- case LDRSW_x: {
- set_xreg(srcdst,
- ExtendValue(kXRegSizeInBits, MemoryRead32(address), SXTW));
- break;
- }
- case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break;
- case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break;
- case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break;
- case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break;
- default: UNIMPLEMENTED();
- }
-
- // Handle the writeback for loads after the load to ensure safe pop
- // operation even when interrupted in the middle of it. The stack pointer
- // is only updated after the load so pop(fp) will never break the invariant
- // sp <= fp expected while walking the stack in the sampler.
- if (instr->IsLoad()) {
- // For loads the address pre writeback is used to check access below the
- // stack.
- stack = reinterpret_cast<uint8_t*>(sp());
-
- LoadStoreWriteBack(addr_reg, offset, addrmode);
- }
-
- // Accesses below the stack pointer (but above the platform stack limit) are
- // not allowed in the ABI.
- CheckMemoryAccess(address, stack);
-}
-
-
-void Simulator::VisitLoadStorePairOffset(Instruction* instr) {
- LoadStorePairHelper(instr, Offset);
-}
-
-
-void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) {
- LoadStorePairHelper(instr, PreIndex);
-}
-
-
-void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) {
- LoadStorePairHelper(instr, PostIndex);
-}
-
-
-void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) {
- LoadStorePairHelper(instr, Offset);
-}
-
-
-void Simulator::LoadStorePairHelper(Instruction* instr,
- AddrMode addrmode) {
- unsigned rt = instr->Rt();
- unsigned rt2 = instr->Rt2();
- unsigned addr_reg = instr->Rn();
- int offset = instr->ImmLSPair() << instr->SizeLSPair();
- uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode);
- uint8_t* stack = NULL;
-
- // Handle the writeback for stores before the store. On a CPU the writeback
- // and the store are atomic, but when running on the simulator it is possible
- // to be interrupted in between. The simulator is not thread safe and V8 does
- // not require it to be to run JavaScript therefore the profiler may sample
- // the "simulated" CPU in the middle of load/store with writeback. The code
- // below ensures that push operations are safe even when interrupted: the
- // stack pointer will be decremented before adding an element to the stack.
- if (instr->IsStore()) {
- LoadStoreWriteBack(addr_reg, offset, addrmode);
-
- // For store the address post writeback is used to check access below the
- // stack.
- stack = reinterpret_cast<uint8_t*>(sp());
- }
-
- LoadStorePairOp op =
- static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask));
-
- // 'rt' and 'rt2' can only be aliased for stores.
- ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2));
-
- switch (op) {
- case LDP_w: {
- set_wreg(rt, MemoryRead32(address));
- set_wreg(rt2, MemoryRead32(address + kWRegSize));
- break;
- }
- case LDP_s: {
- set_sreg(rt, MemoryReadFP32(address));
- set_sreg(rt2, MemoryReadFP32(address + kSRegSize));
- break;
- }
- case LDP_x: {
- set_xreg(rt, MemoryRead64(address));
- set_xreg(rt2, MemoryRead64(address + kXRegSize));
- break;
- }
- case LDP_d: {
- set_dreg(rt, MemoryReadFP64(address));
- set_dreg(rt2, MemoryReadFP64(address + kDRegSize));
- break;
- }
- case LDPSW_x: {
- set_xreg(rt, ExtendValue(kXRegSizeInBits, MemoryRead32(address), SXTW));
- set_xreg(rt2, ExtendValue(kXRegSizeInBits,
- MemoryRead32(address + kWRegSize), SXTW));
- break;
- }
- case STP_w: {
- MemoryWrite32(address, wreg(rt));
- MemoryWrite32(address + kWRegSize, wreg(rt2));
- break;
- }
- case STP_s: {
- MemoryWriteFP32(address, sreg(rt));
- MemoryWriteFP32(address + kSRegSize, sreg(rt2));
- break;
- }
- case STP_x: {
- MemoryWrite64(address, xreg(rt));
- MemoryWrite64(address + kXRegSize, xreg(rt2));
- break;
- }
- case STP_d: {
- MemoryWriteFP64(address, dreg(rt));
- MemoryWriteFP64(address + kDRegSize, dreg(rt2));
- break;
- }
- default: UNREACHABLE();
- }
-
- // Handle the writeback for loads after the load to ensure safe pop
- // operation even when interrupted in the middle of it. The stack pointer
- // is only updated after the load so pop(fp) will never break the invariant
- // sp <= fp expected while walking the stack in the sampler.
- if (instr->IsLoad()) {
- // For loads the address pre writeback is used to check access below the
- // stack.
- stack = reinterpret_cast<uint8_t*>(sp());
-
- LoadStoreWriteBack(addr_reg, offset, addrmode);
- }
-
- // Accesses below the stack pointer (but above the platform stack limit) are
- // not allowed in the ABI.
- CheckMemoryAccess(address, stack);
-}
-
-
-void Simulator::VisitLoadLiteral(Instruction* instr) {
- uint8_t* address = instr->LiteralAddress();
- unsigned rt = instr->Rt();
-
- switch (instr->Mask(LoadLiteralMask)) {
- case LDR_w_lit: set_wreg(rt, MemoryRead32(address)); break;
- case LDR_x_lit: set_xreg(rt, MemoryRead64(address)); break;
- case LDR_s_lit: set_sreg(rt, MemoryReadFP32(address)); break;
- case LDR_d_lit: set_dreg(rt, MemoryReadFP64(address)); break;
- default: UNREACHABLE();
- }
-}
-
-
-uint8_t* Simulator::LoadStoreAddress(unsigned addr_reg,
- int64_t offset,
- AddrMode addrmode) {
- const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask;
- int64_t address = xreg(addr_reg, Reg31IsStackPointer);
- if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) {
- // When the base register is SP the stack pointer is required to be
- // quadword aligned prior to the address calculation and write-backs.
- // Misalignment will cause a stack alignment fault.
- FATAL("ALIGNMENT EXCEPTION");
- }
-
- if ((addrmode == Offset) || (addrmode == PreIndex)) {
- address += offset;
- }
-
- return reinterpret_cast<uint8_t*>(address);
-}
-
-
-void Simulator::LoadStoreWriteBack(unsigned addr_reg,
- int64_t offset,
- AddrMode addrmode) {
- if ((addrmode == PreIndex) || (addrmode == PostIndex)) {
- ASSERT(offset != 0);
- uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
- set_reg(addr_reg, address + offset, Reg31IsStackPointer);
- }
-}
-
-
-void Simulator::CheckMemoryAccess(uint8_t* address, uint8_t* stack) {
- if ((address >= stack_limit_) && (address < stack)) {
- fprintf(stream_, "ACCESS BELOW STACK POINTER:\n");
- fprintf(stream_, " sp is here: 0x%16p\n", stack);
- fprintf(stream_, " access was here: 0x%16p\n", address);
- fprintf(stream_, " stack limit is here: 0x%16p\n", stack_limit_);
- fprintf(stream_, "\n");
- FATAL("ACCESS BELOW STACK POINTER");
- }
-}
-
-
-uint64_t Simulator::MemoryRead(uint8_t* address, unsigned num_bytes) {
- ASSERT(address != NULL);
- ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t)));
- uint64_t read = 0;
- memcpy(&read, address, num_bytes);
- return read;
-}
-
-
-uint8_t Simulator::MemoryRead8(uint8_t* address) {
- return MemoryRead(address, sizeof(uint8_t));
-}
-
-
-uint16_t Simulator::MemoryRead16(uint8_t* address) {
- return MemoryRead(address, sizeof(uint16_t));
-}
-
-
-uint32_t Simulator::MemoryRead32(uint8_t* address) {
- return MemoryRead(address, sizeof(uint32_t));
-}
-
-
-float Simulator::MemoryReadFP32(uint8_t* address) {
- return rawbits_to_float(MemoryRead32(address));
-}
-
-
-uint64_t Simulator::MemoryRead64(uint8_t* address) {
- return MemoryRead(address, sizeof(uint64_t));
-}
-
-
-double Simulator::MemoryReadFP64(uint8_t* address) {
- return rawbits_to_double(MemoryRead64(address));
-}
-
-
-void Simulator::MemoryWrite(uint8_t* address,
- uint64_t value,
- unsigned num_bytes) {
- ASSERT(address != NULL);
- ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t)));
-
- LogWrite(address, value, num_bytes);
- memcpy(address, &value, num_bytes);
-}
-
-
-void Simulator::MemoryWrite32(uint8_t* address, uint32_t value) {
- MemoryWrite(address, value, sizeof(uint32_t));
-}
-
-
-void Simulator::MemoryWriteFP32(uint8_t* address, float value) {
- MemoryWrite32(address, float_to_rawbits(value));
-}
-
-
-void Simulator::MemoryWrite64(uint8_t* address, uint64_t value) {
- MemoryWrite(address, value, sizeof(uint64_t));
-}
-
-
-void Simulator::MemoryWriteFP64(uint8_t* address, double value) {
- MemoryWrite64(address, double_to_rawbits(value));
-}
-
-
-void Simulator::VisitMoveWideImmediate(Instruction* instr) {
- MoveWideImmediateOp mov_op =
- static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask));
- int64_t new_xn_val = 0;
-
- bool is_64_bits = instr->SixtyFourBits() == 1;
- // Shift is limited for W operations.
- ASSERT(is_64_bits || (instr->ShiftMoveWide() < 2));
-
- // Get the shifted immediate.
- int64_t shift = instr->ShiftMoveWide() * 16;
- int64_t shifted_imm16 = instr->ImmMoveWide() << shift;
-
- // Compute the new value.
- switch (mov_op) {
- case MOVN_w:
- case MOVN_x: {
- new_xn_val = ~shifted_imm16;
- if (!is_64_bits) new_xn_val &= kWRegMask;
- break;
- }
- case MOVK_w:
- case MOVK_x: {
- unsigned reg_code = instr->Rd();
- int64_t prev_xn_val = is_64_bits ? xreg(reg_code)
- : wreg(reg_code);
- new_xn_val = (prev_xn_val & ~(0xffffL << shift)) | shifted_imm16;
- break;
- }
- case MOVZ_w:
- case MOVZ_x: {
- new_xn_val = shifted_imm16;
- break;
- }
- default:
- UNREACHABLE();
- }
-
- // Update the destination register.
- set_xreg(instr->Rd(), new_xn_val);
-}
-
-
-void Simulator::VisitConditionalSelect(Instruction* instr) {
- uint64_t new_val = xreg(instr->Rn());
-
- if (ConditionFailed(static_cast<Condition>(instr->Condition()))) {
- new_val = xreg(instr->Rm());
- switch (instr->Mask(ConditionalSelectMask)) {
- case CSEL_w:
- case CSEL_x: break;
- case CSINC_w:
- case CSINC_x: new_val++; break;
- case CSINV_w:
- case CSINV_x: new_val = ~new_val; break;
- case CSNEG_w:
- case CSNEG_x: new_val = -new_val; break;
- default: UNIMPLEMENTED();
- }
- }
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- set_reg(reg_size, instr->Rd(), new_val);
-}
-
-
-void Simulator::VisitDataProcessing1Source(Instruction* instr) {
- unsigned dst = instr->Rd();
- unsigned src = instr->Rn();
-
- switch (instr->Mask(DataProcessing1SourceMask)) {
- case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSizeInBits)); break;
- case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSizeInBits)); break;
- case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break;
- case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break;
- case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break;
- case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break;
- case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break;
- case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSizeInBits));
- break;
- case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSizeInBits));
- break;
- case CLS_w: {
- set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSizeInBits));
- break;
- }
- case CLS_x: {
- set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSizeInBits));
- break;
- }
- default: UNIMPLEMENTED();
- }
-}
-
-
-uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) {
- ASSERT((num_bits == kWRegSizeInBits) || (num_bits == kXRegSizeInBits));
- uint64_t result = 0;
- for (unsigned i = 0; i < num_bits; i++) {
- result = (result << 1) | (value & 1);
- value >>= 1;
- }
- return result;
-}
-
-
-uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) {
- // Split the 64-bit value into an 8-bit array, where b[0] is the least
- // significant byte, and b[7] is the most significant.
- uint8_t bytes[8];
- uint64_t mask = 0xff00000000000000UL;
- for (int i = 7; i >= 0; i--) {
- bytes[i] = (value & mask) >> (i * 8);
- mask >>= 8;
- }
-
- // Permutation tables for REV instructions.
- // permute_table[Reverse16] is used by REV16_x, REV16_w
- // permute_table[Reverse32] is used by REV32_x, REV_w
- // permute_table[Reverse64] is used by REV_x
- ASSERT((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2));
- static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
- {4, 5, 6, 7, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 5, 6, 7} };
- uint64_t result = 0;
- for (int i = 0; i < 8; i++) {
- result <<= 8;
- result |= bytes[permute_table[mode][i]];
- }
- return result;
-}
-
-
-void Simulator::VisitDataProcessing2Source(Instruction* instr) {
- Shift shift_op = NO_SHIFT;
- int64_t result = 0;
- switch (instr->Mask(DataProcessing2SourceMask)) {
- case SDIV_w: {
- int32_t rn = wreg(instr->Rn());
- int32_t rm = wreg(instr->Rm());
- if ((rn == kWMinInt) && (rm == -1)) {
- result = kWMinInt;
- } else if (rm == 0) {
- // Division by zero can be trapped, but not on A-class processors.
- result = 0;
- } else {
- result = rn / rm;
- }
- break;
- }
- case SDIV_x: {
- int64_t rn = xreg(instr->Rn());
- int64_t rm = xreg(instr->Rm());
- if ((rn == kXMinInt) && (rm == -1)) {
- result = kXMinInt;
- } else if (rm == 0) {
- // Division by zero can be trapped, but not on A-class processors.
- result = 0;
- } else {
- result = rn / rm;
- }
- break;
- }
- case UDIV_w: {
- uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn()));
- uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm()));
- if (rm == 0) {
- // Division by zero can be trapped, but not on A-class processors.
- result = 0;
- } else {
- result = rn / rm;
- }
- break;
- }
- case UDIV_x: {
- uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn()));
- uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm()));
- if (rm == 0) {
- // Division by zero can be trapped, but not on A-class processors.
- result = 0;
- } else {
- result = rn / rm;
- }
- break;
- }
- case LSLV_w:
- case LSLV_x: shift_op = LSL; break;
- case LSRV_w:
- case LSRV_x: shift_op = LSR; break;
- case ASRV_w:
- case ASRV_x: shift_op = ASR; break;
- case RORV_w:
- case RORV_x: shift_op = ROR; break;
- default: UNIMPLEMENTED();
- }
-
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- if (shift_op != NO_SHIFT) {
- // Shift distance encoded in the least-significant five/six bits of the
- // register.
- int mask = (instr->SixtyFourBits() == 1) ? 0x3f : 0x1f;
- unsigned shift = wreg(instr->Rm()) & mask;
- result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op,
- shift);
- }
- set_reg(reg_size, instr->Rd(), result);
-}
-
-
-// The algorithm used is described in section 8.2 of
-// Hacker's Delight, by Henry S. Warren, Jr.
-// It assumes that a right shift on a signed integer is an arithmetic shift.
-static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
- uint64_t u0, v0, w0;
- int64_t u1, v1, w1, w2, t;
-
- u0 = u & 0xffffffffL;
- u1 = u >> 32;
- v0 = v & 0xffffffffL;
- v1 = v >> 32;
-
- w0 = u0 * v0;
- t = u1 * v0 + (w0 >> 32);
- w1 = t & 0xffffffffL;
- w2 = t >> 32;
- w1 = u0 * v1 + w1;
-
- return u1 * v1 + w2 + (w1 >> 32);
-}
-
-
-void Simulator::VisitDataProcessing3Source(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
-
- int64_t result = 0;
- // Extract and sign- or zero-extend 32-bit arguments for widening operations.
- uint64_t rn_u32 = reg<uint32_t>(instr->Rn());
- uint64_t rm_u32 = reg<uint32_t>(instr->Rm());
- int64_t rn_s32 = reg<int32_t>(instr->Rn());
- int64_t rm_s32 = reg<int32_t>(instr->Rm());
- switch (instr->Mask(DataProcessing3SourceMask)) {
- case MADD_w:
- case MADD_x:
- result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm()));
- break;
- case MSUB_w:
- case MSUB_x:
- result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm()));
- break;
- case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break;
- case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break;
- case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break;
- case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break;
- case SMULH_x:
- ASSERT(instr->Ra() == kZeroRegCode);
- result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm()));
- break;
- default: UNIMPLEMENTED();
- }
- set_reg(reg_size, instr->Rd(), result);
-}
-
-
-void Simulator::VisitBitfield(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
- : kWRegSizeInBits;
- int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask;
- int64_t R = instr->ImmR();
- int64_t S = instr->ImmS();
- int64_t diff = S - R;
- int64_t mask;
- if (diff >= 0) {
- mask = diff < reg_size - 1 ? (1L << (diff + 1)) - 1
- : reg_mask;
- } else {
- mask = ((1L << (S + 1)) - 1);
- mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R));
- diff += reg_size;
- }
-
- // inzero indicates if the extracted bitfield is inserted into the
- // destination register value or in zero.
- // If extend is true, extend the sign of the extracted bitfield.
- bool inzero = false;
- bool extend = false;
- switch (instr->Mask(BitfieldMask)) {
- case BFM_x:
- case BFM_w:
- break;
- case SBFM_x:
- case SBFM_w:
- inzero = true;
- extend = true;
- break;
- case UBFM_x:
- case UBFM_w:
- inzero = true;
- break;
- default:
- UNIMPLEMENTED();
- }
-
- int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd());
- int64_t src = reg(reg_size, instr->Rn());
- // Rotate source bitfield into place.
- int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R));
- // Determine the sign extension.
- int64_t topbits = ((1L << (reg_size - diff - 1)) - 1) << (diff + 1);
- int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0;
-
- // Merge sign extension, dest/zero and bitfield.
- result = signbits | (result & mask) | (dst & ~mask);
-
- set_reg(reg_size, instr->Rd(), result);
-}
-
-
-void Simulator::VisitExtract(Instruction* instr) {
- unsigned lsb = instr->ImmS();
- unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSizeInBits
- : kWRegSizeInBits;
- set_reg(reg_size,
- instr->Rd(),
- (static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) |
- (reg(reg_size, instr->Rn()) << (reg_size - lsb)));
-}
-
-
-void Simulator::VisitFPImmediate(Instruction* instr) {
- AssertSupportedFPCR();
-
- unsigned dest = instr->Rd();
- switch (instr->Mask(FPImmediateMask)) {
- case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break;
- case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break;
- default: UNREACHABLE();
- }
-}
-
-
-void Simulator::VisitFPIntegerConvert(Instruction* instr) {
- AssertSupportedFPCR();
-
- unsigned dst = instr->Rd();
- unsigned src = instr->Rn();
-
- FPRounding round = fpcr().RMode();
-
- switch (instr->Mask(FPIntegerConvertMask)) {
- case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break;
- case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break;
- case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break;
- case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break;
- case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break;
- case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break;
- case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break;
- case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break;
- case FCVTMS_ws:
- set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity));
- break;
- case FCVTMS_xs:
- set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity));
- break;
- case FCVTMS_wd:
- set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity));
- break;
- case FCVTMS_xd:
- set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity));
- break;
- case FCVTMU_ws:
- set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity));
- break;
- case FCVTMU_xs:
- set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity));
- break;
- case FCVTMU_wd:
- set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity));
- break;
- case FCVTMU_xd:
- set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity));
- break;
- case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break;
- case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break;
- case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break;
- case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break;
- case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break;
- case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break;
- case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break;
- case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break;
- case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break;
- case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break;
- case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break;
- case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break;
- case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break;
- case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break;
- case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break;
- case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break;
- case FMOV_ws: set_wreg(dst, sreg_bits(src)); break;
- case FMOV_xd: set_xreg(dst, dreg_bits(src)); break;
- case FMOV_sw: set_sreg_bits(dst, wreg(src)); break;
- case FMOV_dx: set_dreg_bits(dst, xreg(src)); break;
-
- // A 32-bit input can be handled in the same way as a 64-bit input, since
- // the sign- or zero-extension will not affect the conversion.
- case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break;
- case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break;
- case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break;
- case UCVTF_dw: {
- set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), 0, round));
- break;
- }
- case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break;
- case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break;
- case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break;
- case UCVTF_sw: {
- set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), 0, round));
- break;
- }
-
- default: UNREACHABLE();
- }
-}
-
-
-void Simulator::VisitFPFixedPointConvert(Instruction* instr) {
- AssertSupportedFPCR();
-
- unsigned dst = instr->Rd();
- unsigned src = instr->Rn();
- int fbits = 64 - instr->FPScale();
-
- FPRounding round = fpcr().RMode();
-
- switch (instr->Mask(FPFixedPointConvertMask)) {
- // A 32-bit input can be handled in the same way as a 64-bit input, since
- // the sign- or zero-extension will not affect the conversion.
- case SCVTF_dx_fixed:
- set_dreg(dst, FixedToDouble(xreg(src), fbits, round));
- break;
- case SCVTF_dw_fixed:
- set_dreg(dst, FixedToDouble(wreg(src), fbits, round));
- break;
- case UCVTF_dx_fixed:
- set_dreg(dst, UFixedToDouble(xreg(src), fbits, round));
- break;
- case UCVTF_dw_fixed: {
- set_dreg(dst,
- UFixedToDouble(reg<uint32_t>(src), fbits, round));
- break;
- }
- case SCVTF_sx_fixed:
- set_sreg(dst, FixedToFloat(xreg(src), fbits, round));
- break;
- case SCVTF_sw_fixed:
- set_sreg(dst, FixedToFloat(wreg(src), fbits, round));
- break;
- case UCVTF_sx_fixed:
- set_sreg(dst, UFixedToFloat(xreg(src), fbits, round));
- break;
- case UCVTF_sw_fixed: {
- set_sreg(dst,
- UFixedToFloat(reg<uint32_t>(src), fbits, round));
- break;
- }
- default: UNREACHABLE();
- }
-}
-
-
-int32_t Simulator::FPToInt32(double value, FPRounding rmode) {
- value = FPRoundInt(value, rmode);
- if (value >= kWMaxInt) {
- return kWMaxInt;
- } else if (value < kWMinInt) {
- return kWMinInt;
- }
- return std::isnan(value) ? 0 : static_cast<int32_t>(value);
-}
-
-
-int64_t Simulator::FPToInt64(double value, FPRounding rmode) {
- value = FPRoundInt(value, rmode);
- if (value >= kXMaxInt) {
- return kXMaxInt;
- } else if (value < kXMinInt) {
- return kXMinInt;
- }
- return std::isnan(value) ? 0 : static_cast<int64_t>(value);
-}
-
-
-uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) {
- value = FPRoundInt(value, rmode);
- if (value >= kWMaxUInt) {
- return kWMaxUInt;
- } else if (value < 0.0) {
- return 0;
- }
- return std::isnan(value) ? 0 : static_cast<uint32_t>(value);
-}
-
-
-uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
- value = FPRoundInt(value, rmode);
- if (value >= kXMaxUInt) {
- return kXMaxUInt;
- } else if (value < 0.0) {
- return 0;
- }
- return std::isnan(value) ? 0 : static_cast<uint64_t>(value);
-}
-
-
-void Simulator::VisitFPCompare(Instruction* instr) {
- AssertSupportedFPCR();
-
- unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
- : kSRegSizeInBits;
- double fn_val = fpreg(reg_size, instr->Rn());
-
- switch (instr->Mask(FPCompareMask)) {
- case FCMP_s:
- case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break;
- case FCMP_s_zero:
- case FCMP_d_zero: FPCompare(fn_val, 0.0); break;
- default: UNIMPLEMENTED();
- }
-}
-
-
-void Simulator::VisitFPConditionalCompare(Instruction* instr) {
- AssertSupportedFPCR();
-
- switch (instr->Mask(FPConditionalCompareMask)) {
- case FCCMP_s:
- case FCCMP_d: {
- if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
- // If the condition passes, set the status flags to the result of
- // comparing the operands.
- unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
- : kSRegSizeInBits;
- FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm()));
- } else {
- // If the condition fails, set the status flags to the nzcv immediate.
- nzcv().SetFlags(instr->Nzcv());
- }
- break;
- }
- default: UNIMPLEMENTED();
- }
-}
-
-
-void Simulator::VisitFPConditionalSelect(Instruction* instr) {
- AssertSupportedFPCR();
-
- Instr selected;
- if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
- selected = instr->Rn();
- } else {
- selected = instr->Rm();
- }
-
- switch (instr->Mask(FPConditionalSelectMask)) {
- case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break;
- case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break;
- default: UNIMPLEMENTED();
- }
-}
-
-
-void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
- AssertSupportedFPCR();
-
- unsigned fd = instr->Rd();
- unsigned fn = instr->Rn();
-
- switch (instr->Mask(FPDataProcessing1SourceMask)) {
- case FMOV_s: set_sreg(fd, sreg(fn)); break;
- case FMOV_d: set_dreg(fd, dreg(fn)); break;
- case FABS_s: set_sreg(fd, std::fabs(sreg(fn))); break;
- case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break;
- case FNEG_s: set_sreg(fd, -sreg(fn)); break;
- case FNEG_d: set_dreg(fd, -dreg(fn)); break;
- case FSQRT_s: set_sreg(fd, FPSqrt(sreg(fn))); break;
- case FSQRT_d: set_dreg(fd, FPSqrt(dreg(fn))); break;
- case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break;
- case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break;
- case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break;
- case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break;
- case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break;
- case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break;
- case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break;
- case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break;
- default: UNIMPLEMENTED();
- }
-}
-
-
-// Assemble the specified IEEE-754 components into the target type and apply
-// appropriate rounding.
-// sign: 0 = positive, 1 = negative
-// exponent: Unbiased IEEE-754 exponent.
-// mantissa: The mantissa of the input. The top bit (which is not encoded for
-// normal IEEE-754 values) must not be omitted. This bit has the
-// value 'pow(2, exponent)'.
-//
-// The input value is assumed to be a normalized value. That is, the input may
-// not be infinity or NaN. If the source value is subnormal, it must be
-// normalized before calling this function such that the highest set bit in the
-// mantissa has the value 'pow(2, exponent)'.
-//
-// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
-// calling a templated FPRound.
-template <class T, int ebits, int mbits>
-static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
- FPRounding round_mode) {
- ASSERT((sign == 0) || (sign == 1));
-
- // Only the FPTieEven rounding mode is implemented.
- ASSERT(round_mode == FPTieEven);
- USE(round_mode);
-
- // Rounding can promote subnormals to normals, and normals to infinities. For
- // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
- // encodable as a float, but rounding based on the low-order mantissa bits
- // could make it overflow. With ties-to-even rounding, this value would become
- // an infinity.
-
- // ---- Rounding Method ----
- //
- // The exponent is irrelevant in the rounding operation, so we treat the
- // lowest-order bit that will fit into the result ('onebit') as having
- // the value '1'. Similarly, the highest-order bit that won't fit into
- // the result ('halfbit') has the value '0.5'. The 'point' sits between
- // 'onebit' and 'halfbit':
- //
- // These bits fit into the result.
- // |---------------------|
- // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
- // ||
- // / |
- // / halfbit
- // onebit
- //
- // For subnormal outputs, the range of representable bits is smaller and
- // the position of onebit and halfbit depends on the exponent of the
- // input, but the method is otherwise similar.
- //
- // onebit(frac)
- // |
- // | halfbit(frac) halfbit(adjusted)
- // | / /
- // | | |
- // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
- // 0b00.0... -> 0b00.0... -> 0b00
- // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
- // 0b00.1... -> 0b00.1... -> 0b01
- // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
- // 0b01.0... -> 0b01.0... -> 0b01
- // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
- // 0b01.1... -> 0b01.1... -> 0b10
- // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
- // 0b10.0... -> 0b10.0... -> 0b10
- // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
- // 0b10.1... -> 0b10.1... -> 0b11
- // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
- // ... / | / |
- // / | / |
- // / |
- // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
- //
- // mantissa = (mantissa >> shift) + halfbit(adjusted);
-
- static const int mantissa_offset = 0;
- static const int exponent_offset = mantissa_offset + mbits;
- static const int sign_offset = exponent_offset + ebits;
- STATIC_ASSERT(sign_offset == (sizeof(T) * kByteSize - 1));
-
- // Bail out early for zero inputs.
- if (mantissa == 0) {
- return sign << sign_offset;
- }
-
- // If all bits in the exponent are set, the value is infinite or NaN.
- // This is true for all binary IEEE-754 formats.
- static const int infinite_exponent = (1 << ebits) - 1;
- static const int max_normal_exponent = infinite_exponent - 1;
-
- // Apply the exponent bias to encode it for the result. Doing this early makes
- // it easy to detect values that will be infinite or subnormal.
- exponent += max_normal_exponent >> 1;
-
- if (exponent > max_normal_exponent) {
- // Overflow: The input is too large for the result type to represent. The
- // FPTieEven rounding mode handles overflows using infinities.
- exponent = infinite_exponent;
- mantissa = 0;
- return (sign << sign_offset) |
- (exponent << exponent_offset) |
- (mantissa << mantissa_offset);
- }
-
- // Calculate the shift required to move the top mantissa bit to the proper
- // place in the destination type.
- const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64);
- int shift = highest_significant_bit - mbits;
-
- if (exponent <= 0) {
- // The output will be subnormal (before rounding).
-
- // For subnormal outputs, the shift must be adjusted by the exponent. The +1
- // is necessary because the exponent of a subnormal value (encoded as 0) is
- // the same as the exponent of the smallest normal value (encoded as 1).
- shift += -exponent + 1;
-
- // Handle inputs that would produce a zero output.
- //
- // Shifts higher than highest_significant_bit+1 will always produce a zero
- // result. A shift of exactly highest_significant_bit+1 might produce a
- // non-zero result after rounding.
- if (shift > (highest_significant_bit + 1)) {
- // The result will always be +/-0.0.
- return sign << sign_offset;
- }
-
- // Properly encode the exponent for a subnormal output.
- exponent = 0;
- } else {
- // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
- // normal values.
- mantissa &= ~(1UL << highest_significant_bit);
- }
-
- if (shift > 0) {
- // We have to shift the mantissa to the right. Some precision is lost, so we
- // need to apply rounding.
- uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
- uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1;
- uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa);
- T halfbit_adjusted = (adjusted >> (shift-1)) & 1;
-
- T result = (sign << sign_offset) |
- (exponent << exponent_offset) |
- ((mantissa >> shift) << mantissa_offset);
-
- // A very large mantissa can overflow during rounding. If this happens, the
- // exponent should be incremented and the mantissa set to 1.0 (encoded as
- // 0). Applying halfbit_adjusted after assembling the float has the nice
- // side-effect that this case is handled for free.
- //
- // This also handles cases where a very large finite value overflows to
- // infinity, or where a very large subnormal value overflows to become
- // normal.
- return result + halfbit_adjusted;
- } else {
- // We have to shift the mantissa to the left (or not at all). The input
- // mantissa is exactly representable in the output mantissa, so apply no
- // rounding correction.
- return (sign << sign_offset) |
- (exponent << exponent_offset) |
- ((mantissa << -shift) << mantissa_offset);
- }
-}
-
-
-// See FPRound for a description of this function.
-static inline double FPRoundToDouble(int64_t sign, int64_t exponent,
- uint64_t mantissa, FPRounding round_mode) {
- int64_t bits =
- FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
- exponent,
- mantissa,
- round_mode);
- return rawbits_to_double(bits);
-}
-
-
-// See FPRound for a description of this function.
-static inline float FPRoundToFloat(int64_t sign, int64_t exponent,
- uint64_t mantissa, FPRounding round_mode) {
- int32_t bits =
- FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
- exponent,
- mantissa,
- round_mode);
- return rawbits_to_float(bits);
-}
-
-
-double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) {
- if (src >= 0) {
- return UFixedToDouble(src, fbits, round);
- } else {
- // This works for all negative values, including INT64_MIN.
- return -UFixedToDouble(-src, fbits, round);
- }
-}
-
-
-double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) {
- // An input of 0 is a special case because the result is effectively
- // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
- if (src == 0) {
- return 0.0;
- }
-
- // Calculate the exponent. The highest significant bit will have the value
- // 2^exponent.
- const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
- const int64_t exponent = highest_significant_bit - fbits;
-
- return FPRoundToDouble(0, exponent, src, round);
-}
-
-
-float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) {
- if (src >= 0) {
- return UFixedToFloat(src, fbits, round);
- } else {
- // This works for all negative values, including INT64_MIN.
- return -UFixedToFloat(-src, fbits, round);
- }
-}
-
-
-float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
- // An input of 0 is a special case because the result is effectively
- // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
- if (src == 0) {
- return 0.0f;
- }
-
- // Calculate the exponent. The highest significant bit will have the value
- // 2^exponent.
- const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
- const int32_t exponent = highest_significant_bit - fbits;
-
- return FPRoundToFloat(0, exponent, src, round);
-}
-
-
-double Simulator::FPRoundInt(double value, FPRounding round_mode) {
- if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
- (value == kFP64NegativeInfinity)) {
- return value;
- } else if (std::isnan(value)) {
- return FPProcessNaN(value);
- }
-
- double int_result = floor(value);
- double error = value - int_result;
- switch (round_mode) {
- case FPTieAway: {
- // If the error is greater than 0.5, or is equal to 0.5 and the integer
- // result is positive, round up.
- if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) {
- int_result++;
- }
- break;
- }
- case FPTieEven: {
- // If the error is greater than 0.5, or is equal to 0.5 and the integer
- // result is odd, round up.
- if ((error > 0.5) ||
- ((error == 0.5) && (fmod(int_result, 2) != 0))) {
- int_result++;
- }
- break;
- }
- case FPZero: {
- // If value > 0 then we take floor(value)
- // otherwise, ceil(value)
- if (value < 0) {
- int_result = ceil(value);
- }
- break;
- }
- case FPNegativeInfinity: {
- // We always use floor(value).
- break;
- }
- default: UNIMPLEMENTED();
- }
- return int_result;
-}
-
-
-double Simulator::FPToDouble(float value) {
- switch (std::fpclassify(value)) {
- case FP_NAN: {
- if (fpcr().DN()) return kFP64DefaultNaN;
-
- // Convert NaNs as the processor would:
- // - The sign is propagated.
- // - The payload (mantissa) is transferred entirely, except that the top
- // bit is forced to '1', making the result a quiet NaN. The unused
- // (low-order) payload bits are set to 0.
- uint32_t raw = float_to_rawbits(value);
-
- uint64_t sign = raw >> 31;
- uint64_t exponent = (1 << 11) - 1;
- uint64_t payload = unsigned_bitextract_64(21, 0, raw);
- payload <<= (52 - 23); // The unused low-order bits should be 0.
- payload |= (1L << 51); // Force a quiet NaN.
-
- return rawbits_to_double((sign << 63) | (exponent << 52) | payload);
- }
-
- case FP_ZERO:
- case FP_NORMAL:
- case FP_SUBNORMAL:
- case FP_INFINITE: {
- // All other inputs are preserved in a standard cast, because every value
- // representable using an IEEE-754 float is also representable using an
- // IEEE-754 double.
- return static_cast<double>(value);
- }
- }
-
- UNREACHABLE();
- return static_cast<double>(value);
-}
-
-
-float Simulator::FPToFloat(double value, FPRounding round_mode) {
- // Only the FPTieEven rounding mode is implemented.
- ASSERT(round_mode == FPTieEven);
- USE(round_mode);
-
- switch (std::fpclassify(value)) {
- case FP_NAN: {
- if (fpcr().DN()) return kFP32DefaultNaN;
-
- // Convert NaNs as the processor would:
- // - The sign is propagated.
- // - The payload (mantissa) is transferred as much as possible, except
- // that the top bit is forced to '1', making the result a quiet NaN.
- uint64_t raw = double_to_rawbits(value);
-
- uint32_t sign = raw >> 63;
- uint32_t exponent = (1 << 8) - 1;
- uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw);
- payload |= (1 << 22); // Force a quiet NaN.
-
- return rawbits_to_float((sign << 31) | (exponent << 23) | payload);
- }
-
- case FP_ZERO:
- case FP_INFINITE: {
- // In a C++ cast, any value representable in the target type will be
- // unchanged. This is always the case for +/-0.0 and infinities.
- return static_cast<float>(value);
- }
-
- case FP_NORMAL:
- case FP_SUBNORMAL: {
- // Convert double-to-float as the processor would, assuming that FPCR.FZ
- // (flush-to-zero) is not set.
- uint64_t raw = double_to_rawbits(value);
- // Extract the IEEE-754 double components.
- uint32_t sign = raw >> 63;
- // Extract the exponent and remove the IEEE-754 encoding bias.
- int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023;
- // Extract the mantissa and add the implicit '1' bit.
- uint64_t mantissa = unsigned_bitextract_64(51, 0, raw);
- if (std::fpclassify(value) == FP_NORMAL) {
- mantissa |= (1UL << 52);
- }
- return FPRoundToFloat(sign, exponent, mantissa, round_mode);
- }
- }
-
- UNREACHABLE();
- return value;
-}
-
-
-void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
- AssertSupportedFPCR();
-
- unsigned fd = instr->Rd();
- unsigned fn = instr->Rn();
- unsigned fm = instr->Rm();
-
- // Fmaxnm and Fminnm have special NaN handling.
- switch (instr->Mask(FPDataProcessing2SourceMask)) {
- case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); return;
- case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); return;
- case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); return;
- case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); return;
- default:
- break; // Fall through.
- }
-
- if (FPProcessNaNs(instr)) return;
-
- switch (instr->Mask(FPDataProcessing2SourceMask)) {
- case FADD_s: set_sreg(fd, FPAdd(sreg(fn), sreg(fm))); break;
- case FADD_d: set_dreg(fd, FPAdd(dreg(fn), dreg(fm))); break;
- case FSUB_s: set_sreg(fd, FPSub(sreg(fn), sreg(fm))); break;
- case FSUB_d: set_dreg(fd, FPSub(dreg(fn), dreg(fm))); break;
- case FMUL_s: set_sreg(fd, FPMul(sreg(fn), sreg(fm))); break;
- case FMUL_d: set_dreg(fd, FPMul(dreg(fn), dreg(fm))); break;
- case FDIV_s: set_sreg(fd, FPDiv(sreg(fn), sreg(fm))); break;
- case FDIV_d: set_dreg(fd, FPDiv(dreg(fn), dreg(fm))); break;
- case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break;
- case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break;
- case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break;
- case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break;
- case FMAXNM_s:
- case FMAXNM_d:
- case FMINNM_s:
- case FMINNM_d:
- // These were handled before the standard FPProcessNaNs() stage.
- UNREACHABLE();
- default: UNIMPLEMENTED();
- }
-}
-
-
-void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
- AssertSupportedFPCR();
-
- unsigned fd = instr->Rd();
- unsigned fn = instr->Rn();
- unsigned fm = instr->Rm();
- unsigned fa = instr->Ra();
-
- // The C99 (and C++11) fma function performs a fused multiply-accumulate.
- switch (instr->Mask(FPDataProcessing3SourceMask)) {
- // fd = fa +/- (fn * fm)
- case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break;
- case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break;
- case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break;
- case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break;
- // Negated variants of the above.
- case FNMADD_s:
- set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm)));
- break;
- case FNMSUB_s:
- set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm)));
- break;
- case FNMADD_d:
- set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm)));
- break;
- case FNMSUB_d:
- set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm)));
- break;
- default: UNIMPLEMENTED();
- }
-}
-
-
-template <typename T>
-T Simulator::FPAdd(T op1, T op2) {
- // NaNs should be handled elsewhere.
- ASSERT(!std::isnan(op1) && !std::isnan(op2));
-
- if (isinf(op1) && isinf(op2) && (op1 != op2)) {
- // inf + -inf returns the default NaN.
- return FPDefaultNaN<T>();
- } else {
- // Other cases should be handled by standard arithmetic.
- return op1 + op2;
- }
-}
-
-
-template <typename T>
-T Simulator::FPDiv(T op1, T op2) {
- // NaNs should be handled elsewhere.
- ASSERT(!std::isnan(op1) && !std::isnan(op2));
-
- if ((isinf(op1) && isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) {
- // inf / inf and 0.0 / 0.0 return the default NaN.
- return FPDefaultNaN<T>();
- } else {
- // Other cases should be handled by standard arithmetic.
- return op1 / op2;
- }
-}
-
-
-template <typename T>
-T Simulator::FPMax(T a, T b) {
- // NaNs should be handled elsewhere.
- ASSERT(!std::isnan(a) && !std::isnan(b));
-
- if ((a == 0.0) && (b == 0.0) &&
- (copysign(1.0, a) != copysign(1.0, b))) {
- // a and b are zero, and the sign differs: return +0.0.
- return 0.0;
- } else {
- return (a > b) ? a : b;
- }
-}
-
-
-template <typename T>
-T Simulator::FPMaxNM(T a, T b) {
- if (IsQuietNaN(a) && !IsQuietNaN(b)) {
- a = kFP64NegativeInfinity;
- } else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
- b = kFP64NegativeInfinity;
- }
-
- T result = FPProcessNaNs(a, b);
- return std::isnan(result) ? result : FPMax(a, b);
-}
-
-template <typename T>
-T Simulator::FPMin(T a, T b) {
- // NaNs should be handled elsewhere.
- ASSERT(!isnan(a) && !isnan(b));
-
- if ((a == 0.0) && (b == 0.0) &&
- (copysign(1.0, a) != copysign(1.0, b))) {
- // a and b are zero, and the sign differs: return -0.0.
- return -0.0;
- } else {
- return (a < b) ? a : b;
- }
-}
-
-
-template <typename T>
-T Simulator::FPMinNM(T a, T b) {
- if (IsQuietNaN(a) && !IsQuietNaN(b)) {
- a = kFP64PositiveInfinity;
- } else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
- b = kFP64PositiveInfinity;
- }
-
- T result = FPProcessNaNs(a, b);
- return isnan(result) ? result : FPMin(a, b);
-}
-
-
-template <typename T>
-T Simulator::FPMul(T op1, T op2) {
- // NaNs should be handled elsewhere.
- ASSERT(!std::isnan(op1) && !std::isnan(op2));
-
- if ((isinf(op1) && (op2 == 0.0)) || (isinf(op2) && (op1 == 0.0))) {
- // inf * 0.0 returns the default NaN.
- return FPDefaultNaN<T>();
- } else {
- // Other cases should be handled by standard arithmetic.
- return op1 * op2;
- }
-}
-
-
-template<typename T>
-T Simulator::FPMulAdd(T a, T op1, T op2) {
- T result = FPProcessNaNs3(a, op1, op2);
-
- T sign_a = copysign(1.0, a);
- T sign_prod = copysign(1.0, op1) * copysign(1.0, op2);
- bool isinf_prod = std::isinf(op1) || std::isinf(op2);
- bool operation_generates_nan =
- (std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0
- (std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf
- (std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf
-
- if (std::isnan(result)) {
- // Generated NaNs override quiet NaNs propagated from a.
- if (operation_generates_nan && IsQuietNaN(a)) {
- return FPDefaultNaN<T>();
- } else {
- return result;
- }
- }
-
- // If the operation would produce a NaN, return the default NaN.
- if (operation_generates_nan) {
- return FPDefaultNaN<T>();
- }
-
- // Work around broken fma implementations for exact zero results: The sign of
- // exact 0.0 results is positive unless both a and op1 * op2 are negative.
- if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) {
- return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0;
- }
-
- result = FusedMultiplyAdd(op1, op2, a);
- ASSERT(!std::isnan(result));
-
- // Work around broken fma implementations for rounded zero results: If a is
- // 0.0, the sign of the result is the sign of op1 * op2 before rounding.
- if ((a == 0.0) && (result == 0.0)) {
- return copysign(0.0, sign_prod);
- }
-
- return result;
-}
-
-
-template <typename T>
-T Simulator::FPSqrt(T op) {
- if (std::isnan(op)) {
- return FPProcessNaN(op);
- } else if (op < 0.0) {
- return FPDefaultNaN<T>();
- } else {
- return std::sqrt(op);
- }
-}
-
-
-template <typename T>
-T Simulator::FPSub(T op1, T op2) {
- // NaNs should be handled elsewhere.
- ASSERT(!std::isnan(op1) && !std::isnan(op2));
-
- if (isinf(op1) && isinf(op2) && (op1 == op2)) {
- // inf - inf returns the default NaN.
- return FPDefaultNaN<T>();
- } else {
- // Other cases should be handled by standard arithmetic.
- return op1 - op2;
- }
-}
-
-
-template <typename T>
-T Simulator::FPProcessNaN(T op) {
- ASSERT(std::isnan(op));
- return fpcr().DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
-}
-
-
-template <typename T>
-T Simulator::FPProcessNaNs(T op1, T op2) {
- if (IsSignallingNaN(op1)) {
- return FPProcessNaN(op1);
- } else if (IsSignallingNaN(op2)) {
- return FPProcessNaN(op2);
- } else if (std::isnan(op1)) {
- ASSERT(IsQuietNaN(op1));
- return FPProcessNaN(op1);
- } else if (std::isnan(op2)) {
- ASSERT(IsQuietNaN(op2));
- return FPProcessNaN(op2);
- } else {
- return 0.0;
- }
-}
-
-
-template <typename T>
-T Simulator::FPProcessNaNs3(T op1, T op2, T op3) {
- if (IsSignallingNaN(op1)) {
- return FPProcessNaN(op1);
- } else if (IsSignallingNaN(op2)) {
- return FPProcessNaN(op2);
- } else if (IsSignallingNaN(op3)) {
- return FPProcessNaN(op3);
- } else if (std::isnan(op1)) {
- ASSERT(IsQuietNaN(op1));
- return FPProcessNaN(op1);
- } else if (std::isnan(op2)) {
- ASSERT(IsQuietNaN(op2));
- return FPProcessNaN(op2);
- } else if (std::isnan(op3)) {
- ASSERT(IsQuietNaN(op3));
- return FPProcessNaN(op3);
- } else {
- return 0.0;
- }
-}
-
-
-bool Simulator::FPProcessNaNs(Instruction* instr) {
- unsigned fd = instr->Rd();
- unsigned fn = instr->Rn();
- unsigned fm = instr->Rm();
- bool done = false;
-
- if (instr->Mask(FP64) == FP64) {
- double result = FPProcessNaNs(dreg(fn), dreg(fm));
- if (std::isnan(result)) {
- set_dreg(fd, result);
- done = true;
- }
- } else {
- float result = FPProcessNaNs(sreg(fn), sreg(fm));
- if (std::isnan(result)) {
- set_sreg(fd, result);
- done = true;
- }
- }
-
- return done;
-}
-
-
-void Simulator::VisitSystem(Instruction* instr) {
- // Some system instructions hijack their Op and Cp fields to represent a
- // range of immediates instead of indicating a different instruction. This
- // makes the decoding tricky.
- if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
- switch (instr->Mask(SystemSysRegMask)) {
- case MRS: {
- switch (instr->ImmSystemRegister()) {
- case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break;
- case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break;
- default: UNIMPLEMENTED();
- }
- break;
- }
- case MSR: {
- switch (instr->ImmSystemRegister()) {
- case NZCV: nzcv().SetRawValue(xreg(instr->Rt())); break;
- case FPCR: fpcr().SetRawValue(xreg(instr->Rt())); break;
- default: UNIMPLEMENTED();
- }
- break;
- }
- }
- } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
- ASSERT(instr->Mask(SystemHintMask) == HINT);
- switch (instr->ImmHint()) {
- case NOP: break;
- default: UNIMPLEMENTED();
- }
- } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
- __sync_synchronize();
- } else {
- UNIMPLEMENTED();
- }
-}
-
-
-bool Simulator::GetValue(const char* desc, int64_t* value) {
- int regnum = CodeFromName(desc);
- if (regnum >= 0) {
- unsigned code = regnum;
- if (code == kZeroRegCode) {
- // Catch the zero register and return 0.
- *value = 0;
- return true;
- } else if (code == kSPRegInternalCode) {
- // Translate the stack pointer code to 31, for Reg31IsStackPointer.
- code = 31;
- }
- if (desc[0] == 'w') {
- *value = wreg(code, Reg31IsStackPointer);
- } else {
- *value = xreg(code, Reg31IsStackPointer);
- }
- return true;
- } else if (strncmp(desc, "0x", 2) == 0) {
- return SScanF(desc + 2, "%" SCNx64,
- reinterpret_cast<uint64_t*>(value)) == 1;
- } else {
- return SScanF(desc, "%" SCNu64,
- reinterpret_cast<uint64_t*>(value)) == 1;
- }
-}
-
-
-bool Simulator::PrintValue(const char* desc) {
- if (strcmp(desc, "csp") == 0) {
- ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
- PrintF("%s csp:%s 0x%016" PRIx64 "%s\n",
- clr_reg_name, clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal);
- return true;
- } else if (strcmp(desc, "wcsp") == 0) {
- ASSERT(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
- PrintF("%s wcsp:%s 0x%08" PRIx32 "%s\n",
- clr_reg_name, clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal);
- return true;
- }
-
- int i = CodeFromName(desc);
- STATIC_ASSERT(kNumberOfRegisters == kNumberOfFPRegisters);
- if (i < 0 || static_cast<unsigned>(i) >= kNumberOfFPRegisters) return false;
-
- if (desc[0] == 'v') {
- PrintF("%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
- clr_fpreg_name, VRegNameForCode(i),
- clr_fpreg_value, double_to_rawbits(dreg(i)),
- clr_normal,
- clr_fpreg_name, DRegNameForCode(i),
- clr_fpreg_value, dreg(i),
- clr_fpreg_name, SRegNameForCode(i),
- clr_fpreg_value, sreg(i),
- clr_normal);
- return true;
- } else if (desc[0] == 'd') {
- PrintF("%s %s:%s %g%s\n",
- clr_fpreg_name, DRegNameForCode(i),
- clr_fpreg_value, dreg(i),
- clr_normal);
- return true;
- } else if (desc[0] == 's') {
- PrintF("%s %s:%s %g%s\n",
- clr_fpreg_name, SRegNameForCode(i),
- clr_fpreg_value, sreg(i),
- clr_normal);
- return true;
- } else if (desc[0] == 'w') {
- PrintF("%s %s:%s 0x%08" PRIx32 "%s\n",
- clr_reg_name, WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal);
- return true;
- } else {
- // X register names have a wide variety of starting characters, but anything
- // else will be an X register.
- PrintF("%s %s:%s 0x%016" PRIx64 "%s\n",
- clr_reg_name, XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal);
- return true;
- }
-}
-
-
-void Simulator::Debug() {
-#define COMMAND_SIZE 63
-#define ARG_SIZE 255
-
-#define STR(a) #a
-#define XSTR(a) STR(a)
-
- char cmd[COMMAND_SIZE + 1];
- char arg1[ARG_SIZE + 1];
- char arg2[ARG_SIZE + 1];
- char* argv[3] = { cmd, arg1, arg2 };
-
- // Make sure to have a proper terminating character if reaching the limit.
- cmd[COMMAND_SIZE] = 0;
- arg1[ARG_SIZE] = 0;
- arg2[ARG_SIZE] = 0;
-
- bool done = false;
- bool cleared_log_disasm_bit = false;
-
- while (!done) {
- // Disassemble the next instruction to execute before doing anything else.
- PrintInstructionsAt(pc_, 1);
- // Read the command line.
- char* line = ReadLine("sim> ");
- if (line == NULL) {
- break;
- } else {
- // Repeat last command by default.
- char* last_input = last_debugger_input();
- if (strcmp(line, "\n") == 0 && (last_input != NULL)) {
- DeleteArray(line);
- line = last_input;
- } else {
- // Update the latest command ran
- set_last_debugger_input(line);
- }
-
- // Use sscanf to parse the individual parts of the command line. At the
- // moment no command expects more than two parameters.
- int argc = SScanF(line,
- "%" XSTR(COMMAND_SIZE) "s "
- "%" XSTR(ARG_SIZE) "s "
- "%" XSTR(ARG_SIZE) "s",
- cmd, arg1, arg2);
-
- // stepi / si ------------------------------------------------------------
- if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
- // We are about to execute instructions, after which by default we
- // should increment the pc_. If it was set when reaching this debug
- // instruction, it has not been cleared because this instruction has not
- // completed yet. So clear it manually.
- pc_modified_ = false;
-
- if (argc == 1) {
- ExecuteInstruction();
- } else {
- int64_t number_of_instructions_to_execute = 1;
- GetValue(arg1, &number_of_instructions_to_execute);
-
- set_log_parameters(log_parameters() | LOG_DISASM);
- while (number_of_instructions_to_execute-- > 0) {
- ExecuteInstruction();
- }
- set_log_parameters(log_parameters() & ~LOG_DISASM);
- PrintF("\n");
- }
-
- // If it was necessary, the pc has already been updated or incremented
- // when executing the instruction. So we do not want it to be updated
- // again. It will be cleared when exiting.
- pc_modified_ = true;
-
- // next / n --------------------------------------------------------------
- } else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) {
- // Tell the simulator to break after the next executed BL.
- break_on_next_ = true;
- // Continue.
- done = true;
-
- // continue / cont / c ---------------------------------------------------
- } else if ((strcmp(cmd, "continue") == 0) ||
- (strcmp(cmd, "cont") == 0) ||
- (strcmp(cmd, "c") == 0)) {
- // Leave the debugger shell.
- done = true;
-
- // disassemble / disasm / di ---------------------------------------------
- } else if (strcmp(cmd, "disassemble") == 0 ||
- strcmp(cmd, "disasm") == 0 ||
- strcmp(cmd, "di") == 0) {
- int64_t n_of_instrs_to_disasm = 10; // default value.
- int64_t address = reinterpret_cast<int64_t>(pc_); // default value.
- if (argc >= 2) { // disasm <n of instrs>
- GetValue(arg1, &n_of_instrs_to_disasm);
- }
- if (argc >= 3) { // disasm <n of instrs> <address>
- GetValue(arg2, &address);
- }
-
- // Disassemble.
- PrintInstructionsAt(reinterpret_cast<Instruction*>(address),
- n_of_instrs_to_disasm);
- PrintF("\n");
-
- // print / p -------------------------------------------------------------
- } else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) {
- if (argc == 2) {
- if (strcmp(arg1, "all") == 0) {
- PrintRegisters(true);
- PrintFPRegisters(true);
- } else {
- if (!PrintValue(arg1)) {
- PrintF("%s unrecognized\n", arg1);
- }
- }
- } else {
- PrintF(
- "print <register>\n"
- " Print the content of a register. (alias 'p')\n"
- " 'print all' will print all registers.\n"
- " Use 'printobject' to get more details about the value.\n");
- }
-
- // printobject / po ------------------------------------------------------
- } else if ((strcmp(cmd, "printobject") == 0) ||
- (strcmp(cmd, "po") == 0)) {
- if (argc == 2) {
- int64_t value;
- if (GetValue(arg1, &value)) {
- Object* obj = reinterpret_cast<Object*>(value);
- PrintF("%s: \n", arg1);
-#ifdef DEBUG
- obj->PrintLn();
-#else
- obj->ShortPrint();
- PrintF("\n");
-#endif
- } else {
- PrintF("%s unrecognized\n", arg1);
- }
- } else {
- PrintF("printobject <value>\n"
- "printobject <register>\n"
- " Print details about the value. (alias 'po')\n");
- }
-
- // stack / mem ----------------------------------------------------------
- } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
- int64_t* cur = NULL;
- int64_t* end = NULL;
- int next_arg = 1;
-
- if (strcmp(cmd, "stack") == 0) {
- cur = reinterpret_cast<int64_t*>(jssp());
-
- } else { // "mem"
- int64_t value;
- if (!GetValue(arg1, &value)) {
- PrintF("%s unrecognized\n", arg1);
- continue;
- }
- cur = reinterpret_cast<int64_t*>(value);
- next_arg++;
- }
-
- int64_t words = 0;
- if (argc == next_arg) {
- words = 10;
- } else if (argc == next_arg + 1) {
- if (!GetValue(argv[next_arg], &words)) {
- PrintF("%s unrecognized\n", argv[next_arg]);
- PrintF("Printing 10 double words by default");
- words = 10;
- }
- } else {
- UNREACHABLE();
- }
- end = cur + words;
-
- while (cur < end) {
- PrintF(" 0x%016" PRIx64 ": 0x%016" PRIx64 " %10" PRId64,
- reinterpret_cast<uint64_t>(cur), *cur, *cur);
- HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
- int64_t value = *cur;
- Heap* current_heap = v8::internal::Isolate::Current()->heap();
- if (((value & 1) == 0) || current_heap->Contains(obj)) {
- PrintF(" (");
- if ((value & kSmiTagMask) == 0) {
- STATIC_ASSERT(kSmiValueSize == 32);
- int32_t untagged = (value >> kSmiShift) & 0xffffffff;
- PrintF("smi %" PRId32, untagged);
- } else {
- obj->ShortPrint();
- }
- PrintF(")");
- }
- PrintF("\n");
- cur++;
- }
-
- // trace / t -------------------------------------------------------------
- } else if (strcmp(cmd, "trace") == 0 || strcmp(cmd, "t") == 0) {
- if ((log_parameters() & (LOG_DISASM | LOG_REGS)) !=
- (LOG_DISASM | LOG_REGS)) {
- PrintF("Enabling disassembly and registers tracing\n");
- set_log_parameters(log_parameters() | LOG_DISASM | LOG_REGS);
- } else {
- PrintF("Disabling disassembly and registers tracing\n");
- set_log_parameters(log_parameters() & ~(LOG_DISASM | LOG_REGS));
- }
-
- // break / b -------------------------------------------------------------
- } else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0) {
- if (argc == 2) {
- int64_t value;
- if (GetValue(arg1, &value)) {
- SetBreakpoint(reinterpret_cast<Instruction*>(value));
- } else {
- PrintF("%s unrecognized\n", arg1);
- }
- } else {
- ListBreakpoints();
- PrintF("Use `break <address>` to set or disable a breakpoint\n");
- }
-
- // gdb -------------------------------------------------------------------
- } else if (strcmp(cmd, "gdb") == 0) {
- PrintF("Relinquishing control to gdb.\n");
- OS::DebugBreak();
- PrintF("Regaining control from gdb.\n");
-
- // sysregs ---------------------------------------------------------------
- } else if (strcmp(cmd, "sysregs") == 0) {
- PrintSystemRegisters();
-
- // help / h --------------------------------------------------------------
- } else if (strcmp(cmd, "help") == 0 || strcmp(cmd, "h") == 0) {
- PrintF(
- "stepi / si\n"
- " stepi <n>\n"
- " Step <n> instructions.\n"
- "next / n\n"
- " Continue execution until a BL instruction is reached.\n"
- " At this point a breakpoint is set just after this BL.\n"
- " Then execution is resumed. It will probably later hit the\n"
- " breakpoint just set.\n"
- "continue / cont / c\n"
- " Continue execution from here.\n"
- "disassemble / disasm / di\n"
- " disassemble <n> <address>\n"
- " Disassemble <n> instructions from current <address>.\n"
- " By default <n> is 20 and <address> is the current pc.\n"
- "print / p\n"
- " print <register>\n"
- " Print the content of a register.\n"
- " 'print all' will print all registers.\n"
- " Use 'printobject' to get more details about the value.\n"
- "printobject / po\n"
- " printobject <value>\n"
- " printobject <register>\n"
- " Print details about the value.\n"
- "stack\n"
- " stack [<words>]\n"
- " Dump stack content, default dump 10 words\n"
- "mem\n"
- " mem <address> [<words>]\n"
- " Dump memory content, default dump 10 words\n"
- "trace / t\n"
- " Toggle disassembly and register tracing\n"
- "break / b\n"
- " break : list all breakpoints\n"
- " break <address> : set / enable / disable a breakpoint.\n"
- "gdb\n"
- " Enter gdb.\n"
- "sysregs\n"
- " Print all system registers (including NZCV).\n");
- } else {
- PrintF("Unknown command: %s\n", cmd);
- PrintF("Use 'help' for more information.\n");
- }
- }
- if (cleared_log_disasm_bit == true) {
- set_log_parameters(log_parameters_ | LOG_DISASM);
- }
- }
-}
-
-
-void Simulator::VisitException(Instruction* instr) {
- switch (instr->Mask(ExceptionMask)) {
- case HLT: {
- if (instr->ImmException() == kImmExceptionIsDebug) {
- // Read the arguments encoded inline in the instruction stream.
- uint32_t code;
- uint32_t parameters;
-
- memcpy(&code,
- pc_->InstructionAtOffset(kDebugCodeOffset),
- sizeof(code));
- memcpy(&parameters,
- pc_->InstructionAtOffset(kDebugParamsOffset),
- sizeof(parameters));
- char const *message =
- reinterpret_cast<char const*>(
- pc_->InstructionAtOffset(kDebugMessageOffset));
-
- // Always print something when we hit a debug point that breaks.
- // We are going to break, so printing something is not an issue in
- // terms of speed.
- if (FLAG_trace_sim_messages || FLAG_trace_sim || (parameters & BREAK)) {
- if (message != NULL) {
- PrintF("%sDebugger hit %d: %s%s%s\n",
- clr_debug_number,
- code,
- clr_debug_message,
- message,
- clr_normal);
- } else {
- PrintF("%sDebugger hit %d.%s\n",
- clr_debug_number,
- code,
- clr_normal);
- }
- }
-
- // Other options.
- switch (parameters & kDebuggerTracingDirectivesMask) {
- case TRACE_ENABLE:
- set_log_parameters(log_parameters() | parameters);
- if (parameters & LOG_SYS_REGS) { PrintSystemRegisters(); }
- if (parameters & LOG_REGS) { PrintRegisters(); }
- if (parameters & LOG_FP_REGS) { PrintFPRegisters(); }
- break;
- case TRACE_DISABLE:
- set_log_parameters(log_parameters() & ~parameters);
- break;
- case TRACE_OVERRIDE:
- set_log_parameters(parameters);
- break;
- default:
- // We don't support a one-shot LOG_DISASM.
- ASSERT((parameters & LOG_DISASM) == 0);
- // Don't print information that is already being traced.
- parameters &= ~log_parameters();
- // Print the requested information.
- if (parameters & LOG_SYS_REGS) PrintSystemRegisters(true);
- if (parameters & LOG_REGS) PrintRegisters(true);
- if (parameters & LOG_FP_REGS) PrintFPRegisters(true);
- }
-
- // The stop parameters are inlined in the code. Skip them:
- // - Skip to the end of the message string.
- size_t size = kDebugMessageOffset + strlen(message) + 1;
- pc_ = pc_->InstructionAtOffset(RoundUp(size, kInstructionSize));
- // - Verify that the unreachable marker is present.
- ASSERT(pc_->Mask(ExceptionMask) == HLT);
- ASSERT(pc_->ImmException() == kImmExceptionIsUnreachable);
- // - Skip past the unreachable marker.
- set_pc(pc_->following());
-
- // Check if the debugger should break.
- if (parameters & BREAK) Debug();
-
- } else if (instr->ImmException() == kImmExceptionIsRedirectedCall) {
- DoRuntimeCall(instr);
- } else if (instr->ImmException() == kImmExceptionIsPrintf) {
- // Read the argument encoded inline in the instruction stream.
- uint32_t type;
- memcpy(&type,
- pc_->InstructionAtOffset(kPrintfTypeOffset),
- sizeof(type));
-
- const char* format = reg<const char*>(0);
-
- // Pass all of the relevant PCS registers onto printf. It doesn't
- // matter if we pass too many as the extra ones won't be read.
- int result;
- fputs(clr_printf, stream_);
- if (type == CPURegister::kRegister) {
- result = fprintf(stream_, format,
- xreg(1), xreg(2), xreg(3), xreg(4),
- xreg(5), xreg(6), xreg(7));
- } else if (type == CPURegister::kFPRegister) {
- result = fprintf(stream_, format,
- dreg(0), dreg(1), dreg(2), dreg(3),
- dreg(4), dreg(5), dreg(6), dreg(7));
- } else {
- ASSERT(type == CPURegister::kNoRegister);
- result = fprintf(stream_, "%s", format);
- }
- fputs(clr_normal, stream_);
-
-#ifdef DEBUG
- CorruptAllCallerSavedCPURegisters();
-#endif
-
- set_xreg(0, result);
-
- // The printf parameters are inlined in the code, so skip them.
- set_pc(pc_->InstructionAtOffset(kPrintfLength));
-
- // Set LR as if we'd just called a native printf function.
- set_lr(pc());
-
- } else if (instr->ImmException() == kImmExceptionIsUnreachable) {
- fprintf(stream_, "Hit UNREACHABLE marker at PC=%p.\n",
- reinterpret_cast<void*>(pc_));
- abort();
-
- } else {
- OS::DebugBreak();
- }
- break;
- }
-
- default:
- UNIMPLEMENTED();
- }
-}
-
-#endif // USE_SIMULATOR
-
-} } // namespace v8::internal
-
-#endif // V8_TARGET_ARCH_A64
« no previous file with comments | « src/a64/simulator-a64.h ('k') | src/a64/stub-cache-a64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698