OLD | NEW |
| (Empty) |
1 // Copyright 2013 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #ifndef V8_A64_MACRO_ASSEMBLER_A64_H_ | |
29 #define V8_A64_MACRO_ASSEMBLER_A64_H_ | |
30 | |
31 #include <vector> | |
32 | |
33 #include "v8globals.h" | |
34 #include "globals.h" | |
35 | |
36 #include "a64/assembler-a64-inl.h" | |
37 | |
38 namespace v8 { | |
39 namespace internal { | |
40 | |
41 #define LS_MACRO_LIST(V) \ | |
42 V(Ldrb, Register&, rt, LDRB_w) \ | |
43 V(Strb, Register&, rt, STRB_w) \ | |
44 V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \ | |
45 V(Ldrh, Register&, rt, LDRH_w) \ | |
46 V(Strh, Register&, rt, STRH_w) \ | |
47 V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \ | |
48 V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \ | |
49 V(Str, CPURegister&, rt, StoreOpFor(rt)) \ | |
50 V(Ldrsw, Register&, rt, LDRSW_x) | |
51 | |
52 | |
53 // ---------------------------------------------------------------------------- | |
54 // Static helper functions | |
55 | |
56 // Generate a MemOperand for loading a field from an object. | |
57 inline MemOperand FieldMemOperand(Register object, int offset); | |
58 inline MemOperand UntagSmiFieldMemOperand(Register object, int offset); | |
59 | |
60 // Generate a MemOperand for loading a SMI from memory. | |
61 inline MemOperand UntagSmiMemOperand(Register object, int offset); | |
62 | |
63 | |
64 // ---------------------------------------------------------------------------- | |
65 // MacroAssembler | |
66 | |
67 enum BranchType { | |
68 // Copies of architectural conditions. | |
69 // The associated conditions can be used in place of those, the code will | |
70 // take care of reinterpreting them with the correct type. | |
71 integer_eq = eq, | |
72 integer_ne = ne, | |
73 integer_hs = hs, | |
74 integer_lo = lo, | |
75 integer_mi = mi, | |
76 integer_pl = pl, | |
77 integer_vs = vs, | |
78 integer_vc = vc, | |
79 integer_hi = hi, | |
80 integer_ls = ls, | |
81 integer_ge = ge, | |
82 integer_lt = lt, | |
83 integer_gt = gt, | |
84 integer_le = le, | |
85 integer_al = al, | |
86 integer_nv = nv, | |
87 | |
88 // These two are *different* from the architectural codes al and nv. | |
89 // 'always' is used to generate unconditional branches. | |
90 // 'never' is used to not generate a branch (generally as the inverse | |
91 // branch type of 'always). | |
92 always, never, | |
93 // cbz and cbnz | |
94 reg_zero, reg_not_zero, | |
95 // tbz and tbnz | |
96 reg_bit_clear, reg_bit_set, | |
97 | |
98 // Aliases. | |
99 kBranchTypeFirstCondition = eq, | |
100 kBranchTypeLastCondition = nv, | |
101 kBranchTypeFirstUsingReg = reg_zero, | |
102 kBranchTypeFirstUsingBit = reg_bit_clear | |
103 }; | |
104 | |
105 inline BranchType InvertBranchType(BranchType type) { | |
106 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) { | |
107 return static_cast<BranchType>( | |
108 InvertCondition(static_cast<Condition>(type))); | |
109 } else { | |
110 return static_cast<BranchType>(type ^ 1); | |
111 } | |
112 } | |
113 | |
114 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; | |
115 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; | |
116 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved }; | |
117 enum TargetAddressStorageMode { | |
118 CAN_INLINE_TARGET_ADDRESS, | |
119 NEVER_INLINE_TARGET_ADDRESS | |
120 }; | |
121 enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag }; | |
122 enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles }; | |
123 enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong }; | |
124 enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg }; | |
125 enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 }; | |
126 | |
127 class MacroAssembler : public Assembler { | |
128 public: | |
129 MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size); | |
130 | |
131 inline Handle<Object> CodeObject(); | |
132 | |
133 // Instruction set functions ------------------------------------------------ | |
134 // Logical macros. | |
135 inline void And(const Register& rd, | |
136 const Register& rn, | |
137 const Operand& operand); | |
138 inline void Ands(const Register& rd, | |
139 const Register& rn, | |
140 const Operand& operand); | |
141 inline void Bic(const Register& rd, | |
142 const Register& rn, | |
143 const Operand& operand); | |
144 inline void Bics(const Register& rd, | |
145 const Register& rn, | |
146 const Operand& operand); | |
147 inline void Orr(const Register& rd, | |
148 const Register& rn, | |
149 const Operand& operand); | |
150 inline void Orn(const Register& rd, | |
151 const Register& rn, | |
152 const Operand& operand); | |
153 inline void Eor(const Register& rd, | |
154 const Register& rn, | |
155 const Operand& operand); | |
156 inline void Eon(const Register& rd, | |
157 const Register& rn, | |
158 const Operand& operand); | |
159 inline void Tst(const Register& rn, const Operand& operand); | |
160 void LogicalMacro(const Register& rd, | |
161 const Register& rn, | |
162 const Operand& operand, | |
163 LogicalOp op); | |
164 | |
165 // Add and sub macros. | |
166 inline void Add(const Register& rd, | |
167 const Register& rn, | |
168 const Operand& operand); | |
169 inline void Adds(const Register& rd, | |
170 const Register& rn, | |
171 const Operand& operand); | |
172 inline void Sub(const Register& rd, | |
173 const Register& rn, | |
174 const Operand& operand); | |
175 inline void Subs(const Register& rd, | |
176 const Register& rn, | |
177 const Operand& operand); | |
178 inline void Cmn(const Register& rn, const Operand& operand); | |
179 inline void Cmp(const Register& rn, const Operand& operand); | |
180 inline void Neg(const Register& rd, | |
181 const Operand& operand); | |
182 inline void Negs(const Register& rd, | |
183 const Operand& operand); | |
184 | |
185 void AddSubMacro(const Register& rd, | |
186 const Register& rn, | |
187 const Operand& operand, | |
188 FlagsUpdate S, | |
189 AddSubOp op); | |
190 | |
191 // Add/sub with carry macros. | |
192 inline void Adc(const Register& rd, | |
193 const Register& rn, | |
194 const Operand& operand); | |
195 inline void Adcs(const Register& rd, | |
196 const Register& rn, | |
197 const Operand& operand); | |
198 inline void Sbc(const Register& rd, | |
199 const Register& rn, | |
200 const Operand& operand); | |
201 inline void Sbcs(const Register& rd, | |
202 const Register& rn, | |
203 const Operand& operand); | |
204 inline void Ngc(const Register& rd, | |
205 const Operand& operand); | |
206 inline void Ngcs(const Register& rd, | |
207 const Operand& operand); | |
208 void AddSubWithCarryMacro(const Register& rd, | |
209 const Register& rn, | |
210 const Operand& operand, | |
211 FlagsUpdate S, | |
212 AddSubWithCarryOp op); | |
213 | |
214 // Move macros. | |
215 void Mov(const Register& rd, | |
216 const Operand& operand, | |
217 DiscardMoveMode discard_mode = kDontDiscardForSameWReg); | |
218 void Mov(const Register& rd, uint64_t imm); | |
219 inline void Mvn(const Register& rd, uint64_t imm); | |
220 void Mvn(const Register& rd, const Operand& operand); | |
221 static bool IsImmMovn(uint64_t imm, unsigned reg_size); | |
222 static bool IsImmMovz(uint64_t imm, unsigned reg_size); | |
223 static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); | |
224 | |
225 // Conditional macros. | |
226 inline void Ccmp(const Register& rn, | |
227 const Operand& operand, | |
228 StatusFlags nzcv, | |
229 Condition cond); | |
230 inline void Ccmn(const Register& rn, | |
231 const Operand& operand, | |
232 StatusFlags nzcv, | |
233 Condition cond); | |
234 void ConditionalCompareMacro(const Register& rn, | |
235 const Operand& operand, | |
236 StatusFlags nzcv, | |
237 Condition cond, | |
238 ConditionalCompareOp op); | |
239 void Csel(const Register& rd, | |
240 const Register& rn, | |
241 const Operand& operand, | |
242 Condition cond); | |
243 | |
244 // Load/store macros. | |
245 #define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \ | |
246 inline void FN(const REGTYPE REG, const MemOperand& addr); | |
247 LS_MACRO_LIST(DECLARE_FUNCTION) | |
248 #undef DECLARE_FUNCTION | |
249 | |
250 void LoadStoreMacro(const CPURegister& rt, | |
251 const MemOperand& addr, | |
252 LoadStoreOp op); | |
253 | |
254 // V8-specific load/store helpers. | |
255 void Load(const Register& rt, const MemOperand& addr, Representation r); | |
256 void Store(const Register& rt, const MemOperand& addr, Representation r); | |
257 | |
258 // Remaining instructions are simple pass-through calls to the assembler. | |
259 inline void Adr(const Register& rd, Label* label); | |
260 inline void Asr(const Register& rd, const Register& rn, unsigned shift); | |
261 inline void Asr(const Register& rd, const Register& rn, const Register& rm); | |
262 | |
263 // Branch type inversion relies on these relations. | |
264 STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) && | |
265 (reg_bit_clear == (reg_bit_set ^ 1)) && | |
266 (always == (never ^ 1))); | |
267 | |
268 void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1); | |
269 | |
270 inline void B(Label* label); | |
271 inline void B(Condition cond, Label* label); | |
272 void B(Label* label, Condition cond); | |
273 inline void Bfi(const Register& rd, | |
274 const Register& rn, | |
275 unsigned lsb, | |
276 unsigned width); | |
277 inline void Bfxil(const Register& rd, | |
278 const Register& rn, | |
279 unsigned lsb, | |
280 unsigned width); | |
281 inline void Bind(Label* label); | |
282 inline void Bl(Label* label); | |
283 inline void Blr(const Register& xn); | |
284 inline void Br(const Register& xn); | |
285 inline void Brk(int code); | |
286 void Cbnz(const Register& rt, Label* label); | |
287 void Cbz(const Register& rt, Label* label); | |
288 inline void Cinc(const Register& rd, const Register& rn, Condition cond); | |
289 inline void Cinv(const Register& rd, const Register& rn, Condition cond); | |
290 inline void Cls(const Register& rd, const Register& rn); | |
291 inline void Clz(const Register& rd, const Register& rn); | |
292 inline void Cneg(const Register& rd, const Register& rn, Condition cond); | |
293 inline void CzeroX(const Register& rd, Condition cond); | |
294 inline void CmovX(const Register& rd, const Register& rn, Condition cond); | |
295 inline void Cset(const Register& rd, Condition cond); | |
296 inline void Csetm(const Register& rd, Condition cond); | |
297 inline void Csinc(const Register& rd, | |
298 const Register& rn, | |
299 const Register& rm, | |
300 Condition cond); | |
301 inline void Csinv(const Register& rd, | |
302 const Register& rn, | |
303 const Register& rm, | |
304 Condition cond); | |
305 inline void Csneg(const Register& rd, | |
306 const Register& rn, | |
307 const Register& rm, | |
308 Condition cond); | |
309 inline void Dmb(BarrierDomain domain, BarrierType type); | |
310 inline void Dsb(BarrierDomain domain, BarrierType type); | |
311 inline void Debug(const char* message, uint32_t code, Instr params = BREAK); | |
312 inline void Extr(const Register& rd, | |
313 const Register& rn, | |
314 const Register& rm, | |
315 unsigned lsb); | |
316 inline void Fabs(const FPRegister& fd, const FPRegister& fn); | |
317 inline void Fadd(const FPRegister& fd, | |
318 const FPRegister& fn, | |
319 const FPRegister& fm); | |
320 inline void Fccmp(const FPRegister& fn, | |
321 const FPRegister& fm, | |
322 StatusFlags nzcv, | |
323 Condition cond); | |
324 inline void Fcmp(const FPRegister& fn, const FPRegister& fm); | |
325 inline void Fcmp(const FPRegister& fn, double value); | |
326 inline void Fcsel(const FPRegister& fd, | |
327 const FPRegister& fn, | |
328 const FPRegister& fm, | |
329 Condition cond); | |
330 inline void Fcvt(const FPRegister& fd, const FPRegister& fn); | |
331 inline void Fcvtas(const Register& rd, const FPRegister& fn); | |
332 inline void Fcvtau(const Register& rd, const FPRegister& fn); | |
333 inline void Fcvtms(const Register& rd, const FPRegister& fn); | |
334 inline void Fcvtmu(const Register& rd, const FPRegister& fn); | |
335 inline void Fcvtns(const Register& rd, const FPRegister& fn); | |
336 inline void Fcvtnu(const Register& rd, const FPRegister& fn); | |
337 inline void Fcvtzs(const Register& rd, const FPRegister& fn); | |
338 inline void Fcvtzu(const Register& rd, const FPRegister& fn); | |
339 inline void Fdiv(const FPRegister& fd, | |
340 const FPRegister& fn, | |
341 const FPRegister& fm); | |
342 inline void Fmadd(const FPRegister& fd, | |
343 const FPRegister& fn, | |
344 const FPRegister& fm, | |
345 const FPRegister& fa); | |
346 inline void Fmax(const FPRegister& fd, | |
347 const FPRegister& fn, | |
348 const FPRegister& fm); | |
349 inline void Fmaxnm(const FPRegister& fd, | |
350 const FPRegister& fn, | |
351 const FPRegister& fm); | |
352 inline void Fmin(const FPRegister& fd, | |
353 const FPRegister& fn, | |
354 const FPRegister& fm); | |
355 inline void Fminnm(const FPRegister& fd, | |
356 const FPRegister& fn, | |
357 const FPRegister& fm); | |
358 inline void Fmov(FPRegister fd, FPRegister fn); | |
359 inline void Fmov(FPRegister fd, Register rn); | |
360 // Provide explicit double and float interfaces for FP immediate moves, rather | |
361 // than relying on implicit C++ casts. This allows signalling NaNs to be | |
362 // preserved when the immediate matches the format of fd. Most systems convert | |
363 // signalling NaNs to quiet NaNs when converting between float and double. | |
364 inline void Fmov(FPRegister fd, double imm); | |
365 inline void Fmov(FPRegister fd, float imm); | |
366 // Provide a template to allow other types to be converted automatically. | |
367 template<typename T> | |
368 void Fmov(FPRegister fd, T imm) { | |
369 ASSERT(allow_macro_instructions_); | |
370 Fmov(fd, static_cast<double>(imm)); | |
371 } | |
372 inline void Fmov(Register rd, FPRegister fn); | |
373 inline void Fmsub(const FPRegister& fd, | |
374 const FPRegister& fn, | |
375 const FPRegister& fm, | |
376 const FPRegister& fa); | |
377 inline void Fmul(const FPRegister& fd, | |
378 const FPRegister& fn, | |
379 const FPRegister& fm); | |
380 inline void Fneg(const FPRegister& fd, const FPRegister& fn); | |
381 inline void Fnmadd(const FPRegister& fd, | |
382 const FPRegister& fn, | |
383 const FPRegister& fm, | |
384 const FPRegister& fa); | |
385 inline void Fnmsub(const FPRegister& fd, | |
386 const FPRegister& fn, | |
387 const FPRegister& fm, | |
388 const FPRegister& fa); | |
389 inline void Frinta(const FPRegister& fd, const FPRegister& fn); | |
390 inline void Frintn(const FPRegister& fd, const FPRegister& fn); | |
391 inline void Frintz(const FPRegister& fd, const FPRegister& fn); | |
392 inline void Fsqrt(const FPRegister& fd, const FPRegister& fn); | |
393 inline void Fsub(const FPRegister& fd, | |
394 const FPRegister& fn, | |
395 const FPRegister& fm); | |
396 inline void Hint(SystemHint code); | |
397 inline void Hlt(int code); | |
398 inline void Isb(); | |
399 inline void Ldnp(const CPURegister& rt, | |
400 const CPURegister& rt2, | |
401 const MemOperand& src); | |
402 inline void Ldp(const CPURegister& rt, | |
403 const CPURegister& rt2, | |
404 const MemOperand& src); | |
405 inline void Ldpsw(const Register& rt, | |
406 const Register& rt2, | |
407 const MemOperand& src); | |
408 // Provide both double and float interfaces for FP immediate loads, rather | |
409 // than relying on implicit C++ casts. This allows signalling NaNs to be | |
410 // preserved when the immediate matches the format of fd. Most systems convert | |
411 // signalling NaNs to quiet NaNs when converting between float and double. | |
412 inline void Ldr(const FPRegister& ft, double imm); | |
413 inline void Ldr(const FPRegister& ft, float imm); | |
414 inline void Ldr(const Register& rt, uint64_t imm); | |
415 inline void Lsl(const Register& rd, const Register& rn, unsigned shift); | |
416 inline void Lsl(const Register& rd, const Register& rn, const Register& rm); | |
417 inline void Lsr(const Register& rd, const Register& rn, unsigned shift); | |
418 inline void Lsr(const Register& rd, const Register& rn, const Register& rm); | |
419 inline void Madd(const Register& rd, | |
420 const Register& rn, | |
421 const Register& rm, | |
422 const Register& ra); | |
423 inline void Mneg(const Register& rd, const Register& rn, const Register& rm); | |
424 inline void Mov(const Register& rd, const Register& rm); | |
425 inline void Movk(const Register& rd, uint64_t imm, int shift = -1); | |
426 inline void Mrs(const Register& rt, SystemRegister sysreg); | |
427 inline void Msr(SystemRegister sysreg, const Register& rt); | |
428 inline void Msub(const Register& rd, | |
429 const Register& rn, | |
430 const Register& rm, | |
431 const Register& ra); | |
432 inline void Mul(const Register& rd, const Register& rn, const Register& rm); | |
433 inline void Nop() { nop(); } | |
434 inline void Rbit(const Register& rd, const Register& rn); | |
435 inline void Ret(const Register& xn = lr); | |
436 inline void Rev(const Register& rd, const Register& rn); | |
437 inline void Rev16(const Register& rd, const Register& rn); | |
438 inline void Rev32(const Register& rd, const Register& rn); | |
439 inline void Ror(const Register& rd, const Register& rs, unsigned shift); | |
440 inline void Ror(const Register& rd, const Register& rn, const Register& rm); | |
441 inline void Sbfiz(const Register& rd, | |
442 const Register& rn, | |
443 unsigned lsb, | |
444 unsigned width); | |
445 inline void Sbfx(const Register& rd, | |
446 const Register& rn, | |
447 unsigned lsb, | |
448 unsigned width); | |
449 inline void Scvtf(const FPRegister& fd, | |
450 const Register& rn, | |
451 unsigned fbits = 0); | |
452 inline void Sdiv(const Register& rd, const Register& rn, const Register& rm); | |
453 inline void Smaddl(const Register& rd, | |
454 const Register& rn, | |
455 const Register& rm, | |
456 const Register& ra); | |
457 inline void Smsubl(const Register& rd, | |
458 const Register& rn, | |
459 const Register& rm, | |
460 const Register& ra); | |
461 inline void Smull(const Register& rd, | |
462 const Register& rn, | |
463 const Register& rm); | |
464 inline void Smulh(const Register& rd, | |
465 const Register& rn, | |
466 const Register& rm); | |
467 inline void Stnp(const CPURegister& rt, | |
468 const CPURegister& rt2, | |
469 const MemOperand& dst); | |
470 inline void Stp(const CPURegister& rt, | |
471 const CPURegister& rt2, | |
472 const MemOperand& dst); | |
473 inline void Sxtb(const Register& rd, const Register& rn); | |
474 inline void Sxth(const Register& rd, const Register& rn); | |
475 inline void Sxtw(const Register& rd, const Register& rn); | |
476 void Tbnz(const Register& rt, unsigned bit_pos, Label* label); | |
477 void Tbz(const Register& rt, unsigned bit_pos, Label* label); | |
478 inline void Ubfiz(const Register& rd, | |
479 const Register& rn, | |
480 unsigned lsb, | |
481 unsigned width); | |
482 inline void Ubfx(const Register& rd, | |
483 const Register& rn, | |
484 unsigned lsb, | |
485 unsigned width); | |
486 inline void Ucvtf(const FPRegister& fd, | |
487 const Register& rn, | |
488 unsigned fbits = 0); | |
489 inline void Udiv(const Register& rd, const Register& rn, const Register& rm); | |
490 inline void Umaddl(const Register& rd, | |
491 const Register& rn, | |
492 const Register& rm, | |
493 const Register& ra); | |
494 inline void Umsubl(const Register& rd, | |
495 const Register& rn, | |
496 const Register& rm, | |
497 const Register& ra); | |
498 inline void Uxtb(const Register& rd, const Register& rn); | |
499 inline void Uxth(const Register& rd, const Register& rn); | |
500 inline void Uxtw(const Register& rd, const Register& rn); | |
501 | |
502 // Pseudo-instructions ------------------------------------------------------ | |
503 | |
504 // Compute rd = abs(rm). | |
505 // This function clobbers the condition flags. | |
506 // | |
507 // If rm is the minimum representable value, the result is not representable. | |
508 // Handlers for each case can be specified using the relevant labels. | |
509 void Abs(const Register& rd, const Register& rm, | |
510 Label * is_not_representable = NULL, | |
511 Label * is_representable = NULL); | |
512 | |
513 // Push or pop up to 4 registers of the same width to or from the stack, | |
514 // using the current stack pointer as set by SetStackPointer. | |
515 // | |
516 // If an argument register is 'NoReg', all further arguments are also assumed | |
517 // to be 'NoReg', and are thus not pushed or popped. | |
518 // | |
519 // Arguments are ordered such that "Push(a, b);" is functionally equivalent | |
520 // to "Push(a); Push(b);". | |
521 // | |
522 // It is valid to push the same register more than once, and there is no | |
523 // restriction on the order in which registers are specified. | |
524 // | |
525 // It is not valid to pop into the same register more than once in one | |
526 // operation, not even into the zero register. | |
527 // | |
528 // If the current stack pointer (as set by SetStackPointer) is csp, then it | |
529 // must be aligned to 16 bytes on entry and the total size of the specified | |
530 // registers must also be a multiple of 16 bytes. | |
531 // | |
532 // Even if the current stack pointer is not the system stack pointer (csp), | |
533 // Push (and derived methods) will still modify the system stack pointer in | |
534 // order to comply with ABI rules about accessing memory below the system | |
535 // stack pointer. | |
536 // | |
537 // Other than the registers passed into Pop, the stack pointer and (possibly) | |
538 // the system stack pointer, these methods do not modify any other registers. | |
539 void Push(const CPURegister& src0, const CPURegister& src1 = NoReg, | |
540 const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg); | |
541 void Push(const CPURegister& src0, const CPURegister& src1, | |
542 const CPURegister& src2, const CPURegister& src3, | |
543 const CPURegister& src4, const CPURegister& src5 = NoReg, | |
544 const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg); | |
545 void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg, | |
546 const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg); | |
547 | |
548 // Alternative forms of Push and Pop, taking a RegList or CPURegList that | |
549 // specifies the registers that are to be pushed or popped. Higher-numbered | |
550 // registers are associated with higher memory addresses (as in the A32 push | |
551 // and pop instructions). | |
552 // | |
553 // (Push|Pop)SizeRegList allow you to specify the register size as a | |
554 // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and | |
555 // kSRegSizeInBits are supported. | |
556 // | |
557 // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred. | |
558 void PushCPURegList(CPURegList registers); | |
559 void PopCPURegList(CPURegList registers); | |
560 | |
561 inline void PushSizeRegList(RegList registers, unsigned reg_size, | |
562 CPURegister::RegisterType type = CPURegister::kRegister) { | |
563 PushCPURegList(CPURegList(type, reg_size, registers)); | |
564 } | |
565 inline void PopSizeRegList(RegList registers, unsigned reg_size, | |
566 CPURegister::RegisterType type = CPURegister::kRegister) { | |
567 PopCPURegList(CPURegList(type, reg_size, registers)); | |
568 } | |
569 inline void PushXRegList(RegList regs) { | |
570 PushSizeRegList(regs, kXRegSizeInBits); | |
571 } | |
572 inline void PopXRegList(RegList regs) { | |
573 PopSizeRegList(regs, kXRegSizeInBits); | |
574 } | |
575 inline void PushWRegList(RegList regs) { | |
576 PushSizeRegList(regs, kWRegSizeInBits); | |
577 } | |
578 inline void PopWRegList(RegList regs) { | |
579 PopSizeRegList(regs, kWRegSizeInBits); | |
580 } | |
581 inline void PushDRegList(RegList regs) { | |
582 PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister); | |
583 } | |
584 inline void PopDRegList(RegList regs) { | |
585 PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister); | |
586 } | |
587 inline void PushSRegList(RegList regs) { | |
588 PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister); | |
589 } | |
590 inline void PopSRegList(RegList regs) { | |
591 PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister); | |
592 } | |
593 | |
594 // Push the specified register 'count' times. | |
595 void PushMultipleTimes(CPURegister src, Register count); | |
596 void PushMultipleTimes(CPURegister src, int count); | |
597 | |
598 // This is a convenience method for pushing a single Handle<Object>. | |
599 inline void Push(Handle<Object> handle); | |
600 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } | |
601 | |
602 // Aliases of Push and Pop, required for V8 compatibility. | |
603 inline void push(Register src) { | |
604 Push(src); | |
605 } | |
606 inline void pop(Register dst) { | |
607 Pop(dst); | |
608 } | |
609 | |
610 // Sometimes callers need to push or pop multiple registers in a way that is | |
611 // difficult to structure efficiently for fixed Push or Pop calls. This scope | |
612 // allows push requests to be queued up, then flushed at once. The | |
613 // MacroAssembler will try to generate the most efficient sequence required. | |
614 // | |
615 // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of | |
616 // register sizes and types. | |
617 class PushPopQueue { | |
618 public: | |
619 explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { } | |
620 | |
621 ~PushPopQueue() { | |
622 ASSERT(queued_.empty()); | |
623 } | |
624 | |
625 void Queue(const CPURegister& rt) { | |
626 size_ += rt.SizeInBytes(); | |
627 queued_.push_back(rt); | |
628 } | |
629 | |
630 void PushQueued(); | |
631 void PopQueued(); | |
632 | |
633 private: | |
634 MacroAssembler* masm_; | |
635 int size_; | |
636 std::vector<CPURegister> queued_; | |
637 }; | |
638 | |
639 // Poke 'src' onto the stack. The offset is in bytes. | |
640 // | |
641 // If the current stack pointer (according to StackPointer()) is csp, then | |
642 // csp must be aligned to 16 bytes. | |
643 void Poke(const CPURegister& src, const Operand& offset); | |
644 | |
645 // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes. | |
646 // | |
647 // If the current stack pointer (according to StackPointer()) is csp, then | |
648 // csp must be aligned to 16 bytes. | |
649 void Peek(const CPURegister& dst, const Operand& offset); | |
650 | |
651 // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent | |
652 // with 'src2' at a higher address than 'src1'. The offset is in bytes. | |
653 // | |
654 // If the current stack pointer (according to StackPointer()) is csp, then | |
655 // csp must be aligned to 16 bytes. | |
656 void PokePair(const CPURegister& src1, const CPURegister& src2, int offset); | |
657 | |
658 // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The | |
659 // values peeked will be adjacent, with the value in 'dst2' being from a | |
660 // higher address than 'dst1'. The offset is in bytes. | |
661 // | |
662 // If the current stack pointer (according to StackPointer()) is csp, then | |
663 // csp must be aligned to 16 bytes. | |
664 void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset); | |
665 | |
666 // Claim or drop stack space without actually accessing memory. | |
667 // | |
668 // In debug mode, both of these will write invalid data into the claimed or | |
669 // dropped space. | |
670 // | |
671 // If the current stack pointer (according to StackPointer()) is csp, then it | |
672 // must be aligned to 16 bytes and the size claimed or dropped must be a | |
673 // multiple of 16 bytes. | |
674 // | |
675 // Note that unit_size must be specified in bytes. For variants which take a | |
676 // Register count, the unit size must be a power of two. | |
677 inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize); | |
678 inline void Claim(const Register& count, | |
679 uint64_t unit_size = kXRegSize); | |
680 inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize); | |
681 inline void Drop(const Register& count, | |
682 uint64_t unit_size = kXRegSize); | |
683 | |
684 // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a | |
685 // register. | |
686 inline void ClaimBySMI(const Register& count_smi, | |
687 uint64_t unit_size = kXRegSize); | |
688 inline void DropBySMI(const Register& count_smi, | |
689 uint64_t unit_size = kXRegSize); | |
690 | |
691 // Compare a register with an operand, and branch to label depending on the | |
692 // condition. May corrupt the status flags. | |
693 inline void CompareAndBranch(const Register& lhs, | |
694 const Operand& rhs, | |
695 Condition cond, | |
696 Label* label); | |
697 | |
698 // Test the bits of register defined by bit_pattern, and branch if ANY of | |
699 // those bits are set. May corrupt the status flags. | |
700 inline void TestAndBranchIfAnySet(const Register& reg, | |
701 const uint64_t bit_pattern, | |
702 Label* label); | |
703 | |
704 // Test the bits of register defined by bit_pattern, and branch if ALL of | |
705 // those bits are clear (ie. not set.) May corrupt the status flags. | |
706 inline void TestAndBranchIfAllClear(const Register& reg, | |
707 const uint64_t bit_pattern, | |
708 Label* label); | |
709 | |
710 // Insert one or more instructions into the instruction stream that encode | |
711 // some caller-defined data. The instructions used will be executable with no | |
712 // side effects. | |
713 inline void InlineData(uint64_t data); | |
714 | |
715 // Insert an instrumentation enable marker into the instruction stream. | |
716 inline void EnableInstrumentation(); | |
717 | |
718 // Insert an instrumentation disable marker into the instruction stream. | |
719 inline void DisableInstrumentation(); | |
720 | |
721 // Insert an instrumentation event marker into the instruction stream. These | |
722 // will be picked up by the instrumentation system to annotate an instruction | |
723 // profile. The argument marker_name must be a printable two character string; | |
724 // it will be encoded in the event marker. | |
725 inline void AnnotateInstrumentation(const char* marker_name); | |
726 | |
727 // If emit_debug_code() is true, emit a run-time check to ensure that | |
728 // StackPointer() does not point below the system stack pointer. | |
729 // | |
730 // Whilst it is architecturally legal for StackPointer() to point below csp, | |
731 // it can be evidence of a potential bug because the ABI forbids accesses | |
732 // below csp. | |
733 // | |
734 // If emit_debug_code() is false, this emits no code. | |
735 // | |
736 // If StackPointer() is the system stack pointer, this emits no code. | |
737 void AssertStackConsistency(); | |
738 | |
739 // Preserve the callee-saved registers (as defined by AAPCS64). | |
740 // | |
741 // Higher-numbered registers are pushed before lower-numbered registers, and | |
742 // thus get higher addresses. | |
743 // Floating-point registers are pushed before general-purpose registers, and | |
744 // thus get higher addresses. | |
745 // | |
746 // Note that registers are not checked for invalid values. Use this method | |
747 // only if you know that the GC won't try to examine the values on the stack. | |
748 // | |
749 // This method must not be called unless the current stack pointer (as set by | |
750 // SetStackPointer) is the system stack pointer (csp), and is aligned to | |
751 // ActivationFrameAlignment(). | |
752 void PushCalleeSavedRegisters(); | |
753 | |
754 // Restore the callee-saved registers (as defined by AAPCS64). | |
755 // | |
756 // Higher-numbered registers are popped after lower-numbered registers, and | |
757 // thus come from higher addresses. | |
758 // Floating-point registers are popped after general-purpose registers, and | |
759 // thus come from higher addresses. | |
760 // | |
761 // This method must not be called unless the current stack pointer (as set by | |
762 // SetStackPointer) is the system stack pointer (csp), and is aligned to | |
763 // ActivationFrameAlignment(). | |
764 void PopCalleeSavedRegisters(); | |
765 | |
766 // Set the current stack pointer, but don't generate any code. | |
767 inline void SetStackPointer(const Register& stack_pointer) { | |
768 ASSERT(!TmpList()->IncludesAliasOf(stack_pointer)); | |
769 sp_ = stack_pointer; | |
770 } | |
771 | |
772 // Return the current stack pointer, as set by SetStackPointer. | |
773 inline const Register& StackPointer() const { | |
774 return sp_; | |
775 } | |
776 | |
777 // Align csp for a frame, as per ActivationFrameAlignment, and make it the | |
778 // current stack pointer. | |
779 inline void AlignAndSetCSPForFrame() { | |
780 int sp_alignment = ActivationFrameAlignment(); | |
781 // AAPCS64 mandates at least 16-byte alignment. | |
782 ASSERT(sp_alignment >= 16); | |
783 ASSERT(IsPowerOf2(sp_alignment)); | |
784 Bic(csp, StackPointer(), sp_alignment - 1); | |
785 SetStackPointer(csp); | |
786 } | |
787 | |
788 // Push the system stack pointer (csp) down to allow the same to be done to | |
789 // the current stack pointer (according to StackPointer()). This must be | |
790 // called _before_ accessing the memory. | |
791 // | |
792 // This is necessary when pushing or otherwise adding things to the stack, to | |
793 // satisfy the AAPCS64 constraint that the memory below the system stack | |
794 // pointer is not accessed. | |
795 // | |
796 // This method asserts that StackPointer() is not csp, since the call does | |
797 // not make sense in that context. | |
798 inline void BumpSystemStackPointer(const Operand& space); | |
799 | |
800 // Helpers ------------------------------------------------------------------ | |
801 // Root register. | |
802 inline void InitializeRootRegister(); | |
803 | |
804 // Load an object from the root table. | |
805 void LoadRoot(Register destination, | |
806 Heap::RootListIndex index); | |
807 // Store an object to the root table. | |
808 void StoreRoot(Register source, | |
809 Heap::RootListIndex index); | |
810 | |
811 // Load both TrueValue and FalseValue roots. | |
812 void LoadTrueFalseRoots(Register true_root, Register false_root); | |
813 | |
814 void LoadHeapObject(Register dst, Handle<HeapObject> object); | |
815 | |
816 void LoadObject(Register result, Handle<Object> object) { | |
817 AllowDeferredHandleDereference heap_object_check; | |
818 if (object->IsHeapObject()) { | |
819 LoadHeapObject(result, Handle<HeapObject>::cast(object)); | |
820 } else { | |
821 ASSERT(object->IsSmi()); | |
822 Mov(result, Operand(object)); | |
823 } | |
824 } | |
825 | |
826 static int SafepointRegisterStackIndex(int reg_code); | |
827 | |
828 // This is required for compatibility with architecture independant code. | |
829 // Remove if not needed. | |
830 inline void Move(Register dst, Register src) { Mov(dst, src); } | |
831 | |
832 void LoadInstanceDescriptors(Register map, | |
833 Register descriptors); | |
834 void EnumLengthUntagged(Register dst, Register map); | |
835 void EnumLengthSmi(Register dst, Register map); | |
836 void NumberOfOwnDescriptors(Register dst, Register map); | |
837 | |
838 template<typename Field> | |
839 void DecodeField(Register reg) { | |
840 static const uint64_t shift = Field::kShift + kSmiShift; | |
841 static const uint64_t setbits = CountSetBits(Field::kMask, 32); | |
842 Ubfx(reg, reg, shift, setbits); | |
843 } | |
844 | |
845 // ---- SMI and Number Utilities ---- | |
846 | |
847 inline void SmiTag(Register dst, Register src); | |
848 inline void SmiTag(Register smi); | |
849 inline void SmiUntag(Register dst, Register src); | |
850 inline void SmiUntag(Register smi); | |
851 inline void SmiUntagToDouble(FPRegister dst, | |
852 Register src, | |
853 UntagMode mode = kNotSpeculativeUntag); | |
854 inline void SmiUntagToFloat(FPRegister dst, | |
855 Register src, | |
856 UntagMode mode = kNotSpeculativeUntag); | |
857 | |
858 // Compute the absolute value of 'smi' and leave the result in 'smi' | |
859 // register. If 'smi' is the most negative SMI, the absolute value cannot | |
860 // be represented as a SMI and a jump to 'slow' is done. | |
861 void SmiAbs(const Register& smi, Label* slow); | |
862 | |
863 inline void JumpIfSmi(Register value, | |
864 Label* smi_label, | |
865 Label* not_smi_label = NULL); | |
866 inline void JumpIfNotSmi(Register value, Label* not_smi_label); | |
867 inline void JumpIfBothSmi(Register value1, | |
868 Register value2, | |
869 Label* both_smi_label, | |
870 Label* not_smi_label = NULL); | |
871 inline void JumpIfEitherSmi(Register value1, | |
872 Register value2, | |
873 Label* either_smi_label, | |
874 Label* not_smi_label = NULL); | |
875 inline void JumpIfEitherNotSmi(Register value1, | |
876 Register value2, | |
877 Label* not_smi_label); | |
878 inline void JumpIfBothNotSmi(Register value1, | |
879 Register value2, | |
880 Label* not_smi_label); | |
881 | |
882 // Abort execution if argument is a smi, enabled via --debug-code. | |
883 void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi); | |
884 void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi); | |
885 | |
886 // Abort execution if argument is not a name, enabled via --debug-code. | |
887 void AssertName(Register object); | |
888 | |
889 // Abort execution if argument is not undefined or an AllocationSite, enabled | |
890 // via --debug-code. | |
891 void AssertUndefinedOrAllocationSite(Register object, Register scratch); | |
892 | |
893 // Abort execution if argument is not a string, enabled via --debug-code. | |
894 void AssertString(Register object); | |
895 | |
896 void JumpForHeapNumber(Register object, | |
897 Register heap_number_map, | |
898 Label* on_heap_number, | |
899 Label* on_not_heap_number = NULL); | |
900 void JumpIfHeapNumber(Register object, | |
901 Label* on_heap_number, | |
902 Register heap_number_map = NoReg); | |
903 void JumpIfNotHeapNumber(Register object, | |
904 Label* on_not_heap_number, | |
905 Register heap_number_map = NoReg); | |
906 | |
907 // Sets the vs flag if the input is -0.0. | |
908 void TestForMinusZero(DoubleRegister input); | |
909 | |
910 // Jump to label if the input double register contains -0.0. | |
911 void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero); | |
912 | |
913 // Generate code to do a lookup in the number string cache. If the number in | |
914 // the register object is found in the cache the generated code falls through | |
915 // with the result in the result register. The object and the result register | |
916 // can be the same. If the number is not found in the cache the code jumps to | |
917 // the label not_found with only the content of register object unchanged. | |
918 void LookupNumberStringCache(Register object, | |
919 Register result, | |
920 Register scratch1, | |
921 Register scratch2, | |
922 Register scratch3, | |
923 Label* not_found); | |
924 | |
925 // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in | |
926 // output. | |
927 void ClampInt32ToUint8(Register in_out); | |
928 void ClampInt32ToUint8(Register output, Register input); | |
929 | |
930 // Saturate a double in input to an unsigned 8-bit integer in output. | |
931 void ClampDoubleToUint8(Register output, | |
932 DoubleRegister input, | |
933 DoubleRegister dbl_scratch); | |
934 | |
935 // Try to convert a double to a signed 32-bit int. | |
936 // This succeeds if the result compares equal to the input, so inputs of -0.0 | |
937 // are converted to 0 and handled as a success. | |
938 // | |
939 // On output the Z flag is set if the conversion was successful. | |
940 void TryConvertDoubleToInt32(Register as_int, | |
941 FPRegister value, | |
942 FPRegister scratch_d, | |
943 Label* on_successful_conversion = NULL, | |
944 Label* on_failed_conversion = NULL) { | |
945 ASSERT(as_int.Is32Bits()); | |
946 TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion, | |
947 on_failed_conversion); | |
948 } | |
949 | |
950 // Try to convert a double to a signed 64-bit int. | |
951 // This succeeds if the result compares equal to the input, so inputs of -0.0 | |
952 // are converted to 0 and handled as a success. | |
953 // | |
954 // On output the Z flag is set if the conversion was successful. | |
955 void TryConvertDoubleToInt64(Register as_int, | |
956 FPRegister value, | |
957 FPRegister scratch_d, | |
958 Label* on_successful_conversion = NULL, | |
959 Label* on_failed_conversion = NULL) { | |
960 ASSERT(as_int.Is64Bits()); | |
961 TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion, | |
962 on_failed_conversion); | |
963 } | |
964 | |
965 // ---- Object Utilities ---- | |
966 | |
967 // Copy fields from 'src' to 'dst', where both are tagged objects. | |
968 // The 'temps' list is a list of X registers which can be used for scratch | |
969 // values. The temps list must include at least one register. | |
970 // | |
971 // Currently, CopyFields cannot make use of more than three registers from | |
972 // the 'temps' list. | |
973 // | |
974 // CopyFields expects to be able to take at least two registers from | |
975 // MacroAssembler::TmpList(). | |
976 void CopyFields(Register dst, Register src, CPURegList temps, unsigned count); | |
977 | |
978 // Starting at address in dst, initialize field_count 64-bit fields with | |
979 // 64-bit value in register filler. Register dst is corrupted. | |
980 void FillFields(Register dst, | |
981 Register field_count, | |
982 Register filler); | |
983 | |
984 // Copies a number of bytes from src to dst. All passed registers are | |
985 // clobbered. On exit src and dst will point to the place just after where the | |
986 // last byte was read or written and length will be zero. Hint may be used to | |
987 // determine which is the most efficient algorithm to use for copying. | |
988 void CopyBytes(Register dst, | |
989 Register src, | |
990 Register length, | |
991 Register scratch, | |
992 CopyHint hint = kCopyUnknown); | |
993 | |
994 // ---- String Utilities ---- | |
995 | |
996 | |
997 // Jump to label if either object is not a sequential ASCII string. | |
998 // Optionally perform a smi check on the objects first. | |
999 void JumpIfEitherIsNotSequentialAsciiStrings( | |
1000 Register first, | |
1001 Register second, | |
1002 Register scratch1, | |
1003 Register scratch2, | |
1004 Label* failure, | |
1005 SmiCheckType smi_check = DO_SMI_CHECK); | |
1006 | |
1007 // Check if instance type is sequential ASCII string and jump to label if | |
1008 // it is not. | |
1009 void JumpIfInstanceTypeIsNotSequentialAscii(Register type, | |
1010 Register scratch, | |
1011 Label* failure); | |
1012 | |
1013 // Checks if both instance types are sequential ASCII strings and jumps to | |
1014 // label if either is not. | |
1015 void JumpIfEitherInstanceTypeIsNotSequentialAscii( | |
1016 Register first_object_instance_type, | |
1017 Register second_object_instance_type, | |
1018 Register scratch1, | |
1019 Register scratch2, | |
1020 Label* failure); | |
1021 | |
1022 // Checks if both instance types are sequential ASCII strings and jumps to | |
1023 // label if either is not. | |
1024 void JumpIfBothInstanceTypesAreNotSequentialAscii( | |
1025 Register first_object_instance_type, | |
1026 Register second_object_instance_type, | |
1027 Register scratch1, | |
1028 Register scratch2, | |
1029 Label* failure); | |
1030 | |
1031 void JumpIfNotUniqueName(Register type, Label* not_unique_name); | |
1032 | |
1033 // ---- Calling / Jumping helpers ---- | |
1034 | |
1035 // This is required for compatibility in architecture indepenedant code. | |
1036 inline void jmp(Label* L) { B(L); } | |
1037 | |
1038 // Passes thrown value to the handler of top of the try handler chain. | |
1039 // Register value must be x0. | |
1040 void Throw(Register value, | |
1041 Register scratch1, | |
1042 Register scratch2, | |
1043 Register scratch3, | |
1044 Register scratch4); | |
1045 | |
1046 // Propagates an uncatchable exception to the top of the current JS stack's | |
1047 // handler chain. Register value must be x0. | |
1048 void ThrowUncatchable(Register value, | |
1049 Register scratch1, | |
1050 Register scratch2, | |
1051 Register scratch3, | |
1052 Register scratch4); | |
1053 | |
1054 // Throw a message string as an exception. | |
1055 void Throw(BailoutReason reason); | |
1056 | |
1057 // Throw a message string as an exception if a condition is not true. | |
1058 void ThrowIf(Condition cc, BailoutReason reason); | |
1059 | |
1060 // Throw a message string as an exception if the value is a smi. | |
1061 void ThrowIfSmi(const Register& value, BailoutReason reason); | |
1062 | |
1063 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); | |
1064 void TailCallStub(CodeStub* stub); | |
1065 | |
1066 void CallRuntime(const Runtime::Function* f, | |
1067 int num_arguments, | |
1068 SaveFPRegsMode save_doubles = kDontSaveFPRegs); | |
1069 | |
1070 void CallRuntime(Runtime::FunctionId id, | |
1071 int num_arguments, | |
1072 SaveFPRegsMode save_doubles = kDontSaveFPRegs) { | |
1073 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles); | |
1074 } | |
1075 | |
1076 void CallRuntimeSaveDoubles(Runtime::FunctionId id) { | |
1077 const Runtime::Function* function = Runtime::FunctionForId(id); | |
1078 CallRuntime(function, function->nargs, kSaveFPRegs); | |
1079 } | |
1080 | |
1081 void TailCallRuntime(Runtime::FunctionId fid, | |
1082 int num_arguments, | |
1083 int result_size); | |
1084 | |
1085 int ActivationFrameAlignment(); | |
1086 | |
1087 // Calls a C function. | |
1088 // The called function is not allowed to trigger a | |
1089 // garbage collection, since that might move the code and invalidate the | |
1090 // return address (unless this is somehow accounted for by the called | |
1091 // function). | |
1092 void CallCFunction(ExternalReference function, | |
1093 int num_reg_arguments); | |
1094 void CallCFunction(ExternalReference function, | |
1095 int num_reg_arguments, | |
1096 int num_double_arguments); | |
1097 void CallCFunction(Register function, | |
1098 int num_reg_arguments, | |
1099 int num_double_arguments); | |
1100 | |
1101 // Calls an API function. Allocates HandleScope, extracts returned value | |
1102 // from handle and propagates exceptions. | |
1103 // 'stack_space' is the space to be unwound on exit (includes the call JS | |
1104 // arguments space and the additional space allocated for the fast call). | |
1105 // 'spill_offset' is the offset from the stack pointer where | |
1106 // CallApiFunctionAndReturn can spill registers. | |
1107 void CallApiFunctionAndReturn(Register function_address, | |
1108 ExternalReference thunk_ref, | |
1109 int stack_space, | |
1110 int spill_offset, | |
1111 MemOperand return_value_operand, | |
1112 MemOperand* context_restore_operand); | |
1113 | |
1114 // The number of register that CallApiFunctionAndReturn will need to save on | |
1115 // the stack. The space for these registers need to be allocated in the | |
1116 // ExitFrame before calling CallApiFunctionAndReturn. | |
1117 static const int kCallApiFunctionSpillSpace = 4; | |
1118 | |
1119 // Jump to a runtime routine. | |
1120 void JumpToExternalReference(const ExternalReference& builtin); | |
1121 // Tail call of a runtime routine (jump). | |
1122 // Like JumpToExternalReference, but also takes care of passing the number | |
1123 // of parameters. | |
1124 void TailCallExternalReference(const ExternalReference& ext, | |
1125 int num_arguments, | |
1126 int result_size); | |
1127 void CallExternalReference(const ExternalReference& ext, | |
1128 int num_arguments); | |
1129 | |
1130 | |
1131 // Invoke specified builtin JavaScript function. Adds an entry to | |
1132 // the unresolved list if the name does not resolve. | |
1133 void InvokeBuiltin(Builtins::JavaScript id, | |
1134 InvokeFlag flag, | |
1135 const CallWrapper& call_wrapper = NullCallWrapper()); | |
1136 | |
1137 // Store the code object for the given builtin in the target register and | |
1138 // setup the function in the function register. | |
1139 void GetBuiltinEntry(Register target, | |
1140 Register function, | |
1141 Builtins::JavaScript id); | |
1142 | |
1143 // Store the function for the given builtin in the target register. | |
1144 void GetBuiltinFunction(Register target, Builtins::JavaScript id); | |
1145 | |
1146 void Jump(Register target); | |
1147 void Jump(Address target, RelocInfo::Mode rmode); | |
1148 void Jump(Handle<Code> code, RelocInfo::Mode rmode); | |
1149 void Jump(intptr_t target, RelocInfo::Mode rmode); | |
1150 | |
1151 void Call(Register target); | |
1152 void Call(Label* target); | |
1153 void Call(Address target, RelocInfo::Mode rmode); | |
1154 void Call(Handle<Code> code, | |
1155 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, | |
1156 TypeFeedbackId ast_id = TypeFeedbackId::None()); | |
1157 | |
1158 // For every Call variant, there is a matching CallSize function that returns | |
1159 // the size (in bytes) of the call sequence. | |
1160 static int CallSize(Register target); | |
1161 static int CallSize(Label* target); | |
1162 static int CallSize(Address target, RelocInfo::Mode rmode); | |
1163 static int CallSize(Handle<Code> code, | |
1164 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, | |
1165 TypeFeedbackId ast_id = TypeFeedbackId::None()); | |
1166 | |
1167 // Registers used through the invocation chain are hard-coded. | |
1168 // We force passing the parameters to ensure the contracts are correctly | |
1169 // honoured by the caller. | |
1170 // 'function' must be x1. | |
1171 // 'actual' must use an immediate or x0. | |
1172 // 'expected' must use an immediate or x2. | |
1173 // 'call_kind' must be x5. | |
1174 void InvokePrologue(const ParameterCount& expected, | |
1175 const ParameterCount& actual, | |
1176 Handle<Code> code_constant, | |
1177 Register code_reg, | |
1178 Label* done, | |
1179 InvokeFlag flag, | |
1180 bool* definitely_mismatches, | |
1181 const CallWrapper& call_wrapper); | |
1182 void InvokeCode(Register code, | |
1183 const ParameterCount& expected, | |
1184 const ParameterCount& actual, | |
1185 InvokeFlag flag, | |
1186 const CallWrapper& call_wrapper); | |
1187 // Invoke the JavaScript function in the given register. | |
1188 // Changes the current context to the context in the function before invoking. | |
1189 void InvokeFunction(Register function, | |
1190 const ParameterCount& actual, | |
1191 InvokeFlag flag, | |
1192 const CallWrapper& call_wrapper); | |
1193 void InvokeFunction(Register function, | |
1194 const ParameterCount& expected, | |
1195 const ParameterCount& actual, | |
1196 InvokeFlag flag, | |
1197 const CallWrapper& call_wrapper); | |
1198 void InvokeFunction(Handle<JSFunction> function, | |
1199 const ParameterCount& expected, | |
1200 const ParameterCount& actual, | |
1201 InvokeFlag flag, | |
1202 const CallWrapper& call_wrapper); | |
1203 | |
1204 | |
1205 // ---- Floating point helpers ---- | |
1206 | |
1207 // Perform a conversion from a double to a signed int64. If the input fits in | |
1208 // range of the 64-bit result, execution branches to done. Otherwise, | |
1209 // execution falls through, and the sign of the result can be used to | |
1210 // determine if overflow was towards positive or negative infinity. | |
1211 // | |
1212 // On successful conversion, the least significant 32 bits of the result are | |
1213 // equivalent to the ECMA-262 operation "ToInt32". | |
1214 // | |
1215 // Only public for the test code in test-code-stubs-a64.cc. | |
1216 void TryConvertDoubleToInt64(Register result, | |
1217 DoubleRegister input, | |
1218 Label* done); | |
1219 | |
1220 // Performs a truncating conversion of a floating point number as used by | |
1221 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. | |
1222 // Exits with 'result' holding the answer. | |
1223 void TruncateDoubleToI(Register result, DoubleRegister double_input); | |
1224 | |
1225 // Performs a truncating conversion of a heap number as used by | |
1226 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input' | |
1227 // must be different registers. Exits with 'result' holding the answer. | |
1228 void TruncateHeapNumberToI(Register result, Register object); | |
1229 | |
1230 // Converts the smi or heap number in object to an int32 using the rules | |
1231 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated | |
1232 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be | |
1233 // different registers. | |
1234 void TruncateNumberToI(Register object, | |
1235 Register result, | |
1236 Register heap_number_map, | |
1237 Label* not_int32); | |
1238 | |
1239 // ---- Code generation helpers ---- | |
1240 | |
1241 void set_generating_stub(bool value) { generating_stub_ = value; } | |
1242 bool generating_stub() const { return generating_stub_; } | |
1243 #if DEBUG | |
1244 void set_allow_macro_instructions(bool value) { | |
1245 allow_macro_instructions_ = value; | |
1246 } | |
1247 bool allow_macro_instructions() const { return allow_macro_instructions_; } | |
1248 #endif | |
1249 bool use_real_aborts() const { return use_real_aborts_; } | |
1250 void set_has_frame(bool value) { has_frame_ = value; } | |
1251 bool has_frame() const { return has_frame_; } | |
1252 bool AllowThisStubCall(CodeStub* stub); | |
1253 | |
1254 class NoUseRealAbortsScope { | |
1255 public: | |
1256 explicit NoUseRealAbortsScope(MacroAssembler* masm) : | |
1257 saved_(masm->use_real_aborts_), masm_(masm) { | |
1258 masm_->use_real_aborts_ = false; | |
1259 } | |
1260 ~NoUseRealAbortsScope() { | |
1261 masm_->use_real_aborts_ = saved_; | |
1262 } | |
1263 private: | |
1264 bool saved_; | |
1265 MacroAssembler* masm_; | |
1266 }; | |
1267 | |
1268 #ifdef ENABLE_DEBUGGER_SUPPORT | |
1269 // --------------------------------------------------------------------------- | |
1270 // Debugger Support | |
1271 | |
1272 void DebugBreak(); | |
1273 #endif | |
1274 // --------------------------------------------------------------------------- | |
1275 // Exception handling | |
1276 | |
1277 // Push a new try handler and link into try handler chain. | |
1278 void PushTryHandler(StackHandler::Kind kind, int handler_index); | |
1279 | |
1280 // Unlink the stack handler on top of the stack from the try handler chain. | |
1281 // Must preserve the result register. | |
1282 void PopTryHandler(); | |
1283 | |
1284 | |
1285 // --------------------------------------------------------------------------- | |
1286 // Allocation support | |
1287 | |
1288 // Allocate an object in new space or old pointer space. The object_size is | |
1289 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS | |
1290 // is passed. The allocated object is returned in result. | |
1291 // | |
1292 // If the new space is exhausted control continues at the gc_required label. | |
1293 // In this case, the result and scratch registers may still be clobbered. | |
1294 // If flags includes TAG_OBJECT, the result is tagged as as a heap object. | |
1295 void Allocate(Register object_size, | |
1296 Register result, | |
1297 Register scratch1, | |
1298 Register scratch2, | |
1299 Label* gc_required, | |
1300 AllocationFlags flags); | |
1301 | |
1302 void Allocate(int object_size, | |
1303 Register result, | |
1304 Register scratch1, | |
1305 Register scratch2, | |
1306 Label* gc_required, | |
1307 AllocationFlags flags); | |
1308 | |
1309 // Undo allocation in new space. The object passed and objects allocated after | |
1310 // it will no longer be allocated. The caller must make sure that no pointers | |
1311 // are left to the object(s) no longer allocated as they would be invalid when | |
1312 // allocation is undone. | |
1313 void UndoAllocationInNewSpace(Register object, Register scratch); | |
1314 | |
1315 void AllocateTwoByteString(Register result, | |
1316 Register length, | |
1317 Register scratch1, | |
1318 Register scratch2, | |
1319 Register scratch3, | |
1320 Label* gc_required); | |
1321 void AllocateAsciiString(Register result, | |
1322 Register length, | |
1323 Register scratch1, | |
1324 Register scratch2, | |
1325 Register scratch3, | |
1326 Label* gc_required); | |
1327 void AllocateTwoByteConsString(Register result, | |
1328 Register length, | |
1329 Register scratch1, | |
1330 Register scratch2, | |
1331 Label* gc_required); | |
1332 void AllocateAsciiConsString(Register result, | |
1333 Register length, | |
1334 Register scratch1, | |
1335 Register scratch2, | |
1336 Label* gc_required); | |
1337 void AllocateTwoByteSlicedString(Register result, | |
1338 Register length, | |
1339 Register scratch1, | |
1340 Register scratch2, | |
1341 Label* gc_required); | |
1342 void AllocateAsciiSlicedString(Register result, | |
1343 Register length, | |
1344 Register scratch1, | |
1345 Register scratch2, | |
1346 Label* gc_required); | |
1347 | |
1348 // Allocates a heap number or jumps to the gc_required label if the young | |
1349 // space is full and a scavenge is needed. | |
1350 // All registers are clobbered. | |
1351 // If no heap_number_map register is provided, the function will take care of | |
1352 // loading it. | |
1353 void AllocateHeapNumber(Register result, | |
1354 Label* gc_required, | |
1355 Register scratch1, | |
1356 Register scratch2, | |
1357 Register heap_number_map = NoReg); | |
1358 void AllocateHeapNumberWithValue(Register result, | |
1359 DoubleRegister value, | |
1360 Label* gc_required, | |
1361 Register scratch1, | |
1362 Register scratch2, | |
1363 Register heap_number_map = NoReg); | |
1364 | |
1365 // --------------------------------------------------------------------------- | |
1366 // Support functions. | |
1367 | |
1368 // Try to get function prototype of a function and puts the value in the | |
1369 // result register. Checks that the function really is a function and jumps | |
1370 // to the miss label if the fast checks fail. The function register will be | |
1371 // untouched; the other registers may be clobbered. | |
1372 enum BoundFunctionAction { | |
1373 kMissOnBoundFunction, | |
1374 kDontMissOnBoundFunction | |
1375 }; | |
1376 | |
1377 void TryGetFunctionPrototype(Register function, | |
1378 Register result, | |
1379 Register scratch, | |
1380 Label* miss, | |
1381 BoundFunctionAction action = | |
1382 kDontMissOnBoundFunction); | |
1383 | |
1384 // Compare object type for heap object. heap_object contains a non-Smi | |
1385 // whose object type should be compared with the given type. This both | |
1386 // sets the flags and leaves the object type in the type_reg register. | |
1387 // It leaves the map in the map register (unless the type_reg and map register | |
1388 // are the same register). It leaves the heap object in the heap_object | |
1389 // register unless the heap_object register is the same register as one of the | |
1390 // other registers. | |
1391 void CompareObjectType(Register heap_object, | |
1392 Register map, | |
1393 Register type_reg, | |
1394 InstanceType type); | |
1395 | |
1396 | |
1397 // Compare object type for heap object, and branch if equal (or not.) | |
1398 // heap_object contains a non-Smi whose object type should be compared with | |
1399 // the given type. This both sets the flags and leaves the object type in | |
1400 // the type_reg register. It leaves the map in the map register (unless the | |
1401 // type_reg and map register are the same register). It leaves the heap | |
1402 // object in the heap_object register unless the heap_object register is the | |
1403 // same register as one of the other registers. | |
1404 void JumpIfObjectType(Register object, | |
1405 Register map, | |
1406 Register type_reg, | |
1407 InstanceType type, | |
1408 Label* if_cond_pass, | |
1409 Condition cond = eq); | |
1410 | |
1411 void JumpIfNotObjectType(Register object, | |
1412 Register map, | |
1413 Register type_reg, | |
1414 InstanceType type, | |
1415 Label* if_not_object); | |
1416 | |
1417 // Compare instance type in a map. map contains a valid map object whose | |
1418 // object type should be compared with the given type. This both | |
1419 // sets the flags and leaves the object type in the type_reg register. | |
1420 void CompareInstanceType(Register map, | |
1421 Register type_reg, | |
1422 InstanceType type); | |
1423 | |
1424 // Compare an object's map with the specified map. Condition flags are set | |
1425 // with result of map compare. | |
1426 void CompareMap(Register obj, | |
1427 Register scratch, | |
1428 Handle<Map> map); | |
1429 | |
1430 // As above, but the map of the object is already loaded into the register | |
1431 // which is preserved by the code generated. | |
1432 void CompareMap(Register obj_map, | |
1433 Handle<Map> map); | |
1434 | |
1435 // Check if the map of an object is equal to a specified map and branch to | |
1436 // label if not. Skip the smi check if not required (object is known to be a | |
1437 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match | |
1438 // against maps that are ElementsKind transition maps of the specified map. | |
1439 void CheckMap(Register obj, | |
1440 Register scratch, | |
1441 Handle<Map> map, | |
1442 Label* fail, | |
1443 SmiCheckType smi_check_type); | |
1444 | |
1445 | |
1446 void CheckMap(Register obj, | |
1447 Register scratch, | |
1448 Heap::RootListIndex index, | |
1449 Label* fail, | |
1450 SmiCheckType smi_check_type); | |
1451 | |
1452 // As above, but the map of the object is already loaded into obj_map, and is | |
1453 // preserved. | |
1454 void CheckMap(Register obj_map, | |
1455 Handle<Map> map, | |
1456 Label* fail, | |
1457 SmiCheckType smi_check_type); | |
1458 | |
1459 // Check if the map of an object is equal to a specified map and branch to a | |
1460 // specified target if equal. Skip the smi check if not required (object is | |
1461 // known to be a heap object) | |
1462 void DispatchMap(Register obj, | |
1463 Register scratch, | |
1464 Handle<Map> map, | |
1465 Handle<Code> success, | |
1466 SmiCheckType smi_check_type); | |
1467 | |
1468 // Test the bitfield of the heap object map with mask and set the condition | |
1469 // flags. The object register is preserved. | |
1470 void TestMapBitfield(Register object, uint64_t mask); | |
1471 | |
1472 // Load the elements kind field from a map, and return it in the result | |
1473 // register. | |
1474 void LoadElementsKindFromMap(Register result, Register map); | |
1475 | |
1476 // Compare the object in a register to a value from the root list. | |
1477 void CompareRoot(const Register& obj, Heap::RootListIndex index); | |
1478 | |
1479 // Compare the object in a register to a value and jump if they are equal. | |
1480 void JumpIfRoot(const Register& obj, | |
1481 Heap::RootListIndex index, | |
1482 Label* if_equal); | |
1483 | |
1484 // Compare the object in a register to a value and jump if they are not equal. | |
1485 void JumpIfNotRoot(const Register& obj, | |
1486 Heap::RootListIndex index, | |
1487 Label* if_not_equal); | |
1488 | |
1489 // Load and check the instance type of an object for being a unique name. | |
1490 // Loads the type into the second argument register. | |
1491 // The object and type arguments can be the same register; in that case it | |
1492 // will be overwritten with the type. | |
1493 // Fall-through if the object was a string and jump on fail otherwise. | |
1494 inline void IsObjectNameType(Register object, Register type, Label* fail); | |
1495 | |
1496 inline void IsObjectJSObjectType(Register heap_object, | |
1497 Register map, | |
1498 Register scratch, | |
1499 Label* fail); | |
1500 | |
1501 // Check the instance type in the given map to see if it corresponds to a | |
1502 // JS object type. Jump to the fail label if this is not the case and fall | |
1503 // through otherwise. However if fail label is NULL, no branch will be | |
1504 // performed and the flag will be updated. You can test the flag for "le" | |
1505 // condition to test if it is a valid JS object type. | |
1506 inline void IsInstanceJSObjectType(Register map, | |
1507 Register scratch, | |
1508 Label* fail); | |
1509 | |
1510 // Load and check the instance type of an object for being a string. | |
1511 // Loads the type into the second argument register. | |
1512 // The object and type arguments can be the same register; in that case it | |
1513 // will be overwritten with the type. | |
1514 // Jumps to not_string or string appropriate. If the appropriate label is | |
1515 // NULL, fall through. | |
1516 inline void IsObjectJSStringType(Register object, Register type, | |
1517 Label* not_string, Label* string = NULL); | |
1518 | |
1519 // Compare the contents of a register with an operand, and branch to true, | |
1520 // false or fall through, depending on condition. | |
1521 void CompareAndSplit(const Register& lhs, | |
1522 const Operand& rhs, | |
1523 Condition cond, | |
1524 Label* if_true, | |
1525 Label* if_false, | |
1526 Label* fall_through); | |
1527 | |
1528 // Test the bits of register defined by bit_pattern, and branch to | |
1529 // if_any_set, if_all_clear or fall_through accordingly. | |
1530 void TestAndSplit(const Register& reg, | |
1531 uint64_t bit_pattern, | |
1532 Label* if_all_clear, | |
1533 Label* if_any_set, | |
1534 Label* fall_through); | |
1535 | |
1536 // Check if a map for a JSObject indicates that the object has fast elements. | |
1537 // Jump to the specified label if it does not. | |
1538 void CheckFastElements(Register map, Register scratch, Label* fail); | |
1539 | |
1540 // Check if a map for a JSObject indicates that the object can have both smi | |
1541 // and HeapObject elements. Jump to the specified label if it does not. | |
1542 void CheckFastObjectElements(Register map, Register scratch, Label* fail); | |
1543 | |
1544 // Check to see if number can be stored as a double in FastDoubleElements. | |
1545 // If it can, store it at the index specified by key_reg in the array, | |
1546 // otherwise jump to fail. | |
1547 void StoreNumberToDoubleElements(Register value_reg, | |
1548 Register key_reg, | |
1549 Register elements_reg, | |
1550 Register scratch1, | |
1551 FPRegister fpscratch1, | |
1552 FPRegister fpscratch2, | |
1553 Label* fail, | |
1554 int elements_offset = 0); | |
1555 | |
1556 // Picks out an array index from the hash field. | |
1557 // Register use: | |
1558 // hash - holds the index's hash. Clobbered. | |
1559 // index - holds the overwritten index on exit. | |
1560 void IndexFromHash(Register hash, Register index); | |
1561 | |
1562 // --------------------------------------------------------------------------- | |
1563 // Inline caching support. | |
1564 | |
1565 void EmitSeqStringSetCharCheck(Register string, | |
1566 Register index, | |
1567 SeqStringSetCharCheckIndexType index_type, | |
1568 Register scratch, | |
1569 uint32_t encoding_mask); | |
1570 | |
1571 // Generate code for checking access rights - used for security checks | |
1572 // on access to global objects across environments. The holder register | |
1573 // is left untouched, whereas both scratch registers are clobbered. | |
1574 void CheckAccessGlobalProxy(Register holder_reg, | |
1575 Register scratch1, | |
1576 Register scratch2, | |
1577 Label* miss); | |
1578 | |
1579 // Hash the interger value in 'key' register. | |
1580 // It uses the same algorithm as ComputeIntegerHash in utils.h. | |
1581 void GetNumberHash(Register key, Register scratch); | |
1582 | |
1583 // Load value from the dictionary. | |
1584 // | |
1585 // elements - holds the slow-case elements of the receiver on entry. | |
1586 // Unchanged unless 'result' is the same register. | |
1587 // | |
1588 // key - holds the smi key on entry. | |
1589 // Unchanged unless 'result' is the same register. | |
1590 // | |
1591 // result - holds the result on exit if the load succeeded. | |
1592 // Allowed to be the same as 'key' or 'result'. | |
1593 // Unchanged on bailout so 'key' or 'result' can be used | |
1594 // in further computation. | |
1595 void LoadFromNumberDictionary(Label* miss, | |
1596 Register elements, | |
1597 Register key, | |
1598 Register result, | |
1599 Register scratch0, | |
1600 Register scratch1, | |
1601 Register scratch2, | |
1602 Register scratch3); | |
1603 | |
1604 // --------------------------------------------------------------------------- | |
1605 // Frames. | |
1606 | |
1607 // Activation support. | |
1608 void EnterFrame(StackFrame::Type type); | |
1609 void LeaveFrame(StackFrame::Type type); | |
1610 | |
1611 // Returns map with validated enum cache in object register. | |
1612 void CheckEnumCache(Register object, | |
1613 Register null_value, | |
1614 Register scratch0, | |
1615 Register scratch1, | |
1616 Register scratch2, | |
1617 Register scratch3, | |
1618 Label* call_runtime); | |
1619 | |
1620 // AllocationMemento support. Arrays may have an associated | |
1621 // AllocationMemento object that can be checked for in order to pretransition | |
1622 // to another type. | |
1623 // On entry, receiver should point to the array object. | |
1624 // If allocation info is present, the Z flag is set (so that the eq | |
1625 // condition will pass). | |
1626 void TestJSArrayForAllocationMemento(Register receiver, | |
1627 Register scratch1, | |
1628 Register scratch2, | |
1629 Label* no_memento_found); | |
1630 | |
1631 void JumpIfJSArrayHasAllocationMemento(Register receiver, | |
1632 Register scratch1, | |
1633 Register scratch2, | |
1634 Label* memento_found) { | |
1635 Label no_memento_found; | |
1636 TestJSArrayForAllocationMemento(receiver, scratch1, scratch2, | |
1637 &no_memento_found); | |
1638 B(eq, memento_found); | |
1639 Bind(&no_memento_found); | |
1640 } | |
1641 | |
1642 // The stack pointer has to switch between csp and jssp when setting up and | |
1643 // destroying the exit frame. Hence preserving/restoring the registers is | |
1644 // slightly more complicated than simple push/pop operations. | |
1645 void ExitFramePreserveFPRegs(); | |
1646 void ExitFrameRestoreFPRegs(); | |
1647 | |
1648 // Generates function and stub prologue code. | |
1649 void Prologue(PrologueFrameMode frame_mode); | |
1650 | |
1651 // Enter exit frame. Exit frames are used when calling C code from generated | |
1652 // (JavaScript) code. | |
1653 // | |
1654 // The stack pointer must be jssp on entry, and will be set to csp by this | |
1655 // function. The frame pointer is also configured, but the only other | |
1656 // registers modified by this function are the provided scratch register, and | |
1657 // jssp. | |
1658 // | |
1659 // The 'extra_space' argument can be used to allocate some space in the exit | |
1660 // frame that will be ignored by the GC. This space will be reserved in the | |
1661 // bottom of the frame immediately above the return address slot. | |
1662 // | |
1663 // Set up a stack frame and registers as follows: | |
1664 // fp[8]: CallerPC (lr) | |
1665 // fp -> fp[0]: CallerFP (old fp) | |
1666 // fp[-8]: SPOffset (new csp) | |
1667 // fp[-16]: CodeObject() | |
1668 // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true. | |
1669 // csp[8]: Memory reserved for the caller if extra_space != 0. | |
1670 // Alignment padding, if necessary. | |
1671 // csp -> csp[0]: Space reserved for the return address. | |
1672 // | |
1673 // This function also stores the new frame information in the top frame, so | |
1674 // that the new frame becomes the current frame. | |
1675 void EnterExitFrame(bool save_doubles, | |
1676 const Register& scratch, | |
1677 int extra_space = 0); | |
1678 | |
1679 // Leave the current exit frame, after a C function has returned to generated | |
1680 // (JavaScript) code. | |
1681 // | |
1682 // This effectively unwinds the operation of EnterExitFrame: | |
1683 // * Preserved doubles are restored (if restore_doubles is true). | |
1684 // * The frame information is removed from the top frame. | |
1685 // * The exit frame is dropped. | |
1686 // * The stack pointer is reset to jssp. | |
1687 // | |
1688 // The stack pointer must be csp on entry. | |
1689 void LeaveExitFrame(bool save_doubles, | |
1690 const Register& scratch, | |
1691 bool restore_context); | |
1692 | |
1693 void LoadContext(Register dst, int context_chain_length); | |
1694 | |
1695 // Emit code for a truncating division by a constant. The dividend register is | |
1696 // unchanged. Dividend and result must be different. | |
1697 void TruncatingDiv(Register result, Register dividend, int32_t divisor); | |
1698 | |
1699 // --------------------------------------------------------------------------- | |
1700 // StatsCounter support | |
1701 | |
1702 void SetCounter(StatsCounter* counter, int value, Register scratch1, | |
1703 Register scratch2); | |
1704 void IncrementCounter(StatsCounter* counter, int value, Register scratch1, | |
1705 Register scratch2); | |
1706 void DecrementCounter(StatsCounter* counter, int value, Register scratch1, | |
1707 Register scratch2); | |
1708 | |
1709 // --------------------------------------------------------------------------- | |
1710 // Garbage collector support (GC). | |
1711 | |
1712 enum RememberedSetFinalAction { | |
1713 kReturnAtEnd, | |
1714 kFallThroughAtEnd | |
1715 }; | |
1716 | |
1717 // Record in the remembered set the fact that we have a pointer to new space | |
1718 // at the address pointed to by the addr register. Only works if addr is not | |
1719 // in new space. | |
1720 void RememberedSetHelper(Register object, // Used for debug code. | |
1721 Register addr, | |
1722 Register scratch1, | |
1723 SaveFPRegsMode save_fp, | |
1724 RememberedSetFinalAction and_then); | |
1725 | |
1726 // Push and pop the registers that can hold pointers, as defined by the | |
1727 // RegList constant kSafepointSavedRegisters. | |
1728 void PushSafepointRegisters(); | |
1729 void PopSafepointRegisters(); | |
1730 | |
1731 void PushSafepointFPRegisters(); | |
1732 void PopSafepointFPRegisters(); | |
1733 | |
1734 // Store value in register src in the safepoint stack slot for register dst. | |
1735 void StoreToSafepointRegisterSlot(Register src, Register dst) { | |
1736 Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); | |
1737 } | |
1738 | |
1739 // Load the value of the src register from its safepoint stack slot | |
1740 // into register dst. | |
1741 void LoadFromSafepointRegisterSlot(Register dst, Register src) { | |
1742 Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); | |
1743 } | |
1744 | |
1745 void CheckPageFlagSet(const Register& object, | |
1746 const Register& scratch, | |
1747 int mask, | |
1748 Label* if_any_set); | |
1749 | |
1750 void CheckPageFlagClear(const Register& object, | |
1751 const Register& scratch, | |
1752 int mask, | |
1753 Label* if_all_clear); | |
1754 | |
1755 void CheckMapDeprecated(Handle<Map> map, | |
1756 Register scratch, | |
1757 Label* if_deprecated); | |
1758 | |
1759 // Check if object is in new space and jump accordingly. | |
1760 // Register 'object' is preserved. | |
1761 void JumpIfNotInNewSpace(Register object, | |
1762 Label* branch) { | |
1763 InNewSpace(object, ne, branch); | |
1764 } | |
1765 | |
1766 void JumpIfInNewSpace(Register object, | |
1767 Label* branch) { | |
1768 InNewSpace(object, eq, branch); | |
1769 } | |
1770 | |
1771 // Notify the garbage collector that we wrote a pointer into an object. | |
1772 // |object| is the object being stored into, |value| is the object being | |
1773 // stored. value and scratch registers are clobbered by the operation. | |
1774 // The offset is the offset from the start of the object, not the offset from | |
1775 // the tagged HeapObject pointer. For use with FieldOperand(reg, off). | |
1776 void RecordWriteField( | |
1777 Register object, | |
1778 int offset, | |
1779 Register value, | |
1780 Register scratch, | |
1781 LinkRegisterStatus lr_status, | |
1782 SaveFPRegsMode save_fp, | |
1783 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, | |
1784 SmiCheck smi_check = INLINE_SMI_CHECK); | |
1785 | |
1786 // As above, but the offset has the tag presubtracted. For use with | |
1787 // MemOperand(reg, off). | |
1788 inline void RecordWriteContextSlot( | |
1789 Register context, | |
1790 int offset, | |
1791 Register value, | |
1792 Register scratch, | |
1793 LinkRegisterStatus lr_status, | |
1794 SaveFPRegsMode save_fp, | |
1795 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, | |
1796 SmiCheck smi_check = INLINE_SMI_CHECK) { | |
1797 RecordWriteField(context, | |
1798 offset + kHeapObjectTag, | |
1799 value, | |
1800 scratch, | |
1801 lr_status, | |
1802 save_fp, | |
1803 remembered_set_action, | |
1804 smi_check); | |
1805 } | |
1806 | |
1807 // For a given |object| notify the garbage collector that the slot |address| | |
1808 // has been written. |value| is the object being stored. The value and | |
1809 // address registers are clobbered by the operation. | |
1810 void RecordWrite( | |
1811 Register object, | |
1812 Register address, | |
1813 Register value, | |
1814 LinkRegisterStatus lr_status, | |
1815 SaveFPRegsMode save_fp, | |
1816 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, | |
1817 SmiCheck smi_check = INLINE_SMI_CHECK); | |
1818 | |
1819 // Checks the color of an object. If the object is already grey or black | |
1820 // then we just fall through, since it is already live. If it is white and | |
1821 // we can determine that it doesn't need to be scanned, then we just mark it | |
1822 // black and fall through. For the rest we jump to the label so the | |
1823 // incremental marker can fix its assumptions. | |
1824 void EnsureNotWhite(Register object, | |
1825 Register scratch1, | |
1826 Register scratch2, | |
1827 Register scratch3, | |
1828 Register scratch4, | |
1829 Label* object_is_white_and_not_data); | |
1830 | |
1831 // Detects conservatively whether an object is data-only, i.e. it does need to | |
1832 // be scanned by the garbage collector. | |
1833 void JumpIfDataObject(Register value, | |
1834 Register scratch, | |
1835 Label* not_data_object); | |
1836 | |
1837 // Helper for finding the mark bits for an address. | |
1838 // Note that the behaviour slightly differs from other architectures. | |
1839 // On exit: | |
1840 // - addr_reg is unchanged. | |
1841 // - The bitmap register points at the word with the mark bits. | |
1842 // - The shift register contains the index of the first color bit for this | |
1843 // object in the bitmap. | |
1844 inline void GetMarkBits(Register addr_reg, | |
1845 Register bitmap_reg, | |
1846 Register shift_reg); | |
1847 | |
1848 // Check if an object has a given incremental marking color. | |
1849 void HasColor(Register object, | |
1850 Register scratch0, | |
1851 Register scratch1, | |
1852 Label* has_color, | |
1853 int first_bit, | |
1854 int second_bit); | |
1855 | |
1856 void JumpIfBlack(Register object, | |
1857 Register scratch0, | |
1858 Register scratch1, | |
1859 Label* on_black); | |
1860 | |
1861 | |
1862 // Get the location of a relocated constant (its address in the constant pool) | |
1863 // from its load site. | |
1864 void GetRelocatedValueLocation(Register ldr_location, | |
1865 Register result); | |
1866 | |
1867 | |
1868 // --------------------------------------------------------------------------- | |
1869 // Debugging. | |
1870 | |
1871 // Calls Abort(msg) if the condition cond is not satisfied. | |
1872 // Use --debug_code to enable. | |
1873 void Assert(Condition cond, BailoutReason reason); | |
1874 void AssertRegisterIsClear(Register reg, BailoutReason reason); | |
1875 void AssertRegisterIsRoot( | |
1876 Register reg, | |
1877 Heap::RootListIndex index, | |
1878 BailoutReason reason = kRegisterDidNotMatchExpectedRoot); | |
1879 void AssertFastElements(Register elements); | |
1880 | |
1881 // Abort if the specified register contains the invalid color bit pattern. | |
1882 // The pattern must be in bits [1:0] of 'reg' register. | |
1883 // | |
1884 // If emit_debug_code() is false, this emits no code. | |
1885 void AssertHasValidColor(const Register& reg); | |
1886 | |
1887 // Abort if 'object' register doesn't point to a string object. | |
1888 // | |
1889 // If emit_debug_code() is false, this emits no code. | |
1890 void AssertIsString(const Register& object); | |
1891 | |
1892 // Like Assert(), but always enabled. | |
1893 void Check(Condition cond, BailoutReason reason); | |
1894 void CheckRegisterIsClear(Register reg, BailoutReason reason); | |
1895 | |
1896 // Print a message to stderr and abort execution. | |
1897 void Abort(BailoutReason reason); | |
1898 | |
1899 // Conditionally load the cached Array transitioned map of type | |
1900 // transitioned_kind from the native context if the map in register | |
1901 // map_in_out is the cached Array map in the native context of | |
1902 // expected_kind. | |
1903 void LoadTransitionedArrayMapConditional( | |
1904 ElementsKind expected_kind, | |
1905 ElementsKind transitioned_kind, | |
1906 Register map_in_out, | |
1907 Register scratch1, | |
1908 Register scratch2, | |
1909 Label* no_map_match); | |
1910 | |
1911 void LoadGlobalFunction(int index, Register function); | |
1912 | |
1913 // Load the initial map from the global function. The registers function and | |
1914 // map can be the same, function is then overwritten. | |
1915 void LoadGlobalFunctionInitialMap(Register function, | |
1916 Register map, | |
1917 Register scratch); | |
1918 | |
1919 CPURegList* TmpList() { return &tmp_list_; } | |
1920 CPURegList* FPTmpList() { return &fptmp_list_; } | |
1921 | |
1922 // Like printf, but print at run-time from generated code. | |
1923 // | |
1924 // The caller must ensure that arguments for floating-point placeholders | |
1925 // (such as %e, %f or %g) are FPRegisters, and that arguments for integer | |
1926 // placeholders are Registers. | |
1927 // | |
1928 // A maximum of four arguments may be given to any single Printf call. The | |
1929 // arguments must be of the same type, but they do not need to have the same | |
1930 // size. | |
1931 // | |
1932 // The following registers cannot be printed: | |
1933 // StackPointer(), csp. | |
1934 // | |
1935 // This function automatically preserves caller-saved registers so that | |
1936 // calling code can use Printf at any point without having to worry about | |
1937 // corruption. The preservation mechanism generates a lot of code. If this is | |
1938 // a problem, preserve the important registers manually and then call | |
1939 // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are | |
1940 // implicitly preserved. | |
1941 // | |
1942 // Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be | |
1943 // preserved, and can be printed. This allows Printf to be used during debug | |
1944 // code. | |
1945 // | |
1946 // This function assumes (and asserts) that the current stack pointer is | |
1947 // callee-saved, not caller-saved. This is most likely the case anyway, as a | |
1948 // caller-saved stack pointer doesn't make a lot of sense. | |
1949 void Printf(const char * format, | |
1950 const CPURegister& arg0 = NoCPUReg, | |
1951 const CPURegister& arg1 = NoCPUReg, | |
1952 const CPURegister& arg2 = NoCPUReg, | |
1953 const CPURegister& arg3 = NoCPUReg); | |
1954 | |
1955 // Like Printf, but don't preserve any caller-saved registers, not even 'lr'. | |
1956 // | |
1957 // The return code from the system printf call will be returned in x0. | |
1958 void PrintfNoPreserve(const char * format, | |
1959 const CPURegister& arg0 = NoCPUReg, | |
1960 const CPURegister& arg1 = NoCPUReg, | |
1961 const CPURegister& arg2 = NoCPUReg, | |
1962 const CPURegister& arg3 = NoCPUReg); | |
1963 | |
1964 // Code ageing support functions. | |
1965 | |
1966 // Code ageing on A64 works similarly to on ARM. When V8 wants to mark a | |
1967 // function as old, it replaces some of the function prologue (generated by | |
1968 // FullCodeGenerator::Generate) with a call to a special stub (ultimately | |
1969 // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the | |
1970 // function prologue to its initial young state (indicating that it has been | |
1971 // recently run) and continues. A young function is therefore one which has a | |
1972 // normal frame setup sequence, and an old function has a code age sequence | |
1973 // which calls a code ageing stub. | |
1974 | |
1975 // Set up a basic stack frame for young code (or code exempt from ageing) with | |
1976 // type FUNCTION. It may be patched later for code ageing support. This is | |
1977 // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence. | |
1978 // | |
1979 // This function takes an Assembler so it can be called from either a | |
1980 // MacroAssembler or a PatchingAssembler context. | |
1981 static void EmitFrameSetupForCodeAgePatching(Assembler* assm); | |
1982 | |
1983 // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context. | |
1984 void EmitFrameSetupForCodeAgePatching(); | |
1985 | |
1986 // Emit a code age sequence that calls the relevant code age stub. The code | |
1987 // generated by this sequence is expected to replace the code generated by | |
1988 // EmitFrameSetupForCodeAgePatching, and represents an old function. | |
1989 // | |
1990 // If stub is NULL, this function generates the code age sequence but omits | |
1991 // the stub address that is normally embedded in the instruction stream. This | |
1992 // can be used by debug code to verify code age sequences. | |
1993 static void EmitCodeAgeSequence(Assembler* assm, Code* stub); | |
1994 | |
1995 // Call EmitCodeAgeSequence from a MacroAssembler context. | |
1996 void EmitCodeAgeSequence(Code* stub); | |
1997 | |
1998 // Return true if the sequence is a young sequence geneated by | |
1999 // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the | |
2000 // sequence is a code age sequence (emitted by EmitCodeAgeSequence). | |
2001 static bool IsYoungSequence(byte* sequence); | |
2002 | |
2003 #ifdef DEBUG | |
2004 // Return true if the sequence is a code age sequence generated by | |
2005 // EmitCodeAgeSequence. | |
2006 static bool IsCodeAgeSequence(byte* sequence); | |
2007 #endif | |
2008 | |
2009 // Jumps to found label if a prototype map has dictionary elements. | |
2010 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, | |
2011 Register scratch1, Label* found); | |
2012 | |
2013 private: | |
2014 // Helpers for CopyFields. | |
2015 // These each implement CopyFields in a different way. | |
2016 void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count, | |
2017 Register scratch1, Register scratch2, | |
2018 Register scratch3, Register scratch4, | |
2019 Register scratch5); | |
2020 void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count, | |
2021 Register scratch1, Register scratch2, | |
2022 Register scratch3, Register scratch4); | |
2023 void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count, | |
2024 Register scratch1, Register scratch2, | |
2025 Register scratch3); | |
2026 | |
2027 // The actual Push and Pop implementations. These don't generate any code | |
2028 // other than that required for the push or pop. This allows | |
2029 // (Push|Pop)CPURegList to bundle together run-time assertions for a large | |
2030 // block of registers. | |
2031 // | |
2032 // Note that size is per register, and is specified in bytes. | |
2033 void PushHelper(int count, int size, | |
2034 const CPURegister& src0, const CPURegister& src1, | |
2035 const CPURegister& src2, const CPURegister& src3); | |
2036 void PopHelper(int count, int size, | |
2037 const CPURegister& dst0, const CPURegister& dst1, | |
2038 const CPURegister& dst2, const CPURegister& dst3); | |
2039 | |
2040 // Perform necessary maintenance operations before a push or pop. | |
2041 // | |
2042 // Note that size is specified in bytes. | |
2043 void PrepareForPush(Operand total_size); | |
2044 void PrepareForPop(Operand total_size); | |
2045 | |
2046 void PrepareForPush(int count, int size) { PrepareForPush(count * size); } | |
2047 void PrepareForPop(int count, int size) { PrepareForPop(count * size); } | |
2048 | |
2049 // Call Printf. On a native build, a simple call will be generated, but if the | |
2050 // simulator is being used then a suitable pseudo-instruction is used. The | |
2051 // arguments and stack (csp) must be prepared by the caller as for a normal | |
2052 // AAPCS64 call to 'printf'. | |
2053 // | |
2054 // The 'type' argument specifies the type of the optional arguments. | |
2055 void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister); | |
2056 | |
2057 // Helper for throwing exceptions. Compute a handler address and jump to | |
2058 // it. See the implementation for register usage. | |
2059 void JumpToHandlerEntry(Register exception, | |
2060 Register object, | |
2061 Register state, | |
2062 Register scratch1, | |
2063 Register scratch2); | |
2064 | |
2065 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. | |
2066 void InNewSpace(Register object, | |
2067 Condition cond, // eq for new space, ne otherwise. | |
2068 Label* branch); | |
2069 | |
2070 // Try to convert a double to an int so that integer fast-paths may be | |
2071 // used. Not every valid integer value is guaranteed to be caught. | |
2072 // It supports both 32-bit and 64-bit integers depending whether 'as_int' | |
2073 // is a W or X register. | |
2074 // | |
2075 // This does not distinguish between +0 and -0, so if this distinction is | |
2076 // important it must be checked separately. | |
2077 // | |
2078 // On output the Z flag is set if the conversion was successful. | |
2079 void TryConvertDoubleToInt(Register as_int, | |
2080 FPRegister value, | |
2081 FPRegister scratch_d, | |
2082 Label* on_successful_conversion = NULL, | |
2083 Label* on_failed_conversion = NULL); | |
2084 | |
2085 bool generating_stub_; | |
2086 #if DEBUG | |
2087 // Tell whether any of the macro instruction can be used. When false the | |
2088 // MacroAssembler will assert if a method which can emit a variable number | |
2089 // of instructions is called. | |
2090 bool allow_macro_instructions_; | |
2091 #endif | |
2092 bool has_frame_; | |
2093 | |
2094 // The Abort method should call a V8 runtime function, but the CallRuntime | |
2095 // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will | |
2096 // use a simpler abort mechanism that doesn't depend on CEntryStub. | |
2097 // | |
2098 // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is | |
2099 // being generated. | |
2100 bool use_real_aborts_; | |
2101 | |
2102 // This handle will be patched with the code object on installation. | |
2103 Handle<Object> code_object_; | |
2104 | |
2105 // The register to use as a stack pointer for stack operations. | |
2106 Register sp_; | |
2107 | |
2108 // Scratch registers available for use by the MacroAssembler. | |
2109 CPURegList tmp_list_; | |
2110 CPURegList fptmp_list_; | |
2111 | |
2112 void InitializeNewString(Register string, | |
2113 Register length, | |
2114 Heap::RootListIndex map_index, | |
2115 Register scratch1, | |
2116 Register scratch2); | |
2117 | |
2118 public: | |
2119 // Far branches resolving. | |
2120 // | |
2121 // The various classes of branch instructions with immediate offsets have | |
2122 // different ranges. While the Assembler will fail to assemble a branch | |
2123 // exceeding its range, the MacroAssembler offers a mechanism to resolve | |
2124 // branches to too distant targets, either by tweaking the generated code to | |
2125 // use branch instructions with wider ranges or generating veneers. | |
2126 // | |
2127 // Currently branches to distant targets are resolved using unconditional | |
2128 // branch isntructions with a range of +-128MB. If that becomes too little | |
2129 // (!), the mechanism can be extended to generate special veneers for really | |
2130 // far targets. | |
2131 | |
2132 // Helps resolve branching to labels potentially out of range. | |
2133 // If the label is not bound, it registers the information necessary to later | |
2134 // be able to emit a veneer for this branch if necessary. | |
2135 // If the label is bound, it returns true if the label (or the previous link | |
2136 // in the label chain) is out of range. In that case the caller is responsible | |
2137 // for generating appropriate code. | |
2138 // Otherwise it returns false. | |
2139 // This function also checks wether veneers need to be emitted. | |
2140 bool NeedExtraInstructionsOrRegisterBranch(Label *label, | |
2141 ImmBranchType branch_type); | |
2142 }; | |
2143 | |
2144 | |
2145 // Use this scope when you need a one-to-one mapping bewteen methods and | |
2146 // instructions. This scope prevents the MacroAssembler from being called and | |
2147 // literal pools from being emitted. It also asserts the number of instructions | |
2148 // emitted is what you specified when creating the scope. | |
2149 class InstructionAccurateScope BASE_EMBEDDED { | |
2150 public: | |
2151 InstructionAccurateScope(MacroAssembler* masm, size_t count = 0) | |
2152 : masm_(masm) | |
2153 #ifdef DEBUG | |
2154 , | |
2155 size_(count * kInstructionSize) | |
2156 #endif | |
2157 { | |
2158 // Before blocking the const pool, see if it needs to be emitted. | |
2159 masm_->CheckConstPool(false, true); | |
2160 | |
2161 masm_->StartBlockConstPool(); | |
2162 #ifdef DEBUG | |
2163 if (count != 0) { | |
2164 masm_->bind(&start_); | |
2165 } | |
2166 previous_allow_macro_instructions_ = masm_->allow_macro_instructions(); | |
2167 masm_->set_allow_macro_instructions(false); | |
2168 #endif | |
2169 } | |
2170 | |
2171 ~InstructionAccurateScope() { | |
2172 masm_->EndBlockConstPool(); | |
2173 #ifdef DEBUG | |
2174 if (start_.is_bound()) { | |
2175 ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_); | |
2176 } | |
2177 masm_->set_allow_macro_instructions(previous_allow_macro_instructions_); | |
2178 #endif | |
2179 } | |
2180 | |
2181 private: | |
2182 MacroAssembler* masm_; | |
2183 #ifdef DEBUG | |
2184 size_t size_; | |
2185 Label start_; | |
2186 bool previous_allow_macro_instructions_; | |
2187 #endif | |
2188 }; | |
2189 | |
2190 | |
2191 // This scope utility allows scratch registers to be managed safely. The | |
2192 // MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch | |
2193 // registers. These registers can be allocated on demand, and will be returned | |
2194 // at the end of the scope. | |
2195 // | |
2196 // When the scope ends, the MacroAssembler's lists will be restored to their | |
2197 // original state, even if the lists were modified by some other means. | |
2198 class UseScratchRegisterScope { | |
2199 public: | |
2200 explicit UseScratchRegisterScope(MacroAssembler* masm) | |
2201 : available_(masm->TmpList()), | |
2202 availablefp_(masm->FPTmpList()), | |
2203 old_available_(available_->list()), | |
2204 old_availablefp_(availablefp_->list()) { | |
2205 ASSERT(available_->type() == CPURegister::kRegister); | |
2206 ASSERT(availablefp_->type() == CPURegister::kFPRegister); | |
2207 } | |
2208 | |
2209 ~UseScratchRegisterScope(); | |
2210 | |
2211 // Take a register from the appropriate temps list. It will be returned | |
2212 // automatically when the scope ends. | |
2213 Register AcquireW() { return AcquireNextAvailable(available_).W(); } | |
2214 Register AcquireX() { return AcquireNextAvailable(available_).X(); } | |
2215 FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); } | |
2216 FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); } | |
2217 | |
2218 Register AcquireSameSizeAs(const Register& reg); | |
2219 FPRegister AcquireSameSizeAs(const FPRegister& reg); | |
2220 | |
2221 private: | |
2222 static CPURegister AcquireNextAvailable(CPURegList* available); | |
2223 | |
2224 // Available scratch registers. | |
2225 CPURegList* available_; // kRegister | |
2226 CPURegList* availablefp_; // kFPRegister | |
2227 | |
2228 // The state of the available lists at the start of this scope. | |
2229 RegList old_available_; // kRegister | |
2230 RegList old_availablefp_; // kFPRegister | |
2231 }; | |
2232 | |
2233 | |
2234 inline MemOperand ContextMemOperand(Register context, int index) { | |
2235 return MemOperand(context, Context::SlotOffset(index)); | |
2236 } | |
2237 | |
2238 inline MemOperand GlobalObjectMemOperand() { | |
2239 return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX); | |
2240 } | |
2241 | |
2242 | |
2243 // Encode and decode information about patchable inline SMI checks. | |
2244 class InlineSmiCheckInfo { | |
2245 public: | |
2246 explicit InlineSmiCheckInfo(Address info); | |
2247 | |
2248 bool HasSmiCheck() const { | |
2249 return smi_check_ != NULL; | |
2250 } | |
2251 | |
2252 const Register& SmiRegister() const { | |
2253 return reg_; | |
2254 } | |
2255 | |
2256 Instruction* SmiCheck() const { | |
2257 return smi_check_; | |
2258 } | |
2259 | |
2260 // Use MacroAssembler::InlineData to emit information about patchable inline | |
2261 // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to | |
2262 // indicate that there is no inline SMI check. Note that 'reg' cannot be csp. | |
2263 // | |
2264 // The generated patch information can be read using the InlineSMICheckInfo | |
2265 // class. | |
2266 static void Emit(MacroAssembler* masm, const Register& reg, | |
2267 const Label* smi_check); | |
2268 | |
2269 // Emit information to indicate that there is no inline SMI check. | |
2270 static void EmitNotInlined(MacroAssembler* masm) { | |
2271 Label unbound; | |
2272 Emit(masm, NoReg, &unbound); | |
2273 } | |
2274 | |
2275 private: | |
2276 Register reg_; | |
2277 Instruction* smi_check_; | |
2278 | |
2279 // Fields in the data encoded by InlineData. | |
2280 | |
2281 // A width of 5 (Rd_width) for the SMI register preclues the use of csp, | |
2282 // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be | |
2283 // used in a patchable check. The Emit() method checks this. | |
2284 // | |
2285 // Note that the total size of the fields is restricted by the underlying | |
2286 // storage size handled by the BitField class, which is a uint32_t. | |
2287 class RegisterBits : public BitField<unsigned, 0, 5> {}; | |
2288 class DeltaBits : public BitField<uint32_t, 5, 32-5> {}; | |
2289 }; | |
2290 | |
2291 } } // namespace v8::internal | |
2292 | |
2293 #ifdef GENERATED_CODE_COVERAGE | |
2294 #error "Unsupported option" | |
2295 #define CODE_COVERAGE_STRINGIFY(x) #x | |
2296 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) | |
2297 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) | |
2298 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> | |
2299 #else | |
2300 #define ACCESS_MASM(masm) masm-> | |
2301 #endif | |
2302 | |
2303 #endif // V8_A64_MACRO_ASSEMBLER_A64_H_ | |
OLD | NEW |