Index: src/a64/code-stubs-a64.cc |
diff --git a/src/a64/code-stubs-a64.cc b/src/a64/code-stubs-a64.cc |
deleted file mode 100644 |
index 3fd06157872f968c3012d0376d2e76f5cfd73b7a..0000000000000000000000000000000000000000 |
--- a/src/a64/code-stubs-a64.cc |
+++ /dev/null |
@@ -1,5729 +0,0 @@ |
-// Copyright 2013 the V8 project authors. All rights reserved. |
-// Redistribution and use in source and binary forms, with or without |
-// modification, are permitted provided that the following conditions are |
-// met: |
-// |
-// * Redistributions of source code must retain the above copyright |
-// notice, this list of conditions and the following disclaimer. |
-// * Redistributions in binary form must reproduce the above |
-// copyright notice, this list of conditions and the following |
-// disclaimer in the documentation and/or other materials provided |
-// with the distribution. |
-// * Neither the name of Google Inc. nor the names of its |
-// contributors may be used to endorse or promote products derived |
-// from this software without specific prior written permission. |
-// |
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- |
-#include "v8.h" |
- |
-#if V8_TARGET_ARCH_A64 |
- |
-#include "bootstrapper.h" |
-#include "code-stubs.h" |
-#include "regexp-macro-assembler.h" |
-#include "stub-cache.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
- |
-void FastNewClosureStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x2: function info |
- static Register registers[] = { x2 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry; |
-} |
- |
- |
-void FastNewContextStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x1: function |
- static Register registers[] = { x1 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = NULL; |
-} |
- |
- |
-void ToNumberStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x0: value |
- static Register registers[] = { x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = NULL; |
-} |
- |
- |
-void NumberToStringStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x0: value |
- static Register registers[] = { x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kNumberToString)->entry; |
-} |
- |
- |
-void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x3: array literals array |
- // x2: array literal index |
- // x1: constant elements |
- static Register registers[] = { x3, x2, x1 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry; |
-} |
- |
- |
-void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x3: object literals array |
- // x2: object literal index |
- // x1: constant properties |
- // x0: object literal flags |
- static Register registers[] = { x3, x2, x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry; |
-} |
- |
- |
-void CreateAllocationSiteStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x2: feedback vector |
- // x3: call feedback slot |
- static Register registers[] = { x2, x3 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = NULL; |
-} |
- |
- |
-void KeyedLoadFastElementStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x1: receiver |
- // x0: key |
- static Register registers[] = { x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); |
-} |
- |
- |
-void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x1: receiver |
- // x0: key |
- static Register registers[] = { x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure); |
-} |
- |
- |
-void RegExpConstructResultStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x2: length |
- // x1: index (of last match) |
- // x0: string |
- static Register registers[] = { x2, x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry; |
-} |
- |
- |
-void LoadFieldStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x0: receiver |
- static Register registers[] = { x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = NULL; |
-} |
- |
- |
-void KeyedLoadFieldStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x1: receiver |
- static Register registers[] = { x1 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = NULL; |
-} |
- |
- |
-void StringLengthStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- static Register registers[] = { x0, x2 }; |
- descriptor->register_param_count_ = 2; |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = NULL; |
-} |
- |
- |
-void KeyedStringLengthStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- static Register registers[] = { x1, x0 }; |
- descriptor->register_param_count_ = 2; |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = NULL; |
-} |
- |
- |
-void KeyedStoreFastElementStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x2: receiver |
- // x1: key |
- // x0: value |
- static Register registers[] = { x2, x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure); |
-} |
- |
- |
-void TransitionElementsKindStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x0: value (js_array) |
- // x1: to_map |
- static Register registers[] = { x0, x1 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- Address entry = |
- Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; |
- descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry); |
-} |
- |
- |
-void CompareNilICStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x0: value to compare |
- static Register registers[] = { x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- FUNCTION_ADDR(CompareNilIC_Miss); |
- descriptor->SetMissHandler( |
- ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate)); |
-} |
- |
- |
-static void InitializeArrayConstructorDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor, |
- int constant_stack_parameter_count) { |
- // x1: function |
- // x2: allocation site with elements kind |
- // x0: number of arguments to the constructor function |
- static Register registers_variable_args[] = { x1, x2, x0 }; |
- static Register registers_no_args[] = { x1, x2 }; |
- |
- if (constant_stack_parameter_count == 0) { |
- descriptor->register_param_count_ = |
- sizeof(registers_no_args) / sizeof(registers_no_args[0]); |
- descriptor->register_params_ = registers_no_args; |
- } else { |
- // stack param count needs (constructor pointer, and single argument) |
- descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; |
- descriptor->stack_parameter_count_ = x0; |
- descriptor->register_param_count_ = |
- sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); |
- descriptor->register_params_ = registers_variable_args; |
- } |
- |
- descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; |
- descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kArrayConstructor)->entry; |
-} |
- |
- |
-void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- InitializeArrayConstructorDescriptor(isolate, descriptor, 0); |
-} |
- |
- |
-void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- InitializeArrayConstructorDescriptor(isolate, descriptor, 1); |
-} |
- |
- |
-void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- InitializeArrayConstructorDescriptor(isolate, descriptor, -1); |
-} |
- |
- |
-static void InitializeInternalArrayConstructorDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor, |
- int constant_stack_parameter_count) { |
- // x1: constructor function |
- // x0: number of arguments to the constructor function |
- static Register registers_variable_args[] = { x1, x0 }; |
- static Register registers_no_args[] = { x1 }; |
- |
- if (constant_stack_parameter_count == 0) { |
- descriptor->register_param_count_ = |
- sizeof(registers_no_args) / sizeof(registers_no_args[0]); |
- descriptor->register_params_ = registers_no_args; |
- } else { |
- // stack param count needs (constructor pointer, and single argument) |
- descriptor->handler_arguments_mode_ = PASS_ARGUMENTS; |
- descriptor->stack_parameter_count_ = x0; |
- descriptor->register_param_count_ = |
- sizeof(registers_variable_args) / sizeof(registers_variable_args[0]); |
- descriptor->register_params_ = registers_variable_args; |
- } |
- |
- descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count; |
- descriptor->function_mode_ = JS_FUNCTION_STUB_MODE; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry; |
-} |
- |
- |
-void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 0); |
-} |
- |
- |
-void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- InitializeInternalArrayConstructorDescriptor(isolate, descriptor, 1); |
-} |
- |
- |
-void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- InitializeInternalArrayConstructorDescriptor(isolate, descriptor, -1); |
-} |
- |
- |
-void ToBooleanStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x0: value |
- static Register registers[] = { x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss); |
- descriptor->SetMissHandler( |
- ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate)); |
-} |
- |
- |
-void StoreGlobalStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x1: receiver |
- // x2: key (unused) |
- // x0: value |
- static Register registers[] = { x1, x2, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- FUNCTION_ADDR(StoreIC_MissFromStubFailure); |
-} |
- |
- |
-void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x0: value |
- // x3: target map |
- // x1: key |
- // x2: receiver |
- static Register registers[] = { x0, x3, x1, x2 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss); |
-} |
- |
- |
-void BinaryOpICStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x1: left operand |
- // x0: right operand |
- static Register registers[] = { x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss); |
- descriptor->SetMissHandler( |
- ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate)); |
-} |
- |
- |
-void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x2: allocation site |
- // x1: left operand |
- // x0: right operand |
- static Register registers[] = { x2, x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite); |
-} |
- |
- |
-void StringAddStub::InitializeInterfaceDescriptor( |
- Isolate* isolate, |
- CodeStubInterfaceDescriptor* descriptor) { |
- // x1: left operand |
- // x0: right operand |
- static Register registers[] = { x1, x0 }; |
- descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]); |
- descriptor->register_params_ = registers; |
- descriptor->deoptimization_handler_ = |
- Runtime::FunctionForId(Runtime::kStringAdd)->entry; |
-} |
- |
- |
-void CallDescriptors::InitializeForIsolate(Isolate* isolate) { |
- static PlatformCallInterfaceDescriptor default_descriptor = |
- PlatformCallInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS); |
- |
- static PlatformCallInterfaceDescriptor noInlineDescriptor = |
- PlatformCallInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS); |
- |
- { |
- CallInterfaceDescriptor* descriptor = |
- isolate->call_descriptor(Isolate::ArgumentAdaptorCall); |
- static Register registers[] = { x1, // JSFunction |
- cp, // context |
- x0, // actual number of arguments |
- x2, // expected number of arguments |
- }; |
- static Representation representations[] = { |
- Representation::Tagged(), // JSFunction |
- Representation::Tagged(), // context |
- Representation::Integer32(), // actual number of arguments |
- Representation::Integer32(), // expected number of arguments |
- }; |
- descriptor->register_param_count_ = 4; |
- descriptor->register_params_ = registers; |
- descriptor->param_representations_ = representations; |
- descriptor->platform_specific_descriptor_ = &default_descriptor; |
- } |
- { |
- CallInterfaceDescriptor* descriptor = |
- isolate->call_descriptor(Isolate::KeyedCall); |
- static Register registers[] = { cp, // context |
- x2, // key |
- }; |
- static Representation representations[] = { |
- Representation::Tagged(), // context |
- Representation::Tagged(), // key |
- }; |
- descriptor->register_param_count_ = 2; |
- descriptor->register_params_ = registers; |
- descriptor->param_representations_ = representations; |
- descriptor->platform_specific_descriptor_ = &noInlineDescriptor; |
- } |
- { |
- CallInterfaceDescriptor* descriptor = |
- isolate->call_descriptor(Isolate::NamedCall); |
- static Register registers[] = { cp, // context |
- x2, // name |
- }; |
- static Representation representations[] = { |
- Representation::Tagged(), // context |
- Representation::Tagged(), // name |
- }; |
- descriptor->register_param_count_ = 2; |
- descriptor->register_params_ = registers; |
- descriptor->param_representations_ = representations; |
- descriptor->platform_specific_descriptor_ = &noInlineDescriptor; |
- } |
- { |
- CallInterfaceDescriptor* descriptor = |
- isolate->call_descriptor(Isolate::CallHandler); |
- static Register registers[] = { cp, // context |
- x0, // receiver |
- }; |
- static Representation representations[] = { |
- Representation::Tagged(), // context |
- Representation::Tagged(), // receiver |
- }; |
- descriptor->register_param_count_ = 2; |
- descriptor->register_params_ = registers; |
- descriptor->param_representations_ = representations; |
- descriptor->platform_specific_descriptor_ = &default_descriptor; |
- } |
- { |
- CallInterfaceDescriptor* descriptor = |
- isolate->call_descriptor(Isolate::ApiFunctionCall); |
- static Register registers[] = { x0, // callee |
- x4, // call_data |
- x2, // holder |
- x1, // api_function_address |
- cp, // context |
- }; |
- static Representation representations[] = { |
- Representation::Tagged(), // callee |
- Representation::Tagged(), // call_data |
- Representation::Tagged(), // holder |
- Representation::External(), // api_function_address |
- Representation::Tagged(), // context |
- }; |
- descriptor->register_param_count_ = 5; |
- descriptor->register_params_ = registers; |
- descriptor->param_representations_ = representations; |
- descriptor->platform_specific_descriptor_ = &default_descriptor; |
- } |
-} |
- |
- |
-#define __ ACCESS_MASM(masm) |
- |
- |
-void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { |
- // Update the static counter each time a new code stub is generated. |
- Isolate* isolate = masm->isolate(); |
- isolate->counters()->code_stubs()->Increment(); |
- |
- CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(isolate); |
- int param_count = descriptor->register_param_count_; |
- { |
- // Call the runtime system in a fresh internal frame. |
- FrameScope scope(masm, StackFrame::INTERNAL); |
- ASSERT((descriptor->register_param_count_ == 0) || |
- x0.Is(descriptor->register_params_[param_count - 1])); |
- |
- // Push arguments |
- MacroAssembler::PushPopQueue queue(masm); |
- for (int i = 0; i < param_count; ++i) { |
- queue.Queue(descriptor->register_params_[i]); |
- } |
- queue.PushQueued(); |
- |
- ExternalReference miss = descriptor->miss_handler(); |
- __ CallExternalReference(miss, descriptor->register_param_count_); |
- } |
- |
- __ Ret(); |
-} |
- |
- |
-void DoubleToIStub::Generate(MacroAssembler* masm) { |
- Label done; |
- Register input = source(); |
- Register result = destination(); |
- ASSERT(is_truncating()); |
- |
- ASSERT(result.Is64Bits()); |
- ASSERT(jssp.Is(masm->StackPointer())); |
- |
- int double_offset = offset(); |
- |
- DoubleRegister double_scratch = d0; // only used if !skip_fastpath() |
- Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result); |
- Register scratch2 = |
- GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1); |
- |
- __ Push(scratch1, scratch2); |
- // Account for saved regs if input is jssp. |
- if (input.is(jssp)) double_offset += 2 * kPointerSize; |
- |
- if (!skip_fastpath()) { |
- __ Push(double_scratch); |
- if (input.is(jssp)) double_offset += 1 * kDoubleSize; |
- __ Ldr(double_scratch, MemOperand(input, double_offset)); |
- // Try to convert with a FPU convert instruction. This handles all |
- // non-saturating cases. |
- __ TryConvertDoubleToInt64(result, double_scratch, &done); |
- __ Fmov(result, double_scratch); |
- } else { |
- __ Ldr(result, MemOperand(input, double_offset)); |
- } |
- |
- // If we reach here we need to manually convert the input to an int32. |
- |
- // Extract the exponent. |
- Register exponent = scratch1; |
- __ Ubfx(exponent, result, HeapNumber::kMantissaBits, |
- HeapNumber::kExponentBits); |
- |
- // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since |
- // the mantissa gets shifted completely out of the int32_t result. |
- __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32); |
- __ CzeroX(result, ge); |
- __ B(ge, &done); |
- |
- // The Fcvtzs sequence handles all cases except where the conversion causes |
- // signed overflow in the int64_t target. Since we've already handled |
- // exponents >= 84, we can guarantee that 63 <= exponent < 84. |
- |
- if (masm->emit_debug_code()) { |
- __ Cmp(exponent, HeapNumber::kExponentBias + 63); |
- // Exponents less than this should have been handled by the Fcvt case. |
- __ Check(ge, kUnexpectedValue); |
- } |
- |
- // Isolate the mantissa bits, and set the implicit '1'. |
- Register mantissa = scratch2; |
- __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits); |
- __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits); |
- |
- // Negate the mantissa if necessary. |
- __ Tst(result, kXSignMask); |
- __ Cneg(mantissa, mantissa, ne); |
- |
- // Shift the mantissa bits in the correct place. We know that we have to shift |
- // it left here, because exponent >= 63 >= kMantissaBits. |
- __ Sub(exponent, exponent, |
- HeapNumber::kExponentBias + HeapNumber::kMantissaBits); |
- __ Lsl(result, mantissa, exponent); |
- |
- __ Bind(&done); |
- if (!skip_fastpath()) { |
- __ Pop(double_scratch); |
- } |
- __ Pop(scratch2, scratch1); |
- __ Ret(); |
-} |
- |
- |
-// See call site for description. |
-static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
- Register left, |
- Register right, |
- Register scratch, |
- FPRegister double_scratch, |
- Label* slow, |
- Condition cond) { |
- ASSERT(!AreAliased(left, right, scratch)); |
- Label not_identical, return_equal, heap_number; |
- Register result = x0; |
- |
- __ Cmp(right, left); |
- __ B(ne, ¬_identical); |
- |
- // Test for NaN. Sadly, we can't just compare to factory::nan_value(), |
- // so we do the second best thing - test it ourselves. |
- // They are both equal and they are not both Smis so both of them are not |
- // Smis. If it's not a heap number, then return equal. |
- if ((cond == lt) || (cond == gt)) { |
- __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow, |
- ge); |
- } else { |
- Register right_type = scratch; |
- __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE, |
- &heap_number); |
- // Comparing JS objects with <=, >= is complicated. |
- if (cond != eq) { |
- __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
- __ B(ge, slow); |
- // Normally here we fall through to return_equal, but undefined is |
- // special: (undefined == undefined) == true, but |
- // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
- if ((cond == le) || (cond == ge)) { |
- __ Cmp(right_type, ODDBALL_TYPE); |
- __ B(ne, &return_equal); |
- __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal); |
- if (cond == le) { |
- // undefined <= undefined should fail. |
- __ Mov(result, GREATER); |
- } else { |
- // undefined >= undefined should fail. |
- __ Mov(result, LESS); |
- } |
- __ Ret(); |
- } |
- } |
- } |
- |
- __ Bind(&return_equal); |
- if (cond == lt) { |
- __ Mov(result, GREATER); // Things aren't less than themselves. |
- } else if (cond == gt) { |
- __ Mov(result, LESS); // Things aren't greater than themselves. |
- } else { |
- __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves. |
- } |
- __ Ret(); |
- |
- // Cases lt and gt have been handled earlier, and case ne is never seen, as |
- // it is handled in the parser (see Parser::ParseBinaryExpression). We are |
- // only concerned with cases ge, le and eq here. |
- if ((cond != lt) && (cond != gt)) { |
- ASSERT((cond == ge) || (cond == le) || (cond == eq)); |
- __ Bind(&heap_number); |
- // Left and right are identical pointers to a heap number object. Return |
- // non-equal if the heap number is a NaN, and equal otherwise. Comparing |
- // the number to itself will set the overflow flag iff the number is NaN. |
- __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset)); |
- __ Fcmp(double_scratch, double_scratch); |
- __ B(vc, &return_equal); // Not NaN, so treat as normal heap number. |
- |
- if (cond == le) { |
- __ Mov(result, GREATER); |
- } else { |
- __ Mov(result, LESS); |
- } |
- __ Ret(); |
- } |
- |
- // No fall through here. |
- if (FLAG_debug_code) { |
- __ Unreachable(); |
- } |
- |
- __ Bind(¬_identical); |
-} |
- |
- |
-// See call site for description. |
-static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
- Register left, |
- Register right, |
- Register left_type, |
- Register right_type, |
- Register scratch) { |
- ASSERT(!AreAliased(left, right, left_type, right_type, scratch)); |
- |
- if (masm->emit_debug_code()) { |
- // We assume that the arguments are not identical. |
- __ Cmp(left, right); |
- __ Assert(ne, kExpectedNonIdenticalObjects); |
- } |
- |
- // If either operand is a JS object or an oddball value, then they are not |
- // equal since their pointers are different. |
- // There is no test for undetectability in strict equality. |
- STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); |
- Label right_non_object; |
- |
- __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
- __ B(lt, &right_non_object); |
- |
- // Return non-zero - x0 already contains a non-zero pointer. |
- ASSERT(left.is(x0) || right.is(x0)); |
- Label return_not_equal; |
- __ Bind(&return_not_equal); |
- __ Ret(); |
- |
- __ Bind(&right_non_object); |
- |
- // Check for oddballs: true, false, null, undefined. |
- __ Cmp(right_type, ODDBALL_TYPE); |
- |
- // If right is not ODDBALL, test left. Otherwise, set eq condition. |
- __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne); |
- |
- // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE. |
- // Otherwise, right or left is ODDBALL, so set a ge condition. |
- __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne); |
- |
- __ B(ge, &return_not_equal); |
- |
- // Internalized strings are unique, so they can only be equal if they are the |
- // same object. We have already tested that case, so if left and right are |
- // both internalized strings, they cannot be equal. |
- STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
- __ Orr(scratch, left_type, right_type); |
- __ TestAndBranchIfAllClear( |
- scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal); |
-} |
- |
- |
-// See call site for description. |
-static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
- Register left, |
- Register right, |
- FPRegister left_d, |
- FPRegister right_d, |
- Register scratch, |
- Label* slow, |
- bool strict) { |
- ASSERT(!AreAliased(left, right, scratch)); |
- ASSERT(!AreAliased(left_d, right_d)); |
- ASSERT((left.is(x0) && right.is(x1)) || |
- (right.is(x0) && left.is(x1))); |
- Register result = x0; |
- |
- Label right_is_smi, done; |
- __ JumpIfSmi(right, &right_is_smi); |
- |
- // Left is the smi. Check whether right is a heap number. |
- if (strict) { |
- // If right is not a number and left is a smi, then strict equality cannot |
- // succeed. Return non-equal. |
- Label is_heap_number; |
- __ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, |
- &is_heap_number); |
- // Register right is a non-zero pointer, which is a valid NOT_EQUAL result. |
- if (!right.is(result)) { |
- __ Mov(result, NOT_EQUAL); |
- } |
- __ Ret(); |
- __ Bind(&is_heap_number); |
- } else { |
- // Smi compared non-strictly with a non-smi, non-heap-number. Call the |
- // runtime. |
- __ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow); |
- } |
- |
- // Left is the smi. Right is a heap number. Load right value into right_d, and |
- // convert left smi into double in left_d. |
- __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset)); |
- __ SmiUntagToDouble(left_d, left); |
- __ B(&done); |
- |
- __ Bind(&right_is_smi); |
- // Right is a smi. Check whether the non-smi left is a heap number. |
- if (strict) { |
- // If left is not a number and right is a smi then strict equality cannot |
- // succeed. Return non-equal. |
- Label is_heap_number; |
- __ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, |
- &is_heap_number); |
- // Register left is a non-zero pointer, which is a valid NOT_EQUAL result. |
- if (!left.is(result)) { |
- __ Mov(result, NOT_EQUAL); |
- } |
- __ Ret(); |
- __ Bind(&is_heap_number); |
- } else { |
- // Smi compared non-strictly with a non-smi, non-heap-number. Call the |
- // runtime. |
- __ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow); |
- } |
- |
- // Right is the smi. Left is a heap number. Load left value into left_d, and |
- // convert right smi into double in right_d. |
- __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset)); |
- __ SmiUntagToDouble(right_d, right); |
- |
- // Fall through to both_loaded_as_doubles. |
- __ Bind(&done); |
-} |
- |
- |
-// Fast negative check for internalized-to-internalized equality. |
-// See call site for description. |
-static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, |
- Register left, |
- Register right, |
- Register left_map, |
- Register right_map, |
- Register left_type, |
- Register right_type, |
- Label* possible_strings, |
- Label* not_both_strings) { |
- ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type)); |
- Register result = x0; |
- |
- Label object_test; |
- STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
- // TODO(all): reexamine this branch sequence for optimisation wrt branch |
- // prediction. |
- __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test); |
- __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings); |
- __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings); |
- __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings); |
- |
- // Both are internalized. We already checked that they weren't the same |
- // pointer, so they are not equal. |
- __ Mov(result, NOT_EQUAL); |
- __ Ret(); |
- |
- __ Bind(&object_test); |
- |
- __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE); |
- |
- // If right >= FIRST_SPEC_OBJECT_TYPE, test left. |
- // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition. |
- __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge); |
- |
- __ B(lt, not_both_strings); |
- |
- // If both objects are undetectable, they are equal. Otherwise, they are not |
- // equal, since they are different objects and an object is not equal to |
- // undefined. |
- |
- // Returning here, so we can corrupt right_type and left_type. |
- Register right_bitfield = right_type; |
- Register left_bitfield = left_type; |
- __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset)); |
- __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset)); |
- __ And(result, right_bitfield, left_bitfield); |
- __ And(result, result, 1 << Map::kIsUndetectable); |
- __ Eor(result, result, 1 << Map::kIsUndetectable); |
- __ Ret(); |
-} |
- |
- |
-static void ICCompareStub_CheckInputType(MacroAssembler* masm, |
- Register input, |
- Register scratch, |
- CompareIC::State expected, |
- Label* fail) { |
- Label ok; |
- if (expected == CompareIC::SMI) { |
- __ JumpIfNotSmi(input, fail); |
- } else if (expected == CompareIC::NUMBER) { |
- __ JumpIfSmi(input, &ok); |
- __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, |
- DONT_DO_SMI_CHECK); |
- } |
- // We could be strict about internalized/non-internalized here, but as long as |
- // hydrogen doesn't care, the stub doesn't have to care either. |
- __ Bind(&ok); |
-} |
- |
- |
-void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { |
- Register lhs = x1; |
- Register rhs = x0; |
- Register result = x0; |
- Condition cond = GetCondition(); |
- |
- Label miss; |
- ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss); |
- ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss); |
- |
- Label slow; // Call builtin. |
- Label not_smis, both_loaded_as_doubles; |
- Label not_two_smis, smi_done; |
- __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis); |
- __ SmiUntag(lhs); |
- __ Sub(result, lhs, Operand::UntagSmi(rhs)); |
- __ Ret(); |
- |
- __ Bind(¬_two_smis); |
- |
- // NOTICE! This code is only reached after a smi-fast-case check, so it is |
- // certain that at least one operand isn't a smi. |
- |
- // Handle the case where the objects are identical. Either returns the answer |
- // or goes to slow. Only falls through if the objects were not identical. |
- EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond); |
- |
- // If either is a smi (we know that at least one is not a smi), then they can |
- // only be strictly equal if the other is a HeapNumber. |
- __ JumpIfBothNotSmi(lhs, rhs, ¬_smis); |
- |
- // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that |
- // can: |
- // 1) Return the answer. |
- // 2) Branch to the slow case. |
- // 3) Fall through to both_loaded_as_doubles. |
- // In case 3, we have found out that we were dealing with a number-number |
- // comparison. The double values of the numbers have been loaded, right into |
- // rhs_d, left into lhs_d. |
- FPRegister rhs_d = d0; |
- FPRegister lhs_d = d1; |
- EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict()); |
- |
- __ Bind(&both_loaded_as_doubles); |
- // The arguments have been converted to doubles and stored in rhs_d and |
- // lhs_d. |
- Label nan; |
- __ Fcmp(lhs_d, rhs_d); |
- __ B(vs, &nan); // Overflow flag set if either is NaN. |
- STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); |
- __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). |
- __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. |
- __ Ret(); |
- |
- __ Bind(&nan); |
- // Left and/or right is a NaN. Load the result register with whatever makes |
- // the comparison fail, since comparisons with NaN always fail (except ne, |
- // which is filtered out at a higher level.) |
- ASSERT(cond != ne); |
- if ((cond == lt) || (cond == le)) { |
- __ Mov(result, GREATER); |
- } else { |
- __ Mov(result, LESS); |
- } |
- __ Ret(); |
- |
- __ Bind(¬_smis); |
- // At this point we know we are dealing with two different objects, and |
- // neither of them is a smi. The objects are in rhs_ and lhs_. |
- |
- // Load the maps and types of the objects. |
- Register rhs_map = x10; |
- Register rhs_type = x11; |
- Register lhs_map = x12; |
- Register lhs_type = x13; |
- __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
- __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
- __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
- __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
- |
- if (strict()) { |
- // This emits a non-equal return sequence for some object types, or falls |
- // through if it was not lucky. |
- EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14); |
- } |
- |
- Label check_for_internalized_strings; |
- Label flat_string_check; |
- // Check for heap number comparison. Branch to earlier double comparison code |
- // if they are heap numbers, otherwise, branch to internalized string check. |
- __ Cmp(rhs_type, HEAP_NUMBER_TYPE); |
- __ B(ne, &check_for_internalized_strings); |
- __ Cmp(lhs_map, rhs_map); |
- |
- // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat |
- // string check. |
- __ B(ne, &flat_string_check); |
- |
- // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double |
- // comparison code. |
- __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
- __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
- __ B(&both_loaded_as_doubles); |
- |
- __ Bind(&check_for_internalized_strings); |
- // In the strict case, the EmitStrictTwoHeapObjectCompare already took care |
- // of internalized strings. |
- if ((cond == eq) && !strict()) { |
- // Returns an answer for two internalized strings or two detectable objects. |
- // Otherwise branches to the string case or not both strings case. |
- EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map, |
- lhs_type, rhs_type, |
- &flat_string_check, &slow); |
- } |
- |
- // Check for both being sequential ASCII strings, and inline if that is the |
- // case. |
- __ Bind(&flat_string_check); |
- __ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14, |
- x15, &slow); |
- |
- Isolate* isolate = masm->isolate(); |
- __ IncrementCounter(isolate->counters()->string_compare_native(), 1, x10, |
- x11); |
- if (cond == eq) { |
- StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, |
- x10, x11, x12); |
- } else { |
- StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, |
- x10, x11, x12, x13); |
- } |
- |
- // Never fall through to here. |
- if (FLAG_debug_code) { |
- __ Unreachable(); |
- } |
- |
- __ Bind(&slow); |
- |
- __ Push(lhs, rhs); |
- // Figure out which native to call and setup the arguments. |
- Builtins::JavaScript native; |
- if (cond == eq) { |
- native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
- } else { |
- native = Builtins::COMPARE; |
- int ncr; // NaN compare result |
- if ((cond == lt) || (cond == le)) { |
- ncr = GREATER; |
- } else { |
- ASSERT((cond == gt) || (cond == ge)); // remaining cases |
- ncr = LESS; |
- } |
- __ Mov(x10, Smi::FromInt(ncr)); |
- __ Push(x10); |
- } |
- |
- // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
- // tagged as a small integer. |
- __ InvokeBuiltin(native, JUMP_FUNCTION); |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { |
- // Preserve caller-saved registers x0-x7 and x10-x15. We don't care if x8, x9, |
- // ip0 and ip1 are corrupted by the call into C. |
- CPURegList saved_regs = kCallerSaved; |
- saved_regs.Remove(ip0); |
- saved_regs.Remove(ip1); |
- saved_regs.Remove(x8); |
- saved_regs.Remove(x9); |
- |
- // We don't allow a GC during a store buffer overflow so there is no need to |
- // store the registers in any particular way, but we do have to store and |
- // restore them. |
- __ PushCPURegList(saved_regs); |
- if (save_doubles_ == kSaveFPRegs) { |
- __ PushCPURegList(kCallerSavedFP); |
- } |
- |
- AllowExternalCallThatCantCauseGC scope(masm); |
- __ Mov(x0, ExternalReference::isolate_address(masm->isolate())); |
- __ CallCFunction( |
- ExternalReference::store_buffer_overflow_function(masm->isolate()), |
- 1, 0); |
- |
- if (save_doubles_ == kSaveFPRegs) { |
- __ PopCPURegList(kCallerSavedFP); |
- } |
- __ PopCPURegList(saved_regs); |
- __ Ret(); |
-} |
- |
- |
-void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( |
- Isolate* isolate) { |
- StoreBufferOverflowStub stub1(kDontSaveFPRegs); |
- stub1.GetCode(isolate); |
- StoreBufferOverflowStub stub2(kSaveFPRegs); |
- stub2.GetCode(isolate); |
-} |
- |
- |
-void MathPowStub::Generate(MacroAssembler* masm) { |
- // Stack on entry: |
- // jssp[0]: Exponent (as a tagged value). |
- // jssp[1]: Base (as a tagged value). |
- // |
- // The (tagged) result will be returned in x0, as a heap number. |
- |
- Register result_tagged = x0; |
- Register base_tagged = x10; |
- Register exponent_tagged = x11; |
- Register exponent_integer = x12; |
- Register scratch1 = x14; |
- Register scratch0 = x15; |
- Register saved_lr = x19; |
- FPRegister result_double = d0; |
- FPRegister base_double = d0; |
- FPRegister exponent_double = d1; |
- FPRegister base_double_copy = d2; |
- FPRegister scratch1_double = d6; |
- FPRegister scratch0_double = d7; |
- |
- // A fast-path for integer exponents. |
- Label exponent_is_smi, exponent_is_integer; |
- // Bail out to runtime. |
- Label call_runtime; |
- // Allocate a heap number for the result, and return it. |
- Label done; |
- |
- // Unpack the inputs. |
- if (exponent_type_ == ON_STACK) { |
- Label base_is_smi; |
- Label unpack_exponent; |
- |
- __ Pop(exponent_tagged, base_tagged); |
- |
- __ JumpIfSmi(base_tagged, &base_is_smi); |
- __ JumpIfNotHeapNumber(base_tagged, &call_runtime); |
- // base_tagged is a heap number, so load its double value. |
- __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset)); |
- __ B(&unpack_exponent); |
- __ Bind(&base_is_smi); |
- // base_tagged is a SMI, so untag it and convert it to a double. |
- __ SmiUntagToDouble(base_double, base_tagged); |
- |
- __ Bind(&unpack_exponent); |
- // x10 base_tagged The tagged base (input). |
- // x11 exponent_tagged The tagged exponent (input). |
- // d1 base_double The base as a double. |
- __ JumpIfSmi(exponent_tagged, &exponent_is_smi); |
- __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime); |
- // exponent_tagged is a heap number, so load its double value. |
- __ Ldr(exponent_double, |
- FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); |
- } else if (exponent_type_ == TAGGED) { |
- __ JumpIfSmi(exponent_tagged, &exponent_is_smi); |
- __ Ldr(exponent_double, |
- FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); |
- } |
- |
- // Handle double (heap number) exponents. |
- if (exponent_type_ != INTEGER) { |
- // Detect integer exponents stored as doubles and handle those in the |
- // integer fast-path. |
- __ TryConvertDoubleToInt64(exponent_integer, exponent_double, |
- scratch0_double, &exponent_is_integer); |
- |
- if (exponent_type_ == ON_STACK) { |
- FPRegister half_double = d3; |
- FPRegister minus_half_double = d4; |
- // Detect square root case. Crankshaft detects constant +/-0.5 at compile |
- // time and uses DoMathPowHalf instead. We then skip this check for |
- // non-constant cases of +/-0.5 as these hardly occur. |
- |
- __ Fmov(minus_half_double, -0.5); |
- __ Fmov(half_double, 0.5); |
- __ Fcmp(minus_half_double, exponent_double); |
- __ Fccmp(half_double, exponent_double, NZFlag, ne); |
- // Condition flags at this point: |
- // 0.5; nZCv // Identified by eq && pl |
- // -0.5: NZcv // Identified by eq && mi |
- // other: ?z?? // Identified by ne |
- __ B(ne, &call_runtime); |
- |
- // The exponent is 0.5 or -0.5. |
- |
- // Given that exponent is known to be either 0.5 or -0.5, the following |
- // special cases could apply (according to ECMA-262 15.8.2.13): |
- // |
- // base.isNaN(): The result is NaN. |
- // (base == +INFINITY) || (base == -INFINITY) |
- // exponent == 0.5: The result is +INFINITY. |
- // exponent == -0.5: The result is +0. |
- // (base == +0) || (base == -0) |
- // exponent == 0.5: The result is +0. |
- // exponent == -0.5: The result is +INFINITY. |
- // (base < 0) && base.isFinite(): The result is NaN. |
- // |
- // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except |
- // where base is -INFINITY or -0. |
- |
- // Add +0 to base. This has no effect other than turning -0 into +0. |
- __ Fadd(base_double, base_double, fp_zero); |
- // The operation -0+0 results in +0 in all cases except where the |
- // FPCR rounding mode is 'round towards minus infinity' (RM). The |
- // A64 simulator does not currently simulate FPCR (where the rounding |
- // mode is set), so test the operation with some debug code. |
- if (masm->emit_debug_code()) { |
- UseScratchRegisterScope temps(masm); |
- Register temp = temps.AcquireX(); |
- __ Fneg(scratch0_double, fp_zero); |
- // Verify that we correctly generated +0.0 and -0.0. |
- // bits(+0.0) = 0x0000000000000000 |
- // bits(-0.0) = 0x8000000000000000 |
- __ Fmov(temp, fp_zero); |
- __ CheckRegisterIsClear(temp, kCouldNotGenerateZero); |
- __ Fmov(temp, scratch0_double); |
- __ Eor(temp, temp, kDSignMask); |
- __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero); |
- // Check that -0.0 + 0.0 == +0.0. |
- __ Fadd(scratch0_double, scratch0_double, fp_zero); |
- __ Fmov(temp, scratch0_double); |
- __ CheckRegisterIsClear(temp, kExpectedPositiveZero); |
- } |
- |
- // If base is -INFINITY, make it +INFINITY. |
- // * Calculate base - base: All infinities will become NaNs since both |
- // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in A64. |
- // * If the result is NaN, calculate abs(base). |
- __ Fsub(scratch0_double, base_double, base_double); |
- __ Fcmp(scratch0_double, 0.0); |
- __ Fabs(scratch1_double, base_double); |
- __ Fcsel(base_double, scratch1_double, base_double, vs); |
- |
- // Calculate the square root of base. |
- __ Fsqrt(result_double, base_double); |
- __ Fcmp(exponent_double, 0.0); |
- __ B(ge, &done); // Finish now for exponents of 0.5. |
- // Find the inverse for exponents of -0.5. |
- __ Fmov(scratch0_double, 1.0); |
- __ Fdiv(result_double, scratch0_double, result_double); |
- __ B(&done); |
- } |
- |
- { |
- AllowExternalCallThatCantCauseGC scope(masm); |
- __ Mov(saved_lr, lr); |
- __ CallCFunction( |
- ExternalReference::power_double_double_function(masm->isolate()), |
- 0, 2); |
- __ Mov(lr, saved_lr); |
- __ B(&done); |
- } |
- |
- // Handle SMI exponents. |
- __ Bind(&exponent_is_smi); |
- // x10 base_tagged The tagged base (input). |
- // x11 exponent_tagged The tagged exponent (input). |
- // d1 base_double The base as a double. |
- __ SmiUntag(exponent_integer, exponent_tagged); |
- } |
- |
- __ Bind(&exponent_is_integer); |
- // x10 base_tagged The tagged base (input). |
- // x11 exponent_tagged The tagged exponent (input). |
- // x12 exponent_integer The exponent as an integer. |
- // d1 base_double The base as a double. |
- |
- // Find abs(exponent). For negative exponents, we can find the inverse later. |
- Register exponent_abs = x13; |
- __ Cmp(exponent_integer, 0); |
- __ Cneg(exponent_abs, exponent_integer, mi); |
- // x13 exponent_abs The value of abs(exponent_integer). |
- |
- // Repeatedly multiply to calculate the power. |
- // result = 1.0; |
- // For each bit n (exponent_integer{n}) { |
- // if (exponent_integer{n}) { |
- // result *= base; |
- // } |
- // base *= base; |
- // if (remaining bits in exponent_integer are all zero) { |
- // break; |
- // } |
- // } |
- Label power_loop, power_loop_entry, power_loop_exit; |
- __ Fmov(scratch1_double, base_double); |
- __ Fmov(base_double_copy, base_double); |
- __ Fmov(result_double, 1.0); |
- __ B(&power_loop_entry); |
- |
- __ Bind(&power_loop); |
- __ Fmul(scratch1_double, scratch1_double, scratch1_double); |
- __ Lsr(exponent_abs, exponent_abs, 1); |
- __ Cbz(exponent_abs, &power_loop_exit); |
- |
- __ Bind(&power_loop_entry); |
- __ Tbz(exponent_abs, 0, &power_loop); |
- __ Fmul(result_double, result_double, scratch1_double); |
- __ B(&power_loop); |
- |
- __ Bind(&power_loop_exit); |
- |
- // If the exponent was positive, result_double holds the result. |
- __ Tbz(exponent_integer, kXSignBit, &done); |
- |
- // The exponent was negative, so find the inverse. |
- __ Fmov(scratch0_double, 1.0); |
- __ Fdiv(result_double, scratch0_double, result_double); |
- // ECMA-262 only requires Math.pow to return an 'implementation-dependent |
- // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow |
- // to calculate the subnormal value 2^-1074. This method of calculating |
- // negative powers doesn't work because 2^1074 overflows to infinity. To |
- // catch this corner-case, we bail out if the result was 0. (This can only |
- // occur if the divisor is infinity or the base is zero.) |
- __ Fcmp(result_double, 0.0); |
- __ B(&done, ne); |
- |
- if (exponent_type_ == ON_STACK) { |
- // Bail out to runtime code. |
- __ Bind(&call_runtime); |
- // Put the arguments back on the stack. |
- __ Push(base_tagged, exponent_tagged); |
- __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
- |
- // Return. |
- __ Bind(&done); |
- __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1); |
- __ Str(result_double, |
- FieldMemOperand(result_tagged, HeapNumber::kValueOffset)); |
- ASSERT(result_tagged.is(x0)); |
- __ IncrementCounter( |
- masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); |
- __ Ret(); |
- } else { |
- AllowExternalCallThatCantCauseGC scope(masm); |
- __ Mov(saved_lr, lr); |
- __ Fmov(base_double, base_double_copy); |
- __ Scvtf(exponent_double, exponent_integer); |
- __ CallCFunction( |
- ExternalReference::power_double_double_function(masm->isolate()), |
- 0, 2); |
- __ Mov(lr, saved_lr); |
- __ Bind(&done); |
- __ IncrementCounter( |
- masm->isolate()->counters()->math_pow(), 1, scratch0, scratch1); |
- __ Ret(); |
- } |
-} |
- |
- |
-void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
- // It is important that the following stubs are generated in this order |
- // because pregenerated stubs can only call other pregenerated stubs. |
- // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses |
- // CEntryStub. |
- CEntryStub::GenerateAheadOfTime(isolate); |
- StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); |
- StubFailureTrampolineStub::GenerateAheadOfTime(isolate); |
- ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); |
- CreateAllocationSiteStub::GenerateAheadOfTime(isolate); |
- BinaryOpICStub::GenerateAheadOfTime(isolate); |
- BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); |
-} |
- |
- |
-void CodeStub::GenerateFPStubs(Isolate* isolate) { |
- // Floating-point code doesn't get special handling in A64, so there's |
- // nothing to do here. |
- USE(isolate); |
-} |
- |
- |
-static void JumpIfOOM(MacroAssembler* masm, |
- Register value, |
- Register scratch, |
- Label* oom_label) { |
- STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3); |
- STATIC_ASSERT(kFailureTag == 3); |
- __ And(scratch, value, 0xf); |
- __ Cmp(scratch, 0xf); |
- __ B(eq, oom_label); |
-} |
- |
- |
-bool CEntryStub::NeedsImmovableCode() { |
- // CEntryStub stores the return address on the stack before calling into |
- // C++ code. In some cases, the VM accesses this address, but it is not used |
- // when the C++ code returns to the stub because LR holds the return address |
- // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up |
- // returning to dead code. |
- // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't |
- // find any comment to confirm this, and I don't hit any crashes whatever |
- // this function returns. The anaylsis should be properly confirmed. |
- return true; |
-} |
- |
- |
-void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
- CEntryStub stub(1, kDontSaveFPRegs); |
- stub.GetCode(isolate); |
- CEntryStub stub_fp(1, kSaveFPRegs); |
- stub_fp.GetCode(isolate); |
-} |
- |
- |
-void CEntryStub::GenerateCore(MacroAssembler* masm, |
- Label* throw_normal, |
- Label* throw_termination, |
- Label* throw_out_of_memory, |
- bool do_gc, |
- bool always_allocate) { |
- // x0 : Result parameter for PerformGC, if do_gc is true. |
- // x21 : argv |
- // x22 : argc |
- // x23 : target |
- // |
- // The stack (on entry) holds the arguments and the receiver, with the |
- // receiver at the highest address: |
- // |
- // argv[8]: receiver |
- // argv -> argv[0]: arg[argc-2] |
- // ... ... |
- // argv[...]: arg[1] |
- // argv[...]: arg[0] |
- // |
- // Immediately below (after) this is the exit frame, as constructed by |
- // EnterExitFrame: |
- // fp[8]: CallerPC (lr) |
- // fp -> fp[0]: CallerFP (old fp) |
- // fp[-8]: Space reserved for SPOffset. |
- // fp[-16]: CodeObject() |
- // csp[...]: Saved doubles, if saved_doubles is true. |
- // csp[32]: Alignment padding, if necessary. |
- // csp[24]: Preserved x23 (used for target). |
- // csp[16]: Preserved x22 (used for argc). |
- // csp[8]: Preserved x21 (used for argv). |
- // csp -> csp[0]: Space reserved for the return address. |
- // |
- // After a successful call, the exit frame, preserved registers (x21-x23) and |
- // the arguments (including the receiver) are dropped or popped as |
- // appropriate. The stub then returns. |
- // |
- // After an unsuccessful call, the exit frame and suchlike are left |
- // untouched, and the stub either throws an exception by jumping to one of |
- // the provided throw_ labels, or it falls through. The failure details are |
- // passed through in x0. |
- ASSERT(csp.Is(__ StackPointer())); |
- |
- Isolate* isolate = masm->isolate(); |
- |
- const Register& argv = x21; |
- const Register& argc = x22; |
- const Register& target = x23; |
- |
- if (do_gc) { |
- // Call Runtime::PerformGC, passing x0 (the result parameter for |
- // PerformGC) and x1 (the isolate). |
- __ Mov(x1, ExternalReference::isolate_address(masm->isolate())); |
- __ CallCFunction( |
- ExternalReference::perform_gc_function(isolate), 2, 0); |
- } |
- |
- ExternalReference scope_depth = |
- ExternalReference::heap_always_allocate_scope_depth(isolate); |
- if (always_allocate) { |
- __ Mov(x10, Operand(scope_depth)); |
- __ Ldr(x11, MemOperand(x10)); |
- __ Add(x11, x11, 1); |
- __ Str(x11, MemOperand(x10)); |
- } |
- |
- // Prepare AAPCS64 arguments to pass to the builtin. |
- __ Mov(x0, argc); |
- __ Mov(x1, argv); |
- __ Mov(x2, ExternalReference::isolate_address(isolate)); |
- |
- // Store the return address on the stack, in the space previously allocated |
- // by EnterExitFrame. The return address is queried by |
- // ExitFrame::GetStateForFramePointer. |
- Label return_location; |
- __ Adr(x12, &return_location); |
- __ Poke(x12, 0); |
- if (__ emit_debug_code()) { |
- // Verify that the slot below fp[kSPOffset]-8 points to the return location |
- // (currently in x12). |
- UseScratchRegisterScope temps(masm); |
- Register temp = temps.AcquireX(); |
- __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
- __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize))); |
- __ Cmp(temp, x12); |
- __ Check(eq, kReturnAddressNotFoundInFrame); |
- } |
- |
- // Call the builtin. |
- __ Blr(target); |
- __ Bind(&return_location); |
- const Register& result = x0; |
- |
- if (always_allocate) { |
- __ Mov(x10, Operand(scope_depth)); |
- __ Ldr(x11, MemOperand(x10)); |
- __ Sub(x11, x11, 1); |
- __ Str(x11, MemOperand(x10)); |
- } |
- |
- // x0 result The return code from the call. |
- // x21 argv |
- // x22 argc |
- // x23 target |
- // |
- // If all of the result bits matching kFailureTagMask are '1', the result is |
- // a failure. Otherwise, it's an ordinary tagged object and the call was a |
- // success. |
- Label failure; |
- __ And(x10, result, kFailureTagMask); |
- __ Cmp(x10, kFailureTagMask); |
- __ B(&failure, eq); |
- |
- // The call succeeded, so unwind the stack and return. |
- |
- // Restore callee-saved registers x21-x23. |
- __ Mov(x11, argc); |
- |
- __ Peek(argv, 1 * kPointerSize); |
- __ Peek(argc, 2 * kPointerSize); |
- __ Peek(target, 3 * kPointerSize); |
- |
- __ LeaveExitFrame(save_doubles_, x10, true); |
- ASSERT(jssp.Is(__ StackPointer())); |
- // Pop or drop the remaining stack slots and return from the stub. |
- // jssp[24]: Arguments array (of size argc), including receiver. |
- // jssp[16]: Preserved x23 (used for target). |
- // jssp[8]: Preserved x22 (used for argc). |
- // jssp[0]: Preserved x21 (used for argv). |
- __ Drop(x11); |
- __ Ret(); |
- |
- // The stack pointer is still csp if we aren't returning, and the frame |
- // hasn't changed (except for the return address). |
- __ SetStackPointer(csp); |
- |
- __ Bind(&failure); |
- // The call failed, so check if we need to throw an exception, and fall |
- // through (to retry) otherwise. |
- |
- Label retry; |
- // x0 result The return code from the call, including the failure |
- // code and details. |
- // x21 argv |
- // x22 argc |
- // x23 target |
- // Refer to the Failure class for details of the bit layout. |
- STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
- __ Tst(result, kFailureTypeTagMask << kFailureTagSize); |
- __ B(eq, &retry); // RETRY_AFTER_GC |
- |
- // Special handling of out-of-memory exceptions: Pass the failure result, |
- // rather than the exception descriptor. |
- JumpIfOOM(masm, result, x10, throw_out_of_memory); |
- |
- // Retrieve the pending exception. |
- const Register& exception = result; |
- const Register& exception_address = x11; |
- __ Mov(exception_address, |
- Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
- isolate))); |
- __ Ldr(exception, MemOperand(exception_address)); |
- |
- // See if we just retrieved an OOM exception. |
- JumpIfOOM(masm, exception, x10, throw_out_of_memory); |
- |
- // Clear the pending exception. |
- __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
- __ Str(x10, MemOperand(exception_address)); |
- |
- // x0 exception The exception descriptor. |
- // x21 argv |
- // x22 argc |
- // x23 target |
- |
- // Special handling of termination exceptions, which are uncatchable by |
- // JavaScript code. |
- __ Cmp(exception, Operand(isolate->factory()->termination_exception())); |
- __ B(eq, throw_termination); |
- |
- // Handle normal exception. |
- __ B(throw_normal); |
- |
- __ Bind(&retry); |
- // The result (x0) is passed through as the next PerformGC parameter. |
-} |
- |
- |
-void CEntryStub::Generate(MacroAssembler* masm) { |
- // The Abort mechanism relies on CallRuntime, which in turn relies on |
- // CEntryStub, so until this stub has been generated, we have to use a |
- // fall-back Abort mechanism. |
- // |
- // Note that this stub must be generated before any use of Abort. |
- MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
- |
- ASM_LOCATION("CEntryStub::Generate entry"); |
- ProfileEntryHookStub::MaybeCallEntryHook(masm); |
- |
- // Register parameters: |
- // x0: argc (including receiver, untagged) |
- // x1: target |
- // |
- // The stack on entry holds the arguments and the receiver, with the receiver |
- // at the highest address: |
- // |
- // jssp]argc-1]: receiver |
- // jssp[argc-2]: arg[argc-2] |
- // ... ... |
- // jssp[1]: arg[1] |
- // jssp[0]: arg[0] |
- // |
- // The arguments are in reverse order, so that arg[argc-2] is actually the |
- // first argument to the target function and arg[0] is the last. |
- ASSERT(jssp.Is(__ StackPointer())); |
- const Register& argc_input = x0; |
- const Register& target_input = x1; |
- |
- // Calculate argv, argc and the target address, and store them in |
- // callee-saved registers so we can retry the call without having to reload |
- // these arguments. |
- // TODO(jbramley): If the first call attempt succeeds in the common case (as |
- // it should), then we might be better off putting these parameters directly |
- // into their argument registers, rather than using callee-saved registers and |
- // preserving them on the stack. |
- const Register& argv = x21; |
- const Register& argc = x22; |
- const Register& target = x23; |
- |
- // Derive argv from the stack pointer so that it points to the first argument |
- // (arg[argc-2]), or just below the receiver in case there are no arguments. |
- // - Adjust for the arg[] array. |
- Register temp_argv = x11; |
- __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2)); |
- // - Adjust for the receiver. |
- __ Sub(temp_argv, temp_argv, 1 * kPointerSize); |
- |
- // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved |
- // registers. |
- FrameScope scope(masm, StackFrame::MANUAL); |
- __ EnterExitFrame(save_doubles_, x10, 3); |
- ASSERT(csp.Is(__ StackPointer())); |
- |
- // Poke callee-saved registers into reserved space. |
- __ Poke(argv, 1 * kPointerSize); |
- __ Poke(argc, 2 * kPointerSize); |
- __ Poke(target, 3 * kPointerSize); |
- |
- // We normally only keep tagged values in callee-saved registers, as they |
- // could be pushed onto the stack by called stubs and functions, and on the |
- // stack they can confuse the GC. However, we're only calling C functions |
- // which can push arbitrary data onto the stack anyway, and so the GC won't |
- // examine that part of the stack. |
- __ Mov(argc, argc_input); |
- __ Mov(target, target_input); |
- __ Mov(argv, temp_argv); |
- |
- Label throw_normal; |
- Label throw_termination; |
- Label throw_out_of_memory; |
- |
- // Call the runtime function. |
- GenerateCore(masm, |
- &throw_normal, |
- &throw_termination, |
- &throw_out_of_memory, |
- false, |
- false); |
- |
- // If successful, the previous GenerateCore will have returned to the |
- // calling code. Otherwise, we fall through into the following. |
- |
- // Do space-specific GC and retry runtime call. |
- GenerateCore(masm, |
- &throw_normal, |
- &throw_termination, |
- &throw_out_of_memory, |
- true, |
- false); |
- |
- // Do full GC and retry runtime call one final time. |
- __ Mov(x0, reinterpret_cast<uint64_t>(Failure::InternalError())); |
- GenerateCore(masm, |
- &throw_normal, |
- &throw_termination, |
- &throw_out_of_memory, |
- true, |
- true); |
- |
- // We didn't execute a return case, so the stack frame hasn't been updated |
- // (except for the return address slot). However, we don't need to initialize |
- // jssp because the throw method will immediately overwrite it when it |
- // unwinds the stack. |
- if (__ emit_debug_code()) { |
- __ Mov(jssp, kDebugZapValue); |
- } |
- __ SetStackPointer(jssp); |
- |
- // Throw exceptions. |
- // If we throw an exception, we can end up re-entering CEntryStub before we |
- // pop the exit frame, so need to ensure that x21-x23 contain GC-safe values |
- // here. |
- __ Bind(&throw_out_of_memory); |
- ASM_LOCATION("Throw out of memory"); |
- __ Mov(argv, 0); |
- __ Mov(argc, 0); |
- __ Mov(target, 0); |
- // Set external caught exception to false. |
- Isolate* isolate = masm->isolate(); |
- __ Mov(x2, Operand(ExternalReference(Isolate::kExternalCaughtExceptionAddress, |
- isolate))); |
- __ Str(xzr, MemOperand(x2)); |
- |
- // Set pending exception and x0 to out of memory exception. |
- Label already_have_failure; |
- JumpIfOOM(masm, x0, x10, &already_have_failure); |
- Failure* out_of_memory = Failure::OutOfMemoryException(0x1); |
- __ Mov(x0, Operand(reinterpret_cast<uint64_t>(out_of_memory))); |
- __ Bind(&already_have_failure); |
- __ Mov(x2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
- isolate))); |
- __ Str(x0, MemOperand(x2)); |
- // Fall through to the next label. |
- |
- __ Bind(&throw_termination); |
- ASM_LOCATION("Throw termination"); |
- __ Mov(argv, 0); |
- __ Mov(argc, 0); |
- __ Mov(target, 0); |
- __ ThrowUncatchable(x0, x10, x11, x12, x13); |
- |
- __ Bind(&throw_normal); |
- ASM_LOCATION("Throw normal"); |
- __ Mov(argv, 0); |
- __ Mov(argc, 0); |
- __ Mov(target, 0); |
- __ Throw(x0, x10, x11, x12, x13); |
-} |
- |
- |
-// This is the entry point from C++. 5 arguments are provided in x0-x4. |
-// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc. |
-// Input: |
-// x0: code entry. |
-// x1: function. |
-// x2: receiver. |
-// x3: argc. |
-// x4: argv. |
-// Output: |
-// x0: result. |
-void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
- ASSERT(jssp.Is(__ StackPointer())); |
- Register code_entry = x0; |
- |
- // Enable instruction instrumentation. This only works on the simulator, and |
- // will have no effect on the model or real hardware. |
- __ EnableInstrumentation(); |
- |
- Label invoke, handler_entry, exit; |
- |
- // Push callee-saved registers and synchronize the system stack pointer (csp) |
- // and the JavaScript stack pointer (jssp). |
- // |
- // We must not write to jssp until after the PushCalleeSavedRegisters() |
- // call, since jssp is itself a callee-saved register. |
- __ SetStackPointer(csp); |
- __ PushCalleeSavedRegisters(); |
- __ Mov(jssp, csp); |
- __ SetStackPointer(jssp); |
- |
- ProfileEntryHookStub::MaybeCallEntryHook(masm); |
- |
- // Set up the reserved register for 0.0. |
- __ Fmov(fp_zero, 0.0); |
- |
- // Build an entry frame (see layout below). |
- Isolate* isolate = masm->isolate(); |
- |
- // Build an entry frame. |
- int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
- int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. |
- __ Mov(x13, bad_frame_pointer); |
- __ Mov(x12, Smi::FromInt(marker)); |
- __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate)); |
- __ Ldr(x10, MemOperand(x11)); |
- |
- __ Push(x13, xzr, x12, x10); |
- // Set up fp. |
- __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset); |
- |
- // Push the JS entry frame marker. Also set js_entry_sp if this is the |
- // outermost JS call. |
- Label non_outermost_js, done; |
- ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); |
- __ Mov(x10, ExternalReference(js_entry_sp)); |
- __ Ldr(x11, MemOperand(x10)); |
- __ Cbnz(x11, &non_outermost_js); |
- __ Str(fp, MemOperand(x10)); |
- __ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
- __ Push(x12); |
- __ B(&done); |
- __ Bind(&non_outermost_js); |
- // We spare one instruction by pushing xzr since the marker is 0. |
- ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL); |
- __ Push(xzr); |
- __ Bind(&done); |
- |
- // The frame set up looks like this: |
- // jssp[0] : JS entry frame marker. |
- // jssp[1] : C entry FP. |
- // jssp[2] : stack frame marker. |
- // jssp[3] : stack frmae marker. |
- // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. |
- |
- |
- // Jump to a faked try block that does the invoke, with a faked catch |
- // block that sets the pending exception. |
- __ B(&invoke); |
- |
- // Prevent the constant pool from being emitted between the record of the |
- // handler_entry position and the first instruction of the sequence here. |
- // There is no risk because Assembler::Emit() emits the instruction before |
- // checking for constant pool emission, but we do not want to depend on |
- // that. |
- { |
- Assembler::BlockPoolsScope block_pools(masm); |
- __ bind(&handler_entry); |
- handler_offset_ = handler_entry.pos(); |
- // Caught exception: Store result (exception) in the pending exception |
- // field in the JSEnv and return a failure sentinel. Coming in here the |
- // fp will be invalid because the PushTryHandler below sets it to 0 to |
- // signal the existence of the JSEntry frame. |
- __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
- isolate))); |
- } |
- __ Str(code_entry, MemOperand(x10)); |
- __ Mov(x0, Operand(reinterpret_cast<int64_t>(Failure::Exception()))); |
- __ B(&exit); |
- |
- // Invoke: Link this frame into the handler chain. There's only one |
- // handler block in this code object, so its index is 0. |
- __ Bind(&invoke); |
- __ PushTryHandler(StackHandler::JS_ENTRY, 0); |
- // If an exception not caught by another handler occurs, this handler |
- // returns control to the code after the B(&invoke) above, which |
- // restores all callee-saved registers (including cp and fp) to their |
- // saved values before returning a failure to C. |
- |
- // Clear any pending exceptions. |
- __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
- __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
- isolate))); |
- __ Str(x10, MemOperand(x11)); |
- |
- // Invoke the function by calling through the JS entry trampoline builtin. |
- // Notice that we cannot store a reference to the trampoline code directly in |
- // this stub, because runtime stubs are not traversed when doing GC. |
- |
- // Expected registers by Builtins::JSEntryTrampoline |
- // x0: code entry. |
- // x1: function. |
- // x2: receiver. |
- // x3: argc. |
- // x4: argv. |
- ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline |
- : Builtins::kJSEntryTrampoline, |
- isolate); |
- __ Mov(x10, entry); |
- |
- // Call the JSEntryTrampoline. |
- __ Ldr(x11, MemOperand(x10)); // Dereference the address. |
- __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); |
- __ Blr(x12); |
- |
- // Unlink this frame from the handler chain. |
- __ PopTryHandler(); |
- |
- |
- __ Bind(&exit); |
- // x0 holds the result. |
- // The stack pointer points to the top of the entry frame pushed on entry from |
- // C++ (at the beginning of this stub): |
- // jssp[0] : JS entry frame marker. |
- // jssp[1] : C entry FP. |
- // jssp[2] : stack frame marker. |
- // jssp[3] : stack frmae marker. |
- // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. |
- |
- // Check if the current stack frame is marked as the outermost JS frame. |
- Label non_outermost_js_2; |
- __ Pop(x10); |
- __ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
- __ B(ne, &non_outermost_js_2); |
- __ Mov(x11, ExternalReference(js_entry_sp)); |
- __ Str(xzr, MemOperand(x11)); |
- __ Bind(&non_outermost_js_2); |
- |
- // Restore the top frame descriptors from the stack. |
- __ Pop(x10); |
- __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate)); |
- __ Str(x10, MemOperand(x11)); |
- |
- // Reset the stack to the callee saved registers. |
- __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes); |
- // Restore the callee-saved registers and return. |
- ASSERT(jssp.Is(__ StackPointer())); |
- __ Mov(csp, jssp); |
- __ SetStackPointer(csp); |
- __ PopCalleeSavedRegisters(); |
- // After this point, we must not modify jssp because it is a callee-saved |
- // register which we have just restored. |
- __ Ret(); |
-} |
- |
- |
-void FunctionPrototypeStub::Generate(MacroAssembler* masm) { |
- Label miss; |
- Register receiver; |
- if (kind() == Code::KEYED_LOAD_IC) { |
- // ----------- S t a t e ------------- |
- // -- lr : return address |
- // -- x1 : receiver |
- // -- x0 : key |
- // ----------------------------------- |
- Register key = x0; |
- receiver = x1; |
- __ Cmp(key, Operand(masm->isolate()->factory()->prototype_string())); |
- __ B(ne, &miss); |
- } else { |
- ASSERT(kind() == Code::LOAD_IC); |
- // ----------- S t a t e ------------- |
- // -- lr : return address |
- // -- x2 : name |
- // -- x0 : receiver |
- // -- sp[0] : receiver |
- // ----------------------------------- |
- receiver = x0; |
- } |
- |
- StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss); |
- |
- __ Bind(&miss); |
- StubCompiler::TailCallBuiltin(masm, |
- BaseLoadStoreStubCompiler::MissBuiltin(kind())); |
-} |
- |
- |
-void InstanceofStub::Generate(MacroAssembler* masm) { |
- // Stack on entry: |
- // jssp[0]: function. |
- // jssp[8]: object. |
- // |
- // Returns result in x0. Zero indicates instanceof, smi 1 indicates not |
- // instanceof. |
- |
- Register result = x0; |
- Register function = right(); |
- Register object = left(); |
- Register scratch1 = x6; |
- Register scratch2 = x7; |
- Register res_true = x8; |
- Register res_false = x9; |
- // Only used if there was an inline map check site. (See |
- // LCodeGen::DoInstanceOfKnownGlobal().) |
- Register map_check_site = x4; |
- // Delta for the instructions generated between the inline map check and the |
- // instruction setting the result. |
- const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize; |
- |
- Label not_js_object, slow; |
- |
- if (!HasArgsInRegisters()) { |
- __ Pop(function, object); |
- } |
- |
- if (ReturnTrueFalseObject()) { |
- __ LoadTrueFalseRoots(res_true, res_false); |
- } else { |
- // This is counter-intuitive, but correct. |
- __ Mov(res_true, Smi::FromInt(0)); |
- __ Mov(res_false, Smi::FromInt(1)); |
- } |
- |
- // Check that the left hand side is a JS object and load its map as a side |
- // effect. |
- Register map = x12; |
- __ JumpIfSmi(object, ¬_js_object); |
- __ IsObjectJSObjectType(object, map, scratch2, ¬_js_object); |
- |
- // If there is a call site cache, don't look in the global cache, but do the |
- // real lookup and update the call site cache. |
- if (!HasCallSiteInlineCheck()) { |
- Label miss; |
- __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss); |
- __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss); |
- __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex); |
- __ Ret(); |
- __ Bind(&miss); |
- } |
- |
- // Get the prototype of the function. |
- Register prototype = x13; |
- __ TryGetFunctionPrototype(function, prototype, scratch2, &slow, |
- MacroAssembler::kMissOnBoundFunction); |
- |
- // Check that the function prototype is a JS object. |
- __ JumpIfSmi(prototype, &slow); |
- __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow); |
- |
- // Update the global instanceof or call site inlined cache with the current |
- // map and function. The cached answer will be set when it is known below. |
- if (HasCallSiteInlineCheck()) { |
- // Patch the (relocated) inlined map check. |
- __ GetRelocatedValueLocation(map_check_site, scratch1); |
- // We have a cell, so need another level of dereferencing. |
- __ Ldr(scratch1, MemOperand(scratch1)); |
- __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset)); |
- } else { |
- __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
- __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
- } |
- |
- Label return_true, return_result; |
- { |
- // Loop through the prototype chain looking for the function prototype. |
- Register chain_map = x1; |
- Register chain_prototype = x14; |
- Register null_value = x15; |
- Label loop; |
- __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset)); |
- __ LoadRoot(null_value, Heap::kNullValueRootIndex); |
- // Speculatively set a result. |
- __ Mov(result, res_false); |
- |
- __ Bind(&loop); |
- |
- // If the chain prototype is the object prototype, return true. |
- __ Cmp(chain_prototype, prototype); |
- __ B(eq, &return_true); |
- |
- // If the chain prototype is null, we've reached the end of the chain, so |
- // return false. |
- __ Cmp(chain_prototype, null_value); |
- __ B(eq, &return_result); |
- |
- // Otherwise, load the next prototype in the chain, and loop. |
- __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset)); |
- __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset)); |
- __ B(&loop); |
- } |
- |
- // Return sequence when no arguments are on the stack. |
- // We cannot fall through to here. |
- __ Bind(&return_true); |
- __ Mov(result, res_true); |
- __ Bind(&return_result); |
- if (HasCallSiteInlineCheck()) { |
- ASSERT(ReturnTrueFalseObject()); |
- __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult); |
- __ GetRelocatedValueLocation(map_check_site, scratch2); |
- __ Str(result, MemOperand(scratch2)); |
- } else { |
- __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex); |
- } |
- __ Ret(); |
- |
- Label object_not_null, object_not_null_or_smi; |
- |
- __ Bind(¬_js_object); |
- Register object_type = x14; |
- // x0 result result return register (uninit) |
- // x10 function pointer to function |
- // x11 object pointer to object |
- // x14 object_type type of object (uninit) |
- |
- // Before null, smi and string checks, check that the rhs is a function. |
- // For a non-function rhs, an exception must be thrown. |
- __ JumpIfSmi(function, &slow); |
- __ JumpIfNotObjectType( |
- function, scratch1, object_type, JS_FUNCTION_TYPE, &slow); |
- |
- __ Mov(result, res_false); |
- |
- // Null is not instance of anything. |
- __ Cmp(object_type, Operand(masm->isolate()->factory()->null_value())); |
- __ B(ne, &object_not_null); |
- __ Ret(); |
- |
- __ Bind(&object_not_null); |
- // Smi values are not instances of anything. |
- __ JumpIfNotSmi(object, &object_not_null_or_smi); |
- __ Ret(); |
- |
- __ Bind(&object_not_null_or_smi); |
- // String values are not instances of anything. |
- __ IsObjectJSStringType(object, scratch2, &slow); |
- __ Ret(); |
- |
- // Slow-case. Tail call builtin. |
- __ Bind(&slow); |
- { |
- FrameScope scope(masm, StackFrame::INTERNAL); |
- // Arguments have either been passed into registers or have been previously |
- // popped. We need to push them before calling builtin. |
- __ Push(object, function); |
- __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
- } |
- if (ReturnTrueFalseObject()) { |
- // Reload true/false because they were clobbered in the builtin call. |
- __ LoadTrueFalseRoots(res_true, res_false); |
- __ Cmp(result, 0); |
- __ Csel(result, res_true, res_false, eq); |
- } |
- __ Ret(); |
-} |
- |
- |
-Register InstanceofStub::left() { |
- // Object to check (instanceof lhs). |
- return x11; |
-} |
- |
- |
-Register InstanceofStub::right() { |
- // Constructor function (instanceof rhs). |
- return x10; |
-} |
- |
- |
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
- Register arg_count = x0; |
- Register key = x1; |
- |
- // The displacement is the offset of the last parameter (if any) relative |
- // to the frame pointer. |
- static const int kDisplacement = |
- StandardFrameConstants::kCallerSPOffset - kPointerSize; |
- |
- // Check that the key is a smi. |
- Label slow; |
- __ JumpIfNotSmi(key, &slow); |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- Register local_fp = x11; |
- Register caller_fp = x11; |
- Register caller_ctx = x12; |
- Label skip_adaptor; |
- __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- __ Ldr(caller_ctx, MemOperand(caller_fp, |
- StandardFrameConstants::kContextOffset)); |
- __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ Csel(local_fp, fp, caller_fp, ne); |
- __ B(ne, &skip_adaptor); |
- |
- // Load the actual arguments limit found in the arguments adaptor frame. |
- __ Ldr(arg_count, MemOperand(caller_fp, |
- ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ Bind(&skip_adaptor); |
- |
- // Check index against formal parameters count limit. Use unsigned comparison |
- // to get negative check for free: branch if key < 0 or key >= arg_count. |
- __ Cmp(key, arg_count); |
- __ B(hs, &slow); |
- |
- // Read the argument from the stack and return it. |
- __ Sub(x10, arg_count, key); |
- __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2)); |
- __ Ldr(x0, MemOperand(x10, kDisplacement)); |
- __ Ret(); |
- |
- // Slow case: handle non-smi or out-of-bounds access to arguments by calling |
- // the runtime system. |
- __ Bind(&slow); |
- __ Push(key); |
- __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
-} |
- |
- |
-void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { |
- // Stack layout on entry. |
- // jssp[0]: number of parameters (tagged) |
- // jssp[8]: address of receiver argument |
- // jssp[16]: function |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- Label runtime; |
- Register caller_fp = x10; |
- __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- // Load and untag the context. |
- STATIC_ASSERT((kSmiShift / kBitsPerByte) == 4); |
- __ Ldr(w11, MemOperand(caller_fp, StandardFrameConstants::kContextOffset + |
- (kSmiShift / kBitsPerByte))); |
- __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR); |
- __ B(ne, &runtime); |
- |
- // Patch the arguments.length and parameters pointer in the current frame. |
- __ Ldr(x11, MemOperand(caller_fp, |
- ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ Poke(x11, 0 * kXRegSize); |
- __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2)); |
- __ Add(x10, x10, StandardFrameConstants::kCallerSPOffset); |
- __ Poke(x10, 1 * kXRegSize); |
- |
- __ Bind(&runtime); |
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
-} |
- |
- |
-void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { |
- // Stack layout on entry. |
- // jssp[0]: number of parameters (tagged) |
- // jssp[8]: address of receiver argument |
- // jssp[16]: function |
- // |
- // Returns pointer to result object in x0. |
- |
- // Note: arg_count_smi is an alias of param_count_smi. |
- Register arg_count_smi = x3; |
- Register param_count_smi = x3; |
- Register param_count = x7; |
- Register recv_arg = x14; |
- Register function = x4; |
- __ Pop(param_count_smi, recv_arg, function); |
- __ SmiUntag(param_count, param_count_smi); |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- Register caller_fp = x11; |
- Register caller_ctx = x12; |
- Label runtime; |
- Label adaptor_frame, try_allocate; |
- __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- __ Ldr(caller_ctx, MemOperand(caller_fp, |
- StandardFrameConstants::kContextOffset)); |
- __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ B(eq, &adaptor_frame); |
- |
- // No adaptor, parameter count = argument count. |
- |
- // x1 mapped_params number of mapped params, min(params, args) (uninit) |
- // x2 arg_count number of function arguments (uninit) |
- // x3 arg_count_smi number of function arguments (smi) |
- // x4 function function pointer |
- // x7 param_count number of function parameters |
- // x11 caller_fp caller's frame pointer |
- // x14 recv_arg pointer to receiver arguments |
- |
- Register arg_count = x2; |
- __ Mov(arg_count, param_count); |
- __ B(&try_allocate); |
- |
- // We have an adaptor frame. Patch the parameters pointer. |
- __ Bind(&adaptor_frame); |
- __ Ldr(arg_count_smi, |
- MemOperand(caller_fp, |
- ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ SmiUntag(arg_count, arg_count_smi); |
- __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2)); |
- __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset); |
- |
- // Compute the mapped parameter count = min(param_count, arg_count) |
- Register mapped_params = x1; |
- __ Cmp(param_count, arg_count); |
- __ Csel(mapped_params, param_count, arg_count, lt); |
- |
- __ Bind(&try_allocate); |
- |
- // x0 alloc_obj pointer to allocated objects: param map, backing |
- // store, arguments (uninit) |
- // x1 mapped_params number of mapped parameters, min(params, args) |
- // x2 arg_count number of function arguments |
- // x3 arg_count_smi number of function arguments (smi) |
- // x4 function function pointer |
- // x7 param_count number of function parameters |
- // x10 size size of objects to allocate (uninit) |
- // x14 recv_arg pointer to receiver arguments |
- |
- // Compute the size of backing store, parameter map, and arguments object. |
- // 1. Parameter map, has two extra words containing context and backing |
- // store. |
- const int kParameterMapHeaderSize = |
- FixedArray::kHeaderSize + 2 * kPointerSize; |
- |
- // Calculate the parameter map size, assuming it exists. |
- Register size = x10; |
- __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2)); |
- __ Add(size, size, kParameterMapHeaderSize); |
- |
- // If there are no mapped parameters, set the running size total to zero. |
- // Otherwise, use the parameter map size calculated earlier. |
- __ Cmp(mapped_params, 0); |
- __ CzeroX(size, eq); |
- |
- // 2. Add the size of the backing store and arguments object. |
- __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2)); |
- __ Add(size, size, |
- FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize); |
- |
- // Do the allocation of all three objects in one go. Assign this to x0, as it |
- // will be returned to the caller. |
- Register alloc_obj = x0; |
- __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT); |
- |
- // Get the arguments boilerplate from the current (global) context. |
- |
- // x0 alloc_obj pointer to allocated objects (param map, backing |
- // store, arguments) |
- // x1 mapped_params number of mapped parameters, min(params, args) |
- // x2 arg_count number of function arguments |
- // x3 arg_count_smi number of function arguments (smi) |
- // x4 function function pointer |
- // x7 param_count number of function parameters |
- // x11 args_offset offset to args (or aliased args) boilerplate (uninit) |
- // x14 recv_arg pointer to receiver arguments |
- |
- Register global_object = x10; |
- Register global_ctx = x10; |
- Register args_offset = x11; |
- Register aliased_args_offset = x10; |
- __ Ldr(global_object, GlobalObjectMemOperand()); |
- __ Ldr(global_ctx, FieldMemOperand(global_object, |
- GlobalObject::kNativeContextOffset)); |
- |
- __ Ldr(args_offset, |
- ContextMemOperand(global_ctx, |
- Context::SLOPPY_ARGUMENTS_BOILERPLATE_INDEX)); |
- __ Ldr(aliased_args_offset, |
- ContextMemOperand(global_ctx, |
- Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)); |
- __ Cmp(mapped_params, 0); |
- __ CmovX(args_offset, aliased_args_offset, ne); |
- |
- // Copy the JS object part. |
- __ CopyFields(alloc_obj, args_offset, CPURegList(x10, x12, x13), |
- JSObject::kHeaderSize / kPointerSize); |
- |
- // Set up the callee in-object property. |
- STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
- const int kCalleeOffset = JSObject::kHeaderSize + |
- Heap::kArgumentsCalleeIndex * kPointerSize; |
- __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset)); |
- |
- // Use the length and set that as an in-object property. |
- STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
- const int kLengthOffset = JSObject::kHeaderSize + |
- Heap::kArgumentsLengthIndex * kPointerSize; |
- __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); |
- |
- // Set up the elements pointer in the allocated arguments object. |
- // If we allocated a parameter map, "elements" will point there, otherwise |
- // it will point to the backing store. |
- |
- // x0 alloc_obj pointer to allocated objects (param map, backing |
- // store, arguments) |
- // x1 mapped_params number of mapped parameters, min(params, args) |
- // x2 arg_count number of function arguments |
- // x3 arg_count_smi number of function arguments (smi) |
- // x4 function function pointer |
- // x5 elements pointer to parameter map or backing store (uninit) |
- // x6 backing_store pointer to backing store (uninit) |
- // x7 param_count number of function parameters |
- // x14 recv_arg pointer to receiver arguments |
- |
- Register elements = x5; |
- __ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize); |
- __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); |
- |
- // Initialize parameter map. If there are no mapped arguments, we're done. |
- Label skip_parameter_map; |
- __ Cmp(mapped_params, 0); |
- // Set up backing store address, because it is needed later for filling in |
- // the unmapped arguments. |
- Register backing_store = x6; |
- __ CmovX(backing_store, elements, eq); |
- __ B(eq, &skip_parameter_map); |
- |
- __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex); |
- __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); |
- __ Add(x10, mapped_params, 2); |
- __ SmiTag(x10); |
- __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
- __ Str(cp, FieldMemOperand(elements, |
- FixedArray::kHeaderSize + 0 * kPointerSize)); |
- __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2)); |
- __ Add(x10, x10, kParameterMapHeaderSize); |
- __ Str(x10, FieldMemOperand(elements, |
- FixedArray::kHeaderSize + 1 * kPointerSize)); |
- |
- // Copy the parameter slots and the holes in the arguments. |
- // We need to fill in mapped_parameter_count slots. Then index the context, |
- // where parameters are stored in reverse order, at: |
- // |
- // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1 |
- // |
- // The mapped parameter thus needs to get indices: |
- // |
- // MIN_CONTEXT_SLOTS + parameter_count - 1 .. |
- // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count |
- // |
- // We loop from right to left. |
- |
- // x0 alloc_obj pointer to allocated objects (param map, backing |
- // store, arguments) |
- // x1 mapped_params number of mapped parameters, min(params, args) |
- // x2 arg_count number of function arguments |
- // x3 arg_count_smi number of function arguments (smi) |
- // x4 function function pointer |
- // x5 elements pointer to parameter map or backing store (uninit) |
- // x6 backing_store pointer to backing store (uninit) |
- // x7 param_count number of function parameters |
- // x11 loop_count parameter loop counter (uninit) |
- // x12 index parameter index (smi, uninit) |
- // x13 the_hole hole value (uninit) |
- // x14 recv_arg pointer to receiver arguments |
- |
- Register loop_count = x11; |
- Register index = x12; |
- Register the_hole = x13; |
- Label parameters_loop, parameters_test; |
- __ Mov(loop_count, mapped_params); |
- __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS)); |
- __ Sub(index, index, mapped_params); |
- __ SmiTag(index); |
- __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex); |
- __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2)); |
- __ Add(backing_store, backing_store, kParameterMapHeaderSize); |
- |
- __ B(¶meters_test); |
- |
- __ Bind(¶meters_loop); |
- __ Sub(loop_count, loop_count, 1); |
- __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2)); |
- __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag); |
- __ Str(index, MemOperand(elements, x10)); |
- __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize); |
- __ Str(the_hole, MemOperand(backing_store, x10)); |
- __ Add(index, index, Smi::FromInt(1)); |
- __ Bind(¶meters_test); |
- __ Cbnz(loop_count, ¶meters_loop); |
- |
- __ Bind(&skip_parameter_map); |
- // Copy arguments header and remaining slots (if there are any.) |
- __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); |
- __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset)); |
- __ Str(arg_count_smi, FieldMemOperand(backing_store, |
- FixedArray::kLengthOffset)); |
- |
- // x0 alloc_obj pointer to allocated objects (param map, backing |
- // store, arguments) |
- // x1 mapped_params number of mapped parameters, min(params, args) |
- // x2 arg_count number of function arguments |
- // x4 function function pointer |
- // x3 arg_count_smi number of function arguments (smi) |
- // x6 backing_store pointer to backing store (uninit) |
- // x14 recv_arg pointer to receiver arguments |
- |
- Label arguments_loop, arguments_test; |
- __ Mov(x10, mapped_params); |
- __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2)); |
- __ B(&arguments_test); |
- |
- __ Bind(&arguments_loop); |
- __ Sub(recv_arg, recv_arg, kPointerSize); |
- __ Ldr(x11, MemOperand(recv_arg)); |
- __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2)); |
- __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); |
- __ Add(x10, x10, 1); |
- |
- __ Bind(&arguments_test); |
- __ Cmp(x10, arg_count); |
- __ B(lt, &arguments_loop); |
- |
- __ Ret(); |
- |
- // Do the runtime call to allocate the arguments object. |
- __ Bind(&runtime); |
- __ Push(function, recv_arg, arg_count_smi); |
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
-} |
- |
- |
-void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { |
- // Stack layout on entry. |
- // jssp[0]: number of parameters (tagged) |
- // jssp[8]: address of receiver argument |
- // jssp[16]: function |
- // |
- // Returns pointer to result object in x0. |
- |
- // Get the stub arguments from the frame, and make an untagged copy of the |
- // parameter count. |
- Register param_count_smi = x1; |
- Register params = x2; |
- Register function = x3; |
- Register param_count = x13; |
- __ Pop(param_count_smi, params, function); |
- __ SmiUntag(param_count, param_count_smi); |
- |
- // Test if arguments adaptor needed. |
- Register caller_fp = x11; |
- Register caller_ctx = x12; |
- Label try_allocate, runtime; |
- __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
- __ Ldr(caller_ctx, MemOperand(caller_fp, |
- StandardFrameConstants::kContextOffset)); |
- __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ B(ne, &try_allocate); |
- |
- // x1 param_count_smi number of parameters passed to function (smi) |
- // x2 params pointer to parameters |
- // x3 function function pointer |
- // x11 caller_fp caller's frame pointer |
- // x13 param_count number of parameters passed to function |
- |
- // Patch the argument length and parameters pointer. |
- __ Ldr(param_count_smi, |
- MemOperand(caller_fp, |
- ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ SmiUntag(param_count, param_count_smi); |
- __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2)); |
- __ Add(params, x10, StandardFrameConstants::kCallerSPOffset); |
- |
- // Try the new space allocation. Start out with computing the size of the |
- // arguments object and the elements array in words. |
- Register size = x10; |
- __ Bind(&try_allocate); |
- __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize); |
- __ Cmp(param_count, 0); |
- __ CzeroX(size, eq); |
- __ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize); |
- |
- // Do the allocation of both objects in one go. Assign this to x0, as it will |
- // be returned to the caller. |
- Register alloc_obj = x0; |
- __ Allocate(size, alloc_obj, x11, x12, &runtime, |
- static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
- |
- // Get the arguments boilerplate from the current (native) context. |
- Register global_object = x10; |
- Register global_ctx = x10; |
- Register args_offset = x4; |
- __ Ldr(global_object, GlobalObjectMemOperand()); |
- __ Ldr(global_ctx, FieldMemOperand(global_object, |
- GlobalObject::kNativeContextOffset)); |
- __ Ldr(args_offset, |
- ContextMemOperand(global_ctx, |
- Context::STRICT_ARGUMENTS_BOILERPLATE_INDEX)); |
- |
- // x0 alloc_obj pointer to allocated objects: parameter array and |
- // arguments object |
- // x1 param_count_smi number of parameters passed to function (smi) |
- // x2 params pointer to parameters |
- // x3 function function pointer |
- // x4 args_offset offset to arguments boilerplate |
- // x13 param_count number of parameters passed to function |
- |
- // Copy the JS object part. |
- __ CopyFields(alloc_obj, args_offset, CPURegList(x5, x6, x7), |
- JSObject::kHeaderSize / kPointerSize); |
- |
- // Set the smi-tagged length as an in-object property. |
- STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
- const int kLengthOffset = JSObject::kHeaderSize + |
- Heap::kArgumentsLengthIndex * kPointerSize; |
- __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset)); |
- |
- // If there are no actual arguments, we're done. |
- Label done; |
- __ Cbz(param_count, &done); |
- |
- // Set up the elements pointer in the allocated arguments object and |
- // initialize the header in the elements fixed array. |
- Register elements = x5; |
- __ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize); |
- __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset)); |
- __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex); |
- __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset)); |
- __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
- |
- // x0 alloc_obj pointer to allocated objects: parameter array and |
- // arguments object |
- // x1 param_count_smi number of parameters passed to function (smi) |
- // x2 params pointer to parameters |
- // x3 function function pointer |
- // x4 array pointer to array slot (uninit) |
- // x5 elements pointer to elements array of alloc_obj |
- // x13 param_count number of parameters passed to function |
- |
- // Copy the fixed array slots. |
- Label loop; |
- Register array = x4; |
- // Set up pointer to first array slot. |
- __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag); |
- |
- __ Bind(&loop); |
- // Pre-decrement the parameters pointer by kPointerSize on each iteration. |
- // Pre-decrement in order to skip receiver. |
- __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex)); |
- // Post-increment elements by kPointerSize on each iteration. |
- __ Str(x10, MemOperand(array, kPointerSize, PostIndex)); |
- __ Sub(param_count, param_count, 1); |
- __ Cbnz(param_count, &loop); |
- |
- // Return from stub. |
- __ Bind(&done); |
- __ Ret(); |
- |
- // Do the runtime call to allocate the arguments object. |
- __ Bind(&runtime); |
- __ Push(function, params, param_count_smi); |
- __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); |
-} |
- |
- |
-void RegExpExecStub::Generate(MacroAssembler* masm) { |
-#ifdef V8_INTERPRETED_REGEXP |
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
-#else // V8_INTERPRETED_REGEXP |
- |
- // Stack frame on entry. |
- // jssp[0]: last_match_info (expected JSArray) |
- // jssp[8]: previous index |
- // jssp[16]: subject string |
- // jssp[24]: JSRegExp object |
- Label runtime; |
- |
- // Use of registers for this function. |
- |
- // Variable registers: |
- // x10-x13 used as scratch registers |
- // w0 string_type type of subject string |
- // x2 jsstring_length subject string length |
- // x3 jsregexp_object JSRegExp object |
- // w4 string_encoding ASCII or UC16 |
- // w5 sliced_string_offset if the string is a SlicedString |
- // offset to the underlying string |
- // w6 string_representation groups attributes of the string: |
- // - is a string |
- // - type of the string |
- // - is a short external string |
- Register string_type = w0; |
- Register jsstring_length = x2; |
- Register jsregexp_object = x3; |
- Register string_encoding = w4; |
- Register sliced_string_offset = w5; |
- Register string_representation = w6; |
- |
- // These are in callee save registers and will be preserved by the call |
- // to the native RegExp code, as this code is called using the normal |
- // C calling convention. When calling directly from generated code the |
- // native RegExp code will not do a GC and therefore the content of |
- // these registers are safe to use after the call. |
- |
- // x19 subject subject string |
- // x20 regexp_data RegExp data (FixedArray) |
- // x21 last_match_info_elements info relative to the last match |
- // (FixedArray) |
- // x22 code_object generated regexp code |
- Register subject = x19; |
- Register regexp_data = x20; |
- Register last_match_info_elements = x21; |
- Register code_object = x22; |
- |
- // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does. |
- CPURegList used_callee_saved_registers(subject, |
- regexp_data, |
- last_match_info_elements, |
- code_object); |
- __ PushCPURegList(used_callee_saved_registers); |
- |
- // Stack frame. |
- // jssp[0] : x19 |
- // jssp[8] : x20 |
- // jssp[16]: x21 |
- // jssp[24]: x22 |
- // jssp[32]: last_match_info (JSArray) |
- // jssp[40]: previous index |
- // jssp[48]: subject string |
- // jssp[56]: JSRegExp object |
- |
- const int kLastMatchInfoOffset = 4 * kPointerSize; |
- const int kPreviousIndexOffset = 5 * kPointerSize; |
- const int kSubjectOffset = 6 * kPointerSize; |
- const int kJSRegExpOffset = 7 * kPointerSize; |
- |
- // Ensure that a RegExp stack is allocated. |
- Isolate* isolate = masm->isolate(); |
- ExternalReference address_of_regexp_stack_memory_address = |
- ExternalReference::address_of_regexp_stack_memory_address(isolate); |
- ExternalReference address_of_regexp_stack_memory_size = |
- ExternalReference::address_of_regexp_stack_memory_size(isolate); |
- __ Mov(x10, address_of_regexp_stack_memory_size); |
- __ Ldr(x10, MemOperand(x10)); |
- __ Cbz(x10, &runtime); |
- |
- // Check that the first argument is a JSRegExp object. |
- ASSERT(jssp.Is(__ StackPointer())); |
- __ Peek(jsregexp_object, kJSRegExpOffset); |
- __ JumpIfSmi(jsregexp_object, &runtime); |
- __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime); |
- |
- // Check that the RegExp has been compiled (data contains a fixed array). |
- __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset)); |
- if (FLAG_debug_code) { |
- STATIC_ASSERT(kSmiTag == 0); |
- __ Tst(regexp_data, kSmiTagMask); |
- __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
- __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE); |
- __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
- } |
- |
- // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
- __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
- __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP)); |
- __ B(ne, &runtime); |
- |
- // Check that the number of captures fit in the static offsets vector buffer. |
- // We have always at least one capture for the whole match, plus additional |
- // ones due to capturing parentheses. A capture takes 2 registers. |
- // The number of capture registers then is (number_of_captures + 1) * 2. |
- __ Ldrsw(x10, |
- UntagSmiFieldMemOperand(regexp_data, |
- JSRegExp::kIrregexpCaptureCountOffset)); |
- // Check (number_of_captures + 1) * 2 <= offsets vector size |
- // number_of_captures * 2 <= offsets vector size - 2 |
- STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); |
- __ Add(x10, x10, x10); |
- __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); |
- __ B(hi, &runtime); |
- |
- // Initialize offset for possibly sliced string. |
- __ Mov(sliced_string_offset, 0); |
- |
- ASSERT(jssp.Is(__ StackPointer())); |
- __ Peek(subject, kSubjectOffset); |
- __ JumpIfSmi(subject, &runtime); |
- |
- __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
- __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
- |
- __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset)); |
- |
- // Handle subject string according to its encoding and representation: |
- // (1) Sequential string? If yes, go to (5). |
- // (2) Anything but sequential or cons? If yes, go to (6). |
- // (3) Cons string. If the string is flat, replace subject with first string. |
- // Otherwise bailout. |
- // (4) Is subject external? If yes, go to (7). |
- // (5) Sequential string. Load regexp code according to encoding. |
- // (E) Carry on. |
- /// [...] |
- |
- // Deferred code at the end of the stub: |
- // (6) Not a long external string? If yes, go to (8). |
- // (7) External string. Make it, offset-wise, look like a sequential string. |
- // Go to (5). |
- // (8) Short external string or not a string? If yes, bail out to runtime. |
- // (9) Sliced string. Replace subject with parent. Go to (4). |
- |
- Label check_underlying; // (4) |
- Label seq_string; // (5) |
- Label not_seq_nor_cons; // (6) |
- Label external_string; // (7) |
- Label not_long_external; // (8) |
- |
- // (1) Sequential string? If yes, go to (5). |
- __ And(string_representation, |
- string_type, |
- kIsNotStringMask | |
- kStringRepresentationMask | |
- kShortExternalStringMask); |
- // We depend on the fact that Strings of type |
- // SeqString and not ShortExternalString are defined |
- // by the following pattern: |
- // string_type: 0XX0 XX00 |
- // ^ ^ ^^ |
- // | | || |
- // | | is a SeqString |
- // | is not a short external String |
- // is a String |
- STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
- STATIC_ASSERT(kShortExternalStringTag != 0); |
- __ Cbz(string_representation, &seq_string); // Go to (5). |
- |
- // (2) Anything but sequential or cons? If yes, go to (6). |
- STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
- STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
- STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); |
- STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); |
- __ Cmp(string_representation, kExternalStringTag); |
- __ B(ge, ¬_seq_nor_cons); // Go to (6). |
- |
- // (3) Cons string. Check that it's flat. |
- __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset)); |
- __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime); |
- // Replace subject with first string. |
- __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
- |
- // (4) Is subject external? If yes, go to (7). |
- __ Bind(&check_underlying); |
- // Reload the string type. |
- __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
- __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
- STATIC_ASSERT(kSeqStringTag == 0); |
- // The underlying external string is never a short external string. |
- STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength); |
- STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength); |
- __ TestAndBranchIfAnySet(string_type.X(), |
- kStringRepresentationMask, |
- &external_string); // Go to (7). |
- |
- // (5) Sequential string. Load regexp code according to encoding. |
- __ Bind(&seq_string); |
- |
- // Check that the third argument is a positive smi less than the subject |
- // string length. A negative value will be greater (unsigned comparison). |
- ASSERT(jssp.Is(__ StackPointer())); |
- __ Peek(x10, kPreviousIndexOffset); |
- __ JumpIfNotSmi(x10, &runtime); |
- __ Cmp(jsstring_length, x10); |
- __ B(ls, &runtime); |
- |
- // Argument 2 (x1): We need to load argument 2 (the previous index) into x1 |
- // before entering the exit frame. |
- __ SmiUntag(x1, x10); |
- |
- // The third bit determines the string encoding in string_type. |
- STATIC_ASSERT(kOneByteStringTag == 0x04); |
- STATIC_ASSERT(kTwoByteStringTag == 0x00); |
- STATIC_ASSERT(kStringEncodingMask == 0x04); |
- |
- // Find the code object based on the assumptions above. |
- // kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset |
- // of kPointerSize to reach the latter. |
- ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize, |
- JSRegExp::kDataUC16CodeOffset); |
- __ Mov(x10, kPointerSize); |
- // We will need the encoding later: ASCII = 0x04 |
- // UC16 = 0x00 |
- __ Ands(string_encoding, string_type, kStringEncodingMask); |
- __ CzeroX(x10, ne); |
- __ Add(x10, regexp_data, x10); |
- __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset)); |
- |
- // (E) Carry on. String handling is done. |
- |
- // Check that the irregexp code has been generated for the actual string |
- // encoding. If it has, the field contains a code object otherwise it contains |
- // a smi (code flushing support). |
- __ JumpIfSmi(code_object, &runtime); |
- |
- // All checks done. Now push arguments for native regexp code. |
- __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, |
- x10, |
- x11); |
- |
- // Isolates: note we add an additional parameter here (isolate pointer). |
- __ EnterExitFrame(false, x10, 1); |
- ASSERT(csp.Is(__ StackPointer())); |
- |
- // We have 9 arguments to pass to the regexp code, therefore we have to pass |
- // one on the stack and the rest as registers. |
- |
- // Note that the placement of the argument on the stack isn't standard |
- // AAPCS64: |
- // csp[0]: Space for the return address placed by DirectCEntryStub. |
- // csp[8]: Argument 9, the current isolate address. |
- |
- __ Mov(x10, ExternalReference::isolate_address(isolate)); |
- __ Poke(x10, kPointerSize); |
- |
- Register length = w11; |
- Register previous_index_in_bytes = w12; |
- Register start = x13; |
- |
- // Load start of the subject string. |
- __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag); |
- // Load the length from the original subject string from the previous stack |
- // frame. Therefore we have to use fp, which points exactly to two pointer |
- // sizes below the previous sp. (Because creating a new stack frame pushes |
- // the previous fp onto the stack and decrements sp by 2 * kPointerSize.) |
- __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); |
- __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset)); |
- |
- // Handle UC16 encoding, two bytes make one character. |
- // string_encoding: if ASCII: 0x04 |
- // if UC16: 0x00 |
- STATIC_ASSERT(kStringEncodingMask == 0x04); |
- __ Ubfx(string_encoding, string_encoding, 2, 1); |
- __ Eor(string_encoding, string_encoding, 1); |
- // string_encoding: if ASCII: 0 |
- // if UC16: 1 |
- |
- // Convert string positions from characters to bytes. |
- // Previous index is in x1. |
- __ Lsl(previous_index_in_bytes, w1, string_encoding); |
- __ Lsl(length, length, string_encoding); |
- __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding); |
- |
- // Argument 1 (x0): Subject string. |
- __ Mov(x0, subject); |
- |
- // Argument 2 (x1): Previous index, already there. |
- |
- // Argument 3 (x2): Get the start of input. |
- // Start of input = start of string + previous index + substring offset |
- // (0 if the string |
- // is not sliced). |
- __ Add(w10, previous_index_in_bytes, sliced_string_offset); |
- __ Add(x2, start, Operand(w10, UXTW)); |
- |
- // Argument 4 (x3): |
- // End of input = start of input + (length of input - previous index) |
- __ Sub(w10, length, previous_index_in_bytes); |
- __ Add(x3, x2, Operand(w10, UXTW)); |
- |
- // Argument 5 (x4): static offsets vector buffer. |
- __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate)); |
- |
- // Argument 6 (x5): Set the number of capture registers to zero to force |
- // global regexps to behave as non-global. This stub is not used for global |
- // regexps. |
- __ Mov(x5, 0); |
- |
- // Argument 7 (x6): Start (high end) of backtracking stack memory area. |
- __ Mov(x10, address_of_regexp_stack_memory_address); |
- __ Ldr(x10, MemOperand(x10)); |
- __ Mov(x11, address_of_regexp_stack_memory_size); |
- __ Ldr(x11, MemOperand(x11)); |
- __ Add(x6, x10, x11); |
- |
- // Argument 8 (x7): Indicate that this is a direct call from JavaScript. |
- __ Mov(x7, 1); |
- |
- // Locate the code entry and call it. |
- __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag); |
- DirectCEntryStub stub; |
- stub.GenerateCall(masm, code_object); |
- |
- __ LeaveExitFrame(false, x10, true); |
- |
- // The generated regexp code returns an int32 in w0. |
- Label failure, exception; |
- __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure); |
- __ CompareAndBranch(w0, |
- NativeRegExpMacroAssembler::EXCEPTION, |
- eq, |
- &exception); |
- __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime); |
- |
- // Success: process the result from the native regexp code. |
- Register number_of_capture_registers = x12; |
- |
- // Calculate number of capture registers (number_of_captures + 1) * 2 |
- // and store it in the last match info. |
- __ Ldrsw(x10, |
- UntagSmiFieldMemOperand(regexp_data, |
- JSRegExp::kIrregexpCaptureCountOffset)); |
- __ Add(x10, x10, x10); |
- __ Add(number_of_capture_registers, x10, 2); |
- |
- // Check that the fourth object is a JSArray object. |
- ASSERT(jssp.Is(__ StackPointer())); |
- __ Peek(x10, kLastMatchInfoOffset); |
- __ JumpIfSmi(x10, &runtime); |
- __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime); |
- |
- // Check that the JSArray is the fast case. |
- __ Ldr(last_match_info_elements, |
- FieldMemOperand(x10, JSArray::kElementsOffset)); |
- __ Ldr(x10, |
- FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
- __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime); |
- |
- // Check that the last match info has space for the capture registers and the |
- // additional information (overhead). |
- // (number_of_captures + 1) * 2 + overhead <= last match info size |
- // (number_of_captures * 2) + 2 + overhead <= last match info size |
- // number_of_capture_registers + overhead <= last match info size |
- __ Ldrsw(x10, |
- UntagSmiFieldMemOperand(last_match_info_elements, |
- FixedArray::kLengthOffset)); |
- __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead); |
- __ Cmp(x11, x10); |
- __ B(gt, &runtime); |
- |
- // Store the capture count. |
- __ SmiTag(x10, number_of_capture_registers); |
- __ Str(x10, |
- FieldMemOperand(last_match_info_elements, |
- RegExpImpl::kLastCaptureCountOffset)); |
- // Store last subject and last input. |
- __ Str(subject, |
- FieldMemOperand(last_match_info_elements, |
- RegExpImpl::kLastSubjectOffset)); |
- // Use x10 as the subject string in order to only need |
- // one RecordWriteStub. |
- __ Mov(x10, subject); |
- __ RecordWriteField(last_match_info_elements, |
- RegExpImpl::kLastSubjectOffset, |
- x10, |
- x11, |
- kLRHasNotBeenSaved, |
- kDontSaveFPRegs); |
- __ Str(subject, |
- FieldMemOperand(last_match_info_elements, |
- RegExpImpl::kLastInputOffset)); |
- __ Mov(x10, subject); |
- __ RecordWriteField(last_match_info_elements, |
- RegExpImpl::kLastInputOffset, |
- x10, |
- x11, |
- kLRHasNotBeenSaved, |
- kDontSaveFPRegs); |
- |
- Register last_match_offsets = x13; |
- Register offsets_vector_index = x14; |
- Register current_offset = x15; |
- |
- // Get the static offsets vector filled by the native regexp code |
- // and fill the last match info. |
- ExternalReference address_of_static_offsets_vector = |
- ExternalReference::address_of_static_offsets_vector(isolate); |
- __ Mov(offsets_vector_index, address_of_static_offsets_vector); |
- |
- Label next_capture, done; |
- // Capture register counter starts from number of capture registers and |
- // iterates down to zero (inclusive). |
- __ Add(last_match_offsets, |
- last_match_info_elements, |
- RegExpImpl::kFirstCaptureOffset - kHeapObjectTag); |
- __ Bind(&next_capture); |
- __ Subs(number_of_capture_registers, number_of_capture_registers, 2); |
- __ B(mi, &done); |
- // Read two 32 bit values from the static offsets vector buffer into |
- // an X register |
- __ Ldr(current_offset, |
- MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex)); |
- // Store the smi values in the last match info. |
- __ SmiTag(x10, current_offset); |
- // Clearing the 32 bottom bits gives us a Smi. |
- STATIC_ASSERT(kSmiShift == 32); |
- __ And(x11, current_offset, ~kWRegMask); |
- __ Stp(x10, |
- x11, |
- MemOperand(last_match_offsets, kXRegSize * 2, PostIndex)); |
- __ B(&next_capture); |
- __ Bind(&done); |
- |
- // Return last match info. |
- __ Peek(x0, kLastMatchInfoOffset); |
- __ PopCPURegList(used_callee_saved_registers); |
- // Drop the 4 arguments of the stub from the stack. |
- __ Drop(4); |
- __ Ret(); |
- |
- __ Bind(&exception); |
- Register exception_value = x0; |
- // A stack overflow (on the backtrack stack) may have occured |
- // in the RegExp code but no exception has been created yet. |
- // If there is no pending exception, handle that in the runtime system. |
- __ Mov(x10, Operand(isolate->factory()->the_hole_value())); |
- __ Mov(x11, |
- Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
- isolate))); |
- __ Ldr(exception_value, MemOperand(x11)); |
- __ Cmp(x10, exception_value); |
- __ B(eq, &runtime); |
- |
- __ Str(x10, MemOperand(x11)); // Clear pending exception. |
- |
- // Check if the exception is a termination. If so, throw as uncatchable. |
- Label termination_exception; |
- __ JumpIfRoot(exception_value, |
- Heap::kTerminationExceptionRootIndex, |
- &termination_exception); |
- |
- __ Throw(exception_value, x10, x11, x12, x13); |
- |
- __ Bind(&termination_exception); |
- __ ThrowUncatchable(exception_value, x10, x11, x12, x13); |
- |
- __ Bind(&failure); |
- __ Mov(x0, Operand(masm->isolate()->factory()->null_value())); |
- __ PopCPURegList(used_callee_saved_registers); |
- // Drop the 4 arguments of the stub from the stack. |
- __ Drop(4); |
- __ Ret(); |
- |
- __ Bind(&runtime); |
- __ PopCPURegList(used_callee_saved_registers); |
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
- |
- // Deferred code for string handling. |
- // (6) Not a long external string? If yes, go to (8). |
- __ Bind(¬_seq_nor_cons); |
- // Compare flags are still set. |
- __ B(ne, ¬_long_external); // Go to (8). |
- |
- // (7) External string. Make it, offset-wise, look like a sequential string. |
- __ Bind(&external_string); |
- if (masm->emit_debug_code()) { |
- // Assert that we do not have a cons or slice (indirect strings) here. |
- // Sequential strings have already been ruled out. |
- __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); |
- __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
- __ Tst(x10, kIsIndirectStringMask); |
- __ Check(eq, kExternalStringExpectedButNotFound); |
- __ And(x10, x10, kStringRepresentationMask); |
- __ Cmp(x10, 0); |
- __ Check(ne, kExternalStringExpectedButNotFound); |
- } |
- __ Ldr(subject, |
- FieldMemOperand(subject, ExternalString::kResourceDataOffset)); |
- // Move the pointer so that offset-wise, it looks like a sequential string. |
- STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
- __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); |
- __ B(&seq_string); // Go to (5). |
- |
- // (8) If this is a short external string or not a string, bail out to |
- // runtime. |
- __ Bind(¬_long_external); |
- STATIC_ASSERT(kShortExternalStringTag != 0); |
- __ TestAndBranchIfAnySet(string_representation, |
- kShortExternalStringMask | kIsNotStringMask, |
- &runtime); |
- |
- // (9) Sliced string. Replace subject with parent. |
- __ Ldr(sliced_string_offset, |
- UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset)); |
- __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); |
- __ B(&check_underlying); // Go to (4). |
-#endif |
-} |
- |
- |
-static void GenerateRecordCallTarget(MacroAssembler* masm, |
- Register argc, |
- Register function, |
- Register feedback_vector, |
- Register index, |
- Register scratch1, |
- Register scratch2) { |
- ASM_LOCATION("GenerateRecordCallTarget"); |
- ASSERT(!AreAliased(scratch1, scratch2, |
- argc, function, feedback_vector, index)); |
- // Cache the called function in a feedback vector slot. Cache states are |
- // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic. |
- // argc : number of arguments to the construct function |
- // function : the function to call |
- // feedback_vector : the feedback vector |
- // index : slot in feedback vector (smi) |
- Label initialize, done, miss, megamorphic, not_array_function; |
- |
- ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), |
- masm->isolate()->heap()->megamorphic_symbol()); |
- ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), |
- masm->isolate()->heap()->uninitialized_symbol()); |
- |
- // Load the cache state. |
- __ Add(scratch1, feedback_vector, |
- Operand::UntagSmiAndScale(index, kPointerSizeLog2)); |
- __ Ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
- |
- // A monomorphic cache hit or an already megamorphic state: invoke the |
- // function without changing the state. |
- __ Cmp(scratch1, function); |
- __ B(eq, &done); |
- |
- if (!FLAG_pretenuring_call_new) { |
- // If we came here, we need to see if we are the array function. |
- // If we didn't have a matching function, and we didn't find the megamorph |
- // sentinel, then we have in the slot either some other function or an |
- // AllocationSite. Do a map check on the object in scratch1 register. |
- __ Ldr(scratch2, FieldMemOperand(scratch1, AllocationSite::kMapOffset)); |
- __ JumpIfNotRoot(scratch2, Heap::kAllocationSiteMapRootIndex, &miss); |
- |
- // Make sure the function is the Array() function |
- __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1); |
- __ Cmp(function, scratch1); |
- __ B(ne, &megamorphic); |
- __ B(&done); |
- } |
- |
- __ Bind(&miss); |
- |
- // A monomorphic miss (i.e, here the cache is not uninitialized) goes |
- // megamorphic. |
- __ JumpIfRoot(scratch1, Heap::kUninitializedSymbolRootIndex, &initialize); |
- // MegamorphicSentinel is an immortal immovable object (undefined) so no |
- // write-barrier is needed. |
- __ Bind(&megamorphic); |
- __ Add(scratch1, feedback_vector, |
- Operand::UntagSmiAndScale(index, kPointerSizeLog2)); |
- __ LoadRoot(scratch2, Heap::kMegamorphicSymbolRootIndex); |
- __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
- __ B(&done); |
- |
- // An uninitialized cache is patched with the function or sentinel to |
- // indicate the ElementsKind if function is the Array constructor. |
- __ Bind(&initialize); |
- |
- if (!FLAG_pretenuring_call_new) { |
- // Make sure the function is the Array() function |
- __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1); |
- __ Cmp(function, scratch1); |
- __ B(ne, ¬_array_function); |
- |
- // The target function is the Array constructor, |
- // Create an AllocationSite if we don't already have it, store it in the |
- // slot. |
- { |
- FrameScope scope(masm, StackFrame::INTERNAL); |
- CreateAllocationSiteStub create_stub; |
- |
- // Arguments register must be smi-tagged to call out. |
- __ SmiTag(argc); |
- __ Push(argc, function, feedback_vector, index); |
- |
- // CreateAllocationSiteStub expect the feedback vector in x2 and the slot |
- // index in x3. |
- ASSERT(feedback_vector.Is(x2) && index.Is(x3)); |
- __ CallStub(&create_stub); |
- |
- __ Pop(index, feedback_vector, function, argc); |
- __ SmiUntag(argc); |
- } |
- __ B(&done); |
- |
- __ Bind(¬_array_function); |
- } |
- |
- // An uninitialized cache is patched with the function. |
- |
- __ Add(scratch1, feedback_vector, |
- Operand::UntagSmiAndScale(index, kPointerSizeLog2)); |
- __ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag); |
- __ Str(function, MemOperand(scratch1, 0)); |
- |
- __ Push(function); |
- __ RecordWrite(feedback_vector, scratch1, function, kLRHasNotBeenSaved, |
- kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
- __ Pop(function); |
- |
- __ Bind(&done); |
-} |
- |
- |
-void CallFunctionStub::Generate(MacroAssembler* masm) { |
- ASM_LOCATION("CallFunctionStub::Generate"); |
- // x1 function the function to call |
- // x2 : feedback vector |
- // x3 : slot in feedback vector (smi) (if x2 is not the megamorphic symbol) |
- Register function = x1; |
- Register cache_cell = x2; |
- Register slot = x3; |
- Register type = x4; |
- Label slow, non_function, wrap, cont; |
- |
- // TODO(jbramley): This function has a lot of unnamed registers. Name them, |
- // and tidy things up a bit. |
- |
- if (NeedsChecks()) { |
- // Check that the function is really a JavaScript function. |
- __ JumpIfSmi(function, &non_function); |
- |
- // Goto slow case if we do not have a function. |
- __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow); |
- |
- if (RecordCallTarget()) { |
- GenerateRecordCallTarget(masm, x0, function, cache_cell, slot, x4, x5); |
- // Type information was updated. Because we may call Array, which |
- // expects either undefined or an AllocationSite in ebx we need |
- // to set ebx to undefined. |
- __ LoadRoot(cache_cell, Heap::kUndefinedValueRootIndex); |
- } |
- } |
- |
- // Fast-case: Invoke the function now. |
- // x1 function pushed function |
- ParameterCount actual(argc_); |
- |
- if (CallAsMethod()) { |
- if (NeedsChecks()) { |
- // Do not transform the receiver for strict mode functions. |
- __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
- __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset)); |
- __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, &cont); |
- |
- // Do not transform the receiver for native (Compilerhints already in x3). |
- __ Tbnz(w4, SharedFunctionInfo::kNative, &cont); |
- } |
- |
- // Compute the receiver in sloppy mode. |
- __ Peek(x3, argc_ * kPointerSize); |
- |
- if (NeedsChecks()) { |
- __ JumpIfSmi(x3, &wrap); |
- __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt); |
- } else { |
- __ B(&wrap); |
- } |
- |
- __ Bind(&cont); |
- } |
- __ InvokeFunction(function, |
- actual, |
- JUMP_FUNCTION, |
- NullCallWrapper()); |
- |
- if (NeedsChecks()) { |
- // Slow-case: Non-function called. |
- __ Bind(&slow); |
- if (RecordCallTarget()) { |
- // If there is a call target cache, mark it megamorphic in the |
- // non-function case. MegamorphicSentinel is an immortal immovable object |
- // (megamorphic symbol) so no write barrier is needed. |
- ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), |
- masm->isolate()->heap()->megamorphic_symbol()); |
- __ Add(x12, cache_cell, Operand::UntagSmiAndScale(slot, |
- kPointerSizeLog2)); |
- __ LoadRoot(x11, Heap::kMegamorphicSymbolRootIndex); |
- __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize)); |
- } |
- // Check for function proxy. |
- // x10 : function type. |
- __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, &non_function); |
- __ Push(function); // put proxy as additional argument |
- __ Mov(x0, argc_ + 1); |
- __ Mov(x2, 0); |
- __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY); |
- { |
- Handle<Code> adaptor = |
- masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
- __ Jump(adaptor, RelocInfo::CODE_TARGET); |
- } |
- |
- // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
- // of the original receiver from the call site). |
- __ Bind(&non_function); |
- __ Poke(function, argc_ * kXRegSize); |
- __ Mov(x0, argc_); // Set up the number of arguments. |
- __ Mov(x2, 0); |
- __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION); |
- __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
- RelocInfo::CODE_TARGET); |
- } |
- |
- if (CallAsMethod()) { |
- __ Bind(&wrap); |
- // Wrap the receiver and patch it back onto the stack. |
- { FrameScope frame_scope(masm, StackFrame::INTERNAL); |
- __ Push(x1, x3); |
- __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
- __ Pop(x1); |
- } |
- __ Poke(x0, argc_ * kPointerSize); |
- __ B(&cont); |
- } |
-} |
- |
- |
-void CallConstructStub::Generate(MacroAssembler* masm) { |
- ASM_LOCATION("CallConstructStub::Generate"); |
- // x0 : number of arguments |
- // x1 : the function to call |
- // x2 : feedback vector |
- // x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol) |
- Register function = x1; |
- Label slow, non_function_call; |
- |
- // Check that the function is not a smi. |
- __ JumpIfSmi(function, &non_function_call); |
- // Check that the function is a JSFunction. |
- Register object_type = x10; |
- __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE, |
- &slow); |
- |
- if (RecordCallTarget()) { |
- GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5); |
- |
- __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); |
- if (FLAG_pretenuring_call_new) { |
- // Put the AllocationSite from the feedback vector into x2. |
- // By adding kPointerSize we encode that we know the AllocationSite |
- // entry is at the feedback vector slot given by x3 + 1. |
- __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize)); |
- } else { |
- Label feedback_register_initialized; |
- // Put the AllocationSite from the feedback vector into x2, or undefined. |
- __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize)); |
- __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset)); |
- __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex, |
- &feedback_register_initialized); |
- __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); |
- __ bind(&feedback_register_initialized); |
- } |
- |
- __ AssertUndefinedOrAllocationSite(x2, x5); |
- } |
- |
- // Jump to the function-specific construct stub. |
- Register jump_reg = x4; |
- Register shared_func_info = jump_reg; |
- Register cons_stub = jump_reg; |
- Register cons_stub_code = jump_reg; |
- __ Ldr(shared_func_info, |
- FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
- __ Ldr(cons_stub, |
- FieldMemOperand(shared_func_info, |
- SharedFunctionInfo::kConstructStubOffset)); |
- __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag); |
- __ Br(cons_stub_code); |
- |
- Label do_call; |
- __ Bind(&slow); |
- __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE); |
- __ B(ne, &non_function_call); |
- __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); |
- __ B(&do_call); |
- |
- __ Bind(&non_function_call); |
- __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
- |
- __ Bind(&do_call); |
- // Set expected number of arguments to zero (not changing x0). |
- __ Mov(x2, 0); |
- __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
- RelocInfo::CODE_TARGET); |
-} |
- |
- |
-void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
- // If the receiver is a smi trigger the non-string case. |
- __ JumpIfSmi(object_, receiver_not_string_); |
- |
- // Fetch the instance type of the receiver into result register. |
- __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
- __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
- |
- // If the receiver is not a string trigger the non-string case. |
- __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_); |
- |
- // If the index is non-smi trigger the non-smi case. |
- __ JumpIfNotSmi(index_, &index_not_smi_); |
- |
- __ Bind(&got_smi_index_); |
- // Check for index out of range. |
- __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset)); |
- __ Cmp(result_, Operand::UntagSmi(index_)); |
- __ B(ls, index_out_of_range_); |
- |
- __ SmiUntag(index_); |
- |
- StringCharLoadGenerator::Generate(masm, |
- object_, |
- index_.W(), |
- result_, |
- &call_runtime_); |
- __ SmiTag(result_); |
- __ Bind(&exit_); |
-} |
- |
- |
-void StringCharCodeAtGenerator::GenerateSlow( |
- MacroAssembler* masm, |
- const RuntimeCallHelper& call_helper) { |
- __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); |
- |
- __ Bind(&index_not_smi_); |
- // If index is a heap number, try converting it to an integer. |
- __ CheckMap(index_, |
- result_, |
- Heap::kHeapNumberMapRootIndex, |
- index_not_number_, |
- DONT_DO_SMI_CHECK); |
- call_helper.BeforeCall(masm); |
- // Save object_ on the stack and pass index_ as argument for runtime call. |
- __ Push(object_, index_); |
- if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
- __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
- } else { |
- ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
- // NumberToSmi discards numbers that are not exact integers. |
- __ CallRuntime(Runtime::kNumberToSmi, 1); |
- } |
- // Save the conversion result before the pop instructions below |
- // have a chance to overwrite it. |
- __ Mov(index_, x0); |
- __ Pop(object_); |
- // Reload the instance type. |
- __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
- __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
- call_helper.AfterCall(masm); |
- |
- // If index is still not a smi, it must be out of range. |
- __ JumpIfNotSmi(index_, index_out_of_range_); |
- // Otherwise, return to the fast path. |
- __ B(&got_smi_index_); |
- |
- // Call runtime. We get here when the receiver is a string and the |
- // index is a number, but the code of getting the actual character |
- // is too complex (e.g., when the string needs to be flattened). |
- __ Bind(&call_runtime_); |
- call_helper.BeforeCall(masm); |
- __ SmiTag(index_); |
- __ Push(object_, index_); |
- __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
- __ Mov(result_, x0); |
- call_helper.AfterCall(masm); |
- __ B(&exit_); |
- |
- __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); |
-} |
- |
- |
-void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
- __ JumpIfNotSmi(code_, &slow_case_); |
- __ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode)); |
- __ B(hi, &slow_case_); |
- |
- __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
- // At this point code register contains smi tagged ASCII char code. |
- STATIC_ASSERT(kSmiShift > kPointerSizeLog2); |
- __ Add(result_, result_, Operand(code_, LSR, kSmiShift - kPointerSizeLog2)); |
- __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
- __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_); |
- __ Bind(&exit_); |
-} |
- |
- |
-void StringCharFromCodeGenerator::GenerateSlow( |
- MacroAssembler* masm, |
- const RuntimeCallHelper& call_helper) { |
- __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); |
- |
- __ Bind(&slow_case_); |
- call_helper.BeforeCall(masm); |
- __ Push(code_); |
- __ CallRuntime(Runtime::kCharFromCode, 1); |
- __ Mov(result_, x0); |
- call_helper.AfterCall(masm); |
- __ B(&exit_); |
- |
- __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); |
-} |
- |
- |
-void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
- // Inputs are in x0 (lhs) and x1 (rhs). |
- ASSERT(state_ == CompareIC::SMI); |
- ASM_LOCATION("ICCompareStub[Smis]"); |
- Label miss; |
- // Bail out (to 'miss') unless both x0 and x1 are smis. |
- __ JumpIfEitherNotSmi(x0, x1, &miss); |
- |
- if (GetCondition() == eq) { |
- // For equality we do not care about the sign of the result. |
- __ Sub(x0, x0, x1); |
- } else { |
- // Untag before subtracting to avoid handling overflow. |
- __ SmiUntag(x1); |
- __ Sub(x0, x1, Operand::UntagSmi(x0)); |
- } |
- __ Ret(); |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::NUMBER); |
- ASM_LOCATION("ICCompareStub[HeapNumbers]"); |
- |
- Label unordered, maybe_undefined1, maybe_undefined2; |
- Label miss, handle_lhs, values_in_d_regs; |
- Label untag_rhs, untag_lhs; |
- |
- Register result = x0; |
- Register rhs = x0; |
- Register lhs = x1; |
- FPRegister rhs_d = d0; |
- FPRegister lhs_d = d1; |
- |
- if (left_ == CompareIC::SMI) { |
- __ JumpIfNotSmi(lhs, &miss); |
- } |
- if (right_ == CompareIC::SMI) { |
- __ JumpIfNotSmi(rhs, &miss); |
- } |
- |
- __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag); |
- __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag); |
- |
- // Load rhs if it's a heap number. |
- __ JumpIfSmi(rhs, &handle_lhs); |
- __ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, |
- DONT_DO_SMI_CHECK); |
- __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
- |
- // Load lhs if it's a heap number. |
- __ Bind(&handle_lhs); |
- __ JumpIfSmi(lhs, &values_in_d_regs); |
- __ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, |
- DONT_DO_SMI_CHECK); |
- __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
- |
- __ Bind(&values_in_d_regs); |
- __ Fcmp(lhs_d, rhs_d); |
- __ B(vs, &unordered); // Overflow flag set if either is NaN. |
- STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); |
- __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). |
- __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. |
- __ Ret(); |
- |
- __ Bind(&unordered); |
- ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC, |
- CompareIC::GENERIC); |
- __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); |
- |
- __ Bind(&maybe_undefined1); |
- if (Token::IsOrderedRelationalCompareOp(op_)) { |
- __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss); |
- __ JumpIfSmi(lhs, &unordered); |
- __ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2); |
- __ B(&unordered); |
- } |
- |
- __ Bind(&maybe_undefined2); |
- if (Token::IsOrderedRelationalCompareOp(op_)) { |
- __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered); |
- } |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::INTERNALIZED_STRING); |
- ASM_LOCATION("ICCompareStub[InternalizedStrings]"); |
- Label miss; |
- |
- Register result = x0; |
- Register rhs = x0; |
- Register lhs = x1; |
- |
- // Check that both operands are heap objects. |
- __ JumpIfEitherSmi(lhs, rhs, &miss); |
- |
- // Check that both operands are internalized strings. |
- Register rhs_map = x10; |
- Register lhs_map = x11; |
- Register rhs_type = x10; |
- Register lhs_type = x11; |
- __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
- __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
- __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
- __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
- |
- STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
- __ Orr(x12, lhs_type, rhs_type); |
- __ TestAndBranchIfAnySet( |
- x12, kIsNotStringMask | kIsNotInternalizedMask, &miss); |
- |
- // Internalized strings are compared by identity. |
- STATIC_ASSERT(EQUAL == 0); |
- __ Cmp(lhs, rhs); |
- __ Cset(result, ne); |
- __ Ret(); |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::UNIQUE_NAME); |
- ASM_LOCATION("ICCompareStub[UniqueNames]"); |
- ASSERT(GetCondition() == eq); |
- Label miss; |
- |
- Register result = x0; |
- Register rhs = x0; |
- Register lhs = x1; |
- |
- Register lhs_instance_type = w2; |
- Register rhs_instance_type = w3; |
- |
- // Check that both operands are heap objects. |
- __ JumpIfEitherSmi(lhs, rhs, &miss); |
- |
- // Check that both operands are unique names. This leaves the instance |
- // types loaded in tmp1 and tmp2. |
- __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
- __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
- __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
- __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset)); |
- |
- // To avoid a miss, each instance type should be either SYMBOL_TYPE or it |
- // should have kInternalizedTag set. |
- __ JumpIfNotUniqueName(lhs_instance_type, &miss); |
- __ JumpIfNotUniqueName(rhs_instance_type, &miss); |
- |
- // Unique names are compared by identity. |
- STATIC_ASSERT(EQUAL == 0); |
- __ Cmp(lhs, rhs); |
- __ Cset(result, ne); |
- __ Ret(); |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::STRING); |
- ASM_LOCATION("ICCompareStub[Strings]"); |
- |
- Label miss; |
- |
- bool equality = Token::IsEqualityOp(op_); |
- |
- Register result = x0; |
- Register rhs = x0; |
- Register lhs = x1; |
- |
- // Check that both operands are heap objects. |
- __ JumpIfEitherSmi(rhs, lhs, &miss); |
- |
- // Check that both operands are strings. |
- Register rhs_map = x10; |
- Register lhs_map = x11; |
- Register rhs_type = x10; |
- Register lhs_type = x11; |
- __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
- __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
- __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); |
- __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); |
- STATIC_ASSERT(kNotStringTag != 0); |
- __ Orr(x12, lhs_type, rhs_type); |
- __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss); |
- |
- // Fast check for identical strings. |
- Label not_equal; |
- __ Cmp(lhs, rhs); |
- __ B(ne, ¬_equal); |
- __ Mov(result, EQUAL); |
- __ Ret(); |
- |
- __ Bind(¬_equal); |
- // Handle not identical strings |
- |
- // Check that both strings are internalized strings. If they are, we're done |
- // because we already know they are not identical. We know they are both |
- // strings. |
- if (equality) { |
- ASSERT(GetCondition() == eq); |
- STATIC_ASSERT(kInternalizedTag == 0); |
- Label not_internalized_strings; |
- __ Orr(x12, lhs_type, rhs_type); |
- __ TestAndBranchIfAnySet( |
- x12, kIsNotInternalizedMask, ¬_internalized_strings); |
- // Result is in rhs (x0), and not EQUAL, as rhs is not a smi. |
- __ Ret(); |
- __ Bind(¬_internalized_strings); |
- } |
- |
- // Check that both strings are sequential ASCII. |
- Label runtime; |
- __ JumpIfBothInstanceTypesAreNotSequentialAscii( |
- lhs_type, rhs_type, x12, x13, &runtime); |
- |
- // Compare flat ASCII strings. Returns when done. |
- if (equality) { |
- StringCompareStub::GenerateFlatAsciiStringEquals( |
- masm, lhs, rhs, x10, x11, x12); |
- } else { |
- StringCompareStub::GenerateCompareFlatAsciiStrings( |
- masm, lhs, rhs, x10, x11, x12, x13); |
- } |
- |
- // Handle more complex cases in runtime. |
- __ Bind(&runtime); |
- __ Push(lhs, rhs); |
- if (equality) { |
- __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
- } else { |
- __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
- } |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::OBJECT); |
- ASM_LOCATION("ICCompareStub[Objects]"); |
- |
- Label miss; |
- |
- Register result = x0; |
- Register rhs = x0; |
- Register lhs = x1; |
- |
- __ JumpIfEitherSmi(rhs, lhs, &miss); |
- |
- __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss); |
- __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss); |
- |
- ASSERT(GetCondition() == eq); |
- __ Sub(result, rhs, lhs); |
- __ Ret(); |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { |
- ASM_LOCATION("ICCompareStub[KnownObjects]"); |
- |
- Label miss; |
- |
- Register result = x0; |
- Register rhs = x0; |
- Register lhs = x1; |
- |
- __ JumpIfEitherSmi(rhs, lhs, &miss); |
- |
- Register rhs_map = x10; |
- Register lhs_map = x11; |
- __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
- __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
- __ Cmp(rhs_map, Operand(known_map_)); |
- __ B(ne, &miss); |
- __ Cmp(lhs_map, Operand(known_map_)); |
- __ B(ne, &miss); |
- |
- __ Sub(result, rhs, lhs); |
- __ Ret(); |
- |
- __ Bind(&miss); |
- GenerateMiss(masm); |
-} |
- |
- |
-// This method handles the case where a compare stub had the wrong |
-// implementation. It calls a miss handler, which re-writes the stub. All other |
-// ICCompareStub::Generate* methods should fall back into this one if their |
-// operands were not the expected types. |
-void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
- ASM_LOCATION("ICCompareStub[Miss]"); |
- |
- Register stub_entry = x11; |
- { |
- ExternalReference miss = |
- ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); |
- |
- FrameScope scope(masm, StackFrame::INTERNAL); |
- Register op = x10; |
- Register left = x1; |
- Register right = x0; |
- // Preserve some caller-saved registers. |
- __ Push(x1, x0, lr); |
- // Push the arguments. |
- __ Mov(op, Smi::FromInt(op_)); |
- __ Push(left, right, op); |
- |
- // Call the miss handler. This also pops the arguments. |
- __ CallExternalReference(miss, 3); |
- |
- // Compute the entry point of the rewritten stub. |
- __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag); |
- // Restore caller-saved registers. |
- __ Pop(lr, x0, x1); |
- } |
- |
- // Tail-call to the new stub. |
- __ Jump(stub_entry); |
-} |
- |
- |
-void StringHelper::GenerateHashInit(MacroAssembler* masm, |
- Register hash, |
- Register character) { |
- ASSERT(!AreAliased(hash, character)); |
- |
- // hash = character + (character << 10); |
- __ LoadRoot(hash, Heap::kHashSeedRootIndex); |
- // Untag smi seed and add the character. |
- __ Add(hash, character, Operand(hash, LSR, kSmiShift)); |
- |
- // Compute hashes modulo 2^32 using a 32-bit W register. |
- Register hash_w = hash.W(); |
- |
- // hash += hash << 10; |
- __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); |
- // hash ^= hash >> 6; |
- __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); |
-} |
- |
- |
-void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
- Register hash, |
- Register character) { |
- ASSERT(!AreAliased(hash, character)); |
- |
- // hash += character; |
- __ Add(hash, hash, character); |
- |
- // Compute hashes modulo 2^32 using a 32-bit W register. |
- Register hash_w = hash.W(); |
- |
- // hash += hash << 10; |
- __ Add(hash_w, hash_w, Operand(hash_w, LSL, 10)); |
- // hash ^= hash >> 6; |
- __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6)); |
-} |
- |
- |
-void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
- Register hash, |
- Register scratch) { |
- // Compute hashes modulo 2^32 using a 32-bit W register. |
- Register hash_w = hash.W(); |
- Register scratch_w = scratch.W(); |
- ASSERT(!AreAliased(hash_w, scratch_w)); |
- |
- // hash += hash << 3; |
- __ Add(hash_w, hash_w, Operand(hash_w, LSL, 3)); |
- // hash ^= hash >> 11; |
- __ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11)); |
- // hash += hash << 15; |
- __ Add(hash_w, hash_w, Operand(hash_w, LSL, 15)); |
- |
- __ Ands(hash_w, hash_w, String::kHashBitMask); |
- |
- // if (hash == 0) hash = 27; |
- __ Mov(scratch_w, StringHasher::kZeroHash); |
- __ Csel(hash_w, scratch_w, hash_w, eq); |
-} |
- |
- |
-void SubStringStub::Generate(MacroAssembler* masm) { |
- ASM_LOCATION("SubStringStub::Generate"); |
- Label runtime; |
- |
- // Stack frame on entry. |
- // lr: return address |
- // jssp[0]: substring "to" offset |
- // jssp[8]: substring "from" offset |
- // jssp[16]: pointer to string object |
- |
- // This stub is called from the native-call %_SubString(...), so |
- // nothing can be assumed about the arguments. It is tested that: |
- // "string" is a sequential string, |
- // both "from" and "to" are smis, and |
- // 0 <= from <= to <= string.length (in debug mode.) |
- // If any of these assumptions fail, we call the runtime system. |
- |
- static const int kToOffset = 0 * kPointerSize; |
- static const int kFromOffset = 1 * kPointerSize; |
- static const int kStringOffset = 2 * kPointerSize; |
- |
- Register to = x0; |
- Register from = x15; |
- Register input_string = x10; |
- Register input_length = x11; |
- Register input_type = x12; |
- Register result_string = x0; |
- Register result_length = x1; |
- Register temp = x3; |
- |
- __ Peek(to, kToOffset); |
- __ Peek(from, kFromOffset); |
- |
- // Check that both from and to are smis. If not, jump to runtime. |
- __ JumpIfEitherNotSmi(from, to, &runtime); |
- __ SmiUntag(from); |
- __ SmiUntag(to); |
- |
- // Calculate difference between from and to. If to < from, branch to runtime. |
- __ Subs(result_length, to, from); |
- __ B(mi, &runtime); |
- |
- // Check from is positive. |
- __ Tbnz(from, kWSignBit, &runtime); |
- |
- // Make sure first argument is a string. |
- __ Peek(input_string, kStringOffset); |
- __ JumpIfSmi(input_string, &runtime); |
- __ IsObjectJSStringType(input_string, input_type, &runtime); |
- |
- Label single_char; |
- __ Cmp(result_length, 1); |
- __ B(eq, &single_char); |
- |
- // Short-cut for the case of trivial substring. |
- Label return_x0; |
- __ Ldrsw(input_length, |
- UntagSmiFieldMemOperand(input_string, String::kLengthOffset)); |
- |
- __ Cmp(result_length, input_length); |
- __ CmovX(x0, input_string, eq); |
- // Return original string. |
- __ B(eq, &return_x0); |
- |
- // Longer than original string's length or negative: unsafe arguments. |
- __ B(hi, &runtime); |
- |
- // Shorter than original string's length: an actual substring. |
- |
- // x0 to substring end character offset |
- // x1 result_length length of substring result |
- // x10 input_string pointer to input string object |
- // x10 unpacked_string pointer to unpacked string object |
- // x11 input_length length of input string |
- // x12 input_type instance type of input string |
- // x15 from substring start character offset |
- |
- // Deal with different string types: update the index if necessary and put |
- // the underlying string into register unpacked_string. |
- Label underlying_unpacked, sliced_string, seq_or_external_string; |
- Label update_instance_type; |
- // If the string is not indirect, it can only be sequential or external. |
- STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
- STATIC_ASSERT(kIsIndirectStringMask != 0); |
- |
- // Test for string types, and branch/fall through to appropriate unpacking |
- // code. |
- __ Tst(input_type, kIsIndirectStringMask); |
- __ B(eq, &seq_or_external_string); |
- __ Tst(input_type, kSlicedNotConsMask); |
- __ B(ne, &sliced_string); |
- |
- Register unpacked_string = input_string; |
- |
- // Cons string. Check whether it is flat, then fetch first part. |
- __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset)); |
- __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime); |
- __ Ldr(unpacked_string, |
- FieldMemOperand(input_string, ConsString::kFirstOffset)); |
- __ B(&update_instance_type); |
- |
- __ Bind(&sliced_string); |
- // Sliced string. Fetch parent and correct start index by offset. |
- __ Ldrsw(temp, |
- UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset)); |
- __ Add(from, from, temp); |
- __ Ldr(unpacked_string, |
- FieldMemOperand(input_string, SlicedString::kParentOffset)); |
- |
- __ Bind(&update_instance_type); |
- __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset)); |
- __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset)); |
- // Now control must go to &underlying_unpacked. Since the no code is generated |
- // before then we fall through instead of generating a useless branch. |
- |
- __ Bind(&seq_or_external_string); |
- // Sequential or external string. Registers unpacked_string and input_string |
- // alias, so there's nothing to do here. |
- // Note that if code is added here, the above code must be updated. |
- |
- // x0 result_string pointer to result string object (uninit) |
- // x1 result_length length of substring result |
- // x10 unpacked_string pointer to unpacked string object |
- // x11 input_length length of input string |
- // x12 input_type instance type of input string |
- // x15 from substring start character offset |
- __ Bind(&underlying_unpacked); |
- |
- if (FLAG_string_slices) { |
- Label copy_routine; |
- __ Cmp(result_length, SlicedString::kMinLength); |
- // Short slice. Copy instead of slicing. |
- __ B(lt, ©_routine); |
- // Allocate new sliced string. At this point we do not reload the instance |
- // type including the string encoding because we simply rely on the info |
- // provided by the original string. It does not matter if the original |
- // string's encoding is wrong because we always have to recheck encoding of |
- // the newly created string's parent anyway due to externalized strings. |
- Label two_byte_slice, set_slice_header; |
- STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); |
- STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
- __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice); |
- __ AllocateAsciiSlicedString(result_string, result_length, x3, x4, |
- &runtime); |
- __ B(&set_slice_header); |
- |
- __ Bind(&two_byte_slice); |
- __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4, |
- &runtime); |
- |
- __ Bind(&set_slice_header); |
- __ SmiTag(from); |
- __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset)); |
- __ Str(unpacked_string, |
- FieldMemOperand(result_string, SlicedString::kParentOffset)); |
- __ B(&return_x0); |
- |
- __ Bind(©_routine); |
- } |
- |
- // x0 result_string pointer to result string object (uninit) |
- // x1 result_length length of substring result |
- // x10 unpacked_string pointer to unpacked string object |
- // x11 input_length length of input string |
- // x12 input_type instance type of input string |
- // x13 unpacked_char0 pointer to first char of unpacked string (uninit) |
- // x13 substring_char0 pointer to first char of substring (uninit) |
- // x14 result_char0 pointer to first char of result (uninit) |
- // x15 from substring start character offset |
- Register unpacked_char0 = x13; |
- Register substring_char0 = x13; |
- Register result_char0 = x14; |
- Label two_byte_sequential, sequential_string, allocate_result; |
- STATIC_ASSERT(kExternalStringTag != 0); |
- STATIC_ASSERT(kSeqStringTag == 0); |
- |
- __ Tst(input_type, kExternalStringTag); |
- __ B(eq, &sequential_string); |
- |
- __ Tst(input_type, kShortExternalStringTag); |
- __ B(ne, &runtime); |
- __ Ldr(unpacked_char0, |
- FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset)); |
- // unpacked_char0 points to the first character of the underlying string. |
- __ B(&allocate_result); |
- |
- __ Bind(&sequential_string); |
- // Locate first character of underlying subject string. |
- STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
- __ Add(unpacked_char0, unpacked_string, |
- SeqOneByteString::kHeaderSize - kHeapObjectTag); |
- |
- __ Bind(&allocate_result); |
- // Sequential ASCII string. Allocate the result. |
- STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); |
- __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential); |
- |
- // Allocate and copy the resulting ASCII string. |
- __ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime); |
- |
- // Locate first character of substring to copy. |
- __ Add(substring_char0, unpacked_char0, from); |
- |
- // Locate first character of result. |
- __ Add(result_char0, result_string, |
- SeqOneByteString::kHeaderSize - kHeapObjectTag); |
- |
- STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
- __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
- __ B(&return_x0); |
- |
- // Allocate and copy the resulting two-byte string. |
- __ Bind(&two_byte_sequential); |
- __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime); |
- |
- // Locate first character of substring to copy. |
- __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1)); |
- |
- // Locate first character of result. |
- __ Add(result_char0, result_string, |
- SeqTwoByteString::kHeaderSize - kHeapObjectTag); |
- |
- STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
- __ Add(result_length, result_length, result_length); |
- __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
- |
- __ Bind(&return_x0); |
- Counters* counters = masm->isolate()->counters(); |
- __ IncrementCounter(counters->sub_string_native(), 1, x3, x4); |
- __ Drop(3); |
- __ Ret(); |
- |
- __ Bind(&runtime); |
- __ TailCallRuntime(Runtime::kSubString, 3, 1); |
- |
- __ bind(&single_char); |
- // x1: result_length |
- // x10: input_string |
- // x12: input_type |
- // x15: from (untagged) |
- __ SmiTag(from); |
- StringCharAtGenerator generator( |
- input_string, from, result_length, x0, |
- &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); |
- generator.GenerateFast(masm); |
- __ Drop(3); |
- __ Ret(); |
- generator.SkipSlow(masm, &runtime); |
-} |
- |
- |
-void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
- Register left, |
- Register right, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3) { |
- ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3)); |
- Register result = x0; |
- Register left_length = scratch1; |
- Register right_length = scratch2; |
- |
- // Compare lengths. If lengths differ, strings can't be equal. Lengths are |
- // smis, and don't need to be untagged. |
- Label strings_not_equal, check_zero_length; |
- __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset)); |
- __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset)); |
- __ Cmp(left_length, right_length); |
- __ B(eq, &check_zero_length); |
- |
- __ Bind(&strings_not_equal); |
- __ Mov(result, Smi::FromInt(NOT_EQUAL)); |
- __ Ret(); |
- |
- // Check if the length is zero. If so, the strings must be equal (and empty.) |
- Label compare_chars; |
- __ Bind(&check_zero_length); |
- STATIC_ASSERT(kSmiTag == 0); |
- __ Cbnz(left_length, &compare_chars); |
- __ Mov(result, Smi::FromInt(EQUAL)); |
- __ Ret(); |
- |
- // Compare characters. Falls through if all characters are equal. |
- __ Bind(&compare_chars); |
- GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2, |
- scratch3, &strings_not_equal); |
- |
- // Characters in strings are equal. |
- __ Mov(result, Smi::FromInt(EQUAL)); |
- __ Ret(); |
-} |
- |
- |
-void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
- Register left, |
- Register right, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4) { |
- ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4)); |
- Label result_not_equal, compare_lengths; |
- |
- // Find minimum length and length difference. |
- Register length_delta = scratch3; |
- __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
- __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
- __ Subs(length_delta, scratch1, scratch2); |
- |
- Register min_length = scratch1; |
- __ Csel(min_length, scratch2, scratch1, gt); |
- __ Cbz(min_length, &compare_lengths); |
- |
- // Compare loop. |
- GenerateAsciiCharsCompareLoop(masm, |
- left, right, min_length, scratch2, scratch4, |
- &result_not_equal); |
- |
- // Compare lengths - strings up to min-length are equal. |
- __ Bind(&compare_lengths); |
- |
- ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
- |
- // Use length_delta as result if it's zero. |
- Register result = x0; |
- __ Subs(result, length_delta, 0); |
- |
- __ Bind(&result_not_equal); |
- Register greater = x10; |
- Register less = x11; |
- __ Mov(greater, Smi::FromInt(GREATER)); |
- __ Mov(less, Smi::FromInt(LESS)); |
- __ CmovX(result, greater, gt); |
- __ CmovX(result, less, lt); |
- __ Ret(); |
-} |
- |
- |
-void StringCompareStub::GenerateAsciiCharsCompareLoop( |
- MacroAssembler* masm, |
- Register left, |
- Register right, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* chars_not_equal) { |
- ASSERT(!AreAliased(left, right, length, scratch1, scratch2)); |
- |
- // Change index to run from -length to -1 by adding length to string |
- // start. This means that loop ends when index reaches zero, which |
- // doesn't need an additional compare. |
- __ SmiUntag(length); |
- __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag); |
- __ Add(left, left, scratch1); |
- __ Add(right, right, scratch1); |
- |
- Register index = length; |
- __ Neg(index, length); // index = -length; |
- |
- // Compare loop |
- Label loop; |
- __ Bind(&loop); |
- __ Ldrb(scratch1, MemOperand(left, index)); |
- __ Ldrb(scratch2, MemOperand(right, index)); |
- __ Cmp(scratch1, scratch2); |
- __ B(ne, chars_not_equal); |
- __ Add(index, index, 1); |
- __ Cbnz(index, &loop); |
-} |
- |
- |
-void StringCompareStub::Generate(MacroAssembler* masm) { |
- Label runtime; |
- |
- Counters* counters = masm->isolate()->counters(); |
- |
- // Stack frame on entry. |
- // sp[0]: right string |
- // sp[8]: left string |
- Register right = x10; |
- Register left = x11; |
- Register result = x0; |
- __ Pop(right, left); |
- |
- Label not_same; |
- __ Subs(result, right, left); |
- __ B(ne, ¬_same); |
- STATIC_ASSERT(EQUAL == 0); |
- __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); |
- __ Ret(); |
- |
- __ Bind(¬_same); |
- |
- // Check that both objects are sequential ASCII strings. |
- __ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime); |
- |
- // Compare flat ASCII strings natively. Remove arguments from stack first, |
- // as this function will generate a return. |
- __ IncrementCounter(counters->string_compare_native(), 1, x3, x4); |
- GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15); |
- |
- __ Bind(&runtime); |
- |
- // Push arguments back on to the stack. |
- // sp[0] = right string |
- // sp[8] = left string. |
- __ Push(left, right); |
- |
- // Call the runtime. |
- // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer. |
- __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
-} |
- |
- |
-void ArrayPushStub::Generate(MacroAssembler* masm) { |
- Register receiver = x0; |
- |
- int argc = arguments_count(); |
- |
- if (argc == 0) { |
- // Nothing to do, just return the length. |
- __ Ldr(x0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
- __ Drop(argc + 1); |
- __ Ret(); |
- return; |
- } |
- |
- Isolate* isolate = masm->isolate(); |
- |
- if (argc != 1) { |
- __ TailCallExternalReference( |
- ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
- return; |
- } |
- |
- Label call_builtin, attempt_to_grow_elements, with_write_barrier; |
- |
- Register elements_length = x8; |
- Register length = x7; |
- Register elements = x6; |
- Register end_elements = x5; |
- Register value = x4; |
- // Get the elements array of the object. |
- __ Ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
- |
- if (IsFastSmiOrObjectElementsKind(elements_kind())) { |
- // Check that the elements are in fast mode and writable. |
- __ CheckMap(elements, |
- x10, |
- Heap::kFixedArrayMapRootIndex, |
- &call_builtin, |
- DONT_DO_SMI_CHECK); |
- } |
- |
- // Get the array's length and calculate new length. |
- __ Ldr(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
- STATIC_ASSERT(kSmiTag == 0); |
- __ Add(length, length, Smi::FromInt(argc)); |
- |
- // Check if we could survive without allocation. |
- __ Ldr(elements_length, |
- FieldMemOperand(elements, FixedArray::kLengthOffset)); |
- __ Cmp(length, elements_length); |
- |
- const int kEndElementsOffset = |
- FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize; |
- |
- if (IsFastSmiOrObjectElementsKind(elements_kind())) { |
- __ B(gt, &attempt_to_grow_elements); |
- |
- // Check if value is a smi. |
- __ Peek(value, (argc - 1) * kPointerSize); |
- __ JumpIfNotSmi(value, &with_write_barrier); |
- |
- // Store the value. |
- // We may need a register containing the address end_elements below, |
- // so write back the value in end_elements. |
- __ Add(end_elements, elements, |
- Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
- __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); |
- } else { |
- __ B(gt, &call_builtin); |
- |
- __ Peek(value, (argc - 1) * kPointerSize); |
- __ StoreNumberToDoubleElements(value, length, elements, x10, d0, d1, |
- &call_builtin, argc * kDoubleSize); |
- } |
- |
- // Save new length. |
- __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
- |
- // Return length. |
- __ Drop(argc + 1); |
- __ Mov(x0, length); |
- __ Ret(); |
- |
- if (IsFastDoubleElementsKind(elements_kind())) { |
- __ Bind(&call_builtin); |
- __ TailCallExternalReference( |
- ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
- return; |
- } |
- |
- __ Bind(&with_write_barrier); |
- |
- if (IsFastSmiElementsKind(elements_kind())) { |
- if (FLAG_trace_elements_transitions) { |
- __ B(&call_builtin); |
- } |
- |
- __ Ldr(x10, FieldMemOperand(value, HeapObject::kMapOffset)); |
- __ JumpIfHeapNumber(x10, &call_builtin); |
- |
- ElementsKind target_kind = IsHoleyElementsKind(elements_kind()) |
- ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; |
- __ Ldr(x10, GlobalObjectMemOperand()); |
- __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kNativeContextOffset)); |
- __ Ldr(x10, ContextMemOperand(x10, Context::JS_ARRAY_MAPS_INDEX)); |
- const int header_size = FixedArrayBase::kHeaderSize; |
- // Verify that the object can be transitioned in place. |
- const int origin_offset = header_size + elements_kind() * kPointerSize; |
- __ ldr(x11, FieldMemOperand(receiver, origin_offset)); |
- __ ldr(x12, FieldMemOperand(x10, HeapObject::kMapOffset)); |
- __ cmp(x11, x12); |
- __ B(ne, &call_builtin); |
- |
- const int target_offset = header_size + target_kind * kPointerSize; |
- __ Ldr(x10, FieldMemOperand(x10, target_offset)); |
- __ Mov(x11, receiver); |
- ElementsTransitionGenerator::GenerateMapChangeElementsTransition( |
- masm, DONT_TRACK_ALLOCATION_SITE, NULL); |
- } |
- |
- // Save new length. |
- __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
- |
- // Store the value. |
- // We may need a register containing the address end_elements below, |
- // so write back the value in end_elements. |
- __ Add(end_elements, elements, |
- Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
- __ Str(value, MemOperand(end_elements, kEndElementsOffset, PreIndex)); |
- |
- __ RecordWrite(elements, |
- end_elements, |
- value, |
- kLRHasNotBeenSaved, |
- kDontSaveFPRegs, |
- EMIT_REMEMBERED_SET, |
- OMIT_SMI_CHECK); |
- __ Drop(argc + 1); |
- __ Mov(x0, length); |
- __ Ret(); |
- |
- __ Bind(&attempt_to_grow_elements); |
- |
- if (!FLAG_inline_new) { |
- __ B(&call_builtin); |
- } |
- |
- Register argument = x2; |
- __ Peek(argument, (argc - 1) * kPointerSize); |
- // Growing elements that are SMI-only requires special handling in case |
- // the new element is non-Smi. For now, delegate to the builtin. |
- if (IsFastSmiElementsKind(elements_kind())) { |
- __ JumpIfNotSmi(argument, &call_builtin); |
- } |
- |
- // We could be lucky and the elements array could be at the top of new-space. |
- // In this case we can just grow it in place by moving the allocation pointer |
- // up. |
- ExternalReference new_space_allocation_top = |
- ExternalReference::new_space_allocation_top_address(isolate); |
- ExternalReference new_space_allocation_limit = |
- ExternalReference::new_space_allocation_limit_address(isolate); |
- |
- const int kAllocationDelta = 4; |
- ASSERT(kAllocationDelta >= argc); |
- Register allocation_top_addr = x5; |
- Register allocation_top = x9; |
- // Load top and check if it is the end of elements. |
- __ Add(end_elements, elements, |
- Operand::UntagSmiAndScale(length, kPointerSizeLog2)); |
- __ Add(end_elements, end_elements, kEndElementsOffset); |
- __ Mov(allocation_top_addr, new_space_allocation_top); |
- __ Ldr(allocation_top, MemOperand(allocation_top_addr)); |
- __ Cmp(end_elements, allocation_top); |
- __ B(ne, &call_builtin); |
- |
- __ Mov(x10, new_space_allocation_limit); |
- __ Ldr(x10, MemOperand(x10)); |
- __ Add(allocation_top, allocation_top, kAllocationDelta * kPointerSize); |
- __ Cmp(allocation_top, x10); |
- __ B(hi, &call_builtin); |
- |
- // We fit and could grow elements. |
- // Update new_space_allocation_top. |
- __ Str(allocation_top, MemOperand(allocation_top_addr)); |
- // Push the argument. |
- __ Str(argument, MemOperand(end_elements)); |
- // Fill the rest with holes. |
- __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); |
- ASSERT(kAllocationDelta == 4); |
- __ Stp(x10, x10, MemOperand(end_elements, 1 * kPointerSize)); |
- __ Stp(x10, x10, MemOperand(end_elements, 3 * kPointerSize)); |
- |
- // Update elements' and array's sizes. |
- __ Str(length, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
- __ Add(elements_length, elements_length, Smi::FromInt(kAllocationDelta)); |
- __ Str(elements_length, |
- FieldMemOperand(elements, FixedArray::kLengthOffset)); |
- |
- // Elements are in new space, so write barrier is not required. |
- __ Drop(argc + 1); |
- __ Mov(x0, length); |
- __ Ret(); |
- |
- __ Bind(&call_builtin); |
- __ TailCallExternalReference( |
- ExternalReference(Builtins::c_ArrayPush, isolate), argc + 1, 1); |
-} |
- |
- |
-void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- x1 : left |
- // -- x0 : right |
- // -- lr : return address |
- // ----------------------------------- |
- Isolate* isolate = masm->isolate(); |
- |
- // Load x2 with the allocation site. We stick an undefined dummy value here |
- // and replace it with the real allocation site later when we instantiate this |
- // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). |
- __ LoadObject(x2, handle(isolate->heap()->undefined_value())); |
- |
- // Make sure that we actually patched the allocation site. |
- if (FLAG_debug_code) { |
- __ AssertNotSmi(x2, kExpectedAllocationSite); |
- __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset)); |
- __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex, |
- kExpectedAllocationSite); |
- } |
- |
- // Tail call into the stub that handles binary operations with allocation |
- // sites. |
- BinaryOpWithAllocationSiteStub stub(state_); |
- __ TailCallStub(&stub); |
-} |
- |
- |
-bool CodeStub::CanUseFPRegisters() { |
- // FP registers always available on A64. |
- return true; |
-} |
- |
- |
-void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { |
- // We need some extra registers for this stub, they have been allocated |
- // but we need to save them before using them. |
- regs_.Save(masm); |
- |
- if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
- Label dont_need_remembered_set; |
- |
- Register value = regs_.scratch0(); |
- __ Ldr(value, MemOperand(regs_.address())); |
- __ JumpIfNotInNewSpace(value, &dont_need_remembered_set); |
- |
- __ CheckPageFlagSet(regs_.object(), |
- value, |
- 1 << MemoryChunk::SCAN_ON_SCAVENGE, |
- &dont_need_remembered_set); |
- |
- // First notify the incremental marker if necessary, then update the |
- // remembered set. |
- CheckNeedsToInformIncrementalMarker( |
- masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); |
- InformIncrementalMarker(masm); |
- regs_.Restore(masm); // Restore the extra scratch registers we used. |
- |
- __ RememberedSetHelper(object_, |
- address_, |
- value_, // scratch1 |
- save_fp_regs_mode_, |
- MacroAssembler::kReturnAtEnd); |
- |
- __ Bind(&dont_need_remembered_set); |
- } |
- |
- CheckNeedsToInformIncrementalMarker( |
- masm, kReturnOnNoNeedToInformIncrementalMarker, mode); |
- InformIncrementalMarker(masm); |
- regs_.Restore(masm); // Restore the extra scratch registers we used. |
- __ Ret(); |
-} |
- |
- |
-void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { |
- regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); |
- Register address = |
- x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address(); |
- ASSERT(!address.Is(regs_.object())); |
- ASSERT(!address.Is(x0)); |
- __ Mov(address, regs_.address()); |
- __ Mov(x0, regs_.object()); |
- __ Mov(x1, address); |
- __ Mov(x2, ExternalReference::isolate_address(masm->isolate())); |
- |
- AllowExternalCallThatCantCauseGC scope(masm); |
- ExternalReference function = |
- ExternalReference::incremental_marking_record_write_function( |
- masm->isolate()); |
- __ CallCFunction(function, 3, 0); |
- |
- regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); |
-} |
- |
- |
-void RecordWriteStub::CheckNeedsToInformIncrementalMarker( |
- MacroAssembler* masm, |
- OnNoNeedToInformIncrementalMarker on_no_need, |
- Mode mode) { |
- Label on_black; |
- Label need_incremental; |
- Label need_incremental_pop_scratch; |
- |
- Register mem_chunk = regs_.scratch0(); |
- Register counter = regs_.scratch1(); |
- __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask); |
- __ Ldr(counter, |
- MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); |
- __ Subs(counter, counter, 1); |
- __ Str(counter, |
- MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset)); |
- __ B(mi, &need_incremental); |
- |
- // If the object is not black we don't have to inform the incremental marker. |
- __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); |
- |
- regs_.Restore(masm); // Restore the extra scratch registers we used. |
- if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
- __ RememberedSetHelper(object_, |
- address_, |
- value_, // scratch1 |
- save_fp_regs_mode_, |
- MacroAssembler::kReturnAtEnd); |
- } else { |
- __ Ret(); |
- } |
- |
- __ Bind(&on_black); |
- // Get the value from the slot. |
- Register value = regs_.scratch0(); |
- __ Ldr(value, MemOperand(regs_.address())); |
- |
- if (mode == INCREMENTAL_COMPACTION) { |
- Label ensure_not_white; |
- |
- __ CheckPageFlagClear(value, |
- regs_.scratch1(), |
- MemoryChunk::kEvacuationCandidateMask, |
- &ensure_not_white); |
- |
- __ CheckPageFlagClear(regs_.object(), |
- regs_.scratch1(), |
- MemoryChunk::kSkipEvacuationSlotsRecordingMask, |
- &need_incremental); |
- |
- __ Bind(&ensure_not_white); |
- } |
- |
- // We need extra registers for this, so we push the object and the address |
- // register temporarily. |
- __ Push(regs_.address(), regs_.object()); |
- __ EnsureNotWhite(value, |
- regs_.scratch1(), // Scratch. |
- regs_.object(), // Scratch. |
- regs_.address(), // Scratch. |
- regs_.scratch2(), // Scratch. |
- &need_incremental_pop_scratch); |
- __ Pop(regs_.object(), regs_.address()); |
- |
- regs_.Restore(masm); // Restore the extra scratch registers we used. |
- if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
- __ RememberedSetHelper(object_, |
- address_, |
- value_, // scratch1 |
- save_fp_regs_mode_, |
- MacroAssembler::kReturnAtEnd); |
- } else { |
- __ Ret(); |
- } |
- |
- __ Bind(&need_incremental_pop_scratch); |
- __ Pop(regs_.object(), regs_.address()); |
- |
- __ Bind(&need_incremental); |
- // Fall through when we need to inform the incremental marker. |
-} |
- |
- |
-void RecordWriteStub::Generate(MacroAssembler* masm) { |
- Label skip_to_incremental_noncompacting; |
- Label skip_to_incremental_compacting; |
- |
- // We patch these two first instructions back and forth between a nop and |
- // real branch when we start and stop incremental heap marking. |
- // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops |
- // are generated. |
- // See RecordWriteStub::Patch for details. |
- { |
- InstructionAccurateScope scope(masm, 2); |
- __ adr(xzr, &skip_to_incremental_noncompacting); |
- __ adr(xzr, &skip_to_incremental_compacting); |
- } |
- |
- if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
- __ RememberedSetHelper(object_, |
- address_, |
- value_, // scratch1 |
- save_fp_regs_mode_, |
- MacroAssembler::kReturnAtEnd); |
- } |
- __ Ret(); |
- |
- __ Bind(&skip_to_incremental_noncompacting); |
- GenerateIncremental(masm, INCREMENTAL); |
- |
- __ Bind(&skip_to_incremental_compacting); |
- GenerateIncremental(masm, INCREMENTAL_COMPACTION); |
-} |
- |
- |
-void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { |
- // x0 value element value to store |
- // x3 index_smi element index as smi |
- // sp[0] array_index_smi array literal index in function as smi |
- // sp[1] array array literal |
- |
- Register value = x0; |
- Register index_smi = x3; |
- |
- Register array = x1; |
- Register array_map = x2; |
- Register array_index_smi = x4; |
- __ PeekPair(array_index_smi, array, 0); |
- __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset)); |
- |
- Label double_elements, smi_element, fast_elements, slow_elements; |
- Register bitfield2 = x10; |
- __ Ldrb(bitfield2, FieldMemOperand(array_map, Map::kBitField2Offset)); |
- |
- // Jump if array's ElementsKind is not FAST*_SMI_ELEMENTS, FAST_ELEMENTS or |
- // FAST_HOLEY_ELEMENTS. |
- STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
- STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
- STATIC_ASSERT(FAST_ELEMENTS == 2); |
- STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
- __ Cmp(bitfield2, Map::kMaximumBitField2FastHoleyElementValue); |
- __ B(hi, &double_elements); |
- |
- __ JumpIfSmi(value, &smi_element); |
- |
- // Jump if array's ElementsKind is not FAST_ELEMENTS or FAST_HOLEY_ELEMENTS. |
- __ Tbnz(bitfield2, MaskToBit(FAST_ELEMENTS << Map::kElementsKindShift), |
- &fast_elements); |
- |
- // Store into the array literal requires an elements transition. Call into |
- // the runtime. |
- __ Bind(&slow_elements); |
- __ Push(array, index_smi, value); |
- __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
- __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset)); |
- __ Push(x11, array_index_smi); |
- __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); |
- |
- // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. |
- __ Bind(&fast_elements); |
- __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
- __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); |
- __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag); |
- __ Str(value, MemOperand(x11)); |
- // Update the write barrier for the array store. |
- __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs, |
- EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
- __ Ret(); |
- |
- // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, |
- // and value is Smi. |
- __ Bind(&smi_element); |
- __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
- __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2)); |
- __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize)); |
- __ Ret(); |
- |
- __ Bind(&double_elements); |
- __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset)); |
- __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0, d1, |
- &slow_elements); |
- __ Ret(); |
-} |
- |
- |
-void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { |
- CEntryStub ces(1, fp_registers_ ? kSaveFPRegs : kDontSaveFPRegs); |
- __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET); |
- int parameter_count_offset = |
- StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; |
- __ Ldr(x1, MemOperand(fp, parameter_count_offset)); |
- if (function_mode_ == JS_FUNCTION_STUB_MODE) { |
- __ Add(x1, x1, 1); |
- } |
- masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); |
- __ Drop(x1); |
- // Return to IC Miss stub, continuation still on stack. |
- __ Ret(); |
-} |
- |
- |
-void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
- if (masm->isolate()->function_entry_hook() != NULL) { |
- // TODO(all): This needs to be reliably consistent with |
- // kReturnAddressDistanceFromFunctionStart in ::Generate. |
- Assembler::BlockPoolsScope no_pools(masm); |
- ProfileEntryHookStub stub; |
- __ Push(lr); |
- __ CallStub(&stub); |
- __ Pop(lr); |
- } |
-} |
- |
- |
-void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
- MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); |
- // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by |
- // a "Push lr" instruction, followed by a call. |
- static const int kReturnAddressDistanceFromFunctionStart = |
- Assembler::kCallSizeWithRelocation + (2 * kInstructionSize); |
- |
- // Save all kCallerSaved registers (including lr), since this can be called |
- // from anywhere. |
- // TODO(jbramley): What about FP registers? |
- __ PushCPURegList(kCallerSaved); |
- ASSERT(kCallerSaved.IncludesAliasOf(lr)); |
- const int kNumSavedRegs = kCallerSaved.Count(); |
- |
- // Compute the function's address as the first argument. |
- __ Sub(x0, lr, kReturnAddressDistanceFromFunctionStart); |
- |
-#if V8_HOST_ARCH_A64 |
- uintptr_t entry_hook = |
- reinterpret_cast<uintptr_t>(masm->isolate()->function_entry_hook()); |
- __ Mov(x10, entry_hook); |
-#else |
- // Under the simulator we need to indirect the entry hook through a trampoline |
- // function at a known address. |
- ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); |
- __ Mov(x10, Operand(ExternalReference(&dispatcher, |
- ExternalReference::BUILTIN_CALL, |
- masm->isolate()))); |
- // It additionally takes an isolate as a third parameter |
- __ Mov(x2, ExternalReference::isolate_address(masm->isolate())); |
-#endif |
- |
- // The caller's return address is above the saved temporaries. |
- // Grab its location for the second argument to the hook. |
- __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize); |
- |
- { |
- // Create a dummy frame, as CallCFunction requires this. |
- FrameScope frame(masm, StackFrame::MANUAL); |
- __ CallCFunction(x10, 2, 0); |
- } |
- |
- __ PopCPURegList(kCallerSaved); |
- __ Ret(); |
-} |
- |
- |
-void DirectCEntryStub::Generate(MacroAssembler* masm) { |
- // When calling into C++ code the stack pointer must be csp. |
- // Therefore this code must use csp for peek/poke operations when the |
- // stub is generated. When the stub is called |
- // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame |
- // and configure the stack pointer *before* doing the call. |
- const Register old_stack_pointer = __ StackPointer(); |
- __ SetStackPointer(csp); |
- |
- // Put return address on the stack (accessible to GC through exit frame pc). |
- __ Poke(lr, 0); |
- // Call the C++ function. |
- __ Blr(x10); |
- // Return to calling code. |
- __ Peek(lr, 0); |
- __ Ret(); |
- |
- __ SetStackPointer(old_stack_pointer); |
-} |
- |
-void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
- Register target) { |
- // Make sure the caller configured the stack pointer (see comment in |
- // DirectCEntryStub::Generate). |
- ASSERT(csp.Is(__ StackPointer())); |
- |
- intptr_t code = |
- reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location()); |
- __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET)); |
- __ Mov(x10, target); |
- // Branch to the stub. |
- __ Blr(lr); |
-} |
- |
- |
-// Probe the name dictionary in the 'elements' register. |
-// Jump to the 'done' label if a property with the given name is found. |
-// Jump to the 'miss' label otherwise. |
-// |
-// If lookup was successful 'scratch2' will be equal to elements + 4 * index. |
-// 'elements' and 'name' registers are preserved on miss. |
-void NameDictionaryLookupStub::GeneratePositiveLookup( |
- MacroAssembler* masm, |
- Label* miss, |
- Label* done, |
- Register elements, |
- Register name, |
- Register scratch1, |
- Register scratch2) { |
- ASSERT(!AreAliased(elements, name, scratch1, scratch2)); |
- |
- // Assert that name contains a string. |
- __ AssertName(name); |
- |
- // Compute the capacity mask. |
- __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset)); |
- __ Sub(scratch1, scratch1, 1); |
- |
- // Generate an unrolled loop that performs a few probes before giving up. |
- for (int i = 0; i < kInlinedProbes; i++) { |
- // Compute the masked index: (hash + i + i * i) & mask. |
- __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); |
- if (i > 0) { |
- // Add the probe offset (i + i * i) left shifted to avoid right shifting |
- // the hash in a separate instruction. The value hash + i + i * i is right |
- // shifted in the following and instruction. |
- ASSERT(NameDictionary::GetProbeOffset(i) < |
- 1 << (32 - Name::kHashFieldOffset)); |
- __ Add(scratch2, scratch2, Operand( |
- NameDictionary::GetProbeOffset(i) << Name::kHashShift)); |
- } |
- __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); |
- |
- // Scale the index by multiplying by the element size. |
- ASSERT(NameDictionary::kEntrySize == 3); |
- __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); |
- |
- // Check if the key is identical to the name. |
- UseScratchRegisterScope temps(masm); |
- Register scratch3 = temps.AcquireX(); |
- __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); |
- __ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset)); |
- __ Cmp(name, scratch3); |
- __ B(eq, done); |
- } |
- |
- // The inlined probes didn't find the entry. |
- // Call the complete stub to scan the whole dictionary. |
- |
- CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6); |
- spill_list.Combine(lr); |
- spill_list.Remove(scratch1); |
- spill_list.Remove(scratch2); |
- |
- __ PushCPURegList(spill_list); |
- |
- if (name.is(x0)) { |
- ASSERT(!elements.is(x1)); |
- __ Mov(x1, name); |
- __ Mov(x0, elements); |
- } else { |
- __ Mov(x0, elements); |
- __ Mov(x1, name); |
- } |
- |
- Label not_found; |
- NameDictionaryLookupStub stub(POSITIVE_LOOKUP); |
- __ CallStub(&stub); |
- __ Cbz(x0, ¬_found); |
- __ Mov(scratch2, x2); // Move entry index into scratch2. |
- __ PopCPURegList(spill_list); |
- __ B(done); |
- |
- __ Bind(¬_found); |
- __ PopCPURegList(spill_list); |
- __ B(miss); |
-} |
- |
- |
-void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, |
- Label* miss, |
- Label* done, |
- Register receiver, |
- Register properties, |
- Handle<Name> name, |
- Register scratch0) { |
- ASSERT(!AreAliased(receiver, properties, scratch0)); |
- ASSERT(name->IsUniqueName()); |
- // If names of slots in range from 1 to kProbes - 1 for the hash value are |
- // not equal to the name and kProbes-th slot is not used (its name is the |
- // undefined value), it guarantees the hash table doesn't contain the |
- // property. It's true even if some slots represent deleted properties |
- // (their names are the hole value). |
- for (int i = 0; i < kInlinedProbes; i++) { |
- // scratch0 points to properties hash. |
- // Compute the masked index: (hash + i + i * i) & mask. |
- Register index = scratch0; |
- // Capacity is smi 2^n. |
- __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset)); |
- __ Sub(index, index, 1); |
- __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i)); |
- |
- // Scale the index by multiplying by the entry size. |
- ASSERT(NameDictionary::kEntrySize == 3); |
- __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. |
- |
- Register entity_name = scratch0; |
- // Having undefined at this place means the name is not contained. |
- Register tmp = index; |
- __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2)); |
- __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); |
- |
- __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done); |
- |
- // Stop if found the property. |
- __ Cmp(entity_name, Operand(name)); |
- __ B(eq, miss); |
- |
- Label good; |
- __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good); |
- |
- // Check if the entry name is not a unique name. |
- __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); |
- __ Ldrb(entity_name, |
- FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); |
- __ JumpIfNotUniqueName(entity_name, miss); |
- __ Bind(&good); |
- } |
- |
- CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6); |
- spill_list.Combine(lr); |
- spill_list.Remove(scratch0); // Scratch registers don't need to be preserved. |
- |
- __ PushCPURegList(spill_list); |
- |
- __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
- __ Mov(x1, Operand(name)); |
- NameDictionaryLookupStub stub(NEGATIVE_LOOKUP); |
- __ CallStub(&stub); |
- // Move stub return value to scratch0. Note that scratch0 is not included in |
- // spill_list and won't be clobbered by PopCPURegList. |
- __ Mov(scratch0, x0); |
- __ PopCPURegList(spill_list); |
- |
- __ Cbz(scratch0, done); |
- __ B(miss); |
-} |
- |
- |
-void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { |
- // This stub overrides SometimesSetsUpAFrame() to return false. That means |
- // we cannot call anything that could cause a GC from this stub. |
- // |
- // Arguments are in x0 and x1: |
- // x0: property dictionary. |
- // x1: the name of the property we are looking for. |
- // |
- // Return value is in x0 and is zero if lookup failed, non zero otherwise. |
- // If the lookup is successful, x2 will contains the index of the entry. |
- |
- Register result = x0; |
- Register dictionary = x0; |
- Register key = x1; |
- Register index = x2; |
- Register mask = x3; |
- Register hash = x4; |
- Register undefined = x5; |
- Register entry_key = x6; |
- |
- Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
- |
- __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset)); |
- __ Sub(mask, mask, 1); |
- |
- __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); |
- __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
- |
- for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
- // Compute the masked index: (hash + i + i * i) & mask. |
- // Capacity is smi 2^n. |
- if (i > 0) { |
- // Add the probe offset (i + i * i) left shifted to avoid right shifting |
- // the hash in a separate instruction. The value hash + i + i * i is right |
- // shifted in the following and instruction. |
- ASSERT(NameDictionary::GetProbeOffset(i) < |
- 1 << (32 - Name::kHashFieldOffset)); |
- __ Add(index, hash, |
- NameDictionary::GetProbeOffset(i) << Name::kHashShift); |
- } else { |
- __ Mov(index, hash); |
- } |
- __ And(index, mask, Operand(index, LSR, Name::kHashShift)); |
- |
- // Scale the index by multiplying by the entry size. |
- ASSERT(NameDictionary::kEntrySize == 3); |
- __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. |
- |
- __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2)); |
- __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); |
- |
- // Having undefined at this place means the name is not contained. |
- __ Cmp(entry_key, undefined); |
- __ B(eq, ¬_in_dictionary); |
- |
- // Stop if found the property. |
- __ Cmp(entry_key, key); |
- __ B(eq, &in_dictionary); |
- |
- if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { |
- // Check if the entry name is not a unique name. |
- __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); |
- __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); |
- __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); |
- } |
- } |
- |
- __ Bind(&maybe_in_dictionary); |
- // If we are doing negative lookup then probing failure should be |
- // treated as a lookup success. For positive lookup, probing failure |
- // should be treated as lookup failure. |
- if (mode_ == POSITIVE_LOOKUP) { |
- __ Mov(result, 0); |
- __ Ret(); |
- } |
- |
- __ Bind(&in_dictionary); |
- __ Mov(result, 1); |
- __ Ret(); |
- |
- __ Bind(¬_in_dictionary); |
- __ Mov(result, 0); |
- __ Ret(); |
-} |
- |
- |
-template<class T> |
-static void CreateArrayDispatch(MacroAssembler* masm, |
- AllocationSiteOverrideMode mode) { |
- ASM_LOCATION("CreateArrayDispatch"); |
- if (mode == DISABLE_ALLOCATION_SITES) { |
- T stub(GetInitialFastElementsKind(), mode); |
- __ TailCallStub(&stub); |
- |
- } else if (mode == DONT_OVERRIDE) { |
- Register kind = x3; |
- int last_index = |
- GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
- for (int i = 0; i <= last_index; ++i) { |
- Label next; |
- ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
- // TODO(jbramley): Is this the best way to handle this? Can we make the |
- // tail calls conditional, rather than hopping over each one? |
- __ CompareAndBranch(kind, candidate_kind, ne, &next); |
- T stub(candidate_kind); |
- __ TailCallStub(&stub); |
- __ Bind(&next); |
- } |
- |
- // If we reached this point there is a problem. |
- __ Abort(kUnexpectedElementsKindInArrayConstructor); |
- |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-// TODO(jbramley): If this needs to be a special case, make it a proper template |
-// specialization, and not a separate function. |
-static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
- AllocationSiteOverrideMode mode) { |
- ASM_LOCATION("CreateArrayDispatchOneArgument"); |
- // x0 - argc |
- // x1 - constructor? |
- // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
- // x3 - kind (if mode != DISABLE_ALLOCATION_SITES) |
- // sp[0] - last argument |
- |
- Register allocation_site = x2; |
- Register kind = x3; |
- |
- Label normal_sequence; |
- if (mode == DONT_OVERRIDE) { |
- STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
- STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
- STATIC_ASSERT(FAST_ELEMENTS == 2); |
- STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
- STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); |
- STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); |
- |
- // Is the low bit set? If so, the array is holey. |
- __ Tbnz(kind, 0, &normal_sequence); |
- } |
- |
- // Look at the last argument. |
- // TODO(jbramley): What does a 0 argument represent? |
- __ Peek(x10, 0); |
- __ Cbz(x10, &normal_sequence); |
- |
- if (mode == DISABLE_ALLOCATION_SITES) { |
- ElementsKind initial = GetInitialFastElementsKind(); |
- ElementsKind holey_initial = GetHoleyElementsKind(initial); |
- |
- ArraySingleArgumentConstructorStub stub_holey(holey_initial, |
- DISABLE_ALLOCATION_SITES); |
- __ TailCallStub(&stub_holey); |
- |
- __ Bind(&normal_sequence); |
- ArraySingleArgumentConstructorStub stub(initial, |
- DISABLE_ALLOCATION_SITES); |
- __ TailCallStub(&stub); |
- } else if (mode == DONT_OVERRIDE) { |
- // We are going to create a holey array, but our kind is non-holey. |
- // Fix kind and retry (only if we have an allocation site in the slot). |
- __ Orr(kind, kind, 1); |
- |
- if (FLAG_debug_code) { |
- __ Ldr(x10, FieldMemOperand(allocation_site, 0)); |
- __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, |
- &normal_sequence); |
- __ Assert(eq, kExpectedAllocationSite); |
- } |
- |
- // Save the resulting elements kind in type info. We can't just store 'kind' |
- // in the AllocationSite::transition_info field because elements kind is |
- // restricted to a portion of the field; upper bits need to be left alone. |
- STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
- __ Ldr(x11, FieldMemOperand(allocation_site, |
- AllocationSite::kTransitionInfoOffset)); |
- __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley)); |
- __ Str(x11, FieldMemOperand(allocation_site, |
- AllocationSite::kTransitionInfoOffset)); |
- |
- __ Bind(&normal_sequence); |
- int last_index = |
- GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
- for (int i = 0; i <= last_index; ++i) { |
- Label next; |
- ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); |
- __ CompareAndBranch(kind, candidate_kind, ne, &next); |
- ArraySingleArgumentConstructorStub stub(candidate_kind); |
- __ TailCallStub(&stub); |
- __ Bind(&next); |
- } |
- |
- // If we reached this point there is a problem. |
- __ Abort(kUnexpectedElementsKindInArrayConstructor); |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-template<class T> |
-static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
- int to_index = GetSequenceIndexFromFastElementsKind( |
- TERMINAL_FAST_ELEMENTS_KIND); |
- for (int i = 0; i <= to_index; ++i) { |
- ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
- T stub(kind); |
- stub.GetCode(isolate); |
- if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { |
- T stub1(kind, DISABLE_ALLOCATION_SITES); |
- stub1.GetCode(isolate); |
- } |
- } |
-} |
- |
- |
-void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { |
- ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
- isolate); |
- ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
- isolate); |
- ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( |
- isolate); |
-} |
- |
- |
-void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( |
- Isolate* isolate) { |
- ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; |
- for (int i = 0; i < 2; i++) { |
- // For internal arrays we only need a few things |
- InternalArrayNoArgumentConstructorStub stubh1(kinds[i]); |
- stubh1.GetCode(isolate); |
- InternalArraySingleArgumentConstructorStub stubh2(kinds[i]); |
- stubh2.GetCode(isolate); |
- InternalArrayNArgumentsConstructorStub stubh3(kinds[i]); |
- stubh3.GetCode(isolate); |
- } |
-} |
- |
- |
-void ArrayConstructorStub::GenerateDispatchToArrayStub( |
- MacroAssembler* masm, |
- AllocationSiteOverrideMode mode) { |
- Register argc = x0; |
- if (argument_count_ == ANY) { |
- Label zero_case, n_case; |
- __ Cbz(argc, &zero_case); |
- __ Cmp(argc, 1); |
- __ B(ne, &n_case); |
- |
- // One argument. |
- CreateArrayDispatchOneArgument(masm, mode); |
- |
- __ Bind(&zero_case); |
- // No arguments. |
- CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
- |
- __ Bind(&n_case); |
- // N arguments. |
- CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
- |
- } else if (argument_count_ == NONE) { |
- CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
- } else if (argument_count_ == ONE) { |
- CreateArrayDispatchOneArgument(masm, mode); |
- } else if (argument_count_ == MORE_THAN_ONE) { |
- CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
- ASM_LOCATION("ArrayConstructorStub::Generate"); |
- // ----------- S t a t e ------------- |
- // -- x0 : argc (only if argument_count_ == ANY) |
- // -- x1 : constructor |
- // -- x2 : AllocationSite or undefined |
- // -- sp[0] : return address |
- // -- sp[4] : last argument |
- // ----------------------------------- |
- Register constructor = x1; |
- Register allocation_site = x2; |
- |
- if (FLAG_debug_code) { |
- // The array construct code is only set for the global and natives |
- // builtin Array functions which always have maps. |
- |
- Label unexpected_map, map_ok; |
- // Initial map for the builtin Array function should be a map. |
- __ Ldr(x10, FieldMemOperand(constructor, |
- JSFunction::kPrototypeOrInitialMapOffset)); |
- // Will both indicate a NULL and a Smi. |
- __ JumpIfSmi(x10, &unexpected_map); |
- __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
- __ Bind(&unexpected_map); |
- __ Abort(kUnexpectedInitialMapForArrayFunction); |
- __ Bind(&map_ok); |
- |
- // We should either have undefined in the allocation_site register or a |
- // valid AllocationSite. |
- __ AssertUndefinedOrAllocationSite(allocation_site, x10); |
- } |
- |
- Register kind = x3; |
- Label no_info; |
- // Get the elements kind and case on that. |
- __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info); |
- |
- __ Ldrsw(kind, |
- UntagSmiFieldMemOperand(allocation_site, |
- AllocationSite::kTransitionInfoOffset)); |
- __ And(kind, kind, AllocationSite::ElementsKindBits::kMask); |
- GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
- |
- __ Bind(&no_info); |
- GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
-} |
- |
- |
-void InternalArrayConstructorStub::GenerateCase( |
- MacroAssembler* masm, ElementsKind kind) { |
- Label zero_case, n_case; |
- Register argc = x0; |
- |
- __ Cbz(argc, &zero_case); |
- __ CompareAndBranch(argc, 1, ne, &n_case); |
- |
- // One argument. |
- if (IsFastPackedElementsKind(kind)) { |
- Label packed_case; |
- |
- // We might need to create a holey array; look at the first argument. |
- __ Peek(x10, 0); |
- __ Cbz(x10, &packed_case); |
- |
- InternalArraySingleArgumentConstructorStub |
- stub1_holey(GetHoleyElementsKind(kind)); |
- __ TailCallStub(&stub1_holey); |
- |
- __ Bind(&packed_case); |
- } |
- InternalArraySingleArgumentConstructorStub stub1(kind); |
- __ TailCallStub(&stub1); |
- |
- __ Bind(&zero_case); |
- // No arguments. |
- InternalArrayNoArgumentConstructorStub stub0(kind); |
- __ TailCallStub(&stub0); |
- |
- __ Bind(&n_case); |
- // N arguments. |
- InternalArrayNArgumentsConstructorStub stubN(kind); |
- __ TailCallStub(&stubN); |
-} |
- |
- |
-void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- x0 : argc |
- // -- x1 : constructor |
- // -- sp[0] : return address |
- // -- sp[4] : last argument |
- // ----------------------------------- |
- Handle<Object> undefined_sentinel( |
- masm->isolate()->heap()->undefined_value(), masm->isolate()); |
- |
- Register constructor = x1; |
- |
- if (FLAG_debug_code) { |
- // The array construct code is only set for the global and natives |
- // builtin Array functions which always have maps. |
- |
- Label unexpected_map, map_ok; |
- // Initial map for the builtin Array function should be a map. |
- __ Ldr(x10, FieldMemOperand(constructor, |
- JSFunction::kPrototypeOrInitialMapOffset)); |
- // Will both indicate a NULL and a Smi. |
- __ JumpIfSmi(x10, &unexpected_map); |
- __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); |
- __ Bind(&unexpected_map); |
- __ Abort(kUnexpectedInitialMapForArrayFunction); |
- __ Bind(&map_ok); |
- } |
- |
- Register kind = w3; |
- // Figure out the right elements kind |
- __ Ldr(x10, FieldMemOperand(constructor, |
- JSFunction::kPrototypeOrInitialMapOffset)); |
- |
- // Retrieve elements_kind from map. |
- __ LoadElementsKindFromMap(kind, x10); |
- |
- if (FLAG_debug_code) { |
- Label done; |
- __ Cmp(x3, FAST_ELEMENTS); |
- __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne); |
- __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
- } |
- |
- Label fast_elements_case; |
- __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case); |
- GenerateCase(masm, FAST_HOLEY_ELEMENTS); |
- |
- __ Bind(&fast_elements_case); |
- GenerateCase(masm, FAST_ELEMENTS); |
-} |
- |
- |
-void CallApiFunctionStub::Generate(MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- x0 : callee |
- // -- x4 : call_data |
- // -- x2 : holder |
- // -- x1 : api_function_address |
- // -- cp : context |
- // -- |
- // -- sp[0] : last argument |
- // -- ... |
- // -- sp[(argc - 1) * 8] : first argument |
- // -- sp[argc * 8] : receiver |
- // ----------------------------------- |
- |
- Register callee = x0; |
- Register call_data = x4; |
- Register holder = x2; |
- Register api_function_address = x1; |
- Register context = cp; |
- |
- int argc = ArgumentBits::decode(bit_field_); |
- bool is_store = IsStoreBits::decode(bit_field_); |
- bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); |
- |
- typedef FunctionCallbackArguments FCA; |
- |
- STATIC_ASSERT(FCA::kContextSaveIndex == 6); |
- STATIC_ASSERT(FCA::kCalleeIndex == 5); |
- STATIC_ASSERT(FCA::kDataIndex == 4); |
- STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
- STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
- STATIC_ASSERT(FCA::kIsolateIndex == 1); |
- STATIC_ASSERT(FCA::kHolderIndex == 0); |
- STATIC_ASSERT(FCA::kArgsLength == 7); |
- |
- Isolate* isolate = masm->isolate(); |
- |
- // FunctionCallbackArguments: context, callee and call data. |
- __ Push(context, callee, call_data); |
- |
- // Load context from callee |
- __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); |
- |
- if (!call_data_undefined) { |
- __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); |
- } |
- Register isolate_reg = x5; |
- __ Mov(isolate_reg, ExternalReference::isolate_address(isolate)); |
- |
- // FunctionCallbackArguments: |
- // return value, return value default, isolate, holder. |
- __ Push(call_data, call_data, isolate_reg, holder); |
- |
- // Prepare arguments. |
- Register args = x6; |
- __ Mov(args, masm->StackPointer()); |
- |
- // Allocate the v8::Arguments structure in the arguments' space, since it's |
- // not controlled by GC. |
- const int kApiStackSpace = 4; |
- |
- // Allocate space for CallApiFunctionAndReturn can store some scratch |
- // registeres on the stack. |
- const int kCallApiFunctionSpillSpace = 4; |
- |
- FrameScope frame_scope(masm, StackFrame::MANUAL); |
- __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
- |
- ASSERT(!AreAliased(x0, api_function_address)); |
- // x0 = FunctionCallbackInfo& |
- // Arguments is after the return address. |
- __ Add(x0, masm->StackPointer(), 1 * kPointerSize); |
- // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_ |
- __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); |
- __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize)); |
- // FunctionCallbackInfo::length_ = argc and |
- // FunctionCallbackInfo::is_construct_call = 0 |
- __ Mov(x10, argc); |
- __ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize)); |
- |
- const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; |
- Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); |
- ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; |
- ApiFunction thunk_fun(thunk_address); |
- ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, |
- masm->isolate()); |
- |
- AllowExternalCallThatCantCauseGC scope(masm); |
- MemOperand context_restore_operand( |
- fp, (2 + FCA::kContextSaveIndex) * kPointerSize); |
- // Stores return the first js argument |
- int return_value_offset = 0; |
- if (is_store) { |
- return_value_offset = 2 + FCA::kArgsLength; |
- } else { |
- return_value_offset = 2 + FCA::kReturnValueOffset; |
- } |
- MemOperand return_value_operand(fp, return_value_offset * kPointerSize); |
- |
- const int spill_offset = 1 + kApiStackSpace; |
- __ CallApiFunctionAndReturn(api_function_address, |
- thunk_ref, |
- kStackUnwindSpace, |
- spill_offset, |
- return_value_operand, |
- &context_restore_operand); |
-} |
- |
- |
-void CallApiGetterStub::Generate(MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- sp[0] : name |
- // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object |
- // -- ... |
- // -- x2 : api_function_address |
- // ----------------------------------- |
- |
- Register api_function_address = x2; |
- |
- __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name> |
- __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA |
- |
- const int kApiStackSpace = 1; |
- |
- // Allocate space for CallApiFunctionAndReturn can store some scratch |
- // registeres on the stack. |
- const int kCallApiFunctionSpillSpace = 4; |
- |
- FrameScope frame_scope(masm, StackFrame::MANUAL); |
- __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); |
- |
- // Create PropertyAccessorInfo instance on the stack above the exit frame with |
- // x1 (internal::Object** args_) as the data. |
- __ Poke(x1, 1 * kPointerSize); |
- __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo& |
- |
- const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
- |
- Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); |
- ExternalReference::Type thunk_type = |
- ExternalReference::PROFILING_GETTER_CALL; |
- ApiFunction thunk_fun(thunk_address); |
- ExternalReference thunk_ref = ExternalReference(&thunk_fun, thunk_type, |
- masm->isolate()); |
- |
- const int spill_offset = 1 + kApiStackSpace; |
- __ CallApiFunctionAndReturn(api_function_address, |
- thunk_ref, |
- kStackUnwindSpace, |
- spill_offset, |
- MemOperand(fp, 6 * kPointerSize), |
- NULL); |
-} |
- |
- |
-#undef __ |
- |
-} } // namespace v8::internal |
- |
-#endif // V8_TARGET_ARCH_A64 |