OLD | NEW |
| (Empty) |
1 // Copyright 2013 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #include "v8.h" | |
29 | |
30 #if V8_TARGET_ARCH_A64 | |
31 | |
32 #include "cpu-profiler.h" | |
33 #include "unicode.h" | |
34 #include "log.h" | |
35 #include "code-stubs.h" | |
36 #include "regexp-stack.h" | |
37 #include "macro-assembler.h" | |
38 #include "regexp-macro-assembler.h" | |
39 #include "a64/regexp-macro-assembler-a64.h" | |
40 | |
41 namespace v8 { | |
42 namespace internal { | |
43 | |
44 #ifndef V8_INTERPRETED_REGEXP | |
45 /* | |
46 * This assembler uses the following register assignment convention: | |
47 * - w19 : Used to temporarely store a value before a call to C code. | |
48 * See CheckNotBackReferenceIgnoreCase. | |
49 * - x20 : Pointer to the current code object (Code*), | |
50 * it includes the heap object tag. | |
51 * - w21 : Current position in input, as negative offset from | |
52 * the end of the string. Please notice that this is | |
53 * the byte offset, not the character offset! | |
54 * - w22 : Currently loaded character. Must be loaded using | |
55 * LoadCurrentCharacter before using any of the dispatch methods. | |
56 * - x23 : Points to tip of backtrack stack. | |
57 * - w24 : Position of the first character minus one: non_position_value. | |
58 * Used to initialize capture registers. | |
59 * - x25 : Address at the end of the input string: input_end. | |
60 * Points to byte after last character in input. | |
61 * - x26 : Address at the start of the input string: input_start. | |
62 * - w27 : Where to start in the input string. | |
63 * - x28 : Output array pointer. | |
64 * - x29/fp : Frame pointer. Used to access arguments, local variables and | |
65 * RegExp registers. | |
66 * - x16/x17 : IP registers, used by assembler. Very volatile. | |
67 * - csp : Points to tip of C stack. | |
68 * | |
69 * - x0-x7 : Used as a cache to store 32 bit capture registers. These | |
70 * registers need to be retained every time a call to C code | |
71 * is done. | |
72 * | |
73 * The remaining registers are free for computations. | |
74 * Each call to a public method should retain this convention. | |
75 * | |
76 * The stack will have the following structure: | |
77 * | |
78 * Location Name Description | |
79 * (as referred to in | |
80 * the code) | |
81 * | |
82 * - fp[104] isolate Address of the current isolate. | |
83 * - fp[96] return_address Secondary link/return address | |
84 * used by an exit frame if this is a | |
85 * native call. | |
86 * ^^^ csp when called ^^^ | |
87 * - fp[88] lr Return from the RegExp code. | |
88 * - fp[80] r29 Old frame pointer (CalleeSaved). | |
89 * - fp[0..72] r19-r28 Backup of CalleeSaved registers. | |
90 * - fp[-8] direct_call 1 => Direct call from JavaScript code. | |
91 * 0 => Call through the runtime system. | |
92 * - fp[-16] stack_base High end of the memory area to use as | |
93 * the backtracking stack. | |
94 * - fp[-24] output_size Output may fit multiple sets of matches. | |
95 * - fp[-32] input Handle containing the input string. | |
96 * - fp[-40] success_counter | |
97 * ^^^^^^^^^^^^^ From here and downwards we store 32 bit values ^^^^^^^^^^^^^ | |
98 * - fp[-44] register N Capture registers initialized with | |
99 * - fp[-48] register N + 1 non_position_value. | |
100 * ... The first kNumCachedRegisters (N) registers | |
101 * ... are cached in x0 to x7. | |
102 * ... Only positions must be stored in the first | |
103 * - ... num_saved_registers_ registers. | |
104 * - ... | |
105 * - register N + num_registers - 1 | |
106 * ^^^^^^^^^ csp ^^^^^^^^^ | |
107 * | |
108 * The first num_saved_registers_ registers are initialized to point to | |
109 * "character -1" in the string (i.e., char_size() bytes before the first | |
110 * character of the string). The remaining registers start out as garbage. | |
111 * | |
112 * The data up to the return address must be placed there by the calling | |
113 * code and the remaining arguments are passed in registers, e.g. by calling the | |
114 * code entry as cast to a function with the signature: | |
115 * int (*match)(String* input, | |
116 * int start_offset, | |
117 * Address input_start, | |
118 * Address input_end, | |
119 * int* output, | |
120 * int output_size, | |
121 * Address stack_base, | |
122 * bool direct_call = false, | |
123 * Address secondary_return_address, // Only used by native call. | |
124 * Isolate* isolate) | |
125 * The call is performed by NativeRegExpMacroAssembler::Execute() | |
126 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro | |
127 * in a64/simulator-a64.h. | |
128 * When calling as a non-direct call (i.e., from C++ code), the return address | |
129 * area is overwritten with the LR register by the RegExp code. When doing a | |
130 * direct call from generated code, the return address is placed there by | |
131 * the calling code, as in a normal exit frame. | |
132 */ | |
133 | |
134 #define __ ACCESS_MASM(masm_) | |
135 | |
136 RegExpMacroAssemblerA64::RegExpMacroAssemblerA64( | |
137 Mode mode, | |
138 int registers_to_save, | |
139 Zone* zone) | |
140 : NativeRegExpMacroAssembler(zone), | |
141 masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)), | |
142 mode_(mode), | |
143 num_registers_(registers_to_save), | |
144 num_saved_registers_(registers_to_save), | |
145 entry_label_(), | |
146 start_label_(), | |
147 success_label_(), | |
148 backtrack_label_(), | |
149 exit_label_() { | |
150 __ SetStackPointer(csp); | |
151 ASSERT_EQ(0, registers_to_save % 2); | |
152 // We can cache at most 16 W registers in x0-x7. | |
153 STATIC_ASSERT(kNumCachedRegisters <= 16); | |
154 STATIC_ASSERT((kNumCachedRegisters % 2) == 0); | |
155 __ B(&entry_label_); // We'll write the entry code later. | |
156 __ Bind(&start_label_); // And then continue from here. | |
157 } | |
158 | |
159 | |
160 RegExpMacroAssemblerA64::~RegExpMacroAssemblerA64() { | |
161 delete masm_; | |
162 // Unuse labels in case we throw away the assembler without calling GetCode. | |
163 entry_label_.Unuse(); | |
164 start_label_.Unuse(); | |
165 success_label_.Unuse(); | |
166 backtrack_label_.Unuse(); | |
167 exit_label_.Unuse(); | |
168 check_preempt_label_.Unuse(); | |
169 stack_overflow_label_.Unuse(); | |
170 } | |
171 | |
172 int RegExpMacroAssemblerA64::stack_limit_slack() { | |
173 return RegExpStack::kStackLimitSlack; | |
174 } | |
175 | |
176 | |
177 void RegExpMacroAssemblerA64::AdvanceCurrentPosition(int by) { | |
178 if (by != 0) { | |
179 __ Add(current_input_offset(), | |
180 current_input_offset(), by * char_size()); | |
181 } | |
182 } | |
183 | |
184 | |
185 void RegExpMacroAssemblerA64::AdvanceRegister(int reg, int by) { | |
186 ASSERT((reg >= 0) && (reg < num_registers_)); | |
187 if (by != 0) { | |
188 Register to_advance; | |
189 RegisterState register_state = GetRegisterState(reg); | |
190 switch (register_state) { | |
191 case STACKED: | |
192 __ Ldr(w10, register_location(reg)); | |
193 __ Add(w10, w10, by); | |
194 __ Str(w10, register_location(reg)); | |
195 break; | |
196 case CACHED_LSW: | |
197 to_advance = GetCachedRegister(reg); | |
198 __ Add(to_advance, to_advance, by); | |
199 break; | |
200 case CACHED_MSW: | |
201 to_advance = GetCachedRegister(reg); | |
202 __ Add(to_advance, to_advance, | |
203 static_cast<int64_t>(by) << kWRegSizeInBits); | |
204 break; | |
205 default: | |
206 UNREACHABLE(); | |
207 break; | |
208 } | |
209 } | |
210 } | |
211 | |
212 | |
213 void RegExpMacroAssemblerA64::Backtrack() { | |
214 CheckPreemption(); | |
215 Pop(w10); | |
216 __ Add(x10, code_pointer(), Operand(w10, UXTW)); | |
217 __ Br(x10); | |
218 } | |
219 | |
220 | |
221 void RegExpMacroAssemblerA64::Bind(Label* label) { | |
222 __ Bind(label); | |
223 } | |
224 | |
225 | |
226 void RegExpMacroAssemblerA64::CheckCharacter(uint32_t c, Label* on_equal) { | |
227 CompareAndBranchOrBacktrack(current_character(), c, eq, on_equal); | |
228 } | |
229 | |
230 | |
231 void RegExpMacroAssemblerA64::CheckCharacterGT(uc16 limit, Label* on_greater) { | |
232 CompareAndBranchOrBacktrack(current_character(), limit, hi, on_greater); | |
233 } | |
234 | |
235 | |
236 void RegExpMacroAssemblerA64::CheckAtStart(Label* on_at_start) { | |
237 Label not_at_start; | |
238 // Did we start the match at the start of the input string? | |
239 CompareAndBranchOrBacktrack(start_offset(), 0, ne, ¬_at_start); | |
240 // If we did, are we still at the start of the input string? | |
241 __ Add(x10, input_end(), Operand(current_input_offset(), SXTW)); | |
242 __ Cmp(x10, input_start()); | |
243 BranchOrBacktrack(eq, on_at_start); | |
244 __ Bind(¬_at_start); | |
245 } | |
246 | |
247 | |
248 void RegExpMacroAssemblerA64::CheckNotAtStart(Label* on_not_at_start) { | |
249 // Did we start the match at the start of the input string? | |
250 CompareAndBranchOrBacktrack(start_offset(), 0, ne, on_not_at_start); | |
251 // If we did, are we still at the start of the input string? | |
252 __ Add(x10, input_end(), Operand(current_input_offset(), SXTW)); | |
253 __ Cmp(x10, input_start()); | |
254 BranchOrBacktrack(ne, on_not_at_start); | |
255 } | |
256 | |
257 | |
258 void RegExpMacroAssemblerA64::CheckCharacterLT(uc16 limit, Label* on_less) { | |
259 CompareAndBranchOrBacktrack(current_character(), limit, lo, on_less); | |
260 } | |
261 | |
262 | |
263 void RegExpMacroAssemblerA64::CheckCharacters(Vector<const uc16> str, | |
264 int cp_offset, | |
265 Label* on_failure, | |
266 bool check_end_of_string) { | |
267 // This method is only ever called from the cctests. | |
268 | |
269 if (check_end_of_string) { | |
270 // Is last character of required match inside string. | |
271 CheckPosition(cp_offset + str.length() - 1, on_failure); | |
272 } | |
273 | |
274 Register characters_address = x11; | |
275 | |
276 __ Add(characters_address, | |
277 input_end(), | |
278 Operand(current_input_offset(), SXTW)); | |
279 if (cp_offset != 0) { | |
280 __ Add(characters_address, characters_address, cp_offset * char_size()); | |
281 } | |
282 | |
283 for (int i = 0; i < str.length(); i++) { | |
284 if (mode_ == ASCII) { | |
285 __ Ldrb(w10, MemOperand(characters_address, 1, PostIndex)); | |
286 ASSERT(str[i] <= String::kMaxOneByteCharCode); | |
287 } else { | |
288 __ Ldrh(w10, MemOperand(characters_address, 2, PostIndex)); | |
289 } | |
290 CompareAndBranchOrBacktrack(w10, str[i], ne, on_failure); | |
291 } | |
292 } | |
293 | |
294 | |
295 void RegExpMacroAssemblerA64::CheckGreedyLoop(Label* on_equal) { | |
296 __ Ldr(w10, MemOperand(backtrack_stackpointer())); | |
297 __ Cmp(current_input_offset(), w10); | |
298 __ Cset(x11, eq); | |
299 __ Add(backtrack_stackpointer(), | |
300 backtrack_stackpointer(), Operand(x11, LSL, kWRegSizeLog2)); | |
301 BranchOrBacktrack(eq, on_equal); | |
302 } | |
303 | |
304 void RegExpMacroAssemblerA64::CheckNotBackReferenceIgnoreCase( | |
305 int start_reg, | |
306 Label* on_no_match) { | |
307 Label fallthrough; | |
308 | |
309 Register capture_start_offset = w10; | |
310 // Save the capture length in a callee-saved register so it will | |
311 // be preserved if we call a C helper. | |
312 Register capture_length = w19; | |
313 ASSERT(kCalleeSaved.IncludesAliasOf(capture_length)); | |
314 | |
315 // Find length of back-referenced capture. | |
316 ASSERT((start_reg % 2) == 0); | |
317 if (start_reg < kNumCachedRegisters) { | |
318 __ Mov(capture_start_offset.X(), GetCachedRegister(start_reg)); | |
319 __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits); | |
320 } else { | |
321 __ Ldp(w11, capture_start_offset, capture_location(start_reg, x10)); | |
322 } | |
323 __ Sub(capture_length, w11, capture_start_offset); // Length to check. | |
324 // Succeed on empty capture (including no capture). | |
325 __ Cbz(capture_length, &fallthrough); | |
326 | |
327 // Check that there are enough characters left in the input. | |
328 __ Cmn(capture_length, current_input_offset()); | |
329 BranchOrBacktrack(gt, on_no_match); | |
330 | |
331 if (mode_ == ASCII) { | |
332 Label success; | |
333 Label fail; | |
334 Label loop_check; | |
335 | |
336 Register capture_start_address = x12; | |
337 Register capture_end_addresss = x13; | |
338 Register current_position_address = x14; | |
339 | |
340 __ Add(capture_start_address, | |
341 input_end(), | |
342 Operand(capture_start_offset, SXTW)); | |
343 __ Add(capture_end_addresss, | |
344 capture_start_address, | |
345 Operand(capture_length, SXTW)); | |
346 __ Add(current_position_address, | |
347 input_end(), | |
348 Operand(current_input_offset(), SXTW)); | |
349 | |
350 Label loop; | |
351 __ Bind(&loop); | |
352 __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex)); | |
353 __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex)); | |
354 __ Cmp(w10, w11); | |
355 __ B(eq, &loop_check); | |
356 | |
357 // Mismatch, try case-insensitive match (converting letters to lower-case). | |
358 __ Orr(w10, w10, 0x20); // Convert capture character to lower-case. | |
359 __ Orr(w11, w11, 0x20); // Also convert input character. | |
360 __ Cmp(w11, w10); | |
361 __ B(ne, &fail); | |
362 __ Sub(w10, w10, 'a'); | |
363 __ Cmp(w10, 'z' - 'a'); // Is w10 a lowercase letter? | |
364 __ B(ls, &loop_check); // In range 'a'-'z'. | |
365 // Latin-1: Check for values in range [224,254] but not 247. | |
366 __ Sub(w10, w10, 224 - 'a'); | |
367 __ Cmp(w10, 254 - 224); | |
368 __ Ccmp(w10, 247 - 224, ZFlag, ls); // Check for 247. | |
369 __ B(eq, &fail); // Weren't Latin-1 letters. | |
370 | |
371 __ Bind(&loop_check); | |
372 __ Cmp(capture_start_address, capture_end_addresss); | |
373 __ B(lt, &loop); | |
374 __ B(&success); | |
375 | |
376 __ Bind(&fail); | |
377 BranchOrBacktrack(al, on_no_match); | |
378 | |
379 __ Bind(&success); | |
380 // Compute new value of character position after the matched part. | |
381 __ Sub(current_input_offset().X(), current_position_address, input_end()); | |
382 if (masm_->emit_debug_code()) { | |
383 __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW)); | |
384 __ Ccmp(current_input_offset(), 0, NoFlag, eq); | |
385 // The current input offset should be <= 0, and fit in a W register. | |
386 __ Check(le, kOffsetOutOfRange); | |
387 } | |
388 } else { | |
389 ASSERT(mode_ == UC16); | |
390 int argument_count = 4; | |
391 | |
392 // The cached registers need to be retained. | |
393 CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7); | |
394 ASSERT((cached_registers.Count() * 2) == kNumCachedRegisters); | |
395 __ PushCPURegList(cached_registers); | |
396 | |
397 // Put arguments into arguments registers. | |
398 // Parameters are | |
399 // x0: Address byte_offset1 - Address captured substring's start. | |
400 // x1: Address byte_offset2 - Address of current character position. | |
401 // w2: size_t byte_length - length of capture in bytes(!) | |
402 // x3: Isolate* isolate | |
403 | |
404 // Address of start of capture. | |
405 __ Add(x0, input_end(), Operand(capture_start_offset, SXTW)); | |
406 // Length of capture. | |
407 __ Mov(w2, capture_length); | |
408 // Address of current input position. | |
409 __ Add(x1, input_end(), Operand(current_input_offset(), SXTW)); | |
410 // Isolate. | |
411 __ Mov(x3, ExternalReference::isolate_address(isolate())); | |
412 | |
413 { | |
414 AllowExternalCallThatCantCauseGC scope(masm_); | |
415 ExternalReference function = | |
416 ExternalReference::re_case_insensitive_compare_uc16(isolate()); | |
417 __ CallCFunction(function, argument_count); | |
418 } | |
419 | |
420 // Check if function returned non-zero for success or zero for failure. | |
421 CompareAndBranchOrBacktrack(x0, 0, eq, on_no_match); | |
422 // On success, increment position by length of capture. | |
423 __ Add(current_input_offset(), current_input_offset(), capture_length); | |
424 // Reset the cached registers. | |
425 __ PopCPURegList(cached_registers); | |
426 } | |
427 | |
428 __ Bind(&fallthrough); | |
429 } | |
430 | |
431 void RegExpMacroAssemblerA64::CheckNotBackReference( | |
432 int start_reg, | |
433 Label* on_no_match) { | |
434 Label fallthrough; | |
435 | |
436 Register capture_start_address = x12; | |
437 Register capture_end_address = x13; | |
438 Register current_position_address = x14; | |
439 Register capture_length = w15; | |
440 | |
441 // Find length of back-referenced capture. | |
442 ASSERT((start_reg % 2) == 0); | |
443 if (start_reg < kNumCachedRegisters) { | |
444 __ Mov(x10, GetCachedRegister(start_reg)); | |
445 __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits); | |
446 } else { | |
447 __ Ldp(w11, w10, capture_location(start_reg, x10)); | |
448 } | |
449 __ Sub(capture_length, w11, w10); // Length to check. | |
450 // Succeed on empty capture (including no capture). | |
451 __ Cbz(capture_length, &fallthrough); | |
452 | |
453 // Check that there are enough characters left in the input. | |
454 __ Cmn(capture_length, current_input_offset()); | |
455 BranchOrBacktrack(gt, on_no_match); | |
456 | |
457 // Compute pointers to match string and capture string | |
458 __ Add(capture_start_address, input_end(), Operand(w10, SXTW)); | |
459 __ Add(capture_end_address, | |
460 capture_start_address, | |
461 Operand(capture_length, SXTW)); | |
462 __ Add(current_position_address, | |
463 input_end(), | |
464 Operand(current_input_offset(), SXTW)); | |
465 | |
466 Label loop; | |
467 __ Bind(&loop); | |
468 if (mode_ == ASCII) { | |
469 __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex)); | |
470 __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex)); | |
471 } else { | |
472 ASSERT(mode_ == UC16); | |
473 __ Ldrh(w10, MemOperand(capture_start_address, 2, PostIndex)); | |
474 __ Ldrh(w11, MemOperand(current_position_address, 2, PostIndex)); | |
475 } | |
476 __ Cmp(w10, w11); | |
477 BranchOrBacktrack(ne, on_no_match); | |
478 __ Cmp(capture_start_address, capture_end_address); | |
479 __ B(lt, &loop); | |
480 | |
481 // Move current character position to position after match. | |
482 __ Sub(current_input_offset().X(), current_position_address, input_end()); | |
483 if (masm_->emit_debug_code()) { | |
484 __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW)); | |
485 __ Ccmp(current_input_offset(), 0, NoFlag, eq); | |
486 // The current input offset should be <= 0, and fit in a W register. | |
487 __ Check(le, kOffsetOutOfRange); | |
488 } | |
489 __ Bind(&fallthrough); | |
490 } | |
491 | |
492 | |
493 void RegExpMacroAssemblerA64::CheckNotCharacter(unsigned c, | |
494 Label* on_not_equal) { | |
495 CompareAndBranchOrBacktrack(current_character(), c, ne, on_not_equal); | |
496 } | |
497 | |
498 | |
499 void RegExpMacroAssemblerA64::CheckCharacterAfterAnd(uint32_t c, | |
500 uint32_t mask, | |
501 Label* on_equal) { | |
502 __ And(w10, current_character(), mask); | |
503 CompareAndBranchOrBacktrack(w10, c, eq, on_equal); | |
504 } | |
505 | |
506 | |
507 void RegExpMacroAssemblerA64::CheckNotCharacterAfterAnd(unsigned c, | |
508 unsigned mask, | |
509 Label* on_not_equal) { | |
510 __ And(w10, current_character(), mask); | |
511 CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal); | |
512 } | |
513 | |
514 | |
515 void RegExpMacroAssemblerA64::CheckNotCharacterAfterMinusAnd( | |
516 uc16 c, | |
517 uc16 minus, | |
518 uc16 mask, | |
519 Label* on_not_equal) { | |
520 ASSERT(minus < String::kMaxUtf16CodeUnit); | |
521 __ Sub(w10, current_character(), minus); | |
522 __ And(w10, w10, mask); | |
523 CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal); | |
524 } | |
525 | |
526 | |
527 void RegExpMacroAssemblerA64::CheckCharacterInRange( | |
528 uc16 from, | |
529 uc16 to, | |
530 Label* on_in_range) { | |
531 __ Sub(w10, current_character(), from); | |
532 // Unsigned lower-or-same condition. | |
533 CompareAndBranchOrBacktrack(w10, to - from, ls, on_in_range); | |
534 } | |
535 | |
536 | |
537 void RegExpMacroAssemblerA64::CheckCharacterNotInRange( | |
538 uc16 from, | |
539 uc16 to, | |
540 Label* on_not_in_range) { | |
541 __ Sub(w10, current_character(), from); | |
542 // Unsigned higher condition. | |
543 CompareAndBranchOrBacktrack(w10, to - from, hi, on_not_in_range); | |
544 } | |
545 | |
546 | |
547 void RegExpMacroAssemblerA64::CheckBitInTable( | |
548 Handle<ByteArray> table, | |
549 Label* on_bit_set) { | |
550 __ Mov(x11, Operand(table)); | |
551 if ((mode_ != ASCII) || (kTableMask != String::kMaxOneByteCharCode)) { | |
552 __ And(w10, current_character(), kTableMask); | |
553 __ Add(w10, w10, ByteArray::kHeaderSize - kHeapObjectTag); | |
554 } else { | |
555 __ Add(w10, current_character(), ByteArray::kHeaderSize - kHeapObjectTag); | |
556 } | |
557 __ Ldrb(w11, MemOperand(x11, w10, UXTW)); | |
558 CompareAndBranchOrBacktrack(w11, 0, ne, on_bit_set); | |
559 } | |
560 | |
561 | |
562 bool RegExpMacroAssemblerA64::CheckSpecialCharacterClass(uc16 type, | |
563 Label* on_no_match) { | |
564 // Range checks (c in min..max) are generally implemented by an unsigned | |
565 // (c - min) <= (max - min) check | |
566 switch (type) { | |
567 case 's': | |
568 // Match space-characters | |
569 if (mode_ == ASCII) { | |
570 // One byte space characters are '\t'..'\r', ' ' and \u00a0. | |
571 Label success; | |
572 // Check for ' ' or 0x00a0. | |
573 __ Cmp(current_character(), ' '); | |
574 __ Ccmp(current_character(), 0x00a0, ZFlag, ne); | |
575 __ B(eq, &success); | |
576 // Check range 0x09..0x0d. | |
577 __ Sub(w10, current_character(), '\t'); | |
578 CompareAndBranchOrBacktrack(w10, '\r' - '\t', hi, on_no_match); | |
579 __ Bind(&success); | |
580 return true; | |
581 } | |
582 return false; | |
583 case 'S': | |
584 // The emitted code for generic character classes is good enough. | |
585 return false; | |
586 case 'd': | |
587 // Match ASCII digits ('0'..'9'). | |
588 __ Sub(w10, current_character(), '0'); | |
589 CompareAndBranchOrBacktrack(w10, '9' - '0', hi, on_no_match); | |
590 return true; | |
591 case 'D': | |
592 // Match ASCII non-digits. | |
593 __ Sub(w10, current_character(), '0'); | |
594 CompareAndBranchOrBacktrack(w10, '9' - '0', ls, on_no_match); | |
595 return true; | |
596 case '.': { | |
597 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) | |
598 // Here we emit the conditional branch only once at the end to make branch | |
599 // prediction more efficient, even though we could branch out of here | |
600 // as soon as a character matches. | |
601 __ Cmp(current_character(), 0x0a); | |
602 __ Ccmp(current_character(), 0x0d, ZFlag, ne); | |
603 if (mode_ == UC16) { | |
604 __ Sub(w10, current_character(), 0x2028); | |
605 // If the Z flag was set we clear the flags to force a branch. | |
606 __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne); | |
607 // ls -> !((C==1) && (Z==0)) | |
608 BranchOrBacktrack(ls, on_no_match); | |
609 } else { | |
610 BranchOrBacktrack(eq, on_no_match); | |
611 } | |
612 return true; | |
613 } | |
614 case 'n': { | |
615 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) | |
616 // We have to check all 4 newline characters before emitting | |
617 // the conditional branch. | |
618 __ Cmp(current_character(), 0x0a); | |
619 __ Ccmp(current_character(), 0x0d, ZFlag, ne); | |
620 if (mode_ == UC16) { | |
621 __ Sub(w10, current_character(), 0x2028); | |
622 // If the Z flag was set we clear the flags to force a fall-through. | |
623 __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne); | |
624 // hi -> (C==1) && (Z==0) | |
625 BranchOrBacktrack(hi, on_no_match); | |
626 } else { | |
627 BranchOrBacktrack(ne, on_no_match); | |
628 } | |
629 return true; | |
630 } | |
631 case 'w': { | |
632 if (mode_ != ASCII) { | |
633 // Table is 128 entries, so all ASCII characters can be tested. | |
634 CompareAndBranchOrBacktrack(current_character(), 'z', hi, on_no_match); | |
635 } | |
636 ExternalReference map = ExternalReference::re_word_character_map(); | |
637 __ Mov(x10, map); | |
638 __ Ldrb(w10, MemOperand(x10, current_character(), UXTW)); | |
639 CompareAndBranchOrBacktrack(w10, 0, eq, on_no_match); | |
640 return true; | |
641 } | |
642 case 'W': { | |
643 Label done; | |
644 if (mode_ != ASCII) { | |
645 // Table is 128 entries, so all ASCII characters can be tested. | |
646 __ Cmp(current_character(), 'z'); | |
647 __ B(hi, &done); | |
648 } | |
649 ExternalReference map = ExternalReference::re_word_character_map(); | |
650 __ Mov(x10, map); | |
651 __ Ldrb(w10, MemOperand(x10, current_character(), UXTW)); | |
652 CompareAndBranchOrBacktrack(w10, 0, ne, on_no_match); | |
653 __ Bind(&done); | |
654 return true; | |
655 } | |
656 case '*': | |
657 // Match any character. | |
658 return true; | |
659 // No custom implementation (yet): s(UC16), S(UC16). | |
660 default: | |
661 return false; | |
662 } | |
663 } | |
664 | |
665 | |
666 void RegExpMacroAssemblerA64::Fail() { | |
667 __ Mov(w0, FAILURE); | |
668 __ B(&exit_label_); | |
669 } | |
670 | |
671 | |
672 Handle<HeapObject> RegExpMacroAssemblerA64::GetCode(Handle<String> source) { | |
673 Label return_w0; | |
674 // Finalize code - write the entry point code now we know how many | |
675 // registers we need. | |
676 | |
677 // Entry code: | |
678 __ Bind(&entry_label_); | |
679 | |
680 // Arguments on entry: | |
681 // x0: String* input | |
682 // x1: int start_offset | |
683 // x2: byte* input_start | |
684 // x3: byte* input_end | |
685 // x4: int* output array | |
686 // x5: int output array size | |
687 // x6: Address stack_base | |
688 // x7: int direct_call | |
689 | |
690 // The stack pointer should be csp on entry. | |
691 // csp[8]: address of the current isolate | |
692 // csp[0]: secondary link/return address used by native call | |
693 | |
694 // Tell the system that we have a stack frame. Because the type is MANUAL, no | |
695 // code is generated. | |
696 FrameScope scope(masm_, StackFrame::MANUAL); | |
697 | |
698 // Push registers on the stack, only push the argument registers that we need. | |
699 CPURegList argument_registers(x0, x5, x6, x7); | |
700 | |
701 CPURegList registers_to_retain = kCalleeSaved; | |
702 ASSERT(kCalleeSaved.Count() == 11); | |
703 registers_to_retain.Combine(lr); | |
704 | |
705 ASSERT(csp.Is(__ StackPointer())); | |
706 __ PushCPURegList(registers_to_retain); | |
707 __ PushCPURegList(argument_registers); | |
708 | |
709 // Set frame pointer in place. | |
710 __ Add(frame_pointer(), csp, argument_registers.Count() * kPointerSize); | |
711 | |
712 // Initialize callee-saved registers. | |
713 __ Mov(start_offset(), w1); | |
714 __ Mov(input_start(), x2); | |
715 __ Mov(input_end(), x3); | |
716 __ Mov(output_array(), x4); | |
717 | |
718 // Set the number of registers we will need to allocate, that is: | |
719 // - success_counter (X register) | |
720 // - (num_registers_ - kNumCachedRegisters) (W registers) | |
721 int num_wreg_to_allocate = num_registers_ - kNumCachedRegisters; | |
722 // Do not allocate registers on the stack if they can all be cached. | |
723 if (num_wreg_to_allocate < 0) { num_wreg_to_allocate = 0; } | |
724 // Make room for the success_counter. | |
725 num_wreg_to_allocate += 2; | |
726 | |
727 // Make sure the stack alignment will be respected. | |
728 int alignment = masm_->ActivationFrameAlignment(); | |
729 ASSERT_EQ(alignment % 16, 0); | |
730 int align_mask = (alignment / kWRegSize) - 1; | |
731 num_wreg_to_allocate = (num_wreg_to_allocate + align_mask) & ~align_mask; | |
732 | |
733 // Check if we have space on the stack. | |
734 Label stack_limit_hit; | |
735 Label stack_ok; | |
736 | |
737 ExternalReference stack_limit = | |
738 ExternalReference::address_of_stack_limit(isolate()); | |
739 __ Mov(x10, stack_limit); | |
740 __ Ldr(x10, MemOperand(x10)); | |
741 __ Subs(x10, csp, x10); | |
742 | |
743 // Handle it if the stack pointer is already below the stack limit. | |
744 __ B(ls, &stack_limit_hit); | |
745 | |
746 // Check if there is room for the variable number of registers above | |
747 // the stack limit. | |
748 __ Cmp(x10, num_wreg_to_allocate * kWRegSize); | |
749 __ B(hs, &stack_ok); | |
750 | |
751 // Exit with OutOfMemory exception. There is not enough space on the stack | |
752 // for our working registers. | |
753 __ Mov(w0, EXCEPTION); | |
754 __ B(&return_w0); | |
755 | |
756 __ Bind(&stack_limit_hit); | |
757 CallCheckStackGuardState(x10); | |
758 // If returned value is non-zero, we exit with the returned value as result. | |
759 __ Cbnz(w0, &return_w0); | |
760 | |
761 __ Bind(&stack_ok); | |
762 | |
763 // Allocate space on stack. | |
764 __ Claim(num_wreg_to_allocate, kWRegSize); | |
765 | |
766 // Initialize success_counter with 0. | |
767 __ Str(wzr, MemOperand(frame_pointer(), kSuccessCounter)); | |
768 | |
769 // Find negative length (offset of start relative to end). | |
770 __ Sub(x10, input_start(), input_end()); | |
771 if (masm_->emit_debug_code()) { | |
772 // Check that the input string length is < 2^30. | |
773 __ Neg(x11, x10); | |
774 __ Cmp(x11, (1<<30) - 1); | |
775 __ Check(ls, kInputStringTooLong); | |
776 } | |
777 __ Mov(current_input_offset(), w10); | |
778 | |
779 // The non-position value is used as a clearing value for the | |
780 // capture registers, it corresponds to the position of the first character | |
781 // minus one. | |
782 __ Sub(non_position_value(), current_input_offset(), char_size()); | |
783 __ Sub(non_position_value(), non_position_value(), | |
784 Operand(start_offset(), LSL, (mode_ == UC16) ? 1 : 0)); | |
785 // We can store this value twice in an X register for initializing | |
786 // on-stack registers later. | |
787 __ Orr(twice_non_position_value(), | |
788 non_position_value().X(), | |
789 Operand(non_position_value().X(), LSL, kWRegSizeInBits)); | |
790 | |
791 // Initialize code pointer register. | |
792 __ Mov(code_pointer(), Operand(masm_->CodeObject())); | |
793 | |
794 Label load_char_start_regexp, start_regexp; | |
795 // Load newline if index is at start, previous character otherwise. | |
796 __ Cbnz(start_offset(), &load_char_start_regexp); | |
797 __ Mov(current_character(), '\n'); | |
798 __ B(&start_regexp); | |
799 | |
800 // Global regexp restarts matching here. | |
801 __ Bind(&load_char_start_regexp); | |
802 // Load previous char as initial value of current character register. | |
803 LoadCurrentCharacterUnchecked(-1, 1); | |
804 __ Bind(&start_regexp); | |
805 // Initialize on-stack registers. | |
806 if (num_saved_registers_ > 0) { | |
807 ClearRegisters(0, num_saved_registers_ - 1); | |
808 } | |
809 | |
810 // Initialize backtrack stack pointer. | |
811 __ Ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackBase)); | |
812 | |
813 // Execute | |
814 __ B(&start_label_); | |
815 | |
816 if (backtrack_label_.is_linked()) { | |
817 __ Bind(&backtrack_label_); | |
818 Backtrack(); | |
819 } | |
820 | |
821 if (success_label_.is_linked()) { | |
822 Register first_capture_start = w15; | |
823 | |
824 // Save captures when successful. | |
825 __ Bind(&success_label_); | |
826 | |
827 if (num_saved_registers_ > 0) { | |
828 // V8 expects the output to be an int32_t array. | |
829 Register capture_start = w12; | |
830 Register capture_end = w13; | |
831 Register input_length = w14; | |
832 | |
833 // Copy captures to output. | |
834 | |
835 // Get string length. | |
836 __ Sub(x10, input_end(), input_start()); | |
837 if (masm_->emit_debug_code()) { | |
838 // Check that the input string length is < 2^30. | |
839 __ Cmp(x10, (1<<30) - 1); | |
840 __ Check(ls, kInputStringTooLong); | |
841 } | |
842 // input_start has a start_offset offset on entry. We need to include | |
843 // it when computing the length of the whole string. | |
844 if (mode_ == UC16) { | |
845 __ Add(input_length, start_offset(), Operand(w10, LSR, 1)); | |
846 } else { | |
847 __ Add(input_length, start_offset(), w10); | |
848 } | |
849 | |
850 // Copy the results to the output array from the cached registers first. | |
851 for (int i = 0; | |
852 (i < num_saved_registers_) && (i < kNumCachedRegisters); | |
853 i += 2) { | |
854 __ Mov(capture_start.X(), GetCachedRegister(i)); | |
855 __ Lsr(capture_end.X(), capture_start.X(), kWRegSizeInBits); | |
856 if ((i == 0) && global_with_zero_length_check()) { | |
857 // Keep capture start for the zero-length check later. | |
858 __ Mov(first_capture_start, capture_start); | |
859 } | |
860 // Offsets need to be relative to the start of the string. | |
861 if (mode_ == UC16) { | |
862 __ Add(capture_start, input_length, Operand(capture_start, ASR, 1)); | |
863 __ Add(capture_end, input_length, Operand(capture_end, ASR, 1)); | |
864 } else { | |
865 __ Add(capture_start, input_length, capture_start); | |
866 __ Add(capture_end, input_length, capture_end); | |
867 } | |
868 // The output pointer advances for a possible global match. | |
869 __ Stp(capture_start, | |
870 capture_end, | |
871 MemOperand(output_array(), kPointerSize, PostIndex)); | |
872 } | |
873 | |
874 // Only carry on if there are more than kNumCachedRegisters capture | |
875 // registers. | |
876 int num_registers_left_on_stack = | |
877 num_saved_registers_ - kNumCachedRegisters; | |
878 if (num_registers_left_on_stack > 0) { | |
879 Register base = x10; | |
880 // There are always an even number of capture registers. A couple of | |
881 // registers determine one match with two offsets. | |
882 ASSERT_EQ(0, num_registers_left_on_stack % 2); | |
883 __ Add(base, frame_pointer(), kFirstCaptureOnStack); | |
884 | |
885 // We can unroll the loop here, we should not unroll for less than 2 | |
886 // registers. | |
887 STATIC_ASSERT(kNumRegistersToUnroll > 2); | |
888 if (num_registers_left_on_stack <= kNumRegistersToUnroll) { | |
889 for (int i = 0; i < num_registers_left_on_stack / 2; i++) { | |
890 __ Ldp(capture_end, | |
891 capture_start, | |
892 MemOperand(base, -kPointerSize, PostIndex)); | |
893 if ((i == 0) && global_with_zero_length_check()) { | |
894 // Keep capture start for the zero-length check later. | |
895 __ Mov(first_capture_start, capture_start); | |
896 } | |
897 // Offsets need to be relative to the start of the string. | |
898 if (mode_ == UC16) { | |
899 __ Add(capture_start, | |
900 input_length, | |
901 Operand(capture_start, ASR, 1)); | |
902 __ Add(capture_end, input_length, Operand(capture_end, ASR, 1)); | |
903 } else { | |
904 __ Add(capture_start, input_length, capture_start); | |
905 __ Add(capture_end, input_length, capture_end); | |
906 } | |
907 // The output pointer advances for a possible global match. | |
908 __ Stp(capture_start, | |
909 capture_end, | |
910 MemOperand(output_array(), kPointerSize, PostIndex)); | |
911 } | |
912 } else { | |
913 Label loop, start; | |
914 __ Mov(x11, num_registers_left_on_stack); | |
915 | |
916 __ Ldp(capture_end, | |
917 capture_start, | |
918 MemOperand(base, -kPointerSize, PostIndex)); | |
919 if (global_with_zero_length_check()) { | |
920 __ Mov(first_capture_start, capture_start); | |
921 } | |
922 __ B(&start); | |
923 | |
924 __ Bind(&loop); | |
925 __ Ldp(capture_end, | |
926 capture_start, | |
927 MemOperand(base, -kPointerSize, PostIndex)); | |
928 __ Bind(&start); | |
929 if (mode_ == UC16) { | |
930 __ Add(capture_start, input_length, Operand(capture_start, ASR, 1)); | |
931 __ Add(capture_end, input_length, Operand(capture_end, ASR, 1)); | |
932 } else { | |
933 __ Add(capture_start, input_length, capture_start); | |
934 __ Add(capture_end, input_length, capture_end); | |
935 } | |
936 // The output pointer advances for a possible global match. | |
937 __ Stp(capture_start, | |
938 capture_end, | |
939 MemOperand(output_array(), kPointerSize, PostIndex)); | |
940 __ Sub(x11, x11, 2); | |
941 __ Cbnz(x11, &loop); | |
942 } | |
943 } | |
944 } | |
945 | |
946 if (global()) { | |
947 Register success_counter = w0; | |
948 Register output_size = x10; | |
949 // Restart matching if the regular expression is flagged as global. | |
950 | |
951 // Increment success counter. | |
952 __ Ldr(success_counter, MemOperand(frame_pointer(), kSuccessCounter)); | |
953 __ Add(success_counter, success_counter, 1); | |
954 __ Str(success_counter, MemOperand(frame_pointer(), kSuccessCounter)); | |
955 | |
956 // Capture results have been stored, so the number of remaining global | |
957 // output registers is reduced by the number of stored captures. | |
958 __ Ldr(output_size, MemOperand(frame_pointer(), kOutputSize)); | |
959 __ Sub(output_size, output_size, num_saved_registers_); | |
960 // Check whether we have enough room for another set of capture results. | |
961 __ Cmp(output_size, num_saved_registers_); | |
962 __ B(lt, &return_w0); | |
963 | |
964 // The output pointer is already set to the next field in the output | |
965 // array. | |
966 // Update output size on the frame before we restart matching. | |
967 __ Str(output_size, MemOperand(frame_pointer(), kOutputSize)); | |
968 | |
969 if (global_with_zero_length_check()) { | |
970 // Special case for zero-length matches. | |
971 __ Cmp(current_input_offset(), first_capture_start); | |
972 // Not a zero-length match, restart. | |
973 __ B(ne, &load_char_start_regexp); | |
974 // Offset from the end is zero if we already reached the end. | |
975 __ Cbz(current_input_offset(), &return_w0); | |
976 // Advance current position after a zero-length match. | |
977 __ Add(current_input_offset(), | |
978 current_input_offset(), | |
979 Operand((mode_ == UC16) ? 2 : 1)); | |
980 } | |
981 | |
982 __ B(&load_char_start_regexp); | |
983 } else { | |
984 __ Mov(w0, SUCCESS); | |
985 } | |
986 } | |
987 | |
988 if (exit_label_.is_linked()) { | |
989 // Exit and return w0 | |
990 __ Bind(&exit_label_); | |
991 if (global()) { | |
992 __ Ldr(w0, MemOperand(frame_pointer(), kSuccessCounter)); | |
993 } | |
994 } | |
995 | |
996 __ Bind(&return_w0); | |
997 | |
998 // Set stack pointer back to first register to retain | |
999 ASSERT(csp.Is(__ StackPointer())); | |
1000 __ Mov(csp, fp); | |
1001 | |
1002 // Restore registers. | |
1003 __ PopCPURegList(registers_to_retain); | |
1004 | |
1005 __ Ret(); | |
1006 | |
1007 Label exit_with_exception; | |
1008 // Registers x0 to x7 are used to store the first captures, they need to be | |
1009 // retained over calls to C++ code. | |
1010 CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7); | |
1011 ASSERT((cached_registers.Count() * 2) == kNumCachedRegisters); | |
1012 | |
1013 if (check_preempt_label_.is_linked()) { | |
1014 __ Bind(&check_preempt_label_); | |
1015 SaveLinkRegister(); | |
1016 // The cached registers need to be retained. | |
1017 __ PushCPURegList(cached_registers); | |
1018 CallCheckStackGuardState(x10); | |
1019 // Returning from the regexp code restores the stack (csp <- fp) | |
1020 // so we don't need to drop the link register from it before exiting. | |
1021 __ Cbnz(w0, &return_w0); | |
1022 // Reset the cached registers. | |
1023 __ PopCPURegList(cached_registers); | |
1024 RestoreLinkRegister(); | |
1025 __ Ret(); | |
1026 } | |
1027 | |
1028 if (stack_overflow_label_.is_linked()) { | |
1029 __ Bind(&stack_overflow_label_); | |
1030 SaveLinkRegister(); | |
1031 // The cached registers need to be retained. | |
1032 __ PushCPURegList(cached_registers); | |
1033 // Call GrowStack(backtrack_stackpointer(), &stack_base) | |
1034 __ Mov(x2, ExternalReference::isolate_address(isolate())); | |
1035 __ Add(x1, frame_pointer(), kStackBase); | |
1036 __ Mov(x0, backtrack_stackpointer()); | |
1037 ExternalReference grow_stack = | |
1038 ExternalReference::re_grow_stack(isolate()); | |
1039 __ CallCFunction(grow_stack, 3); | |
1040 // If return NULL, we have failed to grow the stack, and | |
1041 // must exit with a stack-overflow exception. | |
1042 // Returning from the regexp code restores the stack (csp <- fp) | |
1043 // so we don't need to drop the link register from it before exiting. | |
1044 __ Cbz(w0, &exit_with_exception); | |
1045 // Otherwise use return value as new stack pointer. | |
1046 __ Mov(backtrack_stackpointer(), x0); | |
1047 // Reset the cached registers. | |
1048 __ PopCPURegList(cached_registers); | |
1049 RestoreLinkRegister(); | |
1050 __ Ret(); | |
1051 } | |
1052 | |
1053 if (exit_with_exception.is_linked()) { | |
1054 __ Bind(&exit_with_exception); | |
1055 __ Mov(w0, EXCEPTION); | |
1056 __ B(&return_w0); | |
1057 } | |
1058 | |
1059 CodeDesc code_desc; | |
1060 masm_->GetCode(&code_desc); | |
1061 Handle<Code> code = isolate()->factory()->NewCode( | |
1062 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject()); | |
1063 PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source)); | |
1064 return Handle<HeapObject>::cast(code); | |
1065 } | |
1066 | |
1067 | |
1068 void RegExpMacroAssemblerA64::GoTo(Label* to) { | |
1069 BranchOrBacktrack(al, to); | |
1070 } | |
1071 | |
1072 void RegExpMacroAssemblerA64::IfRegisterGE(int reg, | |
1073 int comparand, | |
1074 Label* if_ge) { | |
1075 Register to_compare = GetRegister(reg, w10); | |
1076 CompareAndBranchOrBacktrack(to_compare, comparand, ge, if_ge); | |
1077 } | |
1078 | |
1079 | |
1080 void RegExpMacroAssemblerA64::IfRegisterLT(int reg, | |
1081 int comparand, | |
1082 Label* if_lt) { | |
1083 Register to_compare = GetRegister(reg, w10); | |
1084 CompareAndBranchOrBacktrack(to_compare, comparand, lt, if_lt); | |
1085 } | |
1086 | |
1087 | |
1088 void RegExpMacroAssemblerA64::IfRegisterEqPos(int reg, | |
1089 Label* if_eq) { | |
1090 Register to_compare = GetRegister(reg, w10); | |
1091 __ Cmp(to_compare, current_input_offset()); | |
1092 BranchOrBacktrack(eq, if_eq); | |
1093 } | |
1094 | |
1095 RegExpMacroAssembler::IrregexpImplementation | |
1096 RegExpMacroAssemblerA64::Implementation() { | |
1097 return kA64Implementation; | |
1098 } | |
1099 | |
1100 | |
1101 void RegExpMacroAssemblerA64::LoadCurrentCharacter(int cp_offset, | |
1102 Label* on_end_of_input, | |
1103 bool check_bounds, | |
1104 int characters) { | |
1105 // TODO(pielan): Make sure long strings are caught before this, and not | |
1106 // just asserted in debug mode. | |
1107 ASSERT(cp_offset >= -1); // ^ and \b can look behind one character. | |
1108 // Be sane! (And ensure that an int32_t can be used to index the string) | |
1109 ASSERT(cp_offset < (1<<30)); | |
1110 if (check_bounds) { | |
1111 CheckPosition(cp_offset + characters - 1, on_end_of_input); | |
1112 } | |
1113 LoadCurrentCharacterUnchecked(cp_offset, characters); | |
1114 } | |
1115 | |
1116 | |
1117 void RegExpMacroAssemblerA64::PopCurrentPosition() { | |
1118 Pop(current_input_offset()); | |
1119 } | |
1120 | |
1121 | |
1122 void RegExpMacroAssemblerA64::PopRegister(int register_index) { | |
1123 Pop(w10); | |
1124 StoreRegister(register_index, w10); | |
1125 } | |
1126 | |
1127 | |
1128 void RegExpMacroAssemblerA64::PushBacktrack(Label* label) { | |
1129 if (label->is_bound()) { | |
1130 int target = label->pos(); | |
1131 __ Mov(w10, target + Code::kHeaderSize - kHeapObjectTag); | |
1132 } else { | |
1133 __ Adr(x10, label); | |
1134 __ Sub(x10, x10, code_pointer()); | |
1135 if (masm_->emit_debug_code()) { | |
1136 __ Cmp(x10, kWRegMask); | |
1137 // The code offset has to fit in a W register. | |
1138 __ Check(ls, kOffsetOutOfRange); | |
1139 } | |
1140 } | |
1141 Push(w10); | |
1142 CheckStackLimit(); | |
1143 } | |
1144 | |
1145 | |
1146 void RegExpMacroAssemblerA64::PushCurrentPosition() { | |
1147 Push(current_input_offset()); | |
1148 } | |
1149 | |
1150 | |
1151 void RegExpMacroAssemblerA64::PushRegister(int register_index, | |
1152 StackCheckFlag check_stack_limit) { | |
1153 Register to_push = GetRegister(register_index, w10); | |
1154 Push(to_push); | |
1155 if (check_stack_limit) CheckStackLimit(); | |
1156 } | |
1157 | |
1158 | |
1159 void RegExpMacroAssemblerA64::ReadCurrentPositionFromRegister(int reg) { | |
1160 Register cached_register; | |
1161 RegisterState register_state = GetRegisterState(reg); | |
1162 switch (register_state) { | |
1163 case STACKED: | |
1164 __ Ldr(current_input_offset(), register_location(reg)); | |
1165 break; | |
1166 case CACHED_LSW: | |
1167 cached_register = GetCachedRegister(reg); | |
1168 __ Mov(current_input_offset(), cached_register.W()); | |
1169 break; | |
1170 case CACHED_MSW: | |
1171 cached_register = GetCachedRegister(reg); | |
1172 __ Lsr(current_input_offset().X(), cached_register, kWRegSizeInBits); | |
1173 break; | |
1174 default: | |
1175 UNREACHABLE(); | |
1176 break; | |
1177 } | |
1178 } | |
1179 | |
1180 | |
1181 void RegExpMacroAssemblerA64::ReadStackPointerFromRegister(int reg) { | |
1182 Register read_from = GetRegister(reg, w10); | |
1183 __ Ldr(x11, MemOperand(frame_pointer(), kStackBase)); | |
1184 __ Add(backtrack_stackpointer(), x11, Operand(read_from, SXTW)); | |
1185 } | |
1186 | |
1187 | |
1188 void RegExpMacroAssemblerA64::SetCurrentPositionFromEnd(int by) { | |
1189 Label after_position; | |
1190 __ Cmp(current_input_offset(), -by * char_size()); | |
1191 __ B(ge, &after_position); | |
1192 __ Mov(current_input_offset(), -by * char_size()); | |
1193 // On RegExp code entry (where this operation is used), the character before | |
1194 // the current position is expected to be already loaded. | |
1195 // We have advanced the position, so it's safe to read backwards. | |
1196 LoadCurrentCharacterUnchecked(-1, 1); | |
1197 __ Bind(&after_position); | |
1198 } | |
1199 | |
1200 | |
1201 void RegExpMacroAssemblerA64::SetRegister(int register_index, int to) { | |
1202 ASSERT(register_index >= num_saved_registers_); // Reserved for positions! | |
1203 Register set_to = wzr; | |
1204 if (to != 0) { | |
1205 set_to = w10; | |
1206 __ Mov(set_to, to); | |
1207 } | |
1208 StoreRegister(register_index, set_to); | |
1209 } | |
1210 | |
1211 | |
1212 bool RegExpMacroAssemblerA64::Succeed() { | |
1213 __ B(&success_label_); | |
1214 return global(); | |
1215 } | |
1216 | |
1217 | |
1218 void RegExpMacroAssemblerA64::WriteCurrentPositionToRegister(int reg, | |
1219 int cp_offset) { | |
1220 Register position = current_input_offset(); | |
1221 if (cp_offset != 0) { | |
1222 position = w10; | |
1223 __ Add(position, current_input_offset(), cp_offset * char_size()); | |
1224 } | |
1225 StoreRegister(reg, position); | |
1226 } | |
1227 | |
1228 | |
1229 void RegExpMacroAssemblerA64::ClearRegisters(int reg_from, int reg_to) { | |
1230 ASSERT(reg_from <= reg_to); | |
1231 int num_registers = reg_to - reg_from + 1; | |
1232 | |
1233 // If the first capture register is cached in a hardware register but not | |
1234 // aligned on a 64-bit one, we need to clear the first one specifically. | |
1235 if ((reg_from < kNumCachedRegisters) && ((reg_from % 2) != 0)) { | |
1236 StoreRegister(reg_from, non_position_value()); | |
1237 num_registers--; | |
1238 reg_from++; | |
1239 } | |
1240 | |
1241 // Clear cached registers in pairs as far as possible. | |
1242 while ((num_registers >= 2) && (reg_from < kNumCachedRegisters)) { | |
1243 ASSERT(GetRegisterState(reg_from) == CACHED_LSW); | |
1244 __ Mov(GetCachedRegister(reg_from), twice_non_position_value()); | |
1245 reg_from += 2; | |
1246 num_registers -= 2; | |
1247 } | |
1248 | |
1249 if ((num_registers % 2) == 1) { | |
1250 StoreRegister(reg_from, non_position_value()); | |
1251 num_registers--; | |
1252 reg_from++; | |
1253 } | |
1254 | |
1255 if (num_registers > 0) { | |
1256 // If there are some remaining registers, they are stored on the stack. | |
1257 ASSERT(reg_from >= kNumCachedRegisters); | |
1258 | |
1259 // Move down the indexes of the registers on stack to get the correct offset | |
1260 // in memory. | |
1261 reg_from -= kNumCachedRegisters; | |
1262 reg_to -= kNumCachedRegisters; | |
1263 // We should not unroll the loop for less than 2 registers. | |
1264 STATIC_ASSERT(kNumRegistersToUnroll > 2); | |
1265 // We position the base pointer to (reg_from + 1). | |
1266 int base_offset = kFirstRegisterOnStack - | |
1267 kWRegSize - (kWRegSize * reg_from); | |
1268 if (num_registers > kNumRegistersToUnroll) { | |
1269 Register base = x10; | |
1270 __ Add(base, frame_pointer(), base_offset); | |
1271 | |
1272 Label loop; | |
1273 __ Mov(x11, num_registers); | |
1274 __ Bind(&loop); | |
1275 __ Str(twice_non_position_value(), | |
1276 MemOperand(base, -kPointerSize, PostIndex)); | |
1277 __ Sub(x11, x11, 2); | |
1278 __ Cbnz(x11, &loop); | |
1279 } else { | |
1280 for (int i = reg_from; i <= reg_to; i += 2) { | |
1281 __ Str(twice_non_position_value(), | |
1282 MemOperand(frame_pointer(), base_offset)); | |
1283 base_offset -= kWRegSize * 2; | |
1284 } | |
1285 } | |
1286 } | |
1287 } | |
1288 | |
1289 | |
1290 void RegExpMacroAssemblerA64::WriteStackPointerToRegister(int reg) { | |
1291 __ Ldr(x10, MemOperand(frame_pointer(), kStackBase)); | |
1292 __ Sub(x10, backtrack_stackpointer(), x10); | |
1293 if (masm_->emit_debug_code()) { | |
1294 __ Cmp(x10, Operand(w10, SXTW)); | |
1295 // The stack offset needs to fit in a W register. | |
1296 __ Check(eq, kOffsetOutOfRange); | |
1297 } | |
1298 StoreRegister(reg, w10); | |
1299 } | |
1300 | |
1301 | |
1302 // Helper function for reading a value out of a stack frame. | |
1303 template <typename T> | |
1304 static T& frame_entry(Address re_frame, int frame_offset) { | |
1305 return *reinterpret_cast<T*>(re_frame + frame_offset); | |
1306 } | |
1307 | |
1308 | |
1309 int RegExpMacroAssemblerA64::CheckStackGuardState(Address* return_address, | |
1310 Code* re_code, | |
1311 Address re_frame, | |
1312 int start_offset, | |
1313 const byte** input_start, | |
1314 const byte** input_end) { | |
1315 Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); | |
1316 if (isolate->stack_guard()->IsStackOverflow()) { | |
1317 isolate->StackOverflow(); | |
1318 return EXCEPTION; | |
1319 } | |
1320 | |
1321 // If not real stack overflow the stack guard was used to interrupt | |
1322 // execution for another purpose. | |
1323 | |
1324 // If this is a direct call from JavaScript retry the RegExp forcing the call | |
1325 // through the runtime system. Currently the direct call cannot handle a GC. | |
1326 if (frame_entry<int>(re_frame, kDirectCall) == 1) { | |
1327 return RETRY; | |
1328 } | |
1329 | |
1330 // Prepare for possible GC. | |
1331 HandleScope handles(isolate); | |
1332 Handle<Code> code_handle(re_code); | |
1333 | |
1334 Handle<String> subject(frame_entry<String*>(re_frame, kInput)); | |
1335 | |
1336 // Current string. | |
1337 bool is_ascii = subject->IsOneByteRepresentationUnderneath(); | |
1338 | |
1339 ASSERT(re_code->instruction_start() <= *return_address); | |
1340 ASSERT(*return_address <= | |
1341 re_code->instruction_start() + re_code->instruction_size()); | |
1342 | |
1343 MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate); | |
1344 | |
1345 if (*code_handle != re_code) { // Return address no longer valid | |
1346 int delta = code_handle->address() - re_code->address(); | |
1347 // Overwrite the return address on the stack. | |
1348 *return_address += delta; | |
1349 } | |
1350 | |
1351 if (result->IsException()) { | |
1352 return EXCEPTION; | |
1353 } | |
1354 | |
1355 Handle<String> subject_tmp = subject; | |
1356 int slice_offset = 0; | |
1357 | |
1358 // Extract the underlying string and the slice offset. | |
1359 if (StringShape(*subject_tmp).IsCons()) { | |
1360 subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first()); | |
1361 } else if (StringShape(*subject_tmp).IsSliced()) { | |
1362 SlicedString* slice = SlicedString::cast(*subject_tmp); | |
1363 subject_tmp = Handle<String>(slice->parent()); | |
1364 slice_offset = slice->offset(); | |
1365 } | |
1366 | |
1367 // String might have changed. | |
1368 if (subject_tmp->IsOneByteRepresentation() != is_ascii) { | |
1369 // If we changed between an ASCII and an UC16 string, the specialized | |
1370 // code cannot be used, and we need to restart regexp matching from | |
1371 // scratch (including, potentially, compiling a new version of the code). | |
1372 return RETRY; | |
1373 } | |
1374 | |
1375 // Otherwise, the content of the string might have moved. It must still | |
1376 // be a sequential or external string with the same content. | |
1377 // Update the start and end pointers in the stack frame to the current | |
1378 // location (whether it has actually moved or not). | |
1379 ASSERT(StringShape(*subject_tmp).IsSequential() || | |
1380 StringShape(*subject_tmp).IsExternal()); | |
1381 | |
1382 // The original start address of the characters to match. | |
1383 const byte* start_address = *input_start; | |
1384 | |
1385 // Find the current start address of the same character at the current string | |
1386 // position. | |
1387 const byte* new_address = StringCharacterPosition(*subject_tmp, | |
1388 start_offset + slice_offset); | |
1389 | |
1390 if (start_address != new_address) { | |
1391 // If there is a difference, update the object pointer and start and end | |
1392 // addresses in the RegExp stack frame to match the new value. | |
1393 const byte* end_address = *input_end; | |
1394 int byte_length = static_cast<int>(end_address - start_address); | |
1395 frame_entry<const String*>(re_frame, kInput) = *subject; | |
1396 *input_start = new_address; | |
1397 *input_end = new_address + byte_length; | |
1398 } else if (frame_entry<const String*>(re_frame, kInput) != *subject) { | |
1399 // Subject string might have been a ConsString that underwent | |
1400 // short-circuiting during GC. That will not change start_address but | |
1401 // will change pointer inside the subject handle. | |
1402 frame_entry<const String*>(re_frame, kInput) = *subject; | |
1403 } | |
1404 | |
1405 return 0; | |
1406 } | |
1407 | |
1408 | |
1409 void RegExpMacroAssemblerA64::CheckPosition(int cp_offset, | |
1410 Label* on_outside_input) { | |
1411 CompareAndBranchOrBacktrack(current_input_offset(), | |
1412 -cp_offset * char_size(), | |
1413 ge, | |
1414 on_outside_input); | |
1415 } | |
1416 | |
1417 | |
1418 bool RegExpMacroAssemblerA64::CanReadUnaligned() { | |
1419 // TODO(pielan): See whether or not we should disable unaligned accesses. | |
1420 return !slow_safe(); | |
1421 } | |
1422 | |
1423 | |
1424 // Private methods: | |
1425 | |
1426 void RegExpMacroAssemblerA64::CallCheckStackGuardState(Register scratch) { | |
1427 // Allocate space on the stack to store the return address. The | |
1428 // CheckStackGuardState C++ function will override it if the code | |
1429 // moved. Allocate extra space for 2 arguments passed by pointers. | |
1430 // AAPCS64 requires the stack to be 16 byte aligned. | |
1431 int alignment = masm_->ActivationFrameAlignment(); | |
1432 ASSERT_EQ(alignment % 16, 0); | |
1433 int align_mask = (alignment / kXRegSize) - 1; | |
1434 int xreg_to_claim = (3 + align_mask) & ~align_mask; | |
1435 | |
1436 ASSERT(csp.Is(__ StackPointer())); | |
1437 __ Claim(xreg_to_claim); | |
1438 | |
1439 // CheckStackGuardState needs the end and start addresses of the input string. | |
1440 __ Poke(input_end(), 2 * kPointerSize); | |
1441 __ Add(x5, csp, 2 * kPointerSize); | |
1442 __ Poke(input_start(), kPointerSize); | |
1443 __ Add(x4, csp, kPointerSize); | |
1444 | |
1445 __ Mov(w3, start_offset()); | |
1446 // RegExp code frame pointer. | |
1447 __ Mov(x2, frame_pointer()); | |
1448 // Code* of self. | |
1449 __ Mov(x1, Operand(masm_->CodeObject())); | |
1450 | |
1451 // We need to pass a pointer to the return address as first argument. | |
1452 // The DirectCEntry stub will place the return address on the stack before | |
1453 // calling so the stack pointer will point to it. | |
1454 __ Mov(x0, csp); | |
1455 | |
1456 ExternalReference check_stack_guard_state = | |
1457 ExternalReference::re_check_stack_guard_state(isolate()); | |
1458 __ Mov(scratch, check_stack_guard_state); | |
1459 DirectCEntryStub stub; | |
1460 stub.GenerateCall(masm_, scratch); | |
1461 | |
1462 // The input string may have been moved in memory, we need to reload it. | |
1463 __ Peek(input_start(), kPointerSize); | |
1464 __ Peek(input_end(), 2 * kPointerSize); | |
1465 | |
1466 ASSERT(csp.Is(__ StackPointer())); | |
1467 __ Drop(xreg_to_claim); | |
1468 | |
1469 // Reload the Code pointer. | |
1470 __ Mov(code_pointer(), Operand(masm_->CodeObject())); | |
1471 } | |
1472 | |
1473 void RegExpMacroAssemblerA64::BranchOrBacktrack(Condition condition, | |
1474 Label* to) { | |
1475 if (condition == al) { // Unconditional. | |
1476 if (to == NULL) { | |
1477 Backtrack(); | |
1478 return; | |
1479 } | |
1480 __ B(to); | |
1481 return; | |
1482 } | |
1483 if (to == NULL) { | |
1484 to = &backtrack_label_; | |
1485 } | |
1486 // TODO(ulan): do direct jump when jump distance is known and fits in imm19. | |
1487 Condition inverted_condition = InvertCondition(condition); | |
1488 Label no_branch; | |
1489 __ B(inverted_condition, &no_branch); | |
1490 __ B(to); | |
1491 __ Bind(&no_branch); | |
1492 } | |
1493 | |
1494 void RegExpMacroAssemblerA64::CompareAndBranchOrBacktrack(Register reg, | |
1495 int immediate, | |
1496 Condition condition, | |
1497 Label* to) { | |
1498 if ((immediate == 0) && ((condition == eq) || (condition == ne))) { | |
1499 if (to == NULL) { | |
1500 to = &backtrack_label_; | |
1501 } | |
1502 // TODO(ulan): do direct jump when jump distance is known and fits in imm19. | |
1503 Label no_branch; | |
1504 if (condition == eq) { | |
1505 __ Cbnz(reg, &no_branch); | |
1506 } else { | |
1507 __ Cbz(reg, &no_branch); | |
1508 } | |
1509 __ B(to); | |
1510 __ Bind(&no_branch); | |
1511 } else { | |
1512 __ Cmp(reg, immediate); | |
1513 BranchOrBacktrack(condition, to); | |
1514 } | |
1515 } | |
1516 | |
1517 | |
1518 void RegExpMacroAssemblerA64::CheckPreemption() { | |
1519 // Check for preemption. | |
1520 ExternalReference stack_limit = | |
1521 ExternalReference::address_of_stack_limit(isolate()); | |
1522 __ Mov(x10, stack_limit); | |
1523 __ Ldr(x10, MemOperand(x10)); | |
1524 ASSERT(csp.Is(__ StackPointer())); | |
1525 __ Cmp(csp, x10); | |
1526 CallIf(&check_preempt_label_, ls); | |
1527 } | |
1528 | |
1529 | |
1530 void RegExpMacroAssemblerA64::CheckStackLimit() { | |
1531 ExternalReference stack_limit = | |
1532 ExternalReference::address_of_regexp_stack_limit(isolate()); | |
1533 __ Mov(x10, stack_limit); | |
1534 __ Ldr(x10, MemOperand(x10)); | |
1535 __ Cmp(backtrack_stackpointer(), x10); | |
1536 CallIf(&stack_overflow_label_, ls); | |
1537 } | |
1538 | |
1539 | |
1540 void RegExpMacroAssemblerA64::Push(Register source) { | |
1541 ASSERT(source.Is32Bits()); | |
1542 ASSERT(!source.is(backtrack_stackpointer())); | |
1543 __ Str(source, | |
1544 MemOperand(backtrack_stackpointer(), | |
1545 -static_cast<int>(kWRegSize), | |
1546 PreIndex)); | |
1547 } | |
1548 | |
1549 | |
1550 void RegExpMacroAssemblerA64::Pop(Register target) { | |
1551 ASSERT(target.Is32Bits()); | |
1552 ASSERT(!target.is(backtrack_stackpointer())); | |
1553 __ Ldr(target, | |
1554 MemOperand(backtrack_stackpointer(), kWRegSize, PostIndex)); | |
1555 } | |
1556 | |
1557 | |
1558 Register RegExpMacroAssemblerA64::GetCachedRegister(int register_index) { | |
1559 ASSERT(register_index < kNumCachedRegisters); | |
1560 return Register::Create(register_index / 2, kXRegSizeInBits); | |
1561 } | |
1562 | |
1563 | |
1564 Register RegExpMacroAssemblerA64::GetRegister(int register_index, | |
1565 Register maybe_result) { | |
1566 ASSERT(maybe_result.Is32Bits()); | |
1567 ASSERT(register_index >= 0); | |
1568 if (num_registers_ <= register_index) { | |
1569 num_registers_ = register_index + 1; | |
1570 } | |
1571 Register result; | |
1572 RegisterState register_state = GetRegisterState(register_index); | |
1573 switch (register_state) { | |
1574 case STACKED: | |
1575 __ Ldr(maybe_result, register_location(register_index)); | |
1576 result = maybe_result; | |
1577 break; | |
1578 case CACHED_LSW: | |
1579 result = GetCachedRegister(register_index).W(); | |
1580 break; | |
1581 case CACHED_MSW: | |
1582 __ Lsr(maybe_result.X(), GetCachedRegister(register_index), | |
1583 kWRegSizeInBits); | |
1584 result = maybe_result; | |
1585 break; | |
1586 default: | |
1587 UNREACHABLE(); | |
1588 break; | |
1589 } | |
1590 ASSERT(result.Is32Bits()); | |
1591 return result; | |
1592 } | |
1593 | |
1594 | |
1595 void RegExpMacroAssemblerA64::StoreRegister(int register_index, | |
1596 Register source) { | |
1597 ASSERT(source.Is32Bits()); | |
1598 ASSERT(register_index >= 0); | |
1599 if (num_registers_ <= register_index) { | |
1600 num_registers_ = register_index + 1; | |
1601 } | |
1602 | |
1603 Register cached_register; | |
1604 RegisterState register_state = GetRegisterState(register_index); | |
1605 switch (register_state) { | |
1606 case STACKED: | |
1607 __ Str(source, register_location(register_index)); | |
1608 break; | |
1609 case CACHED_LSW: | |
1610 cached_register = GetCachedRegister(register_index); | |
1611 if (!source.Is(cached_register.W())) { | |
1612 __ Bfi(cached_register, source.X(), 0, kWRegSizeInBits); | |
1613 } | |
1614 break; | |
1615 case CACHED_MSW: | |
1616 cached_register = GetCachedRegister(register_index); | |
1617 __ Bfi(cached_register, source.X(), kWRegSizeInBits, kWRegSizeInBits); | |
1618 break; | |
1619 default: | |
1620 UNREACHABLE(); | |
1621 break; | |
1622 } | |
1623 } | |
1624 | |
1625 | |
1626 void RegExpMacroAssemblerA64::CallIf(Label* to, Condition condition) { | |
1627 Label skip_call; | |
1628 if (condition != al) __ B(&skip_call, InvertCondition(condition)); | |
1629 __ Bl(to); | |
1630 __ Bind(&skip_call); | |
1631 } | |
1632 | |
1633 | |
1634 void RegExpMacroAssemblerA64::RestoreLinkRegister() { | |
1635 ASSERT(csp.Is(__ StackPointer())); | |
1636 __ Pop(lr, xzr); | |
1637 __ Add(lr, lr, Operand(masm_->CodeObject())); | |
1638 } | |
1639 | |
1640 | |
1641 void RegExpMacroAssemblerA64::SaveLinkRegister() { | |
1642 ASSERT(csp.Is(__ StackPointer())); | |
1643 __ Sub(lr, lr, Operand(masm_->CodeObject())); | |
1644 __ Push(xzr, lr); | |
1645 } | |
1646 | |
1647 | |
1648 MemOperand RegExpMacroAssemblerA64::register_location(int register_index) { | |
1649 ASSERT(register_index < (1<<30)); | |
1650 ASSERT(register_index >= kNumCachedRegisters); | |
1651 if (num_registers_ <= register_index) { | |
1652 num_registers_ = register_index + 1; | |
1653 } | |
1654 register_index -= kNumCachedRegisters; | |
1655 int offset = kFirstRegisterOnStack - register_index * kWRegSize; | |
1656 return MemOperand(frame_pointer(), offset); | |
1657 } | |
1658 | |
1659 MemOperand RegExpMacroAssemblerA64::capture_location(int register_index, | |
1660 Register scratch) { | |
1661 ASSERT(register_index < (1<<30)); | |
1662 ASSERT(register_index < num_saved_registers_); | |
1663 ASSERT(register_index >= kNumCachedRegisters); | |
1664 ASSERT_EQ(register_index % 2, 0); | |
1665 register_index -= kNumCachedRegisters; | |
1666 int offset = kFirstCaptureOnStack - register_index * kWRegSize; | |
1667 // capture_location is used with Stp instructions to load/store 2 registers. | |
1668 // The immediate field in the encoding is limited to 7 bits (signed). | |
1669 if (is_int7(offset)) { | |
1670 return MemOperand(frame_pointer(), offset); | |
1671 } else { | |
1672 __ Add(scratch, frame_pointer(), offset); | |
1673 return MemOperand(scratch); | |
1674 } | |
1675 } | |
1676 | |
1677 void RegExpMacroAssemblerA64::LoadCurrentCharacterUnchecked(int cp_offset, | |
1678 int characters) { | |
1679 Register offset = current_input_offset(); | |
1680 | |
1681 // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU | |
1682 // and the operating system running on the target allow it. | |
1683 // If unaligned load/stores are not supported then this function must only | |
1684 // be used to load a single character at a time. | |
1685 | |
1686 // ARMv8 supports unaligned accesses but V8 or the kernel can decide to | |
1687 // disable it. | |
1688 // TODO(pielan): See whether or not we should disable unaligned accesses. | |
1689 if (!CanReadUnaligned()) { | |
1690 ASSERT(characters == 1); | |
1691 } | |
1692 | |
1693 if (cp_offset != 0) { | |
1694 if (masm_->emit_debug_code()) { | |
1695 __ Mov(x10, cp_offset * char_size()); | |
1696 __ Add(x10, x10, Operand(current_input_offset(), SXTW)); | |
1697 __ Cmp(x10, Operand(w10, SXTW)); | |
1698 // The offset needs to fit in a W register. | |
1699 __ Check(eq, kOffsetOutOfRange); | |
1700 } else { | |
1701 __ Add(w10, current_input_offset(), cp_offset * char_size()); | |
1702 } | |
1703 offset = w10; | |
1704 } | |
1705 | |
1706 if (mode_ == ASCII) { | |
1707 if (characters == 4) { | |
1708 __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW)); | |
1709 } else if (characters == 2) { | |
1710 __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW)); | |
1711 } else { | |
1712 ASSERT(characters == 1); | |
1713 __ Ldrb(current_character(), MemOperand(input_end(), offset, SXTW)); | |
1714 } | |
1715 } else { | |
1716 ASSERT(mode_ == UC16); | |
1717 if (characters == 2) { | |
1718 __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW)); | |
1719 } else { | |
1720 ASSERT(characters == 1); | |
1721 __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW)); | |
1722 } | |
1723 } | |
1724 } | |
1725 | |
1726 #endif // V8_INTERPRETED_REGEXP | |
1727 | |
1728 }} // namespace v8::internal | |
1729 | |
1730 #endif // V8_TARGET_ARCH_A64 | |
OLD | NEW |