Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: src/a64/lithium-codegen-a64.cc

Issue 207823003: Rename A64 port to ARM64 port (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: retry Created 6 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/a64/lithium-codegen-a64.h ('k') | src/a64/lithium-gap-resolver-a64.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "a64/lithium-codegen-a64.h"
31 #include "a64/lithium-gap-resolver-a64.h"
32 #include "code-stubs.h"
33 #include "stub-cache.h"
34 #include "hydrogen-osr.h"
35
36 namespace v8 {
37 namespace internal {
38
39
40 class SafepointGenerator V8_FINAL : public CallWrapper {
41 public:
42 SafepointGenerator(LCodeGen* codegen,
43 LPointerMap* pointers,
44 Safepoint::DeoptMode mode)
45 : codegen_(codegen),
46 pointers_(pointers),
47 deopt_mode_(mode) { }
48 virtual ~SafepointGenerator() { }
49
50 virtual void BeforeCall(int call_size) const { }
51
52 virtual void AfterCall() const {
53 codegen_->RecordSafepoint(pointers_, deopt_mode_);
54 }
55
56 private:
57 LCodeGen* codegen_;
58 LPointerMap* pointers_;
59 Safepoint::DeoptMode deopt_mode_;
60 };
61
62
63 #define __ masm()->
64
65 // Emit code to branch if the given condition holds.
66 // The code generated here doesn't modify the flags and they must have
67 // been set by some prior instructions.
68 //
69 // The EmitInverted function simply inverts the condition.
70 class BranchOnCondition : public BranchGenerator {
71 public:
72 BranchOnCondition(LCodeGen* codegen, Condition cond)
73 : BranchGenerator(codegen),
74 cond_(cond) { }
75
76 virtual void Emit(Label* label) const {
77 __ B(cond_, label);
78 }
79
80 virtual void EmitInverted(Label* label) const {
81 if (cond_ != al) {
82 __ B(InvertCondition(cond_), label);
83 }
84 }
85
86 private:
87 Condition cond_;
88 };
89
90
91 // Emit code to compare lhs and rhs and branch if the condition holds.
92 // This uses MacroAssembler's CompareAndBranch function so it will handle
93 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
94 //
95 // EmitInverted still compares the two operands but inverts the condition.
96 class CompareAndBranch : public BranchGenerator {
97 public:
98 CompareAndBranch(LCodeGen* codegen,
99 Condition cond,
100 const Register& lhs,
101 const Operand& rhs)
102 : BranchGenerator(codegen),
103 cond_(cond),
104 lhs_(lhs),
105 rhs_(rhs) { }
106
107 virtual void Emit(Label* label) const {
108 __ CompareAndBranch(lhs_, rhs_, cond_, label);
109 }
110
111 virtual void EmitInverted(Label* label) const {
112 __ CompareAndBranch(lhs_, rhs_, InvertCondition(cond_), label);
113 }
114
115 private:
116 Condition cond_;
117 const Register& lhs_;
118 const Operand& rhs_;
119 };
120
121
122 // Test the input with the given mask and branch if the condition holds.
123 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
124 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
125 // conversion to Tbz/Tbnz when possible.
126 class TestAndBranch : public BranchGenerator {
127 public:
128 TestAndBranch(LCodeGen* codegen,
129 Condition cond,
130 const Register& value,
131 uint64_t mask)
132 : BranchGenerator(codegen),
133 cond_(cond),
134 value_(value),
135 mask_(mask) { }
136
137 virtual void Emit(Label* label) const {
138 switch (cond_) {
139 case eq:
140 __ TestAndBranchIfAllClear(value_, mask_, label);
141 break;
142 case ne:
143 __ TestAndBranchIfAnySet(value_, mask_, label);
144 break;
145 default:
146 __ Tst(value_, mask_);
147 __ B(cond_, label);
148 }
149 }
150
151 virtual void EmitInverted(Label* label) const {
152 // The inverse of "all clear" is "any set" and vice versa.
153 switch (cond_) {
154 case eq:
155 __ TestAndBranchIfAnySet(value_, mask_, label);
156 break;
157 case ne:
158 __ TestAndBranchIfAllClear(value_, mask_, label);
159 break;
160 default:
161 __ Tst(value_, mask_);
162 __ B(InvertCondition(cond_), label);
163 }
164 }
165
166 private:
167 Condition cond_;
168 const Register& value_;
169 uint64_t mask_;
170 };
171
172
173 // Test the input and branch if it is non-zero and not a NaN.
174 class BranchIfNonZeroNumber : public BranchGenerator {
175 public:
176 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
177 const FPRegister& scratch)
178 : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
179
180 virtual void Emit(Label* label) const {
181 __ Fabs(scratch_, value_);
182 // Compare with 0.0. Because scratch_ is positive, the result can be one of
183 // nZCv (equal), nzCv (greater) or nzCV (unordered).
184 __ Fcmp(scratch_, 0.0);
185 __ B(gt, label);
186 }
187
188 virtual void EmitInverted(Label* label) const {
189 __ Fabs(scratch_, value_);
190 __ Fcmp(scratch_, 0.0);
191 __ B(le, label);
192 }
193
194 private:
195 const FPRegister& value_;
196 const FPRegister& scratch_;
197 };
198
199
200 // Test the input and branch if it is a heap number.
201 class BranchIfHeapNumber : public BranchGenerator {
202 public:
203 BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
204 : BranchGenerator(codegen), value_(value) { }
205
206 virtual void Emit(Label* label) const {
207 __ JumpIfHeapNumber(value_, label);
208 }
209
210 virtual void EmitInverted(Label* label) const {
211 __ JumpIfNotHeapNumber(value_, label);
212 }
213
214 private:
215 const Register& value_;
216 };
217
218
219 // Test the input and branch if it is the specified root value.
220 class BranchIfRoot : public BranchGenerator {
221 public:
222 BranchIfRoot(LCodeGen* codegen, const Register& value,
223 Heap::RootListIndex index)
224 : BranchGenerator(codegen), value_(value), index_(index) { }
225
226 virtual void Emit(Label* label) const {
227 __ JumpIfRoot(value_, index_, label);
228 }
229
230 virtual void EmitInverted(Label* label) const {
231 __ JumpIfNotRoot(value_, index_, label);
232 }
233
234 private:
235 const Register& value_;
236 const Heap::RootListIndex index_;
237 };
238
239
240 void LCodeGen::WriteTranslation(LEnvironment* environment,
241 Translation* translation) {
242 if (environment == NULL) return;
243
244 // The translation includes one command per value in the environment.
245 int translation_size = environment->translation_size();
246 // The output frame height does not include the parameters.
247 int height = translation_size - environment->parameter_count();
248
249 WriteTranslation(environment->outer(), translation);
250 bool has_closure_id = !info()->closure().is_null() &&
251 !info()->closure().is_identical_to(environment->closure());
252 int closure_id = has_closure_id
253 ? DefineDeoptimizationLiteral(environment->closure())
254 : Translation::kSelfLiteralId;
255
256 switch (environment->frame_type()) {
257 case JS_FUNCTION:
258 translation->BeginJSFrame(environment->ast_id(), closure_id, height);
259 break;
260 case JS_CONSTRUCT:
261 translation->BeginConstructStubFrame(closure_id, translation_size);
262 break;
263 case JS_GETTER:
264 ASSERT(translation_size == 1);
265 ASSERT(height == 0);
266 translation->BeginGetterStubFrame(closure_id);
267 break;
268 case JS_SETTER:
269 ASSERT(translation_size == 2);
270 ASSERT(height == 0);
271 translation->BeginSetterStubFrame(closure_id);
272 break;
273 case STUB:
274 translation->BeginCompiledStubFrame();
275 break;
276 case ARGUMENTS_ADAPTOR:
277 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
278 break;
279 default:
280 UNREACHABLE();
281 }
282
283 int object_index = 0;
284 int dematerialized_index = 0;
285 for (int i = 0; i < translation_size; ++i) {
286 LOperand* value = environment->values()->at(i);
287
288 AddToTranslation(environment,
289 translation,
290 value,
291 environment->HasTaggedValueAt(i),
292 environment->HasUint32ValueAt(i),
293 &object_index,
294 &dematerialized_index);
295 }
296 }
297
298
299 void LCodeGen::AddToTranslation(LEnvironment* environment,
300 Translation* translation,
301 LOperand* op,
302 bool is_tagged,
303 bool is_uint32,
304 int* object_index_pointer,
305 int* dematerialized_index_pointer) {
306 if (op == LEnvironment::materialization_marker()) {
307 int object_index = (*object_index_pointer)++;
308 if (environment->ObjectIsDuplicateAt(object_index)) {
309 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
310 translation->DuplicateObject(dupe_of);
311 return;
312 }
313 int object_length = environment->ObjectLengthAt(object_index);
314 if (environment->ObjectIsArgumentsAt(object_index)) {
315 translation->BeginArgumentsObject(object_length);
316 } else {
317 translation->BeginCapturedObject(object_length);
318 }
319 int dematerialized_index = *dematerialized_index_pointer;
320 int env_offset = environment->translation_size() + dematerialized_index;
321 *dematerialized_index_pointer += object_length;
322 for (int i = 0; i < object_length; ++i) {
323 LOperand* value = environment->values()->at(env_offset + i);
324 AddToTranslation(environment,
325 translation,
326 value,
327 environment->HasTaggedValueAt(env_offset + i),
328 environment->HasUint32ValueAt(env_offset + i),
329 object_index_pointer,
330 dematerialized_index_pointer);
331 }
332 return;
333 }
334
335 if (op->IsStackSlot()) {
336 if (is_tagged) {
337 translation->StoreStackSlot(op->index());
338 } else if (is_uint32) {
339 translation->StoreUint32StackSlot(op->index());
340 } else {
341 translation->StoreInt32StackSlot(op->index());
342 }
343 } else if (op->IsDoubleStackSlot()) {
344 translation->StoreDoubleStackSlot(op->index());
345 } else if (op->IsRegister()) {
346 Register reg = ToRegister(op);
347 if (is_tagged) {
348 translation->StoreRegister(reg);
349 } else if (is_uint32) {
350 translation->StoreUint32Register(reg);
351 } else {
352 translation->StoreInt32Register(reg);
353 }
354 } else if (op->IsDoubleRegister()) {
355 DoubleRegister reg = ToDoubleRegister(op);
356 translation->StoreDoubleRegister(reg);
357 } else if (op->IsConstantOperand()) {
358 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
359 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
360 translation->StoreLiteral(src_index);
361 } else {
362 UNREACHABLE();
363 }
364 }
365
366
367 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
368 int result = deoptimization_literals_.length();
369 for (int i = 0; i < deoptimization_literals_.length(); ++i) {
370 if (deoptimization_literals_[i].is_identical_to(literal)) return i;
371 }
372 deoptimization_literals_.Add(literal, zone());
373 return result;
374 }
375
376
377 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
378 Safepoint::DeoptMode mode) {
379 if (!environment->HasBeenRegistered()) {
380 int frame_count = 0;
381 int jsframe_count = 0;
382 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
383 ++frame_count;
384 if (e->frame_type() == JS_FUNCTION) {
385 ++jsframe_count;
386 }
387 }
388 Translation translation(&translations_, frame_count, jsframe_count, zone());
389 WriteTranslation(environment, &translation);
390 int deoptimization_index = deoptimizations_.length();
391 int pc_offset = masm()->pc_offset();
392 environment->Register(deoptimization_index,
393 translation.index(),
394 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
395 deoptimizations_.Add(environment, zone());
396 }
397 }
398
399
400 void LCodeGen::CallCode(Handle<Code> code,
401 RelocInfo::Mode mode,
402 LInstruction* instr) {
403 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
404 }
405
406
407 void LCodeGen::CallCodeGeneric(Handle<Code> code,
408 RelocInfo::Mode mode,
409 LInstruction* instr,
410 SafepointMode safepoint_mode) {
411 ASSERT(instr != NULL);
412
413 Assembler::BlockPoolsScope scope(masm_);
414 __ Call(code, mode);
415 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
416
417 if ((code->kind() == Code::BINARY_OP_IC) ||
418 (code->kind() == Code::COMPARE_IC)) {
419 // Signal that we don't inline smi code before these stubs in the
420 // optimizing code generator.
421 InlineSmiCheckInfo::EmitNotInlined(masm());
422 }
423 }
424
425
426 void LCodeGen::DoCallFunction(LCallFunction* instr) {
427 ASSERT(ToRegister(instr->context()).is(cp));
428 ASSERT(ToRegister(instr->function()).Is(x1));
429 ASSERT(ToRegister(instr->result()).Is(x0));
430
431 int arity = instr->arity();
432 CallFunctionStub stub(arity, instr->hydrogen()->function_flags());
433 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
434 }
435
436
437 void LCodeGen::DoCallNew(LCallNew* instr) {
438 ASSERT(ToRegister(instr->context()).is(cp));
439 ASSERT(instr->IsMarkedAsCall());
440 ASSERT(ToRegister(instr->constructor()).is(x1));
441
442 __ Mov(x0, instr->arity());
443 // No cell in x2 for construct type feedback in optimized code.
444 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
445
446 CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
447 CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
448
449 ASSERT(ToRegister(instr->result()).is(x0));
450 }
451
452
453 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
454 ASSERT(instr->IsMarkedAsCall());
455 ASSERT(ToRegister(instr->context()).is(cp));
456 ASSERT(ToRegister(instr->constructor()).is(x1));
457
458 __ Mov(x0, Operand(instr->arity()));
459 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
460
461 ElementsKind kind = instr->hydrogen()->elements_kind();
462 AllocationSiteOverrideMode override_mode =
463 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
464 ? DISABLE_ALLOCATION_SITES
465 : DONT_OVERRIDE;
466
467 if (instr->arity() == 0) {
468 ArrayNoArgumentConstructorStub stub(kind, override_mode);
469 CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
470 } else if (instr->arity() == 1) {
471 Label done;
472 if (IsFastPackedElementsKind(kind)) {
473 Label packed_case;
474
475 // We might need to create a holey array; look at the first argument.
476 __ Peek(x10, 0);
477 __ Cbz(x10, &packed_case);
478
479 ElementsKind holey_kind = GetHoleyElementsKind(kind);
480 ArraySingleArgumentConstructorStub stub(holey_kind, override_mode);
481 CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
482 __ B(&done);
483 __ Bind(&packed_case);
484 }
485
486 ArraySingleArgumentConstructorStub stub(kind, override_mode);
487 CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
488 __ Bind(&done);
489 } else {
490 ArrayNArgumentsConstructorStub stub(kind, override_mode);
491 CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
492 }
493
494 ASSERT(ToRegister(instr->result()).is(x0));
495 }
496
497
498 void LCodeGen::CallRuntime(const Runtime::Function* function,
499 int num_arguments,
500 LInstruction* instr,
501 SaveFPRegsMode save_doubles) {
502 ASSERT(instr != NULL);
503
504 __ CallRuntime(function, num_arguments, save_doubles);
505
506 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
507 }
508
509
510 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
511 if (context->IsRegister()) {
512 __ Mov(cp, ToRegister(context));
513 } else if (context->IsStackSlot()) {
514 __ Ldr(cp, ToMemOperand(context));
515 } else if (context->IsConstantOperand()) {
516 HConstant* constant =
517 chunk_->LookupConstant(LConstantOperand::cast(context));
518 __ LoadHeapObject(cp,
519 Handle<HeapObject>::cast(constant->handle(isolate())));
520 } else {
521 UNREACHABLE();
522 }
523 }
524
525
526 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
527 int argc,
528 LInstruction* instr,
529 LOperand* context) {
530 LoadContextFromDeferred(context);
531 __ CallRuntimeSaveDoubles(id);
532 RecordSafepointWithRegisters(
533 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
534 }
535
536
537 void LCodeGen::RecordAndWritePosition(int position) {
538 if (position == RelocInfo::kNoPosition) return;
539 masm()->positions_recorder()->RecordPosition(position);
540 masm()->positions_recorder()->WriteRecordedPositions();
541 }
542
543
544 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
545 SafepointMode safepoint_mode) {
546 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
547 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
548 } else {
549 ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
550 RecordSafepointWithRegisters(
551 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
552 }
553 }
554
555
556 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
557 Safepoint::Kind kind,
558 int arguments,
559 Safepoint::DeoptMode deopt_mode) {
560 ASSERT(expected_safepoint_kind_ == kind);
561
562 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
563 Safepoint safepoint = safepoints_.DefineSafepoint(
564 masm(), kind, arguments, deopt_mode);
565
566 for (int i = 0; i < operands->length(); i++) {
567 LOperand* pointer = operands->at(i);
568 if (pointer->IsStackSlot()) {
569 safepoint.DefinePointerSlot(pointer->index(), zone());
570 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
571 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
572 }
573 }
574
575 if (kind & Safepoint::kWithRegisters) {
576 // Register cp always contains a pointer to the context.
577 safepoint.DefinePointerRegister(cp, zone());
578 }
579 }
580
581 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
582 Safepoint::DeoptMode deopt_mode) {
583 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
584 }
585
586
587 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
588 LPointerMap empty_pointers(zone());
589 RecordSafepoint(&empty_pointers, deopt_mode);
590 }
591
592
593 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
594 int arguments,
595 Safepoint::DeoptMode deopt_mode) {
596 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
597 }
598
599
600 void LCodeGen::RecordSafepointWithRegistersAndDoubles(
601 LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) {
602 RecordSafepoint(
603 pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
604 }
605
606
607 bool LCodeGen::GenerateCode() {
608 LPhase phase("Z_Code generation", chunk());
609 ASSERT(is_unused());
610 status_ = GENERATING;
611
612 // Open a frame scope to indicate that there is a frame on the stack. The
613 // NONE indicates that the scope shouldn't actually generate code to set up
614 // the frame (that is done in GeneratePrologue).
615 FrameScope frame_scope(masm_, StackFrame::NONE);
616
617 return GeneratePrologue() &&
618 GenerateBody() &&
619 GenerateDeferredCode() &&
620 GenerateDeoptJumpTable() &&
621 GenerateSafepointTable();
622 }
623
624
625 void LCodeGen::SaveCallerDoubles() {
626 ASSERT(info()->saves_caller_doubles());
627 ASSERT(NeedsEagerFrame());
628 Comment(";;; Save clobbered callee double registers");
629 BitVector* doubles = chunk()->allocated_double_registers();
630 BitVector::Iterator iterator(doubles);
631 int count = 0;
632 while (!iterator.Done()) {
633 // TODO(all): Is this supposed to save just the callee-saved doubles? It
634 // looks like it's saving all of them.
635 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
636 __ Poke(value, count * kDoubleSize);
637 iterator.Advance();
638 count++;
639 }
640 }
641
642
643 void LCodeGen::RestoreCallerDoubles() {
644 ASSERT(info()->saves_caller_doubles());
645 ASSERT(NeedsEagerFrame());
646 Comment(";;; Restore clobbered callee double registers");
647 BitVector* doubles = chunk()->allocated_double_registers();
648 BitVector::Iterator iterator(doubles);
649 int count = 0;
650 while (!iterator.Done()) {
651 // TODO(all): Is this supposed to restore just the callee-saved doubles? It
652 // looks like it's restoring all of them.
653 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
654 __ Peek(value, count * kDoubleSize);
655 iterator.Advance();
656 count++;
657 }
658 }
659
660
661 bool LCodeGen::GeneratePrologue() {
662 ASSERT(is_generating());
663
664 if (info()->IsOptimizing()) {
665 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
666
667 // TODO(all): Add support for stop_t FLAG in DEBUG mode.
668
669 // Sloppy mode functions and builtins need to replace the receiver with the
670 // global proxy when called as functions (without an explicit receiver
671 // object).
672 if (info_->this_has_uses() &&
673 info_->strict_mode() == SLOPPY &&
674 !info_->is_native()) {
675 Label ok;
676 int receiver_offset = info_->scope()->num_parameters() * kXRegSize;
677 __ Peek(x10, receiver_offset);
678 __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
679
680 __ Ldr(x10, GlobalObjectMemOperand());
681 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalReceiverOffset));
682 __ Poke(x10, receiver_offset);
683
684 __ Bind(&ok);
685 }
686 }
687
688 ASSERT(__ StackPointer().Is(jssp));
689 info()->set_prologue_offset(masm_->pc_offset());
690 if (NeedsEagerFrame()) {
691 __ Prologue(info()->IsStub() ? BUILD_STUB_FRAME : BUILD_FUNCTION_FRAME);
692 frame_is_built_ = true;
693 info_->AddNoFrameRange(0, masm_->pc_offset());
694 }
695
696 // Reserve space for the stack slots needed by the code.
697 int slots = GetStackSlotCount();
698 if (slots > 0) {
699 __ Claim(slots, kPointerSize);
700 }
701
702 if (info()->saves_caller_doubles()) {
703 SaveCallerDoubles();
704 }
705
706 // Allocate a local context if needed.
707 int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
708 if (heap_slots > 0) {
709 Comment(";;; Allocate local context");
710 // Argument to NewContext is the function, which is in x1.
711 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
712 FastNewContextStub stub(heap_slots);
713 __ CallStub(&stub);
714 } else {
715 __ Push(x1);
716 __ CallRuntime(Runtime::kNewFunctionContext, 1);
717 }
718 RecordSafepoint(Safepoint::kNoLazyDeopt);
719 // Context is returned in x0. It replaces the context passed to us. It's
720 // saved in the stack and kept live in cp.
721 __ Mov(cp, x0);
722 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
723 // Copy any necessary parameters into the context.
724 int num_parameters = scope()->num_parameters();
725 for (int i = 0; i < num_parameters; i++) {
726 Variable* var = scope()->parameter(i);
727 if (var->IsContextSlot()) {
728 Register value = x0;
729 Register scratch = x3;
730
731 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
732 (num_parameters - 1 - i) * kPointerSize;
733 // Load parameter from stack.
734 __ Ldr(value, MemOperand(fp, parameter_offset));
735 // Store it in the context.
736 MemOperand target = ContextMemOperand(cp, var->index());
737 __ Str(value, target);
738 // Update the write barrier. This clobbers value and scratch.
739 __ RecordWriteContextSlot(cp, target.offset(), value, scratch,
740 GetLinkRegisterState(), kSaveFPRegs);
741 }
742 }
743 Comment(";;; End allocate local context");
744 }
745
746 // Trace the call.
747 if (FLAG_trace && info()->IsOptimizing()) {
748 // We have not executed any compiled code yet, so cp still holds the
749 // incoming context.
750 __ CallRuntime(Runtime::kTraceEnter, 0);
751 }
752
753 return !is_aborted();
754 }
755
756
757 void LCodeGen::GenerateOsrPrologue() {
758 // Generate the OSR entry prologue at the first unknown OSR value, or if there
759 // are none, at the OSR entrypoint instruction.
760 if (osr_pc_offset_ >= 0) return;
761
762 osr_pc_offset_ = masm()->pc_offset();
763
764 // Adjust the frame size, subsuming the unoptimized frame into the
765 // optimized frame.
766 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
767 ASSERT(slots >= 0);
768 __ Claim(slots);
769 }
770
771
772 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
773 if (!instr->IsLazyBailout() && !instr->IsGap()) {
774 safepoints_.BumpLastLazySafepointIndex();
775 }
776 }
777
778
779 bool LCodeGen::GenerateDeferredCode() {
780 ASSERT(is_generating());
781 if (deferred_.length() > 0) {
782 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
783 LDeferredCode* code = deferred_[i];
784
785 HValue* value =
786 instructions_->at(code->instruction_index())->hydrogen_value();
787 RecordAndWritePosition(
788 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
789
790 Comment(";;; <@%d,#%d> "
791 "-------------------- Deferred %s --------------------",
792 code->instruction_index(),
793 code->instr()->hydrogen_value()->id(),
794 code->instr()->Mnemonic());
795
796 __ Bind(code->entry());
797
798 if (NeedsDeferredFrame()) {
799 Comment(";;; Build frame");
800 ASSERT(!frame_is_built_);
801 ASSERT(info()->IsStub());
802 frame_is_built_ = true;
803 __ Push(lr, fp, cp);
804 __ Mov(fp, Smi::FromInt(StackFrame::STUB));
805 __ Push(fp);
806 __ Add(fp, __ StackPointer(),
807 StandardFrameConstants::kFixedFrameSizeFromFp);
808 Comment(";;; Deferred code");
809 }
810
811 code->Generate();
812
813 if (NeedsDeferredFrame()) {
814 Comment(";;; Destroy frame");
815 ASSERT(frame_is_built_);
816 __ Pop(xzr, cp, fp, lr);
817 frame_is_built_ = false;
818 }
819
820 __ B(code->exit());
821 }
822 }
823
824 // Force constant pool emission at the end of the deferred code to make
825 // sure that no constant pools are emitted after deferred code because
826 // deferred code generation is the last step which generates code. The two
827 // following steps will only output data used by crakshaft.
828 masm()->CheckConstPool(true, false);
829
830 return !is_aborted();
831 }
832
833
834 bool LCodeGen::GenerateDeoptJumpTable() {
835 if (deopt_jump_table_.length() > 0) {
836 Comment(";;; -------------------- Jump table --------------------");
837 }
838 Label table_start;
839 __ bind(&table_start);
840 Label needs_frame;
841 for (int i = 0; i < deopt_jump_table_.length(); i++) {
842 __ Bind(&deopt_jump_table_[i]->label);
843 Address entry = deopt_jump_table_[i]->address;
844 Deoptimizer::BailoutType type = deopt_jump_table_[i]->bailout_type;
845 int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
846 if (id == Deoptimizer::kNotDeoptimizationEntry) {
847 Comment(";;; jump table entry %d.", i);
848 } else {
849 Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
850 }
851 if (deopt_jump_table_[i]->needs_frame) {
852 ASSERT(!info()->saves_caller_doubles());
853
854 UseScratchRegisterScope temps(masm());
855 Register stub_deopt_entry = temps.AcquireX();
856 Register stub_marker = temps.AcquireX();
857
858 __ Mov(stub_deopt_entry, ExternalReference::ForDeoptEntry(entry));
859 if (needs_frame.is_bound()) {
860 __ B(&needs_frame);
861 } else {
862 __ Bind(&needs_frame);
863 // This variant of deopt can only be used with stubs. Since we don't
864 // have a function pointer to install in the stack frame that we're
865 // building, install a special marker there instead.
866 ASSERT(info()->IsStub());
867 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
868 __ Push(lr, fp, cp, stub_marker);
869 __ Add(fp, __ StackPointer(), 2 * kPointerSize);
870 __ Call(stub_deopt_entry);
871 }
872 } else {
873 if (info()->saves_caller_doubles()) {
874 ASSERT(info()->IsStub());
875 RestoreCallerDoubles();
876 }
877 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
878 }
879 masm()->CheckConstPool(false, false);
880 }
881
882 // Force constant pool emission at the end of the deopt jump table to make
883 // sure that no constant pools are emitted after.
884 masm()->CheckConstPool(true, false);
885
886 // The deoptimization jump table is the last part of the instruction
887 // sequence. Mark the generated code as done unless we bailed out.
888 if (!is_aborted()) status_ = DONE;
889 return !is_aborted();
890 }
891
892
893 bool LCodeGen::GenerateSafepointTable() {
894 ASSERT(is_done());
895 // We do not know how much data will be emitted for the safepoint table, so
896 // force emission of the veneer pool.
897 masm()->CheckVeneerPool(true, true);
898 safepoints_.Emit(masm(), GetStackSlotCount());
899 return !is_aborted();
900 }
901
902
903 void LCodeGen::FinishCode(Handle<Code> code) {
904 ASSERT(is_done());
905 code->set_stack_slots(GetStackSlotCount());
906 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
907 if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
908 PopulateDeoptimizationData(code);
909 info()->CommitDependencies(code);
910 }
911
912
913 void LCodeGen::Abort(BailoutReason reason) {
914 info()->set_bailout_reason(reason);
915 status_ = ABORTED;
916 }
917
918
919 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
920 int length = deoptimizations_.length();
921 if (length == 0) return;
922
923 Handle<DeoptimizationInputData> data =
924 factory()->NewDeoptimizationInputData(length, TENURED);
925
926 Handle<ByteArray> translations =
927 translations_.CreateByteArray(isolate()->factory());
928 data->SetTranslationByteArray(*translations);
929 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
930 data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
931 if (info_->IsOptimizing()) {
932 // Reference to shared function info does not change between phases.
933 AllowDeferredHandleDereference allow_handle_dereference;
934 data->SetSharedFunctionInfo(*info_->shared_info());
935 } else {
936 data->SetSharedFunctionInfo(Smi::FromInt(0));
937 }
938
939 Handle<FixedArray> literals =
940 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
941 { AllowDeferredHandleDereference copy_handles;
942 for (int i = 0; i < deoptimization_literals_.length(); i++) {
943 literals->set(i, *deoptimization_literals_[i]);
944 }
945 data->SetLiteralArray(*literals);
946 }
947
948 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
949 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
950
951 // Populate the deoptimization entries.
952 for (int i = 0; i < length; i++) {
953 LEnvironment* env = deoptimizations_[i];
954 data->SetAstId(i, env->ast_id());
955 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
956 data->SetArgumentsStackHeight(i,
957 Smi::FromInt(env->arguments_stack_height()));
958 data->SetPc(i, Smi::FromInt(env->pc_offset()));
959 }
960
961 code->set_deoptimization_data(*data);
962 }
963
964
965 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
966 ASSERT(deoptimization_literals_.length() == 0);
967
968 const ZoneList<Handle<JSFunction> >* inlined_closures =
969 chunk()->inlined_closures();
970
971 for (int i = 0, length = inlined_closures->length(); i < length; i++) {
972 DefineDeoptimizationLiteral(inlined_closures->at(i));
973 }
974
975 inlined_function_count_ = deoptimization_literals_.length();
976 }
977
978
979 void LCodeGen::DeoptimizeBranch(
980 LEnvironment* environment,
981 BranchType branch_type, Register reg, int bit,
982 Deoptimizer::BailoutType* override_bailout_type) {
983 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
984 Deoptimizer::BailoutType bailout_type =
985 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
986
987 if (override_bailout_type != NULL) {
988 bailout_type = *override_bailout_type;
989 }
990
991 ASSERT(environment->HasBeenRegistered());
992 ASSERT(info()->IsOptimizing() || info()->IsStub());
993 int id = environment->deoptimization_index();
994 Address entry =
995 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
996
997 if (entry == NULL) {
998 Abort(kBailoutWasNotPrepared);
999 }
1000
1001 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
1002 Label not_zero;
1003 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
1004
1005 __ Push(x0, x1, x2);
1006 __ Mrs(x2, NZCV);
1007 __ Mov(x0, count);
1008 __ Ldr(w1, MemOperand(x0));
1009 __ Subs(x1, x1, 1);
1010 __ B(gt, &not_zero);
1011 __ Mov(w1, FLAG_deopt_every_n_times);
1012 __ Str(w1, MemOperand(x0));
1013 __ Pop(x2, x1, x0);
1014 ASSERT(frame_is_built_);
1015 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1016 __ Unreachable();
1017
1018 __ Bind(&not_zero);
1019 __ Str(w1, MemOperand(x0));
1020 __ Msr(NZCV, x2);
1021 __ Pop(x2, x1, x0);
1022 }
1023
1024 if (info()->ShouldTrapOnDeopt()) {
1025 Label dont_trap;
1026 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
1027 __ Debug("trap_on_deopt", __LINE__, BREAK);
1028 __ Bind(&dont_trap);
1029 }
1030
1031 ASSERT(info()->IsStub() || frame_is_built_);
1032 // Go through jump table if we need to build frame, or restore caller doubles.
1033 if (branch_type == always &&
1034 frame_is_built_ && !info()->saves_caller_doubles()) {
1035 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1036 } else {
1037 // We often have several deopts to the same entry, reuse the last
1038 // jump entry if this is the case.
1039 if (deopt_jump_table_.is_empty() ||
1040 (deopt_jump_table_.last()->address != entry) ||
1041 (deopt_jump_table_.last()->bailout_type != bailout_type) ||
1042 (deopt_jump_table_.last()->needs_frame != !frame_is_built_)) {
1043 Deoptimizer::JumpTableEntry* table_entry =
1044 new(zone()) Deoptimizer::JumpTableEntry(entry,
1045 bailout_type,
1046 !frame_is_built_);
1047 deopt_jump_table_.Add(table_entry, zone());
1048 }
1049 __ B(&deopt_jump_table_.last()->label,
1050 branch_type, reg, bit);
1051 }
1052 }
1053
1054
1055 void LCodeGen::Deoptimize(LEnvironment* environment,
1056 Deoptimizer::BailoutType* override_bailout_type) {
1057 DeoptimizeBranch(environment, always, NoReg, -1, override_bailout_type);
1058 }
1059
1060
1061 void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment) {
1062 DeoptimizeBranch(environment, static_cast<BranchType>(cond));
1063 }
1064
1065
1066 void LCodeGen::DeoptimizeIfZero(Register rt, LEnvironment* environment) {
1067 DeoptimizeBranch(environment, reg_zero, rt);
1068 }
1069
1070
1071 void LCodeGen::DeoptimizeIfNotZero(Register rt, LEnvironment* environment) {
1072 DeoptimizeBranch(environment, reg_not_zero, rt);
1073 }
1074
1075
1076 void LCodeGen::DeoptimizeIfNegative(Register rt, LEnvironment* environment) {
1077 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
1078 DeoptimizeBranch(environment, reg_bit_set, rt, sign_bit);
1079 }
1080
1081
1082 void LCodeGen::DeoptimizeIfSmi(Register rt,
1083 LEnvironment* environment) {
1084 DeoptimizeBranch(environment, reg_bit_clear, rt, MaskToBit(kSmiTagMask));
1085 }
1086
1087
1088 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LEnvironment* environment) {
1089 DeoptimizeBranch(environment, reg_bit_set, rt, MaskToBit(kSmiTagMask));
1090 }
1091
1092
1093 void LCodeGen::DeoptimizeIfRoot(Register rt,
1094 Heap::RootListIndex index,
1095 LEnvironment* environment) {
1096 __ CompareRoot(rt, index);
1097 DeoptimizeIf(eq, environment);
1098 }
1099
1100
1101 void LCodeGen::DeoptimizeIfNotRoot(Register rt,
1102 Heap::RootListIndex index,
1103 LEnvironment* environment) {
1104 __ CompareRoot(rt, index);
1105 DeoptimizeIf(ne, environment);
1106 }
1107
1108
1109 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input,
1110 LEnvironment* environment) {
1111 __ TestForMinusZero(input);
1112 DeoptimizeIf(vs, environment);
1113 }
1114
1115
1116 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
1117 if (!info()->IsStub()) {
1118 // Ensure that we have enough space after the previous lazy-bailout
1119 // instruction for patching the code here.
1120 intptr_t current_pc = masm()->pc_offset();
1121
1122 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1123 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1124 ASSERT((padding_size % kInstructionSize) == 0);
1125 InstructionAccurateScope instruction_accurate(
1126 masm(), padding_size / kInstructionSize);
1127
1128 while (padding_size > 0) {
1129 __ nop();
1130 padding_size -= kInstructionSize;
1131 }
1132 }
1133 }
1134 last_lazy_deopt_pc_ = masm()->pc_offset();
1135 }
1136
1137
1138 Register LCodeGen::ToRegister(LOperand* op) const {
1139 // TODO(all): support zero register results, as ToRegister32.
1140 ASSERT((op != NULL) && op->IsRegister());
1141 return Register::FromAllocationIndex(op->index());
1142 }
1143
1144
1145 Register LCodeGen::ToRegister32(LOperand* op) const {
1146 ASSERT(op != NULL);
1147 if (op->IsConstantOperand()) {
1148 // If this is a constant operand, the result must be the zero register.
1149 ASSERT(ToInteger32(LConstantOperand::cast(op)) == 0);
1150 return wzr;
1151 } else {
1152 return ToRegister(op).W();
1153 }
1154 }
1155
1156
1157 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1158 HConstant* constant = chunk_->LookupConstant(op);
1159 return Smi::FromInt(constant->Integer32Value());
1160 }
1161
1162
1163 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1164 ASSERT((op != NULL) && op->IsDoubleRegister());
1165 return DoubleRegister::FromAllocationIndex(op->index());
1166 }
1167
1168
1169 Operand LCodeGen::ToOperand(LOperand* op) {
1170 ASSERT(op != NULL);
1171 if (op->IsConstantOperand()) {
1172 LConstantOperand* const_op = LConstantOperand::cast(op);
1173 HConstant* constant = chunk()->LookupConstant(const_op);
1174 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1175 if (r.IsSmi()) {
1176 ASSERT(constant->HasSmiValue());
1177 return Operand(Smi::FromInt(constant->Integer32Value()));
1178 } else if (r.IsInteger32()) {
1179 ASSERT(constant->HasInteger32Value());
1180 return Operand(constant->Integer32Value());
1181 } else if (r.IsDouble()) {
1182 Abort(kToOperandUnsupportedDoubleImmediate);
1183 }
1184 ASSERT(r.IsTagged());
1185 return Operand(constant->handle(isolate()));
1186 } else if (op->IsRegister()) {
1187 return Operand(ToRegister(op));
1188 } else if (op->IsDoubleRegister()) {
1189 Abort(kToOperandIsDoubleRegisterUnimplemented);
1190 return Operand(0);
1191 }
1192 // Stack slots not implemented, use ToMemOperand instead.
1193 UNREACHABLE();
1194 return Operand(0);
1195 }
1196
1197
1198 Operand LCodeGen::ToOperand32I(LOperand* op) {
1199 return ToOperand32(op, SIGNED_INT32);
1200 }
1201
1202
1203 Operand LCodeGen::ToOperand32U(LOperand* op) {
1204 return ToOperand32(op, UNSIGNED_INT32);
1205 }
1206
1207
1208 Operand LCodeGen::ToOperand32(LOperand* op, IntegerSignedness signedness) {
1209 ASSERT(op != NULL);
1210 if (op->IsRegister()) {
1211 return Operand(ToRegister32(op));
1212 } else if (op->IsConstantOperand()) {
1213 LConstantOperand* const_op = LConstantOperand::cast(op);
1214 HConstant* constant = chunk()->LookupConstant(const_op);
1215 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1216 if (r.IsInteger32()) {
1217 ASSERT(constant->HasInteger32Value());
1218 return Operand(signedness == SIGNED_INT32
1219 ? constant->Integer32Value()
1220 : static_cast<uint32_t>(constant->Integer32Value()));
1221 } else {
1222 // Other constants not implemented.
1223 Abort(kToOperand32UnsupportedImmediate);
1224 }
1225 }
1226 // Other cases are not implemented.
1227 UNREACHABLE();
1228 return Operand(0);
1229 }
1230
1231
1232 static ptrdiff_t ArgumentsOffsetWithoutFrame(ptrdiff_t index) {
1233 ASSERT(index < 0);
1234 return -(index + 1) * kPointerSize;
1235 }
1236
1237
1238 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
1239 ASSERT(op != NULL);
1240 ASSERT(!op->IsRegister());
1241 ASSERT(!op->IsDoubleRegister());
1242 ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
1243 if (NeedsEagerFrame()) {
1244 return MemOperand(fp, StackSlotOffset(op->index()));
1245 } else {
1246 // Retrieve parameter without eager stack-frame relative to the
1247 // stack-pointer.
1248 return MemOperand(masm()->StackPointer(),
1249 ArgumentsOffsetWithoutFrame(op->index()));
1250 }
1251 }
1252
1253
1254 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1255 HConstant* constant = chunk_->LookupConstant(op);
1256 ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1257 return constant->handle(isolate());
1258 }
1259
1260
1261 bool LCodeGen::IsSmi(LConstantOperand* op) const {
1262 return chunk_->LookupLiteralRepresentation(op).IsSmi();
1263 }
1264
1265
1266 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1267 return op->IsConstantOperand() &&
1268 chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1269 }
1270
1271
1272 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1273 HConstant* constant = chunk_->LookupConstant(op);
1274 return constant->Integer32Value();
1275 }
1276
1277
1278 double LCodeGen::ToDouble(LConstantOperand* op) const {
1279 HConstant* constant = chunk_->LookupConstant(op);
1280 ASSERT(constant->HasDoubleValue());
1281 return constant->DoubleValue();
1282 }
1283
1284
1285 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1286 Condition cond = nv;
1287 switch (op) {
1288 case Token::EQ:
1289 case Token::EQ_STRICT:
1290 cond = eq;
1291 break;
1292 case Token::NE:
1293 case Token::NE_STRICT:
1294 cond = ne;
1295 break;
1296 case Token::LT:
1297 cond = is_unsigned ? lo : lt;
1298 break;
1299 case Token::GT:
1300 cond = is_unsigned ? hi : gt;
1301 break;
1302 case Token::LTE:
1303 cond = is_unsigned ? ls : le;
1304 break;
1305 case Token::GTE:
1306 cond = is_unsigned ? hs : ge;
1307 break;
1308 case Token::IN:
1309 case Token::INSTANCEOF:
1310 default:
1311 UNREACHABLE();
1312 }
1313 return cond;
1314 }
1315
1316
1317 template<class InstrType>
1318 void LCodeGen::EmitBranchGeneric(InstrType instr,
1319 const BranchGenerator& branch) {
1320 int left_block = instr->TrueDestination(chunk_);
1321 int right_block = instr->FalseDestination(chunk_);
1322
1323 int next_block = GetNextEmittedBlock();
1324
1325 if (right_block == left_block) {
1326 EmitGoto(left_block);
1327 } else if (left_block == next_block) {
1328 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1329 } else if (right_block == next_block) {
1330 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1331 } else {
1332 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1333 __ B(chunk_->GetAssemblyLabel(right_block));
1334 }
1335 }
1336
1337
1338 template<class InstrType>
1339 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1340 ASSERT((condition != al) && (condition != nv));
1341 BranchOnCondition branch(this, condition);
1342 EmitBranchGeneric(instr, branch);
1343 }
1344
1345
1346 template<class InstrType>
1347 void LCodeGen::EmitCompareAndBranch(InstrType instr,
1348 Condition condition,
1349 const Register& lhs,
1350 const Operand& rhs) {
1351 ASSERT((condition != al) && (condition != nv));
1352 CompareAndBranch branch(this, condition, lhs, rhs);
1353 EmitBranchGeneric(instr, branch);
1354 }
1355
1356
1357 template<class InstrType>
1358 void LCodeGen::EmitTestAndBranch(InstrType instr,
1359 Condition condition,
1360 const Register& value,
1361 uint64_t mask) {
1362 ASSERT((condition != al) && (condition != nv));
1363 TestAndBranch branch(this, condition, value, mask);
1364 EmitBranchGeneric(instr, branch);
1365 }
1366
1367
1368 template<class InstrType>
1369 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1370 const FPRegister& value,
1371 const FPRegister& scratch) {
1372 BranchIfNonZeroNumber branch(this, value, scratch);
1373 EmitBranchGeneric(instr, branch);
1374 }
1375
1376
1377 template<class InstrType>
1378 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1379 const Register& value) {
1380 BranchIfHeapNumber branch(this, value);
1381 EmitBranchGeneric(instr, branch);
1382 }
1383
1384
1385 template<class InstrType>
1386 void LCodeGen::EmitBranchIfRoot(InstrType instr,
1387 const Register& value,
1388 Heap::RootListIndex index) {
1389 BranchIfRoot branch(this, value, index);
1390 EmitBranchGeneric(instr, branch);
1391 }
1392
1393
1394 void LCodeGen::DoGap(LGap* gap) {
1395 for (int i = LGap::FIRST_INNER_POSITION;
1396 i <= LGap::LAST_INNER_POSITION;
1397 i++) {
1398 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1399 LParallelMove* move = gap->GetParallelMove(inner_pos);
1400 if (move != NULL) {
1401 resolver_.Resolve(move);
1402 }
1403 }
1404 }
1405
1406
1407 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1408 Register arguments = ToRegister(instr->arguments());
1409 Register result = ToRegister(instr->result());
1410
1411 // The pointer to the arguments array come from DoArgumentsElements.
1412 // It does not point directly to the arguments and there is an offest of
1413 // two words that we must take into account when accessing an argument.
1414 // Subtracting the index from length accounts for one, so we add one more.
1415
1416 if (instr->length()->IsConstantOperand() &&
1417 instr->index()->IsConstantOperand()) {
1418 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1419 int length = ToInteger32(LConstantOperand::cast(instr->length()));
1420 int offset = ((length - index) + 1) * kPointerSize;
1421 __ Ldr(result, MemOperand(arguments, offset));
1422 } else if (instr->index()->IsConstantOperand()) {
1423 Register length = ToRegister32(instr->length());
1424 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1425 int loc = index - 1;
1426 if (loc != 0) {
1427 __ Sub(result.W(), length, loc);
1428 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1429 } else {
1430 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1431 }
1432 } else {
1433 Register length = ToRegister32(instr->length());
1434 Operand index = ToOperand32I(instr->index());
1435 __ Sub(result.W(), length, index);
1436 __ Add(result.W(), result.W(), 1);
1437 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1438 }
1439 }
1440
1441
1442 void LCodeGen::DoAddE(LAddE* instr) {
1443 Register result = ToRegister(instr->result());
1444 Register left = ToRegister(instr->left());
1445 Operand right = (instr->right()->IsConstantOperand())
1446 ? ToInteger32(LConstantOperand::cast(instr->right()))
1447 : Operand(ToRegister32(instr->right()), SXTW);
1448
1449 ASSERT(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1450 __ Add(result, left, right);
1451 }
1452
1453
1454 void LCodeGen::DoAddI(LAddI* instr) {
1455 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1456 Register result = ToRegister32(instr->result());
1457 Register left = ToRegister32(instr->left());
1458 Operand right = ToOperand32I(instr->right());
1459 if (can_overflow) {
1460 __ Adds(result, left, right);
1461 DeoptimizeIf(vs, instr->environment());
1462 } else {
1463 __ Add(result, left, right);
1464 }
1465 }
1466
1467
1468 void LCodeGen::DoAddS(LAddS* instr) {
1469 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1470 Register result = ToRegister(instr->result());
1471 Register left = ToRegister(instr->left());
1472 Operand right = ToOperand(instr->right());
1473 if (can_overflow) {
1474 __ Adds(result, left, right);
1475 DeoptimizeIf(vs, instr->environment());
1476 } else {
1477 __ Add(result, left, right);
1478 }
1479 }
1480
1481
1482 void LCodeGen::DoAllocate(LAllocate* instr) {
1483 class DeferredAllocate: public LDeferredCode {
1484 public:
1485 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1486 : LDeferredCode(codegen), instr_(instr) { }
1487 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1488 virtual LInstruction* instr() { return instr_; }
1489 private:
1490 LAllocate* instr_;
1491 };
1492
1493 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1494
1495 Register result = ToRegister(instr->result());
1496 Register temp1 = ToRegister(instr->temp1());
1497 Register temp2 = ToRegister(instr->temp2());
1498
1499 // Allocate memory for the object.
1500 AllocationFlags flags = TAG_OBJECT;
1501 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1502 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1503 }
1504
1505 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
1506 ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
1507 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1508 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
1509 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
1510 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1511 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
1512 }
1513
1514 if (instr->size()->IsConstantOperand()) {
1515 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1516 if (size <= Page::kMaxRegularHeapObjectSize) {
1517 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1518 } else {
1519 __ B(deferred->entry());
1520 }
1521 } else {
1522 Register size = ToRegister32(instr->size());
1523 __ Sxtw(size.X(), size);
1524 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1525 }
1526
1527 __ Bind(deferred->exit());
1528
1529 if (instr->hydrogen()->MustPrefillWithFiller()) {
1530 Register filler_count = temp1;
1531 Register filler = temp2;
1532 Register untagged_result = ToRegister(instr->temp3());
1533
1534 if (instr->size()->IsConstantOperand()) {
1535 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1536 __ Mov(filler_count, size / kPointerSize);
1537 } else {
1538 __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2);
1539 }
1540
1541 __ Sub(untagged_result, result, kHeapObjectTag);
1542 __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map()));
1543 __ FillFields(untagged_result, filler_count, filler);
1544 } else {
1545 ASSERT(instr->temp3() == NULL);
1546 }
1547 }
1548
1549
1550 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1551 // TODO(3095996): Get rid of this. For now, we need to make the
1552 // result register contain a valid pointer because it is already
1553 // contained in the register pointer map.
1554 __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
1555
1556 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
1557 // We're in a SafepointRegistersScope so we can use any scratch registers.
1558 Register size = x0;
1559 if (instr->size()->IsConstantOperand()) {
1560 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1561 } else {
1562 __ SmiTag(size, ToRegister32(instr->size()).X());
1563 }
1564 int flags = AllocateDoubleAlignFlag::encode(
1565 instr->hydrogen()->MustAllocateDoubleAligned());
1566 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
1567 ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
1568 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1569 flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
1570 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
1571 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1572 flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
1573 } else {
1574 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1575 }
1576 __ Mov(x10, Smi::FromInt(flags));
1577 __ Push(size, x10);
1578
1579 CallRuntimeFromDeferred(
1580 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
1581 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1582 }
1583
1584
1585 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1586 Register receiver = ToRegister(instr->receiver());
1587 Register function = ToRegister(instr->function());
1588 Register length = ToRegister32(instr->length());
1589
1590 Register elements = ToRegister(instr->elements());
1591 Register scratch = x5;
1592 ASSERT(receiver.Is(x0)); // Used for parameter count.
1593 ASSERT(function.Is(x1)); // Required by InvokeFunction.
1594 ASSERT(ToRegister(instr->result()).Is(x0));
1595 ASSERT(instr->IsMarkedAsCall());
1596
1597 // Copy the arguments to this function possibly from the
1598 // adaptor frame below it.
1599 const uint32_t kArgumentsLimit = 1 * KB;
1600 __ Cmp(length, kArgumentsLimit);
1601 DeoptimizeIf(hi, instr->environment());
1602
1603 // Push the receiver and use the register to keep the original
1604 // number of arguments.
1605 __ Push(receiver);
1606 Register argc = receiver;
1607 receiver = NoReg;
1608 __ Sxtw(argc, length);
1609 // The arguments are at a one pointer size offset from elements.
1610 __ Add(elements, elements, 1 * kPointerSize);
1611
1612 // Loop through the arguments pushing them onto the execution
1613 // stack.
1614 Label invoke, loop;
1615 // length is a small non-negative integer, due to the test above.
1616 __ Cbz(length, &invoke);
1617 __ Bind(&loop);
1618 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1619 __ Push(scratch);
1620 __ Subs(length, length, 1);
1621 __ B(ne, &loop);
1622
1623 __ Bind(&invoke);
1624 ASSERT(instr->HasPointerMap());
1625 LPointerMap* pointers = instr->pointer_map();
1626 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1627 // The number of arguments is stored in argc (receiver) which is x0, as
1628 // expected by InvokeFunction.
1629 ParameterCount actual(argc);
1630 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
1631 }
1632
1633
1634 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1635 Register result = ToRegister(instr->result());
1636
1637 if (instr->hydrogen()->from_inlined()) {
1638 // When we are inside an inlined function, the arguments are the last things
1639 // that have been pushed on the stack. Therefore the arguments array can be
1640 // accessed directly from jssp.
1641 // However in the normal case, it is accessed via fp but there are two words
1642 // on the stack between fp and the arguments (the saved lr and fp) and the
1643 // LAccessArgumentsAt implementation take that into account.
1644 // In the inlined case we need to subtract the size of 2 words to jssp to
1645 // get a pointer which will work well with LAccessArgumentsAt.
1646 ASSERT(masm()->StackPointer().Is(jssp));
1647 __ Sub(result, jssp, 2 * kPointerSize);
1648 } else {
1649 ASSERT(instr->temp() != NULL);
1650 Register previous_fp = ToRegister(instr->temp());
1651
1652 __ Ldr(previous_fp,
1653 MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1654 __ Ldr(result,
1655 MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
1656 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1657 __ Csel(result, fp, previous_fp, ne);
1658 }
1659 }
1660
1661
1662 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1663 Register elements = ToRegister(instr->elements());
1664 Register result = ToRegister32(instr->result());
1665 Label done;
1666
1667 // If no arguments adaptor frame the number of arguments is fixed.
1668 __ Cmp(fp, elements);
1669 __ Mov(result, scope()->num_parameters());
1670 __ B(eq, &done);
1671
1672 // Arguments adaptor frame present. Get argument length from there.
1673 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1674 __ Ldr(result,
1675 UntagSmiMemOperand(result.X(),
1676 ArgumentsAdaptorFrameConstants::kLengthOffset));
1677
1678 // Argument length is in result register.
1679 __ Bind(&done);
1680 }
1681
1682
1683 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1684 DoubleRegister left = ToDoubleRegister(instr->left());
1685 DoubleRegister right = ToDoubleRegister(instr->right());
1686 DoubleRegister result = ToDoubleRegister(instr->result());
1687
1688 switch (instr->op()) {
1689 case Token::ADD: __ Fadd(result, left, right); break;
1690 case Token::SUB: __ Fsub(result, left, right); break;
1691 case Token::MUL: __ Fmul(result, left, right); break;
1692 case Token::DIV: __ Fdiv(result, left, right); break;
1693 case Token::MOD: {
1694 // The ECMA-262 remainder operator is the remainder from a truncating
1695 // (round-towards-zero) division. Note that this differs from IEEE-754.
1696 //
1697 // TODO(jbramley): See if it's possible to do this inline, rather than by
1698 // calling a helper function. With frintz (to produce the intermediate
1699 // quotient) and fmsub (to calculate the remainder without loss of
1700 // precision), it should be possible. However, we would need support for
1701 // fdiv in round-towards-zero mode, and the A64 simulator doesn't support
1702 // that yet.
1703 ASSERT(left.Is(d0));
1704 ASSERT(right.Is(d1));
1705 __ CallCFunction(
1706 ExternalReference::mod_two_doubles_operation(isolate()),
1707 0, 2);
1708 ASSERT(result.Is(d0));
1709 break;
1710 }
1711 default:
1712 UNREACHABLE();
1713 break;
1714 }
1715 }
1716
1717
1718 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1719 ASSERT(ToRegister(instr->context()).is(cp));
1720 ASSERT(ToRegister(instr->left()).is(x1));
1721 ASSERT(ToRegister(instr->right()).is(x0));
1722 ASSERT(ToRegister(instr->result()).is(x0));
1723
1724 BinaryOpICStub stub(instr->op(), NO_OVERWRITE);
1725 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
1726 }
1727
1728
1729 void LCodeGen::DoBitI(LBitI* instr) {
1730 Register result = ToRegister32(instr->result());
1731 Register left = ToRegister32(instr->left());
1732 Operand right = ToOperand32U(instr->right());
1733
1734 switch (instr->op()) {
1735 case Token::BIT_AND: __ And(result, left, right); break;
1736 case Token::BIT_OR: __ Orr(result, left, right); break;
1737 case Token::BIT_XOR: __ Eor(result, left, right); break;
1738 default:
1739 UNREACHABLE();
1740 break;
1741 }
1742 }
1743
1744
1745 void LCodeGen::DoBitS(LBitS* instr) {
1746 Register result = ToRegister(instr->result());
1747 Register left = ToRegister(instr->left());
1748 Operand right = ToOperand(instr->right());
1749
1750 switch (instr->op()) {
1751 case Token::BIT_AND: __ And(result, left, right); break;
1752 case Token::BIT_OR: __ Orr(result, left, right); break;
1753 case Token::BIT_XOR: __ Eor(result, left, right); break;
1754 default:
1755 UNREACHABLE();
1756 break;
1757 }
1758 }
1759
1760
1761 void LCodeGen::ApplyCheckIf(Condition cc, LBoundsCheck* check) {
1762 if (FLAG_debug_code && check->hydrogen()->skip_check()) {
1763 __ Assert(InvertCondition(cc), kEliminatedBoundsCheckFailed);
1764 } else {
1765 DeoptimizeIf(cc, check->environment());
1766 }
1767 }
1768
1769
1770 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1771 if (instr->hydrogen()->skip_check()) return;
1772
1773 ASSERT(instr->hydrogen()->length()->representation().IsInteger32());
1774 Register length = ToRegister32(instr->length());
1775
1776 if (instr->index()->IsConstantOperand()) {
1777 int constant_index =
1778 ToInteger32(LConstantOperand::cast(instr->index()));
1779
1780 if (instr->hydrogen()->length()->representation().IsSmi()) {
1781 __ Cmp(length, Smi::FromInt(constant_index));
1782 } else {
1783 __ Cmp(length, constant_index);
1784 }
1785 } else {
1786 ASSERT(instr->hydrogen()->index()->representation().IsInteger32());
1787 __ Cmp(length, ToRegister32(instr->index()));
1788 }
1789 Condition condition = instr->hydrogen()->allow_equality() ? lo : ls;
1790 ApplyCheckIf(condition, instr);
1791 }
1792
1793
1794 void LCodeGen::DoBranch(LBranch* instr) {
1795 Representation r = instr->hydrogen()->value()->representation();
1796 Label* true_label = instr->TrueLabel(chunk_);
1797 Label* false_label = instr->FalseLabel(chunk_);
1798
1799 if (r.IsInteger32()) {
1800 ASSERT(!info()->IsStub());
1801 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1802 } else if (r.IsSmi()) {
1803 ASSERT(!info()->IsStub());
1804 STATIC_ASSERT(kSmiTag == 0);
1805 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1806 } else if (r.IsDouble()) {
1807 DoubleRegister value = ToDoubleRegister(instr->value());
1808 // Test the double value. Zero and NaN are false.
1809 EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1810 } else {
1811 ASSERT(r.IsTagged());
1812 Register value = ToRegister(instr->value());
1813 HType type = instr->hydrogen()->value()->type();
1814
1815 if (type.IsBoolean()) {
1816 ASSERT(!info()->IsStub());
1817 __ CompareRoot(value, Heap::kTrueValueRootIndex);
1818 EmitBranch(instr, eq);
1819 } else if (type.IsSmi()) {
1820 ASSERT(!info()->IsStub());
1821 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
1822 } else if (type.IsJSArray()) {
1823 ASSERT(!info()->IsStub());
1824 EmitGoto(instr->TrueDestination(chunk()));
1825 } else if (type.IsHeapNumber()) {
1826 ASSERT(!info()->IsStub());
1827 __ Ldr(double_scratch(), FieldMemOperand(value,
1828 HeapNumber::kValueOffset));
1829 // Test the double value. Zero and NaN are false.
1830 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1831 } else if (type.IsString()) {
1832 ASSERT(!info()->IsStub());
1833 Register temp = ToRegister(instr->temp1());
1834 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1835 EmitCompareAndBranch(instr, ne, temp, 0);
1836 } else {
1837 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1838 // Avoid deopts in the case where we've never executed this path before.
1839 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
1840
1841 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1842 // undefined -> false.
1843 __ JumpIfRoot(
1844 value, Heap::kUndefinedValueRootIndex, false_label);
1845 }
1846
1847 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1848 // Boolean -> its value.
1849 __ JumpIfRoot(
1850 value, Heap::kTrueValueRootIndex, true_label);
1851 __ JumpIfRoot(
1852 value, Heap::kFalseValueRootIndex, false_label);
1853 }
1854
1855 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1856 // 'null' -> false.
1857 __ JumpIfRoot(
1858 value, Heap::kNullValueRootIndex, false_label);
1859 }
1860
1861 if (expected.Contains(ToBooleanStub::SMI)) {
1862 // Smis: 0 -> false, all other -> true.
1863 ASSERT(Smi::FromInt(0) == 0);
1864 __ Cbz(value, false_label);
1865 __ JumpIfSmi(value, true_label);
1866 } else if (expected.NeedsMap()) {
1867 // If we need a map later and have a smi, deopt.
1868 DeoptimizeIfSmi(value, instr->environment());
1869 }
1870
1871 Register map = NoReg;
1872 Register scratch = NoReg;
1873
1874 if (expected.NeedsMap()) {
1875 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
1876 map = ToRegister(instr->temp1());
1877 scratch = ToRegister(instr->temp2());
1878
1879 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1880
1881 if (expected.CanBeUndetectable()) {
1882 // Undetectable -> false.
1883 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1884 __ TestAndBranchIfAnySet(
1885 scratch, 1 << Map::kIsUndetectable, false_label);
1886 }
1887 }
1888
1889 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1890 // spec object -> true.
1891 __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
1892 __ B(ge, true_label);
1893 }
1894
1895 if (expected.Contains(ToBooleanStub::STRING)) {
1896 // String value -> false iff empty.
1897 Label not_string;
1898 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1899 __ B(ge, &not_string);
1900 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1901 __ Cbz(scratch, false_label);
1902 __ B(true_label);
1903 __ Bind(&not_string);
1904 }
1905
1906 if (expected.Contains(ToBooleanStub::SYMBOL)) {
1907 // Symbol value -> true.
1908 __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1909 __ B(eq, true_label);
1910 }
1911
1912 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1913 Label not_heap_number;
1914 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
1915
1916 __ Ldr(double_scratch(),
1917 FieldMemOperand(value, HeapNumber::kValueOffset));
1918 __ Fcmp(double_scratch(), 0.0);
1919 // If we got a NaN (overflow bit is set), jump to the false branch.
1920 __ B(vs, false_label);
1921 __ B(eq, false_label);
1922 __ B(true_label);
1923 __ Bind(&not_heap_number);
1924 }
1925
1926 if (!expected.IsGeneric()) {
1927 // We've seen something for the first time -> deopt.
1928 // This can only happen if we are not generic already.
1929 Deoptimize(instr->environment());
1930 }
1931 }
1932 }
1933 }
1934
1935
1936 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
1937 int formal_parameter_count,
1938 int arity,
1939 LInstruction* instr,
1940 Register function_reg) {
1941 bool dont_adapt_arguments =
1942 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1943 bool can_invoke_directly =
1944 dont_adapt_arguments || formal_parameter_count == arity;
1945
1946 // The function interface relies on the following register assignments.
1947 ASSERT(function_reg.Is(x1) || function_reg.IsNone());
1948 Register arity_reg = x0;
1949
1950 LPointerMap* pointers = instr->pointer_map();
1951
1952 // If necessary, load the function object.
1953 if (function_reg.IsNone()) {
1954 function_reg = x1;
1955 __ LoadObject(function_reg, function);
1956 }
1957
1958 if (FLAG_debug_code) {
1959 Label is_not_smi;
1960 // Try to confirm that function_reg (x1) is a tagged pointer.
1961 __ JumpIfNotSmi(function_reg, &is_not_smi);
1962 __ Abort(kExpectedFunctionObject);
1963 __ Bind(&is_not_smi);
1964 }
1965
1966 if (can_invoke_directly) {
1967 // Change context.
1968 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
1969
1970 // Set the arguments count if adaption is not needed. Assumes that x0 is
1971 // available to write to at this point.
1972 if (dont_adapt_arguments) {
1973 __ Mov(arity_reg, arity);
1974 }
1975
1976 // Invoke function.
1977 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
1978 __ Call(x10);
1979
1980 // Set up deoptimization.
1981 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
1982 } else {
1983 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1984 ParameterCount count(arity);
1985 ParameterCount expected(formal_parameter_count);
1986 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
1987 }
1988 }
1989
1990
1991 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
1992 ASSERT(instr->IsMarkedAsCall());
1993 ASSERT(ToRegister(instr->result()).Is(x0));
1994
1995 LPointerMap* pointers = instr->pointer_map();
1996 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1997
1998 if (instr->target()->IsConstantOperand()) {
1999 LConstantOperand* target = LConstantOperand::cast(instr->target());
2000 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
2001 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
2002 // TODO(all): on ARM we use a call descriptor to specify a storage mode
2003 // but on A64 we only have one storage mode so it isn't necessary. Check
2004 // this understanding is correct.
2005 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
2006 } else {
2007 ASSERT(instr->target()->IsRegister());
2008 Register target = ToRegister(instr->target());
2009 generator.BeforeCall(__ CallSize(target));
2010 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
2011 __ Call(target);
2012 }
2013 generator.AfterCall();
2014 }
2015
2016
2017 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
2018 ASSERT(instr->IsMarkedAsCall());
2019 ASSERT(ToRegister(instr->function()).is(x1));
2020
2021 if (instr->hydrogen()->pass_argument_count()) {
2022 __ Mov(x0, Operand(instr->arity()));
2023 }
2024
2025 // Change context.
2026 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
2027
2028 // Load the code entry address
2029 __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
2030 __ Call(x10);
2031
2032 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2033 }
2034
2035
2036 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
2037 CallRuntime(instr->function(), instr->arity(), instr);
2038 }
2039
2040
2041 void LCodeGen::DoCallStub(LCallStub* instr) {
2042 ASSERT(ToRegister(instr->context()).is(cp));
2043 ASSERT(ToRegister(instr->result()).is(x0));
2044 switch (instr->hydrogen()->major_key()) {
2045 case CodeStub::RegExpExec: {
2046 RegExpExecStub stub;
2047 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
2048 break;
2049 }
2050 case CodeStub::SubString: {
2051 SubStringStub stub;
2052 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
2053 break;
2054 }
2055 case CodeStub::StringCompare: {
2056 StringCompareStub stub;
2057 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
2058 break;
2059 }
2060 default:
2061 UNREACHABLE();
2062 }
2063 }
2064
2065
2066 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2067 GenerateOsrPrologue();
2068 }
2069
2070
2071 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2072 Register temp = ToRegister(instr->temp());
2073 {
2074 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
2075 __ Push(object);
2076 __ Mov(cp, 0);
2077 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2078 RecordSafepointWithRegisters(
2079 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2080 __ StoreToSafepointRegisterSlot(x0, temp);
2081 }
2082 DeoptimizeIfSmi(temp, instr->environment());
2083 }
2084
2085
2086 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2087 class DeferredCheckMaps: public LDeferredCode {
2088 public:
2089 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2090 : LDeferredCode(codegen), instr_(instr), object_(object) {
2091 SetExit(check_maps());
2092 }
2093 virtual void Generate() {
2094 codegen()->DoDeferredInstanceMigration(instr_, object_);
2095 }
2096 Label* check_maps() { return &check_maps_; }
2097 virtual LInstruction* instr() { return instr_; }
2098 private:
2099 LCheckMaps* instr_;
2100 Label check_maps_;
2101 Register object_;
2102 };
2103
2104 if (instr->hydrogen()->CanOmitMapChecks()) {
2105 ASSERT(instr->value() == NULL);
2106 ASSERT(instr->temp() == NULL);
2107 return;
2108 }
2109
2110 Register object = ToRegister(instr->value());
2111 Register map_reg = ToRegister(instr->temp());
2112
2113 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2114
2115 DeferredCheckMaps* deferred = NULL;
2116 if (instr->hydrogen()->has_migration_target()) {
2117 deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2118 __ Bind(deferred->check_maps());
2119 }
2120
2121 UniqueSet<Map> map_set = instr->hydrogen()->map_set();
2122 Label success;
2123 for (int i = 0; i < map_set.size(); i++) {
2124 Handle<Map> map = map_set.at(i).handle();
2125 __ CompareMap(map_reg, map);
2126 __ B(eq, &success);
2127 }
2128
2129 // We didn't match a map.
2130 if (instr->hydrogen()->has_migration_target()) {
2131 __ B(deferred->entry());
2132 } else {
2133 Deoptimize(instr->environment());
2134 }
2135
2136 __ Bind(&success);
2137 }
2138
2139
2140 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2141 if (!instr->hydrogen()->value()->IsHeapObject()) {
2142 DeoptimizeIfSmi(ToRegister(instr->value()), instr->environment());
2143 }
2144 }
2145
2146
2147 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2148 Register value = ToRegister(instr->value());
2149 ASSERT(!instr->result() || ToRegister(instr->result()).Is(value));
2150 DeoptimizeIfNotSmi(value, instr->environment());
2151 }
2152
2153
2154 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2155 Register input = ToRegister(instr->value());
2156 Register scratch = ToRegister(instr->temp());
2157
2158 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2159 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2160
2161 if (instr->hydrogen()->is_interval_check()) {
2162 InstanceType first, last;
2163 instr->hydrogen()->GetCheckInterval(&first, &last);
2164
2165 __ Cmp(scratch, first);
2166 if (first == last) {
2167 // If there is only one type in the interval check for equality.
2168 DeoptimizeIf(ne, instr->environment());
2169 } else if (last == LAST_TYPE) {
2170 // We don't need to compare with the higher bound of the interval.
2171 DeoptimizeIf(lo, instr->environment());
2172 } else {
2173 // If we are below the lower bound, set the C flag and clear the Z flag
2174 // to force a deopt.
2175 __ Ccmp(scratch, last, CFlag, hs);
2176 DeoptimizeIf(hi, instr->environment());
2177 }
2178 } else {
2179 uint8_t mask;
2180 uint8_t tag;
2181 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2182
2183 if (IsPowerOf2(mask)) {
2184 ASSERT((tag == 0) || (tag == mask));
2185 // TODO(all): We might be able to use tbz/tbnz if we can guarantee that
2186 // the deopt handler is reachable by a tbz instruction.
2187 __ Tst(scratch, mask);
2188 DeoptimizeIf(tag == 0 ? ne : eq, instr->environment());
2189 } else {
2190 if (tag == 0) {
2191 __ Tst(scratch, mask);
2192 } else {
2193 __ And(scratch, scratch, mask);
2194 __ Cmp(scratch, tag);
2195 }
2196 DeoptimizeIf(ne, instr->environment());
2197 }
2198 }
2199 }
2200
2201
2202 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2203 DoubleRegister input = ToDoubleRegister(instr->unclamped());
2204 Register result = ToRegister32(instr->result());
2205 __ ClampDoubleToUint8(result, input, double_scratch());
2206 }
2207
2208
2209 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2210 Register input = ToRegister32(instr->unclamped());
2211 Register result = ToRegister32(instr->result());
2212 __ ClampInt32ToUint8(result, input);
2213 }
2214
2215
2216 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2217 Register input = ToRegister(instr->unclamped());
2218 Register result = ToRegister32(instr->result());
2219 Register scratch = ToRegister(instr->temp1());
2220 Label done;
2221
2222 // Both smi and heap number cases are handled.
2223 Label is_not_smi;
2224 __ JumpIfNotSmi(input, &is_not_smi);
2225 __ SmiUntag(result.X(), input);
2226 __ ClampInt32ToUint8(result);
2227 __ B(&done);
2228
2229 __ Bind(&is_not_smi);
2230
2231 // Check for heap number.
2232 Label is_heap_number;
2233 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2234 __ JumpIfRoot(scratch, Heap::kHeapNumberMapRootIndex, &is_heap_number);
2235
2236 // Check for undefined. Undefined is coverted to zero for clamping conversion.
2237 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
2238 instr->environment());
2239 __ Mov(result, 0);
2240 __ B(&done);
2241
2242 // Heap number case.
2243 __ Bind(&is_heap_number);
2244 DoubleRegister dbl_scratch = double_scratch();
2245 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp2());
2246 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2247 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2248
2249 __ Bind(&done);
2250 }
2251
2252
2253 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
2254 DoubleRegister value_reg = ToDoubleRegister(instr->value());
2255 Register result_reg = ToRegister(instr->result());
2256 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
2257 __ Fmov(result_reg, value_reg);
2258 __ Mov(result_reg, Operand(result_reg, LSR, 32));
2259 } else {
2260 __ Fmov(result_reg.W(), value_reg.S());
2261 }
2262 }
2263
2264
2265 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
2266 Register hi_reg = ToRegister(instr->hi());
2267 Register lo_reg = ToRegister(instr->lo());
2268 Register temp = ToRegister(instr->temp());
2269 DoubleRegister result_reg = ToDoubleRegister(instr->result());
2270
2271 __ And(temp, lo_reg, Operand(0xffffffff));
2272 __ Orr(temp, temp, Operand(hi_reg, LSL, 32));
2273 __ Fmov(result_reg, temp);
2274 }
2275
2276
2277 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2278 Handle<String> class_name = instr->hydrogen()->class_name();
2279 Label* true_label = instr->TrueLabel(chunk_);
2280 Label* false_label = instr->FalseLabel(chunk_);
2281 Register input = ToRegister(instr->value());
2282 Register scratch1 = ToRegister(instr->temp1());
2283 Register scratch2 = ToRegister(instr->temp2());
2284
2285 __ JumpIfSmi(input, false_label);
2286
2287 Register map = scratch2;
2288 if (class_name->IsUtf8EqualTo(CStrVector("Function"))) {
2289 // Assuming the following assertions, we can use the same compares to test
2290 // for both being a function type and being in the object type range.
2291 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2292 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2293 FIRST_SPEC_OBJECT_TYPE + 1);
2294 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2295 LAST_SPEC_OBJECT_TYPE - 1);
2296 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2297
2298 // We expect CompareObjectType to load the object instance type in scratch1.
2299 __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
2300 __ B(lt, false_label);
2301 __ B(eq, true_label);
2302 __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
2303 __ B(eq, true_label);
2304 } else {
2305 __ IsObjectJSObjectType(input, map, scratch1, false_label);
2306 }
2307
2308 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2309 // Check if the constructor in the map is a function.
2310 __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset));
2311
2312 // Objects with a non-function constructor have class 'Object'.
2313 if (class_name->IsUtf8EqualTo(CStrVector("Object"))) {
2314 __ JumpIfNotObjectType(
2315 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label);
2316 } else {
2317 __ JumpIfNotObjectType(
2318 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label);
2319 }
2320
2321 // The constructor function is in scratch1. Get its instance class name.
2322 __ Ldr(scratch1,
2323 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2324 __ Ldr(scratch1,
2325 FieldMemOperand(scratch1,
2326 SharedFunctionInfo::kInstanceClassNameOffset));
2327
2328 // The class name we are testing against is internalized since it's a literal.
2329 // The name in the constructor is internalized because of the way the context
2330 // is booted. This routine isn't expected to work for random API-created
2331 // classes and it doesn't have to because you can't access it with natives
2332 // syntax. Since both sides are internalized it is sufficient to use an
2333 // identity comparison.
2334 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2335 }
2336
2337
2338 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2339 ASSERT(instr->hydrogen()->representation().IsDouble());
2340 FPRegister object = ToDoubleRegister(instr->object());
2341 Register temp = ToRegister(instr->temp());
2342
2343 // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2344 // (relatively expensive) hole-NaN check.
2345 __ Fcmp(object, object);
2346 __ B(vc, instr->FalseLabel(chunk_));
2347
2348 // We have a NaN, but is it the hole?
2349 __ Fmov(temp, object);
2350 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2351 }
2352
2353
2354 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2355 ASSERT(instr->hydrogen()->representation().IsTagged());
2356 Register object = ToRegister(instr->object());
2357
2358 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2359 }
2360
2361
2362 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2363 Register value = ToRegister(instr->value());
2364 Register map = ToRegister(instr->temp());
2365
2366 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2367 EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2368 }
2369
2370
2371 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2372 Representation rep = instr->hydrogen()->value()->representation();
2373 ASSERT(!rep.IsInteger32());
2374 Register scratch = ToRegister(instr->temp());
2375
2376 if (rep.IsDouble()) {
2377 __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
2378 instr->TrueLabel(chunk()));
2379 } else {
2380 Register value = ToRegister(instr->value());
2381 __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
2382 instr->FalseLabel(chunk()), DO_SMI_CHECK);
2383 __ Ldr(double_scratch(), FieldMemOperand(value, HeapNumber::kValueOffset));
2384 __ JumpIfMinusZero(double_scratch(), instr->TrueLabel(chunk()));
2385 }
2386 EmitGoto(instr->FalseDestination(chunk()));
2387 }
2388
2389
2390 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2391 LOperand* left = instr->left();
2392 LOperand* right = instr->right();
2393 Condition cond = TokenToCondition(instr->op(), false);
2394
2395 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2396 // We can statically evaluate the comparison.
2397 double left_val = ToDouble(LConstantOperand::cast(left));
2398 double right_val = ToDouble(LConstantOperand::cast(right));
2399 int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2400 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2401 EmitGoto(next_block);
2402 } else {
2403 if (instr->is_double()) {
2404 if (right->IsConstantOperand()) {
2405 __ Fcmp(ToDoubleRegister(left),
2406 ToDouble(LConstantOperand::cast(right)));
2407 } else if (left->IsConstantOperand()) {
2408 // Transpose the operands and reverse the condition.
2409 __ Fcmp(ToDoubleRegister(right),
2410 ToDouble(LConstantOperand::cast(left)));
2411 cond = ReverseConditionForCmp(cond);
2412 } else {
2413 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2414 }
2415
2416 // If a NaN is involved, i.e. the result is unordered (V set),
2417 // jump to false block label.
2418 __ B(vs, instr->FalseLabel(chunk_));
2419 EmitBranch(instr, cond);
2420 } else {
2421 if (instr->hydrogen_value()->representation().IsInteger32()) {
2422 if (right->IsConstantOperand()) {
2423 EmitCompareAndBranch(instr,
2424 cond,
2425 ToRegister32(left),
2426 ToOperand32I(right));
2427 } else {
2428 // Transpose the operands and reverse the condition.
2429 EmitCompareAndBranch(instr,
2430 ReverseConditionForCmp(cond),
2431 ToRegister32(right),
2432 ToOperand32I(left));
2433 }
2434 } else {
2435 ASSERT(instr->hydrogen_value()->representation().IsSmi());
2436 if (right->IsConstantOperand()) {
2437 int32_t value = ToInteger32(LConstantOperand::cast(right));
2438 EmitCompareAndBranch(instr,
2439 cond,
2440 ToRegister(left),
2441 Operand(Smi::FromInt(value)));
2442 } else if (left->IsConstantOperand()) {
2443 // Transpose the operands and reverse the condition.
2444 int32_t value = ToInteger32(LConstantOperand::cast(left));
2445 EmitCompareAndBranch(instr,
2446 ReverseConditionForCmp(cond),
2447 ToRegister(right),
2448 Operand(Smi::FromInt(value)));
2449 } else {
2450 EmitCompareAndBranch(instr,
2451 cond,
2452 ToRegister(left),
2453 ToRegister(right));
2454 }
2455 }
2456 }
2457 }
2458 }
2459
2460
2461 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2462 Register left = ToRegister(instr->left());
2463 Register right = ToRegister(instr->right());
2464 EmitCompareAndBranch(instr, eq, left, right);
2465 }
2466
2467
2468 void LCodeGen::DoCmpT(LCmpT* instr) {
2469 ASSERT(ToRegister(instr->context()).is(cp));
2470 Token::Value op = instr->op();
2471 Condition cond = TokenToCondition(op, false);
2472
2473 ASSERT(ToRegister(instr->left()).Is(x1));
2474 ASSERT(ToRegister(instr->right()).Is(x0));
2475 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2476 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2477 // Signal that we don't inline smi code before this stub.
2478 InlineSmiCheckInfo::EmitNotInlined(masm());
2479
2480 // Return true or false depending on CompareIC result.
2481 // This instruction is marked as call. We can clobber any register.
2482 ASSERT(instr->IsMarkedAsCall());
2483 __ LoadTrueFalseRoots(x1, x2);
2484 __ Cmp(x0, 0);
2485 __ Csel(ToRegister(instr->result()), x1, x2, cond);
2486 }
2487
2488
2489 void LCodeGen::DoConstantD(LConstantD* instr) {
2490 ASSERT(instr->result()->IsDoubleRegister());
2491 DoubleRegister result = ToDoubleRegister(instr->result());
2492 __ Fmov(result, instr->value());
2493 }
2494
2495
2496 void LCodeGen::DoConstantE(LConstantE* instr) {
2497 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2498 }
2499
2500
2501 void LCodeGen::DoConstantI(LConstantI* instr) {
2502 ASSERT(is_int32(instr->value()));
2503 // Cast the value here to ensure that the value isn't sign extended by the
2504 // implicit Operand constructor.
2505 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2506 }
2507
2508
2509 void LCodeGen::DoConstantS(LConstantS* instr) {
2510 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2511 }
2512
2513
2514 void LCodeGen::DoConstantT(LConstantT* instr) {
2515 Handle<Object> value = instr->value(isolate());
2516 AllowDeferredHandleDereference smi_check;
2517 __ LoadObject(ToRegister(instr->result()), value);
2518 }
2519
2520
2521 void LCodeGen::DoContext(LContext* instr) {
2522 // If there is a non-return use, the context must be moved to a register.
2523 Register result = ToRegister(instr->result());
2524 if (info()->IsOptimizing()) {
2525 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2526 } else {
2527 // If there is no frame, the context must be in cp.
2528 ASSERT(result.is(cp));
2529 }
2530 }
2531
2532
2533 void LCodeGen::DoCheckValue(LCheckValue* instr) {
2534 Register reg = ToRegister(instr->value());
2535 Handle<HeapObject> object = instr->hydrogen()->object().handle();
2536 AllowDeferredHandleDereference smi_check;
2537 if (isolate()->heap()->InNewSpace(*object)) {
2538 UseScratchRegisterScope temps(masm());
2539 Register temp = temps.AcquireX();
2540 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2541 __ Mov(temp, Operand(Handle<Object>(cell)));
2542 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2543 __ Cmp(reg, temp);
2544 } else {
2545 __ Cmp(reg, Operand(object));
2546 }
2547 DeoptimizeIf(ne, instr->environment());
2548 }
2549
2550
2551 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2552 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
2553 ASSERT(instr->HasEnvironment());
2554 LEnvironment* env = instr->environment();
2555 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2556 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2557 }
2558
2559
2560 void LCodeGen::DoDateField(LDateField* instr) {
2561 Register object = ToRegister(instr->date());
2562 Register result = ToRegister(instr->result());
2563 Register temp1 = x10;
2564 Register temp2 = x11;
2565 Smi* index = instr->index();
2566 Label runtime, done, deopt, obj_ok;
2567
2568 ASSERT(object.is(result) && object.Is(x0));
2569 ASSERT(instr->IsMarkedAsCall());
2570
2571 __ JumpIfSmi(object, &deopt);
2572 __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE);
2573 __ B(eq, &obj_ok);
2574
2575 __ Bind(&deopt);
2576 Deoptimize(instr->environment());
2577
2578 __ Bind(&obj_ok);
2579 if (index->value() == 0) {
2580 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
2581 } else {
2582 if (index->value() < JSDate::kFirstUncachedField) {
2583 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
2584 __ Mov(temp1, Operand(stamp));
2585 __ Ldr(temp1, MemOperand(temp1));
2586 __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
2587 __ Cmp(temp1, temp2);
2588 __ B(ne, &runtime);
2589 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
2590 kPointerSize * index->value()));
2591 __ B(&done);
2592 }
2593
2594 __ Bind(&runtime);
2595 __ Mov(x1, Operand(index));
2596 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
2597 }
2598
2599 __ Bind(&done);
2600 }
2601
2602
2603 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2604 Deoptimizer::BailoutType type = instr->hydrogen()->type();
2605 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2606 // needed return address), even though the implementation of LAZY and EAGER is
2607 // now identical. When LAZY is eventually completely folded into EAGER, remove
2608 // the special case below.
2609 if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2610 type = Deoptimizer::LAZY;
2611 }
2612
2613 Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
2614 Deoptimize(instr->environment(), &type);
2615 }
2616
2617
2618 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2619 Register dividend = ToRegister32(instr->dividend());
2620 int32_t divisor = instr->divisor();
2621 Register result = ToRegister32(instr->result());
2622 ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
2623 ASSERT(!result.is(dividend));
2624
2625 // Check for (0 / -x) that will produce negative zero.
2626 HDiv* hdiv = instr->hydrogen();
2627 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2628 __ Cmp(dividend, 0);
2629 DeoptimizeIf(eq, instr->environment());
2630 }
2631 // Check for (kMinInt / -1).
2632 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2633 __ Cmp(dividend, kMinInt);
2634 DeoptimizeIf(eq, instr->environment());
2635 }
2636 // Deoptimize if remainder will not be 0.
2637 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2638 divisor != 1 && divisor != -1) {
2639 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2640 __ Tst(dividend, mask);
2641 DeoptimizeIf(ne, instr->environment());
2642 }
2643
2644 if (divisor == -1) { // Nice shortcut, not needed for correctness.
2645 __ Neg(result, dividend);
2646 return;
2647 }
2648 int32_t shift = WhichPowerOf2Abs(divisor);
2649 if (shift == 0) {
2650 __ Mov(result, dividend);
2651 } else if (shift == 1) {
2652 __ Add(result, dividend, Operand(dividend, LSR, 31));
2653 } else {
2654 __ Mov(result, Operand(dividend, ASR, 31));
2655 __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2656 }
2657 if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2658 if (divisor < 0) __ Neg(result, result);
2659 }
2660
2661
2662 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2663 Register dividend = ToRegister32(instr->dividend());
2664 int32_t divisor = instr->divisor();
2665 Register result = ToRegister32(instr->result());
2666 ASSERT(!AreAliased(dividend, result));
2667
2668 if (divisor == 0) {
2669 Deoptimize(instr->environment());
2670 return;
2671 }
2672
2673 // Check for (0 / -x) that will produce negative zero.
2674 HDiv* hdiv = instr->hydrogen();
2675 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2676 DeoptimizeIfZero(dividend, instr->environment());
2677 }
2678
2679 __ TruncatingDiv(result, dividend, Abs(divisor));
2680 if (divisor < 0) __ Neg(result, result);
2681
2682 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2683 Register temp = ToRegister32(instr->temp());
2684 ASSERT(!AreAliased(dividend, result, temp));
2685 __ Sxtw(dividend.X(), dividend);
2686 __ Mov(temp, divisor);
2687 __ Smsubl(temp.X(), result, temp, dividend.X());
2688 DeoptimizeIfNotZero(temp, instr->environment());
2689 }
2690 }
2691
2692
2693 void LCodeGen::DoDivI(LDivI* instr) {
2694 HBinaryOperation* hdiv = instr->hydrogen();
2695 Register dividend = ToRegister32(instr->left());
2696 Register divisor = ToRegister32(instr->right());
2697 Register result = ToRegister32(instr->result());
2698
2699 // Issue the division first, and then check for any deopt cases whilst the
2700 // result is computed.
2701 __ Sdiv(result, dividend, divisor);
2702
2703 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2704 ASSERT_EQ(NULL, instr->temp());
2705 return;
2706 }
2707
2708 Label deopt;
2709 // Check for x / 0.
2710 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
2711 __ Cbz(divisor, &deopt);
2712 }
2713
2714 // Check for (0 / -x) as that will produce negative zero.
2715 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2716 __ Cmp(divisor, 0);
2717
2718 // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2719 // zero, ie. zero dividend with negative divisor deopts.
2720 // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2721 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2722 __ Ccmp(dividend, 0, NoFlag, mi);
2723 __ B(eq, &deopt);
2724 }
2725
2726 // Check for (kMinInt / -1).
2727 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2728 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2729 // overflow.
2730 __ Cmp(dividend, 1);
2731 // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2732 // -1. If overflow is clear, set the flags for condition ne, as the
2733 // dividend isn't -1, and thus we shouldn't deopt.
2734 __ Ccmp(divisor, -1, NoFlag, vs);
2735 __ B(eq, &deopt);
2736 }
2737
2738 // Compute remainder and deopt if it's not zero.
2739 Register remainder = ToRegister32(instr->temp());
2740 __ Msub(remainder, result, divisor, dividend);
2741 __ Cbnz(remainder, &deopt);
2742
2743 Label div_ok;
2744 __ B(&div_ok);
2745 __ Bind(&deopt);
2746 Deoptimize(instr->environment());
2747 __ Bind(&div_ok);
2748 }
2749
2750
2751 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2752 DoubleRegister input = ToDoubleRegister(instr->value());
2753 Register result = ToRegister32(instr->result());
2754
2755 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2756 DeoptimizeIfMinusZero(input, instr->environment());
2757 }
2758
2759 __ TryConvertDoubleToInt32(result, input, double_scratch());
2760 DeoptimizeIf(ne, instr->environment());
2761
2762 if (instr->tag_result()) {
2763 __ SmiTag(result.X());
2764 }
2765 }
2766
2767
2768 void LCodeGen::DoDrop(LDrop* instr) {
2769 __ Drop(instr->count());
2770 }
2771
2772
2773 void LCodeGen::DoDummy(LDummy* instr) {
2774 // Nothing to see here, move on!
2775 }
2776
2777
2778 void LCodeGen::DoDummyUse(LDummyUse* instr) {
2779 // Nothing to see here, move on!
2780 }
2781
2782
2783 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
2784 ASSERT(ToRegister(instr->context()).is(cp));
2785 // FunctionLiteral instruction is marked as call, we can trash any register.
2786 ASSERT(instr->IsMarkedAsCall());
2787
2788 // Use the fast case closure allocation code that allocates in new
2789 // space for nested functions that don't need literals cloning.
2790 bool pretenure = instr->hydrogen()->pretenure();
2791 if (!pretenure && instr->hydrogen()->has_no_literals()) {
2792 FastNewClosureStub stub(instr->hydrogen()->strict_mode(),
2793 instr->hydrogen()->is_generator());
2794 __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
2795 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
2796 } else {
2797 __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
2798 __ Mov(x1, Operand(pretenure ? factory()->true_value()
2799 : factory()->false_value()));
2800 __ Push(cp, x2, x1);
2801 CallRuntime(Runtime::kNewClosure, 3, instr);
2802 }
2803 }
2804
2805
2806 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2807 Register map = ToRegister(instr->map());
2808 Register result = ToRegister(instr->result());
2809 Label load_cache, done;
2810
2811 __ EnumLengthUntagged(result, map);
2812 __ Cbnz(result, &load_cache);
2813
2814 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2815 __ B(&done);
2816
2817 __ Bind(&load_cache);
2818 __ LoadInstanceDescriptors(map, result);
2819 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2820 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
2821 DeoptimizeIfZero(result, instr->environment());
2822
2823 __ Bind(&done);
2824 }
2825
2826
2827 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2828 Register object = ToRegister(instr->object());
2829 Register null_value = x5;
2830
2831 ASSERT(instr->IsMarkedAsCall());
2832 ASSERT(object.Is(x0));
2833
2834 Label deopt;
2835
2836 __ JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &deopt);
2837
2838 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
2839 __ Cmp(object, null_value);
2840 __ B(eq, &deopt);
2841
2842 __ JumpIfSmi(object, &deopt);
2843
2844 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
2845 __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
2846 __ B(le, &deopt);
2847
2848 Label use_cache, call_runtime;
2849 __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
2850
2851 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2852 __ B(&use_cache);
2853
2854 __ Bind(&deopt);
2855 Deoptimize(instr->environment());
2856
2857 // Get the set of properties to enumerate.
2858 __ Bind(&call_runtime);
2859 __ Push(object);
2860 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
2861
2862 __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
2863 __ JumpIfNotRoot(x1, Heap::kMetaMapRootIndex, &deopt);
2864
2865 __ Bind(&use_cache);
2866 }
2867
2868
2869 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2870 Register input = ToRegister(instr->value());
2871 Register result = ToRegister(instr->result());
2872
2873 __ AssertString(input);
2874
2875 // Assert that we can use a W register load to get the hash.
2876 ASSERT((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
2877 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
2878 __ IndexFromHash(result, result);
2879 }
2880
2881
2882 void LCodeGen::EmitGoto(int block) {
2883 // Do not emit jump if we are emitting a goto to the next block.
2884 if (!IsNextEmittedBlock(block)) {
2885 __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2886 }
2887 }
2888
2889
2890 void LCodeGen::DoGoto(LGoto* instr) {
2891 EmitGoto(instr->block_id());
2892 }
2893
2894
2895 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2896 LHasCachedArrayIndexAndBranch* instr) {
2897 Register input = ToRegister(instr->value());
2898 Register temp = ToRegister32(instr->temp());
2899
2900 // Assert that the cache status bits fit in a W register.
2901 ASSERT(is_uint32(String::kContainsCachedArrayIndexMask));
2902 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
2903 __ Tst(temp, String::kContainsCachedArrayIndexMask);
2904 EmitBranch(instr, eq);
2905 }
2906
2907
2908 // HHasInstanceTypeAndBranch instruction is built with an interval of type
2909 // to test but is only used in very restricted ways. The only possible kinds
2910 // of intervals are:
2911 // - [ FIRST_TYPE, instr->to() ]
2912 // - [ instr->form(), LAST_TYPE ]
2913 // - instr->from() == instr->to()
2914 //
2915 // These kinds of intervals can be check with only one compare instruction
2916 // providing the correct value and test condition are used.
2917 //
2918 // TestType() will return the value to use in the compare instruction and
2919 // BranchCondition() will return the condition to use depending on the kind
2920 // of interval actually specified in the instruction.
2921 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2922 InstanceType from = instr->from();
2923 InstanceType to = instr->to();
2924 if (from == FIRST_TYPE) return to;
2925 ASSERT((from == to) || (to == LAST_TYPE));
2926 return from;
2927 }
2928
2929
2930 // See comment above TestType function for what this function does.
2931 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2932 InstanceType from = instr->from();
2933 InstanceType to = instr->to();
2934 if (from == to) return eq;
2935 if (to == LAST_TYPE) return hs;
2936 if (from == FIRST_TYPE) return ls;
2937 UNREACHABLE();
2938 return eq;
2939 }
2940
2941
2942 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2943 Register input = ToRegister(instr->value());
2944 Register scratch = ToRegister(instr->temp());
2945
2946 if (!instr->hydrogen()->value()->IsHeapObject()) {
2947 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2948 }
2949 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2950 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2951 }
2952
2953
2954 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
2955 Register result = ToRegister(instr->result());
2956 Register base = ToRegister(instr->base_object());
2957 if (instr->offset()->IsConstantOperand()) {
2958 __ Add(result, base, ToOperand32I(instr->offset()));
2959 } else {
2960 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
2961 }
2962 }
2963
2964
2965 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2966 ASSERT(ToRegister(instr->context()).is(cp));
2967 // Assert that the arguments are in the registers expected by InstanceofStub.
2968 ASSERT(ToRegister(instr->left()).Is(InstanceofStub::left()));
2969 ASSERT(ToRegister(instr->right()).Is(InstanceofStub::right()));
2970
2971 InstanceofStub stub(InstanceofStub::kArgsInRegisters);
2972 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
2973
2974 // InstanceofStub returns a result in x0:
2975 // 0 => not an instance
2976 // smi 1 => instance.
2977 __ Cmp(x0, 0);
2978 __ LoadTrueFalseRoots(x0, x1);
2979 __ Csel(x0, x0, x1, eq);
2980 }
2981
2982
2983 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2984 class DeferredInstanceOfKnownGlobal: public LDeferredCode {
2985 public:
2986 DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2987 LInstanceOfKnownGlobal* instr)
2988 : LDeferredCode(codegen), instr_(instr) { }
2989 virtual void Generate() {
2990 codegen()->DoDeferredInstanceOfKnownGlobal(instr_);
2991 }
2992 virtual LInstruction* instr() { return instr_; }
2993 private:
2994 LInstanceOfKnownGlobal* instr_;
2995 };
2996
2997 DeferredInstanceOfKnownGlobal* deferred =
2998 new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
2999
3000 Label map_check, return_false, cache_miss, done;
3001 Register object = ToRegister(instr->value());
3002 Register result = ToRegister(instr->result());
3003 // x4 is expected in the associated deferred code and stub.
3004 Register map_check_site = x4;
3005 Register map = x5;
3006
3007 // This instruction is marked as call. We can clobber any register.
3008 ASSERT(instr->IsMarkedAsCall());
3009
3010 // We must take into account that object is in x11.
3011 ASSERT(object.Is(x11));
3012 Register scratch = x10;
3013
3014 // A Smi is not instance of anything.
3015 __ JumpIfSmi(object, &return_false);
3016
3017 // This is the inlined call site instanceof cache. The two occurences of the
3018 // hole value will be patched to the last map/result pair generated by the
3019 // instanceof stub.
3020 __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3021 {
3022 // Below we use Factory::the_hole_value() on purpose instead of loading from
3023 // the root array to force relocation and later be able to patch with a
3024 // custom value.
3025 InstructionAccurateScope scope(masm(), 5);
3026 __ bind(&map_check);
3027 // Will be patched with the cached map.
3028 Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
3029 __ LoadRelocated(scratch, Operand(Handle<Object>(cell)));
3030 __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
3031 __ cmp(map, scratch);
3032 __ b(&cache_miss, ne);
3033 // The address of this instruction is computed relative to the map check
3034 // above, so check the size of the code generated.
3035 ASSERT(masm()->InstructionsGeneratedSince(&map_check) == 4);
3036 // Will be patched with the cached result.
3037 __ LoadRelocated(result, Operand(factory()->the_hole_value()));
3038 }
3039 __ B(&done);
3040
3041 // The inlined call site cache did not match.
3042 // Check null and string before calling the deferred code.
3043 __ Bind(&cache_miss);
3044 // Compute the address of the map check. It must not be clobbered until the
3045 // InstanceOfStub has used it.
3046 __ Adr(map_check_site, &map_check);
3047 // Null is not instance of anything.
3048 __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false);
3049
3050 // String values are not instances of anything.
3051 // Return false if the object is a string. Otherwise, jump to the deferred
3052 // code.
3053 // Note that we can't jump directly to deferred code from
3054 // IsObjectJSStringType, because it uses tbz for the jump and the deferred
3055 // code can be out of range.
3056 __ IsObjectJSStringType(object, scratch, NULL, &return_false);
3057 __ B(deferred->entry());
3058
3059 __ Bind(&return_false);
3060 __ LoadRoot(result, Heap::kFalseValueRootIndex);
3061
3062 // Here result is either true or false.
3063 __ Bind(deferred->exit());
3064 __ Bind(&done);
3065 }
3066
3067
3068 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
3069 Register result = ToRegister(instr->result());
3070 ASSERT(result.Is(x0)); // InstanceofStub returns its result in x0.
3071 InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
3072 flags = static_cast<InstanceofStub::Flags>(
3073 flags | InstanceofStub::kArgsInRegisters);
3074 flags = static_cast<InstanceofStub::Flags>(
3075 flags | InstanceofStub::kReturnTrueFalseObject);
3076 flags = static_cast<InstanceofStub::Flags>(
3077 flags | InstanceofStub::kCallSiteInlineCheck);
3078
3079 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3080 LoadContextFromDeferred(instr->context());
3081
3082 // Prepare InstanceofStub arguments.
3083 ASSERT(ToRegister(instr->value()).Is(InstanceofStub::left()));
3084 __ LoadObject(InstanceofStub::right(), instr->function());
3085
3086 InstanceofStub stub(flags);
3087 CallCodeGeneric(stub.GetCode(isolate()),
3088 RelocInfo::CODE_TARGET,
3089 instr,
3090 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
3091 LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
3092 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
3093
3094 // Put the result value into the result register slot.
3095 __ StoreToSafepointRegisterSlot(result, result);
3096 }
3097
3098
3099 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
3100 DoGap(instr);
3101 }
3102
3103
3104 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3105 Register value = ToRegister32(instr->value());
3106 DoubleRegister result = ToDoubleRegister(instr->result());
3107 __ Scvtf(result, value);
3108 }
3109
3110
3111 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3112 ASSERT(ToRegister(instr->context()).is(cp));
3113 // The function is required to be in x1.
3114 ASSERT(ToRegister(instr->function()).is(x1));
3115 ASSERT(instr->HasPointerMap());
3116
3117 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3118 if (known_function.is_null()) {
3119 LPointerMap* pointers = instr->pointer_map();
3120 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3121 ParameterCount count(instr->arity());
3122 __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
3123 } else {
3124 CallKnownFunction(known_function,
3125 instr->hydrogen()->formal_parameter_count(),
3126 instr->arity(),
3127 instr,
3128 x1);
3129 }
3130 }
3131
3132
3133 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
3134 Register temp1 = ToRegister(instr->temp1());
3135 Register temp2 = ToRegister(instr->temp2());
3136
3137 // Get the frame pointer for the calling frame.
3138 __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3139
3140 // Skip the arguments adaptor frame if it exists.
3141 Label check_frame_marker;
3142 __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
3143 __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3144 __ B(ne, &check_frame_marker);
3145 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
3146
3147 // Check the marker in the calling frame.
3148 __ Bind(&check_frame_marker);
3149 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
3150
3151 EmitCompareAndBranch(
3152 instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
3153 }
3154
3155
3156 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
3157 Label* is_object = instr->TrueLabel(chunk_);
3158 Label* is_not_object = instr->FalseLabel(chunk_);
3159 Register value = ToRegister(instr->value());
3160 Register map = ToRegister(instr->temp1());
3161 Register scratch = ToRegister(instr->temp2());
3162
3163 __ JumpIfSmi(value, is_not_object);
3164 __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object);
3165
3166 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
3167
3168 // Check for undetectable objects.
3169 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
3170 __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object);
3171
3172 // Check that instance type is in object type range.
3173 __ IsInstanceJSObjectType(map, scratch, NULL);
3174 // Flags have been updated by IsInstanceJSObjectType. We can now test the
3175 // flags for "le" condition to check if the object's type is a valid
3176 // JS object type.
3177 EmitBranch(instr, le);
3178 }
3179
3180
3181 Condition LCodeGen::EmitIsString(Register input,
3182 Register temp1,
3183 Label* is_not_string,
3184 SmiCheck check_needed = INLINE_SMI_CHECK) {
3185 if (check_needed == INLINE_SMI_CHECK) {
3186 __ JumpIfSmi(input, is_not_string);
3187 }
3188 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
3189
3190 return lt;
3191 }
3192
3193
3194 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
3195 Register val = ToRegister(instr->value());
3196 Register scratch = ToRegister(instr->temp());
3197
3198 SmiCheck check_needed =
3199 instr->hydrogen()->value()->IsHeapObject()
3200 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3201 Condition true_cond =
3202 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
3203
3204 EmitBranch(instr, true_cond);
3205 }
3206
3207
3208 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
3209 Register value = ToRegister(instr->value());
3210 STATIC_ASSERT(kSmiTag == 0);
3211 EmitTestAndBranch(instr, eq, value, kSmiTagMask);
3212 }
3213
3214
3215 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
3216 Register input = ToRegister(instr->value());
3217 Register temp = ToRegister(instr->temp());
3218
3219 if (!instr->hydrogen()->value()->IsHeapObject()) {
3220 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
3221 }
3222 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
3223 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3224
3225 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
3226 }
3227
3228
3229 static const char* LabelType(LLabel* label) {
3230 if (label->is_loop_header()) return " (loop header)";
3231 if (label->is_osr_entry()) return " (OSR entry)";
3232 return "";
3233 }
3234
3235
3236 void LCodeGen::DoLabel(LLabel* label) {
3237 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
3238 current_instruction_,
3239 label->hydrogen_value()->id(),
3240 label->block_id(),
3241 LabelType(label));
3242
3243 __ Bind(label->label());
3244 current_block_ = label->block_id();
3245 DoGap(label);
3246 }
3247
3248
3249 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3250 Register context = ToRegister(instr->context());
3251 Register result = ToRegister(instr->result());
3252 __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
3253 if (instr->hydrogen()->RequiresHoleCheck()) {
3254 if (instr->hydrogen()->DeoptimizesOnHole()) {
3255 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
3256 instr->environment());
3257 } else {
3258 Label not_the_hole;
3259 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
3260 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3261 __ Bind(&not_the_hole);
3262 }
3263 }
3264 }
3265
3266
3267 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3268 Register function = ToRegister(instr->function());
3269 Register result = ToRegister(instr->result());
3270 Register temp = ToRegister(instr->temp());
3271 Label deopt;
3272
3273 // Check that the function really is a function. Leaves map in the result
3274 // register.
3275 __ JumpIfNotObjectType(function, result, temp, JS_FUNCTION_TYPE, &deopt);
3276
3277 // Make sure that the function has an instance prototype.
3278 Label non_instance;
3279 __ Ldrb(temp, FieldMemOperand(result, Map::kBitFieldOffset));
3280 __ Tbnz(temp, Map::kHasNonInstancePrototype, &non_instance);
3281
3282 // Get the prototype or initial map from the function.
3283 __ Ldr(result, FieldMemOperand(function,
3284 JSFunction::kPrototypeOrInitialMapOffset));
3285
3286 // Check that the function has a prototype or an initial map.
3287 __ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &deopt);
3288
3289 // If the function does not have an initial map, we're done.
3290 Label done;
3291 __ CompareObjectType(result, temp, temp, MAP_TYPE);
3292 __ B(ne, &done);
3293
3294 // Get the prototype from the initial map.
3295 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3296 __ B(&done);
3297
3298 // Non-instance prototype: fetch prototype from constructor field in initial
3299 // map.
3300 __ Bind(&non_instance);
3301 __ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
3302 __ B(&done);
3303
3304 // Deoptimize case.
3305 __ Bind(&deopt);
3306 Deoptimize(instr->environment());
3307
3308 // All done.
3309 __ Bind(&done);
3310 }
3311
3312
3313 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
3314 Register result = ToRegister(instr->result());
3315 __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
3316 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3317 if (instr->hydrogen()->RequiresHoleCheck()) {
3318 DeoptimizeIfRoot(
3319 result, Heap::kTheHoleValueRootIndex, instr->environment());
3320 }
3321 }
3322
3323
3324 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
3325 ASSERT(ToRegister(instr->context()).is(cp));
3326 ASSERT(ToRegister(instr->global_object()).Is(x0));
3327 ASSERT(ToRegister(instr->result()).Is(x0));
3328 __ Mov(x2, Operand(instr->name()));
3329 ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
3330 Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
3331 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3332 }
3333
3334
3335 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3336 Register key,
3337 Register base,
3338 Register scratch,
3339 bool key_is_smi,
3340 bool key_is_constant,
3341 int constant_key,
3342 ElementsKind elements_kind,
3343 int additional_index) {
3344 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3345 int additional_offset = IsFixedTypedArrayElementsKind(elements_kind)
3346 ? FixedTypedArrayBase::kDataOffset - kHeapObjectTag
3347 : 0;
3348
3349 if (key_is_constant) {
3350 int base_offset = ((constant_key + additional_index) << element_size_shift);
3351 return MemOperand(base, base_offset + additional_offset);
3352 }
3353
3354 if (additional_index == 0) {
3355 if (key_is_smi) {
3356 // Key is smi: untag, and scale by element size.
3357 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3358 return MemOperand(scratch, additional_offset);
3359 } else {
3360 // Key is not smi, and element size is not byte: scale by element size.
3361 if (additional_offset == 0) {
3362 return MemOperand(base, key, SXTW, element_size_shift);
3363 } else {
3364 __ Add(scratch, base, Operand(key, SXTW, element_size_shift));
3365 return MemOperand(scratch, additional_offset);
3366 }
3367 }
3368 } else {
3369 // TODO(all): Try to combine these cases a bit more intelligently.
3370 if (additional_offset == 0) {
3371 if (key_is_smi) {
3372 __ SmiUntag(scratch, key);
3373 __ Add(scratch.W(), scratch.W(), additional_index);
3374 } else {
3375 __ Add(scratch.W(), key.W(), additional_index);
3376 }
3377 return MemOperand(base, scratch, LSL, element_size_shift);
3378 } else {
3379 if (key_is_smi) {
3380 __ Add(scratch, base,
3381 Operand::UntagSmiAndScale(key, element_size_shift));
3382 } else {
3383 __ Add(scratch, base, Operand(key, SXTW, element_size_shift));
3384 }
3385 return MemOperand(
3386 scratch,
3387 (additional_index << element_size_shift) + additional_offset);
3388 }
3389 }
3390 }
3391
3392
3393 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3394 Register ext_ptr = ToRegister(instr->elements());
3395 Register scratch;
3396 ElementsKind elements_kind = instr->elements_kind();
3397
3398 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3399 bool key_is_constant = instr->key()->IsConstantOperand();
3400 Register key = no_reg;
3401 int constant_key = 0;
3402 if (key_is_constant) {
3403 ASSERT(instr->temp() == NULL);
3404 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3405 if (constant_key & 0xf0000000) {
3406 Abort(kArrayIndexConstantValueTooBig);
3407 }
3408 } else {
3409 scratch = ToRegister(instr->temp());
3410 key = ToRegister(instr->key());
3411 }
3412
3413 MemOperand mem_op =
3414 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3415 key_is_constant, constant_key,
3416 elements_kind,
3417 instr->additional_index());
3418
3419 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
3420 (elements_kind == FLOAT32_ELEMENTS)) {
3421 DoubleRegister result = ToDoubleRegister(instr->result());
3422 __ Ldr(result.S(), mem_op);
3423 __ Fcvt(result, result.S());
3424 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
3425 (elements_kind == FLOAT64_ELEMENTS)) {
3426 DoubleRegister result = ToDoubleRegister(instr->result());
3427 __ Ldr(result, mem_op);
3428 } else {
3429 Register result = ToRegister(instr->result());
3430
3431 switch (elements_kind) {
3432 case EXTERNAL_INT8_ELEMENTS:
3433 case INT8_ELEMENTS:
3434 __ Ldrsb(result, mem_op);
3435 break;
3436 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3437 case EXTERNAL_UINT8_ELEMENTS:
3438 case UINT8_ELEMENTS:
3439 case UINT8_CLAMPED_ELEMENTS:
3440 __ Ldrb(result, mem_op);
3441 break;
3442 case EXTERNAL_INT16_ELEMENTS:
3443 case INT16_ELEMENTS:
3444 __ Ldrsh(result, mem_op);
3445 break;
3446 case EXTERNAL_UINT16_ELEMENTS:
3447 case UINT16_ELEMENTS:
3448 __ Ldrh(result, mem_op);
3449 break;
3450 case EXTERNAL_INT32_ELEMENTS:
3451 case INT32_ELEMENTS:
3452 __ Ldrsw(result, mem_op);
3453 break;
3454 case EXTERNAL_UINT32_ELEMENTS:
3455 case UINT32_ELEMENTS:
3456 __ Ldr(result.W(), mem_op);
3457 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3458 // Deopt if value > 0x80000000.
3459 __ Tst(result, 0xFFFFFFFF80000000);
3460 DeoptimizeIf(ne, instr->environment());
3461 }
3462 break;
3463 case FLOAT32_ELEMENTS:
3464 case FLOAT64_ELEMENTS:
3465 case EXTERNAL_FLOAT32_ELEMENTS:
3466 case EXTERNAL_FLOAT64_ELEMENTS:
3467 case FAST_HOLEY_DOUBLE_ELEMENTS:
3468 case FAST_HOLEY_ELEMENTS:
3469 case FAST_HOLEY_SMI_ELEMENTS:
3470 case FAST_DOUBLE_ELEMENTS:
3471 case FAST_ELEMENTS:
3472 case FAST_SMI_ELEMENTS:
3473 case DICTIONARY_ELEMENTS:
3474 case SLOPPY_ARGUMENTS_ELEMENTS:
3475 UNREACHABLE();
3476 break;
3477 }
3478 }
3479 }
3480
3481
3482 void LCodeGen::CalcKeyedArrayBaseRegister(Register base,
3483 Register elements,
3484 Register key,
3485 bool key_is_tagged,
3486 ElementsKind elements_kind) {
3487 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3488
3489 // Even though the HLoad/StoreKeyed instructions force the input
3490 // representation for the key to be an integer, the input gets replaced during
3491 // bounds check elimination with the index argument to the bounds check, which
3492 // can be tagged, so that case must be handled here, too.
3493 if (key_is_tagged) {
3494 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3495 } else {
3496 // Sign extend key because it could be a 32-bit negative value or contain
3497 // garbage in the top 32-bits. The address computation happens in 64-bit.
3498 ASSERT((element_size_shift >= 0) && (element_size_shift <= 4));
3499 __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3500 }
3501 }
3502
3503
3504 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3505 Register elements = ToRegister(instr->elements());
3506 DoubleRegister result = ToDoubleRegister(instr->result());
3507 Register load_base;
3508 int offset = 0;
3509
3510 if (instr->key()->IsConstantOperand()) {
3511 ASSERT(instr->hydrogen()->RequiresHoleCheck() ||
3512 (instr->temp() == NULL));
3513
3514 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3515 if (constant_key & 0xf0000000) {
3516 Abort(kArrayIndexConstantValueTooBig);
3517 }
3518 offset = FixedDoubleArray::OffsetOfElementAt(constant_key +
3519 instr->additional_index());
3520 load_base = elements;
3521 } else {
3522 load_base = ToRegister(instr->temp());
3523 Register key = ToRegister(instr->key());
3524 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3525 CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged,
3526 instr->hydrogen()->elements_kind());
3527 offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index());
3528 }
3529 __ Ldr(result, FieldMemOperand(load_base, offset));
3530
3531 if (instr->hydrogen()->RequiresHoleCheck()) {
3532 Register scratch = ToRegister(instr->temp());
3533
3534 // TODO(all): Is it faster to reload this value to an integer register, or
3535 // move from fp to integer?
3536 __ Fmov(scratch, result);
3537 __ Cmp(scratch, kHoleNanInt64);
3538 DeoptimizeIf(eq, instr->environment());
3539 }
3540 }
3541
3542
3543 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3544 Register elements = ToRegister(instr->elements());
3545 Register result = ToRegister(instr->result());
3546 Register load_base;
3547 int offset = 0;
3548
3549 if (instr->key()->IsConstantOperand()) {
3550 ASSERT(instr->temp() == NULL);
3551 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3552 offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
3553 instr->additional_index());
3554 load_base = elements;
3555 } else {
3556 load_base = ToRegister(instr->temp());
3557 Register key = ToRegister(instr->key());
3558 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3559 CalcKeyedArrayBaseRegister(load_base, elements, key, key_is_tagged,
3560 instr->hydrogen()->elements_kind());
3561 offset = FixedArray::OffsetOfElementAt(instr->additional_index());
3562 }
3563 Representation representation = instr->hydrogen()->representation();
3564
3565 if (representation.IsInteger32() &&
3566 instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS) {
3567 STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
3568 __ Load(result, UntagSmiFieldMemOperand(load_base, offset),
3569 Representation::Integer32());
3570 } else {
3571 __ Load(result, FieldMemOperand(load_base, offset),
3572 representation);
3573 }
3574
3575 if (instr->hydrogen()->RequiresHoleCheck()) {
3576 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3577 DeoptimizeIfNotSmi(result, instr->environment());
3578 } else {
3579 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
3580 instr->environment());
3581 }
3582 }
3583 }
3584
3585
3586 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3587 ASSERT(ToRegister(instr->context()).is(cp));
3588 ASSERT(ToRegister(instr->object()).Is(x1));
3589 ASSERT(ToRegister(instr->key()).Is(x0));
3590
3591 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
3592 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3593
3594 ASSERT(ToRegister(instr->result()).Is(x0));
3595 }
3596
3597
3598 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3599 HObjectAccess access = instr->hydrogen()->access();
3600 int offset = access.offset();
3601 Register object = ToRegister(instr->object());
3602
3603 if (access.IsExternalMemory()) {
3604 Register result = ToRegister(instr->result());
3605 __ Load(result, MemOperand(object, offset), access.representation());
3606 return;
3607 }
3608
3609 if (instr->hydrogen()->representation().IsDouble()) {
3610 FPRegister result = ToDoubleRegister(instr->result());
3611 __ Ldr(result, FieldMemOperand(object, offset));
3612 return;
3613 }
3614
3615 Register result = ToRegister(instr->result());
3616 Register source;
3617 if (access.IsInobject()) {
3618 source = object;
3619 } else {
3620 // Load the properties array, using result as a scratch register.
3621 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3622 source = result;
3623 }
3624
3625 if (access.representation().IsSmi() &&
3626 instr->hydrogen()->representation().IsInteger32()) {
3627 // Read int value directly from upper half of the smi.
3628 STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
3629 __ Load(result, UntagSmiFieldMemOperand(source, offset),
3630 Representation::Integer32());
3631 } else {
3632 __ Load(result, FieldMemOperand(source, offset), access.representation());
3633 }
3634 }
3635
3636
3637 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3638 ASSERT(ToRegister(instr->context()).is(cp));
3639 // LoadIC expects x2 to hold the name, and x0 to hold the receiver.
3640 ASSERT(ToRegister(instr->object()).is(x0));
3641 __ Mov(x2, Operand(instr->name()));
3642
3643 Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
3644 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3645
3646 ASSERT(ToRegister(instr->result()).is(x0));
3647 }
3648
3649
3650 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3651 Register result = ToRegister(instr->result());
3652 __ LoadRoot(result, instr->index());
3653 }
3654
3655
3656 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
3657 Register result = ToRegister(instr->result());
3658 Register map = ToRegister(instr->value());
3659 __ EnumLengthSmi(result, map);
3660 }
3661
3662
3663 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3664 Representation r = instr->hydrogen()->value()->representation();
3665 if (r.IsDouble()) {
3666 DoubleRegister input = ToDoubleRegister(instr->value());
3667 DoubleRegister result = ToDoubleRegister(instr->result());
3668 __ Fabs(result, input);
3669 } else if (r.IsSmi() || r.IsInteger32()) {
3670 Register input = r.IsSmi() ? ToRegister(instr->value())
3671 : ToRegister32(instr->value());
3672 Register result = r.IsSmi() ? ToRegister(instr->result())
3673 : ToRegister32(instr->result());
3674 Label done;
3675 __ Abs(result, input, NULL, &done);
3676 Deoptimize(instr->environment());
3677 __ Bind(&done);
3678 }
3679 }
3680
3681
3682 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3683 Label* exit,
3684 Label* allocation_entry) {
3685 // Handle the tricky cases of MathAbsTagged:
3686 // - HeapNumber inputs.
3687 // - Negative inputs produce a positive result, so a new HeapNumber is
3688 // allocated to hold it.
3689 // - Positive inputs are returned as-is, since there is no need to allocate
3690 // a new HeapNumber for the result.
3691 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3692 // a smi. In this case, the inline code sets the result and jumps directly
3693 // to the allocation_entry label.
3694 ASSERT(instr->context() != NULL);
3695 ASSERT(ToRegister(instr->context()).is(cp));
3696 Register input = ToRegister(instr->value());
3697 Register temp1 = ToRegister(instr->temp1());
3698 Register temp2 = ToRegister(instr->temp2());
3699 Register result_bits = ToRegister(instr->temp3());
3700 Register result = ToRegister(instr->result());
3701
3702 Label runtime_allocation;
3703
3704 // Deoptimize if the input is not a HeapNumber.
3705 __ Ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
3706 DeoptimizeIfNotRoot(temp1, Heap::kHeapNumberMapRootIndex,
3707 instr->environment());
3708
3709 // If the argument is positive, we can return it as-is, without any need to
3710 // allocate a new HeapNumber for the result. We have to do this in integer
3711 // registers (rather than with fabs) because we need to be able to distinguish
3712 // the two zeroes.
3713 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3714 __ Mov(result, input);
3715 __ Tbz(result_bits, kXSignBit, exit);
3716
3717 // Calculate abs(input) by clearing the sign bit.
3718 __ Bic(result_bits, result_bits, kXSignMask);
3719
3720 // Allocate a new HeapNumber to hold the result.
3721 // result_bits The bit representation of the (double) result.
3722 __ Bind(allocation_entry);
3723 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3724 // The inline (non-deferred) code will store result_bits into result.
3725 __ B(exit);
3726
3727 __ Bind(&runtime_allocation);
3728 if (FLAG_debug_code) {
3729 // Because result is in the pointer map, we need to make sure it has a valid
3730 // tagged value before we call the runtime. We speculatively set it to the
3731 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3732 // be valid.
3733 Label result_ok;
3734 Register input = ToRegister(instr->value());
3735 __ JumpIfSmi(result, &result_ok);
3736 __ Cmp(input, result);
3737 __ Assert(eq, kUnexpectedValue);
3738 __ Bind(&result_ok);
3739 }
3740
3741 { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3742 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3743 instr->context());
3744 __ StoreToSafepointRegisterSlot(x0, result);
3745 }
3746 // The inline (non-deferred) code will store result_bits into result.
3747 }
3748
3749
3750 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3751 // Class for deferred case.
3752 class DeferredMathAbsTagged: public LDeferredCode {
3753 public:
3754 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3755 : LDeferredCode(codegen), instr_(instr) { }
3756 virtual void Generate() {
3757 codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3758 allocation_entry());
3759 }
3760 virtual LInstruction* instr() { return instr_; }
3761 Label* allocation_entry() { return &allocation; }
3762 private:
3763 LMathAbsTagged* instr_;
3764 Label allocation;
3765 };
3766
3767 // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3768 // in GenerateDeferredCode. Tidy this up.
3769 ASSERT(!NeedsDeferredFrame());
3770
3771 DeferredMathAbsTagged* deferred =
3772 new(zone()) DeferredMathAbsTagged(this, instr);
3773
3774 ASSERT(instr->hydrogen()->value()->representation().IsTagged() ||
3775 instr->hydrogen()->value()->representation().IsSmi());
3776 Register input = ToRegister(instr->value());
3777 Register result_bits = ToRegister(instr->temp3());
3778 Register result = ToRegister(instr->result());
3779 Label done;
3780
3781 // Handle smis inline.
3782 // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3783 // never get set by the negation. This is therefore the same as the Integer32
3784 // case in DoMathAbs, except that it operates on 64-bit values.
3785 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3786
3787 __ JumpIfNotSmi(input, deferred->entry());
3788
3789 __ Abs(result, input, NULL, &done);
3790
3791 // The result is the magnitude (abs) of the smallest value a smi can
3792 // represent, encoded as a double.
3793 __ Mov(result_bits, double_to_rawbits(0x80000000));
3794 __ B(deferred->allocation_entry());
3795
3796 __ Bind(deferred->exit());
3797 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3798
3799 __ Bind(&done);
3800 }
3801
3802
3803 void LCodeGen::DoMathExp(LMathExp* instr) {
3804 DoubleRegister input = ToDoubleRegister(instr->value());
3805 DoubleRegister result = ToDoubleRegister(instr->result());
3806 DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
3807 DoubleRegister double_temp2 = double_scratch();
3808 Register temp1 = ToRegister(instr->temp1());
3809 Register temp2 = ToRegister(instr->temp2());
3810 Register temp3 = ToRegister(instr->temp3());
3811
3812 MathExpGenerator::EmitMathExp(masm(), input, result,
3813 double_temp1, double_temp2,
3814 temp1, temp2, temp3);
3815 }
3816
3817
3818 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3819 // TODO(jbramley): If we could provide a double result, we could use frintm
3820 // and produce a valid double result in a single instruction.
3821 DoubleRegister input = ToDoubleRegister(instr->value());
3822 Register result = ToRegister(instr->result());
3823
3824 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3825 DeoptimizeIfMinusZero(input, instr->environment());
3826 }
3827
3828 __ Fcvtms(result, input);
3829
3830 // Check that the result fits into a 32-bit integer.
3831 // - The result did not overflow.
3832 __ Cmp(result, Operand(result, SXTW));
3833 // - The input was not NaN.
3834 __ Fccmp(input, input, NoFlag, eq);
3835 DeoptimizeIf(ne, instr->environment());
3836 }
3837
3838
3839 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3840 Register dividend = ToRegister32(instr->dividend());
3841 Register result = ToRegister32(instr->result());
3842 int32_t divisor = instr->divisor();
3843
3844 // If the divisor is positive, things are easy: There can be no deopts and we
3845 // can simply do an arithmetic right shift.
3846 if (divisor == 1) return;
3847 int32_t shift = WhichPowerOf2Abs(divisor);
3848 if (divisor > 1) {
3849 __ Mov(result, Operand(dividend, ASR, shift));
3850 return;
3851 }
3852
3853 // If the divisor is negative, we have to negate and handle edge cases.
3854 Label not_kmin_int, done;
3855 __ Negs(result, dividend);
3856 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3857 DeoptimizeIf(eq, instr->environment());
3858 }
3859 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3860 // Note that we could emit branch-free code, but that would need one more
3861 // register.
3862 if (divisor == -1) {
3863 DeoptimizeIf(vs, instr->environment());
3864 } else {
3865 __ B(vc, &not_kmin_int);
3866 __ Mov(result, kMinInt / divisor);
3867 __ B(&done);
3868 }
3869 }
3870 __ bind(&not_kmin_int);
3871 __ Mov(result, Operand(dividend, ASR, shift));
3872 __ bind(&done);
3873 }
3874
3875
3876 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3877 Register dividend = ToRegister32(instr->dividend());
3878 int32_t divisor = instr->divisor();
3879 Register result = ToRegister32(instr->result());
3880 ASSERT(!AreAliased(dividend, result));
3881
3882 if (divisor == 0) {
3883 Deoptimize(instr->environment());
3884 return;
3885 }
3886
3887 // Check for (0 / -x) that will produce negative zero.
3888 HMathFloorOfDiv* hdiv = instr->hydrogen();
3889 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
3890 __ Cmp(dividend, 0);
3891 DeoptimizeIf(eq, instr->environment());
3892 }
3893
3894 // Easy case: We need no dynamic check for the dividend and the flooring
3895 // division is the same as the truncating division.
3896 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3897 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3898 __ TruncatingDiv(result, dividend, Abs(divisor));
3899 if (divisor < 0) __ Neg(result, result);
3900 return;
3901 }
3902
3903 // In the general case we may need to adjust before and after the truncating
3904 // division to get a flooring division.
3905 Register temp = ToRegister32(instr->temp());
3906 ASSERT(!AreAliased(temp, dividend, result));
3907 Label needs_adjustment, done;
3908 __ Cmp(dividend, 0);
3909 __ B(divisor > 0 ? lt : gt, &needs_adjustment);
3910 __ TruncatingDiv(result, dividend, Abs(divisor));
3911 if (divisor < 0) __ Neg(result, result);
3912 __ B(&done);
3913 __ bind(&needs_adjustment);
3914 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
3915 __ TruncatingDiv(result, temp, Abs(divisor));
3916 if (divisor < 0) __ Neg(result, result);
3917 __ Sub(result, result, Operand(1));
3918 __ bind(&done);
3919 }
3920
3921
3922 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
3923 Register dividend = ToRegister32(instr->dividend());
3924 Register divisor = ToRegister32(instr->divisor());
3925 Register remainder = ToRegister32(instr->temp());
3926 Register result = ToRegister32(instr->result());
3927
3928 // This can't cause an exception on ARM, so we can speculatively
3929 // execute it already now.
3930 __ Sdiv(result, dividend, divisor);
3931
3932 // Check for x / 0.
3933 DeoptimizeIfZero(divisor, instr->environment());
3934
3935 // Check for (kMinInt / -1).
3936 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
3937 // The V flag will be set iff dividend == kMinInt.
3938 __ Cmp(dividend, 1);
3939 __ Ccmp(divisor, -1, NoFlag, vs);
3940 DeoptimizeIf(eq, instr->environment());
3941 }
3942
3943 // Check for (0 / -x) that will produce negative zero.
3944 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3945 __ Cmp(divisor, 0);
3946 __ Ccmp(dividend, 0, ZFlag, mi);
3947 // "divisor" can't be null because the code would have already been
3948 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
3949 // In this case we need to deoptimize to produce a -0.
3950 DeoptimizeIf(eq, instr->environment());
3951 }
3952
3953 Label done;
3954 // If both operands have the same sign then we are done.
3955 __ Eor(remainder, dividend, divisor);
3956 __ Tbz(remainder, kWSignBit, &done);
3957
3958 // Check if the result needs to be corrected.
3959 __ Msub(remainder, result, divisor, dividend);
3960 __ Cbz(remainder, &done);
3961 __ Sub(result, result, 1);
3962
3963 __ Bind(&done);
3964 }
3965
3966
3967 void LCodeGen::DoMathLog(LMathLog* instr) {
3968 ASSERT(instr->IsMarkedAsCall());
3969 ASSERT(ToDoubleRegister(instr->value()).is(d0));
3970 __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
3971 0, 1);
3972 ASSERT(ToDoubleRegister(instr->result()).Is(d0));
3973 }
3974
3975
3976 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3977 Register input = ToRegister32(instr->value());
3978 Register result = ToRegister32(instr->result());
3979 __ Clz(result, input);
3980 }
3981
3982
3983 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3984 DoubleRegister input = ToDoubleRegister(instr->value());
3985 DoubleRegister result = ToDoubleRegister(instr->result());
3986 Label done;
3987
3988 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
3989 // Math.pow(-Infinity, 0.5) == +Infinity
3990 // Math.pow(-0.0, 0.5) == +0.0
3991
3992 // Catch -infinity inputs first.
3993 // TODO(jbramley): A constant infinity register would be helpful here.
3994 __ Fmov(double_scratch(), kFP64NegativeInfinity);
3995 __ Fcmp(double_scratch(), input);
3996 __ Fabs(result, input);
3997 __ B(&done, eq);
3998
3999 // Add +0.0 to convert -0.0 to +0.0.
4000 __ Fadd(double_scratch(), input, fp_zero);
4001 __ Fsqrt(result, double_scratch());
4002
4003 __ Bind(&done);
4004 }
4005
4006
4007 void LCodeGen::DoPower(LPower* instr) {
4008 Representation exponent_type = instr->hydrogen()->right()->representation();
4009 // Having marked this as a call, we can use any registers.
4010 // Just make sure that the input/output registers are the expected ones.
4011 ASSERT(!instr->right()->IsDoubleRegister() ||
4012 ToDoubleRegister(instr->right()).is(d1));
4013 ASSERT(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
4014 ToRegister(instr->right()).is(x11));
4015 ASSERT(!exponent_type.IsInteger32() || ToRegister(instr->right()).is(x12));
4016 ASSERT(ToDoubleRegister(instr->left()).is(d0));
4017 ASSERT(ToDoubleRegister(instr->result()).is(d0));
4018
4019 if (exponent_type.IsSmi()) {
4020 MathPowStub stub(MathPowStub::TAGGED);
4021 __ CallStub(&stub);
4022 } else if (exponent_type.IsTagged()) {
4023 Label no_deopt;
4024 __ JumpIfSmi(x11, &no_deopt);
4025 __ Ldr(x0, FieldMemOperand(x11, HeapObject::kMapOffset));
4026 DeoptimizeIfNotRoot(x0, Heap::kHeapNumberMapRootIndex,
4027 instr->environment());
4028 __ Bind(&no_deopt);
4029 MathPowStub stub(MathPowStub::TAGGED);
4030 __ CallStub(&stub);
4031 } else if (exponent_type.IsInteger32()) {
4032 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
4033 // supports large integer exponents.
4034 Register exponent = ToRegister(instr->right());
4035 __ Sxtw(exponent, exponent);
4036 MathPowStub stub(MathPowStub::INTEGER);
4037 __ CallStub(&stub);
4038 } else {
4039 ASSERT(exponent_type.IsDouble());
4040 MathPowStub stub(MathPowStub::DOUBLE);
4041 __ CallStub(&stub);
4042 }
4043 }
4044
4045
4046 void LCodeGen::DoMathRound(LMathRound* instr) {
4047 // TODO(jbramley): We could provide a double result here using frint.
4048 DoubleRegister input = ToDoubleRegister(instr->value());
4049 DoubleRegister temp1 = ToDoubleRegister(instr->temp1());
4050 Register result = ToRegister(instr->result());
4051 Label try_rounding;
4052 Label done;
4053
4054 // Math.round() rounds to the nearest integer, with ties going towards
4055 // +infinity. This does not match any IEEE-754 rounding mode.
4056 // - Infinities and NaNs are propagated unchanged, but cause deopts because
4057 // they can't be represented as integers.
4058 // - The sign of the result is the same as the sign of the input. This means
4059 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
4060 // result of -0.0.
4061
4062 DoubleRegister dot_five = double_scratch();
4063 __ Fmov(dot_five, 0.5);
4064 __ Fabs(temp1, input);
4065 __ Fcmp(temp1, dot_five);
4066 // If input is in [-0.5, -0], the result is -0.
4067 // If input is in [+0, +0.5[, the result is +0.
4068 // If the input is +0.5, the result is 1.
4069 __ B(hi, &try_rounding); // hi so NaN will also branch.
4070
4071 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4072 __ Fmov(result, input);
4073 DeoptimizeIfNegative(result, instr->environment()); // [-0.5, -0.0].
4074 }
4075 __ Fcmp(input, dot_five);
4076 __ Mov(result, 1); // +0.5.
4077 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
4078 // flag kBailoutOnMinusZero, will return 0 (xzr).
4079 __ Csel(result, result, xzr, eq);
4080 __ B(&done);
4081
4082 __ Bind(&try_rounding);
4083 // Since we're providing a 32-bit result, we can implement ties-to-infinity by
4084 // adding 0.5 to the input, then taking the floor of the result. This does not
4085 // work for very large positive doubles because adding 0.5 would cause an
4086 // intermediate rounding stage, so a different approach will be necessary if a
4087 // double result is needed.
4088 __ Fadd(temp1, input, dot_five);
4089 __ Fcvtms(result, temp1);
4090
4091 // Deopt if
4092 // * the input was NaN
4093 // * the result is not representable using a 32-bit integer.
4094 __ Fcmp(input, 0.0);
4095 __ Ccmp(result, Operand(result.W(), SXTW), NoFlag, vc);
4096 DeoptimizeIf(ne, instr->environment());
4097
4098 __ Bind(&done);
4099 }
4100
4101
4102 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
4103 DoubleRegister input = ToDoubleRegister(instr->value());
4104 DoubleRegister result = ToDoubleRegister(instr->result());
4105 __ Fsqrt(result, input);
4106 }
4107
4108
4109 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
4110 HMathMinMax::Operation op = instr->hydrogen()->operation();
4111 if (instr->hydrogen()->representation().IsInteger32()) {
4112 Register result = ToRegister32(instr->result());
4113 Register left = ToRegister32(instr->left());
4114 Operand right = ToOperand32I(instr->right());
4115
4116 __ Cmp(left, right);
4117 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4118 } else if (instr->hydrogen()->representation().IsSmi()) {
4119 Register result = ToRegister(instr->result());
4120 Register left = ToRegister(instr->left());
4121 Operand right = ToOperand(instr->right());
4122
4123 __ Cmp(left, right);
4124 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4125 } else {
4126 ASSERT(instr->hydrogen()->representation().IsDouble());
4127 DoubleRegister result = ToDoubleRegister(instr->result());
4128 DoubleRegister left = ToDoubleRegister(instr->left());
4129 DoubleRegister right = ToDoubleRegister(instr->right());
4130
4131 if (op == HMathMinMax::kMathMax) {
4132 __ Fmax(result, left, right);
4133 } else {
4134 ASSERT(op == HMathMinMax::kMathMin);
4135 __ Fmin(result, left, right);
4136 }
4137 }
4138 }
4139
4140
4141 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
4142 Register dividend = ToRegister32(instr->dividend());
4143 int32_t divisor = instr->divisor();
4144 ASSERT(dividend.is(ToRegister32(instr->result())));
4145
4146 // Theoretically, a variation of the branch-free code for integer division by
4147 // a power of 2 (calculating the remainder via an additional multiplication
4148 // (which gets simplified to an 'and') and subtraction) should be faster, and
4149 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
4150 // indicate that positive dividends are heavily favored, so the branching
4151 // version performs better.
4152 HMod* hmod = instr->hydrogen();
4153 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
4154 Label dividend_is_not_negative, done;
4155 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
4156 __ Cmp(dividend, 0);
4157 __ B(pl, &dividend_is_not_negative);
4158 // Note that this is correct even for kMinInt operands.
4159 __ Neg(dividend, dividend);
4160 __ And(dividend, dividend, mask);
4161 __ Negs(dividend, dividend);
4162 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4163 DeoptimizeIf(eq, instr->environment());
4164 }
4165 __ B(&done);
4166 }
4167
4168 __ bind(&dividend_is_not_negative);
4169 __ And(dividend, dividend, mask);
4170 __ bind(&done);
4171 }
4172
4173
4174 void LCodeGen::DoModByConstI(LModByConstI* instr) {
4175 Register dividend = ToRegister32(instr->dividend());
4176 int32_t divisor = instr->divisor();
4177 Register result = ToRegister32(instr->result());
4178 Register temp = ToRegister32(instr->temp());
4179 ASSERT(!AreAliased(dividend, result, temp));
4180
4181 if (divisor == 0) {
4182 Deoptimize(instr->environment());
4183 return;
4184 }
4185
4186 __ TruncatingDiv(result, dividend, Abs(divisor));
4187 __ Sxtw(dividend.X(), dividend);
4188 __ Mov(temp, Abs(divisor));
4189 __ Smsubl(result.X(), result, temp, dividend.X());
4190
4191 // Check for negative zero.
4192 HMod* hmod = instr->hydrogen();
4193 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4194 Label remainder_not_zero;
4195 __ Cbnz(result, &remainder_not_zero);
4196 DeoptimizeIfNegative(dividend, instr->environment());
4197 __ bind(&remainder_not_zero);
4198 }
4199 }
4200
4201
4202 void LCodeGen::DoModI(LModI* instr) {
4203 Register dividend = ToRegister32(instr->left());
4204 Register divisor = ToRegister32(instr->right());
4205 Register result = ToRegister32(instr->result());
4206
4207 Label deopt, done;
4208 // modulo = dividend - quotient * divisor
4209 __ Sdiv(result, dividend, divisor);
4210 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
4211 // Combine the deoptimization sites.
4212 Label ok;
4213 __ Cbnz(divisor, &ok);
4214 __ Bind(&deopt);
4215 Deoptimize(instr->environment());
4216 __ Bind(&ok);
4217 }
4218 __ Msub(result, result, divisor, dividend);
4219 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4220 __ Cbnz(result, &done);
4221 if (deopt.is_bound()) { // TODO(all) This is a hack, remove this...
4222 __ Tbnz(dividend, kWSignBit, &deopt);
4223 } else {
4224 DeoptimizeIfNegative(dividend, instr->environment());
4225 }
4226 }
4227 __ Bind(&done);
4228 }
4229
4230
4231 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
4232 ASSERT(instr->hydrogen()->representation().IsSmiOrInteger32());
4233 bool is_smi = instr->hydrogen()->representation().IsSmi();
4234 Register result =
4235 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
4236 Register left =
4237 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ;
4238 int32_t right = ToInteger32(instr->right());
4239
4240 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4241 bool bailout_on_minus_zero =
4242 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4243
4244 if (bailout_on_minus_zero) {
4245 if (right < 0) {
4246 // The result is -0 if right is negative and left is zero.
4247 DeoptimizeIfZero(left, instr->environment());
4248 } else if (right == 0) {
4249 // The result is -0 if the right is zero and the left is negative.
4250 DeoptimizeIfNegative(left, instr->environment());
4251 }
4252 }
4253
4254 switch (right) {
4255 // Cases which can detect overflow.
4256 case -1:
4257 if (can_overflow) {
4258 // Only 0x80000000 can overflow here.
4259 __ Negs(result, left);
4260 DeoptimizeIf(vs, instr->environment());
4261 } else {
4262 __ Neg(result, left);
4263 }
4264 break;
4265 case 0:
4266 // This case can never overflow.
4267 __ Mov(result, 0);
4268 break;
4269 case 1:
4270 // This case can never overflow.
4271 __ Mov(result, left, kDiscardForSameWReg);
4272 break;
4273 case 2:
4274 if (can_overflow) {
4275 __ Adds(result, left, left);
4276 DeoptimizeIf(vs, instr->environment());
4277 } else {
4278 __ Add(result, left, left);
4279 }
4280 break;
4281
4282 // All other cases cannot detect overflow, because it would probably be no
4283 // faster than using the smull method in LMulI.
4284 // TODO(jbramley): Investigate this, and add overflow support if it would
4285 // be useful.
4286 default:
4287 ASSERT(!can_overflow);
4288
4289 // Multiplication by constant powers of two (and some related values)
4290 // can be done efficiently with shifted operands.
4291 if (right >= 0) {
4292 if (IsPowerOf2(right)) {
4293 // result = left << log2(right)
4294 __ Lsl(result, left, WhichPowerOf2(right));
4295 } else if (IsPowerOf2(right - 1)) {
4296 // result = left + left << log2(right - 1)
4297 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4298 } else if (IsPowerOf2(right + 1)) {
4299 // result = -left + left << log2(right + 1)
4300 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4301 __ Neg(result, result);
4302 } else {
4303 UNREACHABLE();
4304 }
4305 } else {
4306 if (IsPowerOf2(-right)) {
4307 // result = -left << log2(-right)
4308 __ Neg(result, Operand(left, LSL, WhichPowerOf2(-right)));
4309 } else if (IsPowerOf2(-right + 1)) {
4310 // result = left - left << log2(-right + 1)
4311 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4312 } else if (IsPowerOf2(-right - 1)) {
4313 // result = -left - left << log2(-right - 1)
4314 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4315 __ Neg(result, result);
4316 } else {
4317 UNREACHABLE();
4318 }
4319 }
4320 break;
4321 }
4322 }
4323
4324
4325 void LCodeGen::DoMulI(LMulI* instr) {
4326 Register result = ToRegister32(instr->result());
4327 Register left = ToRegister32(instr->left());
4328 Register right = ToRegister32(instr->right());
4329
4330 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4331 bool bailout_on_minus_zero =
4332 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4333
4334 if (bailout_on_minus_zero && !left.Is(right)) {
4335 // If one operand is zero and the other is negative, the result is -0.
4336 // - Set Z (eq) if either left or right, or both, are 0.
4337 __ Cmp(left, 0);
4338 __ Ccmp(right, 0, ZFlag, ne);
4339 // - If so (eq), set N (mi) if left + right is negative.
4340 // - Otherwise, clear N.
4341 __ Ccmn(left, right, NoFlag, eq);
4342 DeoptimizeIf(mi, instr->environment());
4343 }
4344
4345 if (can_overflow) {
4346 __ Smull(result.X(), left, right);
4347 __ Cmp(result.X(), Operand(result, SXTW));
4348 DeoptimizeIf(ne, instr->environment());
4349 } else {
4350 __ Mul(result, left, right);
4351 }
4352 }
4353
4354
4355 void LCodeGen::DoMulS(LMulS* instr) {
4356 Register result = ToRegister(instr->result());
4357 Register left = ToRegister(instr->left());
4358 Register right = ToRegister(instr->right());
4359
4360 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4361 bool bailout_on_minus_zero =
4362 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4363
4364 if (bailout_on_minus_zero && !left.Is(right)) {
4365 // If one operand is zero and the other is negative, the result is -0.
4366 // - Set Z (eq) if either left or right, or both, are 0.
4367 __ Cmp(left, 0);
4368 __ Ccmp(right, 0, ZFlag, ne);
4369 // - If so (eq), set N (mi) if left + right is negative.
4370 // - Otherwise, clear N.
4371 __ Ccmn(left, right, NoFlag, eq);
4372 DeoptimizeIf(mi, instr->environment());
4373 }
4374
4375 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4376 if (can_overflow) {
4377 __ Smulh(result, left, right);
4378 __ Cmp(result, Operand(result.W(), SXTW));
4379 __ SmiTag(result);
4380 DeoptimizeIf(ne, instr->environment());
4381 } else {
4382 if (AreAliased(result, left, right)) {
4383 // All three registers are the same: half untag the input and then
4384 // multiply, giving a tagged result.
4385 STATIC_ASSERT((kSmiShift % 2) == 0);
4386 __ Asr(result, left, kSmiShift / 2);
4387 __ Mul(result, result, result);
4388 } else if (result.Is(left) && !left.Is(right)) {
4389 // Registers result and left alias, right is distinct: untag left into
4390 // result, and then multiply by right, giving a tagged result.
4391 __ SmiUntag(result, left);
4392 __ Mul(result, result, right);
4393 } else {
4394 ASSERT(!left.Is(result));
4395 // Registers result and right alias, left is distinct, or all registers
4396 // are distinct: untag right into result, and then multiply by left,
4397 // giving a tagged result.
4398 __ SmiUntag(result, right);
4399 __ Mul(result, left, result);
4400 }
4401 }
4402 }
4403
4404
4405 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4406 // TODO(3095996): Get rid of this. For now, we need to make the
4407 // result register contain a valid pointer because it is already
4408 // contained in the register pointer map.
4409 Register result = ToRegister(instr->result());
4410 __ Mov(result, 0);
4411
4412 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4413 // NumberTagU and NumberTagD use the context from the frame, rather than
4414 // the environment's HContext or HInlinedContext value.
4415 // They only call Runtime::kAllocateHeapNumber.
4416 // The corresponding HChange instructions are added in a phase that does
4417 // not have easy access to the local context.
4418 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4419 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4420 RecordSafepointWithRegisters(
4421 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4422 __ StoreToSafepointRegisterSlot(x0, result);
4423 }
4424
4425
4426 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4427 class DeferredNumberTagD: public LDeferredCode {
4428 public:
4429 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4430 : LDeferredCode(codegen), instr_(instr) { }
4431 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4432 virtual LInstruction* instr() { return instr_; }
4433 private:
4434 LNumberTagD* instr_;
4435 };
4436
4437 DoubleRegister input = ToDoubleRegister(instr->value());
4438 Register result = ToRegister(instr->result());
4439 Register temp1 = ToRegister(instr->temp1());
4440 Register temp2 = ToRegister(instr->temp2());
4441
4442 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4443 if (FLAG_inline_new) {
4444 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4445 } else {
4446 __ B(deferred->entry());
4447 }
4448
4449 __ Bind(deferred->exit());
4450 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4451 }
4452
4453
4454 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4455 LOperand* value,
4456 LOperand* temp1,
4457 LOperand* temp2) {
4458 Label slow, convert_and_store;
4459 Register src = ToRegister32(value);
4460 Register dst = ToRegister(instr->result());
4461 Register scratch1 = ToRegister(temp1);
4462
4463 if (FLAG_inline_new) {
4464 Register scratch2 = ToRegister(temp2);
4465 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4466 __ B(&convert_and_store);
4467 }
4468
4469 // Slow case: call the runtime system to do the number allocation.
4470 __ Bind(&slow);
4471 // TODO(3095996): Put a valid pointer value in the stack slot where the result
4472 // register is stored, as this register is in the pointer map, but contains an
4473 // integer value.
4474 __ Mov(dst, 0);
4475 {
4476 // Preserve the value of all registers.
4477 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4478
4479 // NumberTagU and NumberTagD use the context from the frame, rather than
4480 // the environment's HContext or HInlinedContext value.
4481 // They only call Runtime::kAllocateHeapNumber.
4482 // The corresponding HChange instructions are added in a phase that does
4483 // not have easy access to the local context.
4484 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4485 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4486 RecordSafepointWithRegisters(
4487 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4488 __ StoreToSafepointRegisterSlot(x0, dst);
4489 }
4490
4491 // Convert number to floating point and store in the newly allocated heap
4492 // number.
4493 __ Bind(&convert_and_store);
4494 DoubleRegister dbl_scratch = double_scratch();
4495 __ Ucvtf(dbl_scratch, src);
4496 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4497 }
4498
4499
4500 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4501 class DeferredNumberTagU: public LDeferredCode {
4502 public:
4503 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4504 : LDeferredCode(codegen), instr_(instr) { }
4505 virtual void Generate() {
4506 codegen()->DoDeferredNumberTagU(instr_,
4507 instr_->value(),
4508 instr_->temp1(),
4509 instr_->temp2());
4510 }
4511 virtual LInstruction* instr() { return instr_; }
4512 private:
4513 LNumberTagU* instr_;
4514 };
4515
4516 Register value = ToRegister32(instr->value());
4517 Register result = ToRegister(instr->result());
4518
4519 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4520 __ Cmp(value, Smi::kMaxValue);
4521 __ B(hi, deferred->entry());
4522 __ SmiTag(result, value.X());
4523 __ Bind(deferred->exit());
4524 }
4525
4526
4527 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4528 Register input = ToRegister(instr->value());
4529 Register scratch = ToRegister(instr->temp());
4530 DoubleRegister result = ToDoubleRegister(instr->result());
4531 bool can_convert_undefined_to_nan =
4532 instr->hydrogen()->can_convert_undefined_to_nan();
4533
4534 Label done, load_smi;
4535
4536 // Work out what untag mode we're working with.
4537 HValue* value = instr->hydrogen()->value();
4538 NumberUntagDMode mode = value->representation().IsSmi()
4539 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4540
4541 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4542 __ JumpIfSmi(input, &load_smi);
4543
4544 Label convert_undefined;
4545
4546 // Heap number map check.
4547 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
4548 if (can_convert_undefined_to_nan) {
4549 __ JumpIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex,
4550 &convert_undefined);
4551 } else {
4552 DeoptimizeIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex,
4553 instr->environment());
4554 }
4555
4556 // Load heap number.
4557 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4558 if (instr->hydrogen()->deoptimize_on_minus_zero()) {
4559 DeoptimizeIfMinusZero(result, instr->environment());
4560 }
4561 __ B(&done);
4562
4563 if (can_convert_undefined_to_nan) {
4564 __ Bind(&convert_undefined);
4565 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
4566 instr->environment());
4567
4568 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4569 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4570 __ B(&done);
4571 }
4572
4573 } else {
4574 ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
4575 // Fall through to load_smi.
4576 }
4577
4578 // Smi to double register conversion.
4579 __ Bind(&load_smi);
4580 __ SmiUntagToDouble(result, input);
4581
4582 __ Bind(&done);
4583 }
4584
4585
4586 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4587 // This is a pseudo-instruction that ensures that the environment here is
4588 // properly registered for deoptimization and records the assembler's PC
4589 // offset.
4590 LEnvironment* environment = instr->environment();
4591
4592 // If the environment were already registered, we would have no way of
4593 // backpatching it with the spill slot operands.
4594 ASSERT(!environment->HasBeenRegistered());
4595 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4596
4597 GenerateOsrPrologue();
4598 }
4599
4600
4601 void LCodeGen::DoParameter(LParameter* instr) {
4602 // Nothing to do.
4603 }
4604
4605
4606 void LCodeGen::DoPushArgument(LPushArgument* instr) {
4607 LOperand* argument = instr->value();
4608 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
4609 Abort(kDoPushArgumentNotImplementedForDoubleType);
4610 } else {
4611 __ Push(ToRegister(argument));
4612 }
4613 }
4614
4615
4616 void LCodeGen::DoReturn(LReturn* instr) {
4617 if (FLAG_trace && info()->IsOptimizing()) {
4618 // Push the return value on the stack as the parameter.
4619 // Runtime::TraceExit returns its parameter in x0. We're leaving the code
4620 // managed by the register allocator and tearing down the frame, it's
4621 // safe to write to the context register.
4622 __ Push(x0);
4623 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4624 __ CallRuntime(Runtime::kTraceExit, 1);
4625 }
4626
4627 if (info()->saves_caller_doubles()) {
4628 RestoreCallerDoubles();
4629 }
4630
4631 int no_frame_start = -1;
4632 if (NeedsEagerFrame()) {
4633 Register stack_pointer = masm()->StackPointer();
4634 __ Mov(stack_pointer, fp);
4635 no_frame_start = masm_->pc_offset();
4636 __ Pop(fp, lr);
4637 }
4638
4639 if (instr->has_constant_parameter_count()) {
4640 int parameter_count = ToInteger32(instr->constant_parameter_count());
4641 __ Drop(parameter_count + 1);
4642 } else {
4643 Register parameter_count = ToRegister(instr->parameter_count());
4644 __ DropBySMI(parameter_count);
4645 }
4646 __ Ret();
4647
4648 if (no_frame_start != -1) {
4649 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
4650 }
4651 }
4652
4653
4654 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4655 Register temp,
4656 LOperand* index,
4657 String::Encoding encoding) {
4658 if (index->IsConstantOperand()) {
4659 int offset = ToInteger32(LConstantOperand::cast(index));
4660 if (encoding == String::TWO_BYTE_ENCODING) {
4661 offset *= kUC16Size;
4662 }
4663 STATIC_ASSERT(kCharSize == 1);
4664 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4665 }
4666
4667 if (encoding == String::ONE_BYTE_ENCODING) {
4668 __ Add(temp, string, Operand(ToRegister32(index), SXTW));
4669 } else {
4670 STATIC_ASSERT(kUC16Size == 2);
4671 __ Add(temp, string, Operand(ToRegister32(index), SXTW, 1));
4672 }
4673 return FieldMemOperand(temp, SeqString::kHeaderSize);
4674 }
4675
4676
4677 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4678 String::Encoding encoding = instr->hydrogen()->encoding();
4679 Register string = ToRegister(instr->string());
4680 Register result = ToRegister(instr->result());
4681 Register temp = ToRegister(instr->temp());
4682
4683 if (FLAG_debug_code) {
4684 // Even though this lithium instruction comes with a temp register, we
4685 // can't use it here because we want to use "AtStart" constraints on the
4686 // inputs and the debug code here needs a scratch register.
4687 UseScratchRegisterScope temps(masm());
4688 Register dbg_temp = temps.AcquireX();
4689
4690 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4691 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4692
4693 __ And(dbg_temp, dbg_temp,
4694 Operand(kStringRepresentationMask | kStringEncodingMask));
4695 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4696 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4697 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4698 ? one_byte_seq_type : two_byte_seq_type));
4699 __ Check(eq, kUnexpectedStringType);
4700 }
4701
4702 MemOperand operand =
4703 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4704 if (encoding == String::ONE_BYTE_ENCODING) {
4705 __ Ldrb(result, operand);
4706 } else {
4707 __ Ldrh(result, operand);
4708 }
4709 }
4710
4711
4712 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4713 String::Encoding encoding = instr->hydrogen()->encoding();
4714 Register string = ToRegister(instr->string());
4715 Register value = ToRegister(instr->value());
4716 Register temp = ToRegister(instr->temp());
4717
4718 if (FLAG_debug_code) {
4719 ASSERT(ToRegister(instr->context()).is(cp));
4720 Register index = ToRegister(instr->index());
4721 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4722 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4723 int encoding_mask =
4724 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4725 ? one_byte_seq_type : two_byte_seq_type;
4726 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4727 encoding_mask);
4728 }
4729 MemOperand operand =
4730 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4731 if (encoding == String::ONE_BYTE_ENCODING) {
4732 __ Strb(value, operand);
4733 } else {
4734 __ Strh(value, operand);
4735 }
4736 }
4737
4738
4739 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4740 HChange* hchange = instr->hydrogen();
4741 Register input = ToRegister(instr->value());
4742 Register output = ToRegister(instr->result());
4743 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4744 hchange->value()->CheckFlag(HValue::kUint32)) {
4745 DeoptimizeIfNegative(input.W(), instr->environment());
4746 }
4747 __ SmiTag(output, input);
4748 }
4749
4750
4751 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4752 Register input = ToRegister(instr->value());
4753 Register result = ToRegister(instr->result());
4754 Label done, untag;
4755
4756 if (instr->needs_check()) {
4757 DeoptimizeIfNotSmi(input, instr->environment());
4758 }
4759
4760 __ Bind(&untag);
4761 __ SmiUntag(result, input);
4762 __ Bind(&done);
4763 }
4764
4765
4766 void LCodeGen::DoShiftI(LShiftI* instr) {
4767 LOperand* right_op = instr->right();
4768 Register left = ToRegister32(instr->left());
4769 Register result = ToRegister32(instr->result());
4770
4771 if (right_op->IsRegister()) {
4772 Register right = ToRegister32(instr->right());
4773 switch (instr->op()) {
4774 case Token::ROR: __ Ror(result, left, right); break;
4775 case Token::SAR: __ Asr(result, left, right); break;
4776 case Token::SHL: __ Lsl(result, left, right); break;
4777 case Token::SHR:
4778 if (instr->can_deopt()) {
4779 Label right_not_zero;
4780 __ Cbnz(right, &right_not_zero);
4781 DeoptimizeIfNegative(left, instr->environment());
4782 __ Bind(&right_not_zero);
4783 }
4784 __ Lsr(result, left, right);
4785 break;
4786 default: UNREACHABLE();
4787 }
4788 } else {
4789 ASSERT(right_op->IsConstantOperand());
4790 int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f;
4791 if (shift_count == 0) {
4792 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4793 DeoptimizeIfNegative(left, instr->environment());
4794 }
4795 __ Mov(result, left, kDiscardForSameWReg);
4796 } else {
4797 switch (instr->op()) {
4798 case Token::ROR: __ Ror(result, left, shift_count); break;
4799 case Token::SAR: __ Asr(result, left, shift_count); break;
4800 case Token::SHL: __ Lsl(result, left, shift_count); break;
4801 case Token::SHR: __ Lsr(result, left, shift_count); break;
4802 default: UNREACHABLE();
4803 }
4804 }
4805 }
4806 }
4807
4808
4809 void LCodeGen::DoShiftS(LShiftS* instr) {
4810 LOperand* right_op = instr->right();
4811 Register left = ToRegister(instr->left());
4812 Register result = ToRegister(instr->result());
4813
4814 // Only ROR by register needs a temp.
4815 ASSERT(((instr->op() == Token::ROR) && right_op->IsRegister()) ||
4816 (instr->temp() == NULL));
4817
4818 if (right_op->IsRegister()) {
4819 Register right = ToRegister(instr->right());
4820 switch (instr->op()) {
4821 case Token::ROR: {
4822 Register temp = ToRegister(instr->temp());
4823 __ Ubfx(temp, right, kSmiShift, 5);
4824 __ SmiUntag(result, left);
4825 __ Ror(result.W(), result.W(), temp.W());
4826 __ SmiTag(result);
4827 break;
4828 }
4829 case Token::SAR:
4830 __ Ubfx(result, right, kSmiShift, 5);
4831 __ Asr(result, left, result);
4832 __ Bic(result, result, kSmiShiftMask);
4833 break;
4834 case Token::SHL:
4835 __ Ubfx(result, right, kSmiShift, 5);
4836 __ Lsl(result, left, result);
4837 break;
4838 case Token::SHR:
4839 if (instr->can_deopt()) {
4840 Label right_not_zero;
4841 __ Cbnz(right, &right_not_zero);
4842 DeoptimizeIfNegative(left, instr->environment());
4843 __ Bind(&right_not_zero);
4844 }
4845 __ Ubfx(result, right, kSmiShift, 5);
4846 __ Lsr(result, left, result);
4847 __ Bic(result, result, kSmiShiftMask);
4848 break;
4849 default: UNREACHABLE();
4850 }
4851 } else {
4852 ASSERT(right_op->IsConstantOperand());
4853 int shift_count = ToInteger32(LConstantOperand::cast(right_op)) & 0x1f;
4854 if (shift_count == 0) {
4855 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4856 DeoptimizeIfNegative(left, instr->environment());
4857 }
4858 __ Mov(result, left);
4859 } else {
4860 switch (instr->op()) {
4861 case Token::ROR:
4862 __ SmiUntag(result, left);
4863 __ Ror(result.W(), result.W(), shift_count);
4864 __ SmiTag(result);
4865 break;
4866 case Token::SAR:
4867 __ Asr(result, left, shift_count);
4868 __ Bic(result, result, kSmiShiftMask);
4869 break;
4870 case Token::SHL:
4871 __ Lsl(result, left, shift_count);
4872 break;
4873 case Token::SHR:
4874 __ Lsr(result, left, shift_count);
4875 __ Bic(result, result, kSmiShiftMask);
4876 break;
4877 default: UNREACHABLE();
4878 }
4879 }
4880 }
4881 }
4882
4883
4884 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
4885 __ Debug("LDebugBreak", 0, BREAK);
4886 }
4887
4888
4889 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
4890 ASSERT(ToRegister(instr->context()).is(cp));
4891 Register scratch1 = x5;
4892 Register scratch2 = x6;
4893 ASSERT(instr->IsMarkedAsCall());
4894
4895 ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals");
4896 // TODO(all): if Mov could handle object in new space then it could be used
4897 // here.
4898 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
4899 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
4900 __ Push(cp, scratch1, scratch2); // The context is the first argument.
4901 CallRuntime(Runtime::kDeclareGlobals, 3, instr);
4902 }
4903
4904
4905 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4906 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4907 LoadContextFromDeferred(instr->context());
4908 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4909 RecordSafepointWithLazyDeopt(
4910 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4911 ASSERT(instr->HasEnvironment());
4912 LEnvironment* env = instr->environment();
4913 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4914 }
4915
4916
4917 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4918 class DeferredStackCheck: public LDeferredCode {
4919 public:
4920 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4921 : LDeferredCode(codegen), instr_(instr) { }
4922 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4923 virtual LInstruction* instr() { return instr_; }
4924 private:
4925 LStackCheck* instr_;
4926 };
4927
4928 ASSERT(instr->HasEnvironment());
4929 LEnvironment* env = instr->environment();
4930 // There is no LLazyBailout instruction for stack-checks. We have to
4931 // prepare for lazy deoptimization explicitly here.
4932 if (instr->hydrogen()->is_function_entry()) {
4933 // Perform stack overflow check.
4934 Label done;
4935 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4936 __ B(hs, &done);
4937
4938 PredictableCodeSizeScope predictable(masm_,
4939 Assembler::kCallSizeWithRelocation);
4940 ASSERT(instr->context()->IsRegister());
4941 ASSERT(ToRegister(instr->context()).is(cp));
4942 CallCode(isolate()->builtins()->StackCheck(),
4943 RelocInfo::CODE_TARGET,
4944 instr);
4945 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4946
4947 __ Bind(&done);
4948 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4949 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4950 } else {
4951 ASSERT(instr->hydrogen()->is_backwards_branch());
4952 // Perform stack overflow check if this goto needs it before jumping.
4953 DeferredStackCheck* deferred_stack_check =
4954 new(zone()) DeferredStackCheck(this, instr);
4955 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4956 __ B(lo, deferred_stack_check->entry());
4957
4958 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4959 __ Bind(instr->done_label());
4960 deferred_stack_check->SetExit(instr->done_label());
4961 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4962 // Don't record a deoptimization index for the safepoint here.
4963 // This will be done explicitly when emitting call and the safepoint in
4964 // the deferred code.
4965 }
4966 }
4967
4968
4969 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4970 Register function = ToRegister(instr->function());
4971 Register code_object = ToRegister(instr->code_object());
4972 Register temp = ToRegister(instr->temp());
4973 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
4974 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4975 }
4976
4977
4978 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
4979 Register context = ToRegister(instr->context());
4980 Register value = ToRegister(instr->value());
4981 Register scratch = ToRegister(instr->temp());
4982 MemOperand target = ContextMemOperand(context, instr->slot_index());
4983
4984 Label skip_assignment;
4985
4986 if (instr->hydrogen()->RequiresHoleCheck()) {
4987 __ Ldr(scratch, target);
4988 if (instr->hydrogen()->DeoptimizesOnHole()) {
4989 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex,
4990 instr->environment());
4991 } else {
4992 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
4993 }
4994 }
4995
4996 __ Str(value, target);
4997 if (instr->hydrogen()->NeedsWriteBarrier()) {
4998 SmiCheck check_needed =
4999 instr->hydrogen()->value()->IsHeapObject()
5000 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5001 __ RecordWriteContextSlot(context,
5002 target.offset(),
5003 value,
5004 scratch,
5005 GetLinkRegisterState(),
5006 kSaveFPRegs,
5007 EMIT_REMEMBERED_SET,
5008 check_needed);
5009 }
5010 __ Bind(&skip_assignment);
5011 }
5012
5013
5014 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
5015 Register value = ToRegister(instr->value());
5016 Register cell = ToRegister(instr->temp1());
5017
5018 // Load the cell.
5019 __ Mov(cell, Operand(instr->hydrogen()->cell().handle()));
5020
5021 // If the cell we are storing to contains the hole it could have
5022 // been deleted from the property dictionary. In that case, we need
5023 // to update the property details in the property dictionary to mark
5024 // it as no longer deleted. We deoptimize in that case.
5025 if (instr->hydrogen()->RequiresHoleCheck()) {
5026 Register payload = ToRegister(instr->temp2());
5027 __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
5028 DeoptimizeIfRoot(
5029 payload, Heap::kTheHoleValueRootIndex, instr->environment());
5030 }
5031
5032 // Store the value.
5033 __ Str(value, FieldMemOperand(cell, Cell::kValueOffset));
5034 // Cells are always rescanned, so no write barrier here.
5035 }
5036
5037
5038 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
5039 Register ext_ptr = ToRegister(instr->elements());
5040 Register key = no_reg;
5041 Register scratch;
5042 ElementsKind elements_kind = instr->elements_kind();
5043
5044 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
5045 bool key_is_constant = instr->key()->IsConstantOperand();
5046 int constant_key = 0;
5047 if (key_is_constant) {
5048 ASSERT(instr->temp() == NULL);
5049 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5050 if (constant_key & 0xf0000000) {
5051 Abort(kArrayIndexConstantValueTooBig);
5052 }
5053 } else {
5054 key = ToRegister(instr->key());
5055 scratch = ToRegister(instr->temp());
5056 }
5057
5058 MemOperand dst =
5059 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
5060 key_is_constant, constant_key,
5061 elements_kind,
5062 instr->additional_index());
5063
5064 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
5065 (elements_kind == FLOAT32_ELEMENTS)) {
5066 DoubleRegister value = ToDoubleRegister(instr->value());
5067 DoubleRegister dbl_scratch = double_scratch();
5068 __ Fcvt(dbl_scratch.S(), value);
5069 __ Str(dbl_scratch.S(), dst);
5070 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
5071 (elements_kind == FLOAT64_ELEMENTS)) {
5072 DoubleRegister value = ToDoubleRegister(instr->value());
5073 __ Str(value, dst);
5074 } else {
5075 Register value = ToRegister(instr->value());
5076
5077 switch (elements_kind) {
5078 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
5079 case EXTERNAL_INT8_ELEMENTS:
5080 case EXTERNAL_UINT8_ELEMENTS:
5081 case UINT8_ELEMENTS:
5082 case UINT8_CLAMPED_ELEMENTS:
5083 case INT8_ELEMENTS:
5084 __ Strb(value, dst);
5085 break;
5086 case EXTERNAL_INT16_ELEMENTS:
5087 case EXTERNAL_UINT16_ELEMENTS:
5088 case INT16_ELEMENTS:
5089 case UINT16_ELEMENTS:
5090 __ Strh(value, dst);
5091 break;
5092 case EXTERNAL_INT32_ELEMENTS:
5093 case EXTERNAL_UINT32_ELEMENTS:
5094 case INT32_ELEMENTS:
5095 case UINT32_ELEMENTS:
5096 __ Str(value.W(), dst);
5097 break;
5098 case FLOAT32_ELEMENTS:
5099 case FLOAT64_ELEMENTS:
5100 case EXTERNAL_FLOAT32_ELEMENTS:
5101 case EXTERNAL_FLOAT64_ELEMENTS:
5102 case FAST_DOUBLE_ELEMENTS:
5103 case FAST_ELEMENTS:
5104 case FAST_SMI_ELEMENTS:
5105 case FAST_HOLEY_DOUBLE_ELEMENTS:
5106 case FAST_HOLEY_ELEMENTS:
5107 case FAST_HOLEY_SMI_ELEMENTS:
5108 case DICTIONARY_ELEMENTS:
5109 case SLOPPY_ARGUMENTS_ELEMENTS:
5110 UNREACHABLE();
5111 break;
5112 }
5113 }
5114 }
5115
5116
5117 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
5118 Register elements = ToRegister(instr->elements());
5119 DoubleRegister value = ToDoubleRegister(instr->value());
5120 Register store_base = no_reg;
5121 int offset = 0;
5122
5123 if (instr->key()->IsConstantOperand()) {
5124 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5125 if (constant_key & 0xf0000000) {
5126 Abort(kArrayIndexConstantValueTooBig);
5127 }
5128 offset = FixedDoubleArray::OffsetOfElementAt(constant_key +
5129 instr->additional_index());
5130 store_base = elements;
5131 } else {
5132 store_base = ToRegister(instr->temp());
5133 Register key = ToRegister(instr->key());
5134 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5135 CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged,
5136 instr->hydrogen()->elements_kind());
5137 offset = FixedDoubleArray::OffsetOfElementAt(instr->additional_index());
5138 }
5139
5140 if (instr->NeedsCanonicalization()) {
5141 DoubleRegister dbl_scratch = double_scratch();
5142 __ Fmov(dbl_scratch,
5143 FixedDoubleArray::canonical_not_the_hole_nan_as_double());
5144 __ Fmaxnm(dbl_scratch, dbl_scratch, value);
5145 __ Str(dbl_scratch, FieldMemOperand(store_base, offset));
5146 } else {
5147 __ Str(value, FieldMemOperand(store_base, offset));
5148 }
5149 }
5150
5151
5152 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
5153 Register value = ToRegister(instr->value());
5154 Register elements = ToRegister(instr->elements());
5155 Register scratch = no_reg;
5156 Register store_base = no_reg;
5157 Register key = no_reg;
5158 int offset = 0;
5159
5160 if (!instr->key()->IsConstantOperand() ||
5161 instr->hydrogen()->NeedsWriteBarrier()) {
5162 scratch = ToRegister(instr->temp());
5163 }
5164
5165 if (instr->key()->IsConstantOperand()) {
5166 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
5167 offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
5168 instr->additional_index());
5169 store_base = elements;
5170 } else {
5171 store_base = scratch;
5172 key = ToRegister(instr->key());
5173 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5174 CalcKeyedArrayBaseRegister(store_base, elements, key, key_is_tagged,
5175 instr->hydrogen()->elements_kind());
5176 offset = FixedArray::OffsetOfElementAt(instr->additional_index());
5177 }
5178 Representation representation = instr->hydrogen()->value()->representation();
5179 if (representation.IsInteger32()) {
5180 ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5181 ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
5182 STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
5183 __ Store(value, UntagSmiFieldMemOperand(store_base, offset),
5184 Representation::Integer32());
5185 } else {
5186 __ Store(value, FieldMemOperand(store_base, offset), representation);
5187 }
5188
5189 if (instr->hydrogen()->NeedsWriteBarrier()) {
5190 ASSERT(representation.IsTagged());
5191 // This assignment may cause element_addr to alias store_base.
5192 Register element_addr = scratch;
5193 SmiCheck check_needed =
5194 instr->hydrogen()->value()->IsHeapObject()
5195 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5196 // Compute address of modified element and store it into key register.
5197 __ Add(element_addr, store_base, offset - kHeapObjectTag);
5198 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
5199 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed);
5200 }
5201 }
5202
5203
5204 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
5205 ASSERT(ToRegister(instr->context()).is(cp));
5206 ASSERT(ToRegister(instr->object()).Is(x2));
5207 ASSERT(ToRegister(instr->key()).Is(x1));
5208 ASSERT(ToRegister(instr->value()).Is(x0));
5209
5210 Handle<Code> ic = instr->strict_mode() == STRICT
5211 ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
5212 : isolate()->builtins()->KeyedStoreIC_Initialize();
5213 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5214 }
5215
5216
5217 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
5218 Representation representation = instr->representation();
5219
5220 Register object = ToRegister(instr->object());
5221 HObjectAccess access = instr->hydrogen()->access();
5222 Handle<Map> transition = instr->transition();
5223 int offset = access.offset();
5224
5225 if (access.IsExternalMemory()) {
5226 ASSERT(transition.is_null());
5227 ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
5228 Register value = ToRegister(instr->value());
5229 __ Store(value, MemOperand(object, offset), representation);
5230 return;
5231 } else if (representation.IsDouble()) {
5232 ASSERT(transition.is_null());
5233 ASSERT(access.IsInobject());
5234 ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
5235 FPRegister value = ToDoubleRegister(instr->value());
5236 __ Str(value, FieldMemOperand(object, offset));
5237 return;
5238 }
5239
5240 Register value = ToRegister(instr->value());
5241
5242 SmiCheck check_needed = instr->hydrogen()->value()->IsHeapObject()
5243 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5244
5245 if (representation.IsHeapObject() &&
5246 !instr->hydrogen()->value()->type().IsHeapObject()) {
5247 DeoptimizeIfSmi(value, instr->environment());
5248
5249 // We know that value is a smi now, so we can omit the check below.
5250 check_needed = OMIT_SMI_CHECK;
5251 }
5252
5253 if (!transition.is_null()) {
5254 // Store the new map value.
5255 Register new_map_value = ToRegister(instr->temp0());
5256 __ Mov(new_map_value, Operand(transition));
5257 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
5258 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
5259 // Update the write barrier for the map field.
5260 __ RecordWriteField(object,
5261 HeapObject::kMapOffset,
5262 new_map_value,
5263 ToRegister(instr->temp1()),
5264 GetLinkRegisterState(),
5265 kSaveFPRegs,
5266 OMIT_REMEMBERED_SET,
5267 OMIT_SMI_CHECK);
5268 }
5269 }
5270
5271 // Do the store.
5272 Register destination;
5273 if (access.IsInobject()) {
5274 destination = object;
5275 } else {
5276 Register temp0 = ToRegister(instr->temp0());
5277 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5278 destination = temp0;
5279 }
5280
5281 if (representation.IsSmi() &&
5282 instr->hydrogen()->value()->representation().IsInteger32()) {
5283 ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5284 #ifdef DEBUG
5285 Register temp0 = ToRegister(instr->temp0());
5286 __ Ldr(temp0, FieldMemOperand(destination, offset));
5287 __ AssertSmi(temp0);
5288 // If destination aliased temp0, restore it to the address calculated
5289 // earlier.
5290 if (destination.Is(temp0)) {
5291 ASSERT(!access.IsInobject());
5292 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5293 }
5294 #endif
5295 STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
5296 __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5297 Representation::Integer32());
5298 } else {
5299 __ Store(value, FieldMemOperand(destination, offset), representation);
5300 }
5301 if (instr->hydrogen()->NeedsWriteBarrier()) {
5302 __ RecordWriteField(destination,
5303 offset,
5304 value, // Clobbered.
5305 ToRegister(instr->temp1()), // Clobbered.
5306 GetLinkRegisterState(),
5307 kSaveFPRegs,
5308 EMIT_REMEMBERED_SET,
5309 check_needed);
5310 }
5311 }
5312
5313
5314 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
5315 ASSERT(ToRegister(instr->context()).is(cp));
5316 ASSERT(ToRegister(instr->value()).is(x0));
5317 ASSERT(ToRegister(instr->object()).is(x1));
5318
5319 // Name must be in x2.
5320 __ Mov(x2, Operand(instr->name()));
5321 Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
5322 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5323 }
5324
5325
5326 void LCodeGen::DoStringAdd(LStringAdd* instr) {
5327 ASSERT(ToRegister(instr->context()).is(cp));
5328 ASSERT(ToRegister(instr->left()).Is(x1));
5329 ASSERT(ToRegister(instr->right()).Is(x0));
5330 StringAddStub stub(instr->hydrogen()->flags(),
5331 instr->hydrogen()->pretenure_flag());
5332 CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
5333 }
5334
5335
5336 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5337 class DeferredStringCharCodeAt: public LDeferredCode {
5338 public:
5339 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5340 : LDeferredCode(codegen), instr_(instr) { }
5341 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5342 virtual LInstruction* instr() { return instr_; }
5343 private:
5344 LStringCharCodeAt* instr_;
5345 };
5346
5347 DeferredStringCharCodeAt* deferred =
5348 new(zone()) DeferredStringCharCodeAt(this, instr);
5349
5350 StringCharLoadGenerator::Generate(masm(),
5351 ToRegister(instr->string()),
5352 ToRegister32(instr->index()),
5353 ToRegister(instr->result()),
5354 deferred->entry());
5355 __ Bind(deferred->exit());
5356 }
5357
5358
5359 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5360 Register string = ToRegister(instr->string());
5361 Register result = ToRegister(instr->result());
5362
5363 // TODO(3095996): Get rid of this. For now, we need to make the
5364 // result register contain a valid pointer because it is already
5365 // contained in the register pointer map.
5366 __ Mov(result, 0);
5367
5368 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
5369 __ Push(string);
5370 // Push the index as a smi. This is safe because of the checks in
5371 // DoStringCharCodeAt above.
5372 Register index = ToRegister(instr->index());
5373 __ SmiTag(index);
5374 __ Push(index);
5375
5376 CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr,
5377 instr->context());
5378 __ AssertSmi(x0);
5379 __ SmiUntag(x0);
5380 __ StoreToSafepointRegisterSlot(x0, result);
5381 }
5382
5383
5384 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5385 class DeferredStringCharFromCode: public LDeferredCode {
5386 public:
5387 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5388 : LDeferredCode(codegen), instr_(instr) { }
5389 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5390 virtual LInstruction* instr() { return instr_; }
5391 private:
5392 LStringCharFromCode* instr_;
5393 };
5394
5395 DeferredStringCharFromCode* deferred =
5396 new(zone()) DeferredStringCharFromCode(this, instr);
5397
5398 ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
5399 Register char_code = ToRegister32(instr->char_code());
5400 Register result = ToRegister(instr->result());
5401
5402 __ Cmp(char_code, String::kMaxOneByteCharCode);
5403 __ B(hi, deferred->entry());
5404 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5405 __ Add(result, result, Operand(char_code, SXTW, kPointerSizeLog2));
5406 __ Ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
5407 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5408 __ B(eq, deferred->entry());
5409 __ Bind(deferred->exit());
5410 }
5411
5412
5413 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5414 Register char_code = ToRegister(instr->char_code());
5415 Register result = ToRegister(instr->result());
5416
5417 // TODO(3095996): Get rid of this. For now, we need to make the
5418 // result register contain a valid pointer because it is already
5419 // contained in the register pointer map.
5420 __ Mov(result, 0);
5421
5422 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
5423 __ SmiTag(char_code);
5424 __ Push(char_code);
5425 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
5426 __ StoreToSafepointRegisterSlot(x0, result);
5427 }
5428
5429
5430 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5431 ASSERT(ToRegister(instr->context()).is(cp));
5432 Token::Value op = instr->op();
5433
5434 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
5435 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5436 InlineSmiCheckInfo::EmitNotInlined(masm());
5437
5438 Condition condition = TokenToCondition(op, false);
5439
5440 EmitCompareAndBranch(instr, condition, x0, 0);
5441 }
5442
5443
5444 void LCodeGen::DoSubI(LSubI* instr) {
5445 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5446 Register result = ToRegister32(instr->result());
5447 Register left = ToRegister32(instr->left());
5448 Operand right = ToOperand32I(instr->right());
5449 if (can_overflow) {
5450 __ Subs(result, left, right);
5451 DeoptimizeIf(vs, instr->environment());
5452 } else {
5453 __ Sub(result, left, right);
5454 }
5455 }
5456
5457
5458 void LCodeGen::DoSubS(LSubS* instr) {
5459 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5460 Register result = ToRegister(instr->result());
5461 Register left = ToRegister(instr->left());
5462 Operand right = ToOperand(instr->right());
5463 if (can_overflow) {
5464 __ Subs(result, left, right);
5465 DeoptimizeIf(vs, instr->environment());
5466 } else {
5467 __ Sub(result, left, right);
5468 }
5469 }
5470
5471
5472 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5473 LOperand* value,
5474 LOperand* temp1,
5475 LOperand* temp2) {
5476 Register input = ToRegister(value);
5477 Register scratch1 = ToRegister(temp1);
5478 DoubleRegister dbl_scratch1 = double_scratch();
5479
5480 Label done;
5481
5482 // Load heap object map.
5483 __ Ldr(scratch1, FieldMemOperand(input, HeapObject::kMapOffset));
5484
5485 if (instr->truncating()) {
5486 Register output = ToRegister(instr->result());
5487 Register scratch2 = ToRegister(temp2);
5488 Label check_bools;
5489
5490 // If it's not a heap number, jump to undefined check.
5491 __ JumpIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex, &check_bools);
5492
5493 // A heap number: load value and convert to int32 using truncating function.
5494 __ TruncateHeapNumberToI(output, input);
5495 __ B(&done);
5496
5497 __ Bind(&check_bools);
5498
5499 Register true_root = output;
5500 Register false_root = scratch2;
5501 __ LoadTrueFalseRoots(true_root, false_root);
5502 __ Cmp(scratch1, true_root);
5503 __ Cset(output, eq);
5504 __ Ccmp(scratch1, false_root, ZFlag, ne);
5505 __ B(eq, &done);
5506
5507 // Output contains zero, undefined is converted to zero for truncating
5508 // conversions.
5509 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
5510 instr->environment());
5511 } else {
5512 Register output = ToRegister32(instr->result());
5513
5514 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5515
5516 // Deoptimized if it's not a heap number.
5517 DeoptimizeIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex,
5518 instr->environment());
5519
5520 // A heap number: load value and convert to int32 using non-truncating
5521 // function. If the result is out of range, branch to deoptimize.
5522 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5523 __ TryConvertDoubleToInt32(output, dbl_scratch1, dbl_scratch2);
5524 DeoptimizeIf(ne, instr->environment());
5525
5526 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5527 __ Cmp(output, 0);
5528 __ B(ne, &done);
5529 __ Fmov(scratch1, dbl_scratch1);
5530 DeoptimizeIfNegative(scratch1, instr->environment());
5531 }
5532 }
5533 __ Bind(&done);
5534 }
5535
5536
5537 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5538 class DeferredTaggedToI: public LDeferredCode {
5539 public:
5540 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5541 : LDeferredCode(codegen), instr_(instr) { }
5542 virtual void Generate() {
5543 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5544 instr_->temp2());
5545 }
5546
5547 virtual LInstruction* instr() { return instr_; }
5548 private:
5549 LTaggedToI* instr_;
5550 };
5551
5552 Register input = ToRegister(instr->value());
5553 Register output = ToRegister(instr->result());
5554
5555 if (instr->hydrogen()->value()->representation().IsSmi()) {
5556 __ SmiUntag(output, input);
5557 } else {
5558 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5559
5560 __ JumpIfNotSmi(input, deferred->entry());
5561 __ SmiUntag(output, input);
5562 __ Bind(deferred->exit());
5563 }
5564 }
5565
5566
5567 void LCodeGen::DoThisFunction(LThisFunction* instr) {
5568 Register result = ToRegister(instr->result());
5569 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5570 }
5571
5572
5573 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5574 ASSERT(ToRegister(instr->value()).Is(x0));
5575 ASSERT(ToRegister(instr->result()).Is(x0));
5576 __ Push(x0);
5577 CallRuntime(Runtime::kToFastProperties, 1, instr);
5578 }
5579
5580
5581 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5582 ASSERT(ToRegister(instr->context()).is(cp));
5583 Label materialized;
5584 // Registers will be used as follows:
5585 // x7 = literals array.
5586 // x1 = regexp literal.
5587 // x0 = regexp literal clone.
5588 // x10-x12 are used as temporaries.
5589 int literal_offset =
5590 FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5591 __ LoadObject(x7, instr->hydrogen()->literals());
5592 __ Ldr(x1, FieldMemOperand(x7, literal_offset));
5593 __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
5594
5595 // Create regexp literal using runtime function
5596 // Result will be in x0.
5597 __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
5598 __ Mov(x11, Operand(instr->hydrogen()->pattern()));
5599 __ Mov(x10, Operand(instr->hydrogen()->flags()));
5600 __ Push(x7, x12, x11, x10);
5601 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
5602 __ Mov(x1, x0);
5603
5604 __ Bind(&materialized);
5605 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5606 Label allocated, runtime_allocate;
5607
5608 __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
5609 __ B(&allocated);
5610
5611 __ Bind(&runtime_allocate);
5612 __ Mov(x0, Smi::FromInt(size));
5613 __ Push(x1, x0);
5614 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
5615 __ Pop(x1);
5616
5617 __ Bind(&allocated);
5618 // Copy the content into the newly allocated memory.
5619 __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
5620 }
5621
5622
5623 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5624 Register object = ToRegister(instr->object());
5625 Register temp1 = ToRegister(instr->temp1());
5626
5627 Handle<Map> from_map = instr->original_map();
5628 Handle<Map> to_map = instr->transitioned_map();
5629 ElementsKind from_kind = instr->from_kind();
5630 ElementsKind to_kind = instr->to_kind();
5631
5632 Label not_applicable;
5633 __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
5634
5635 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5636 Register new_map = ToRegister(instr->temp2());
5637 __ Mov(new_map, Operand(to_map));
5638 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5639 // Write barrier.
5640 __ RecordWriteField(object, HeapObject::kMapOffset, new_map, temp1,
5641 GetLinkRegisterState(), kDontSaveFPRegs);
5642 } else {
5643 ASSERT(ToRegister(instr->context()).is(cp));
5644 PushSafepointRegistersScope scope(
5645 this, Safepoint::kWithRegistersAndDoubles);
5646 __ Mov(x0, object);
5647 __ Mov(x1, Operand(to_map));
5648 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
5649 TransitionElementsKindStub stub(from_kind, to_kind, is_js_array);
5650 __ CallStub(&stub);
5651 RecordSafepointWithRegistersAndDoubles(
5652 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
5653 }
5654 __ Bind(&not_applicable);
5655 }
5656
5657
5658 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5659 Register object = ToRegister(instr->object());
5660 Register temp1 = ToRegister(instr->temp1());
5661 Register temp2 = ToRegister(instr->temp2());
5662
5663 Label no_memento_found;
5664 __ JumpIfJSArrayHasAllocationMemento(object, temp1, temp2, &no_memento_found);
5665 Deoptimize(instr->environment());
5666 __ Bind(&no_memento_found);
5667 }
5668
5669
5670 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5671 DoubleRegister input = ToDoubleRegister(instr->value());
5672 Register result = ToRegister(instr->result());
5673 __ TruncateDoubleToI(result, input);
5674 if (instr->tag_result()) {
5675 __ SmiTag(result, result);
5676 }
5677 }
5678
5679
5680 void LCodeGen::DoTypeof(LTypeof* instr) {
5681 Register input = ToRegister(instr->value());
5682 __ Push(input);
5683 CallRuntime(Runtime::kTypeof, 1, instr);
5684 }
5685
5686
5687 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5688 Handle<String> type_name = instr->type_literal();
5689 Label* true_label = instr->TrueLabel(chunk_);
5690 Label* false_label = instr->FalseLabel(chunk_);
5691 Register value = ToRegister(instr->value());
5692
5693 if (type_name->Equals(heap()->number_string())) {
5694 ASSERT(instr->temp1() != NULL);
5695 Register map = ToRegister(instr->temp1());
5696
5697 __ JumpIfSmi(value, true_label);
5698 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
5699 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
5700 EmitBranch(instr, eq);
5701
5702 } else if (type_name->Equals(heap()->string_string())) {
5703 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
5704 Register map = ToRegister(instr->temp1());
5705 Register scratch = ToRegister(instr->temp2());
5706
5707 __ JumpIfSmi(value, false_label);
5708 __ JumpIfObjectType(
5709 value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge);
5710 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5711 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
5712
5713 } else if (type_name->Equals(heap()->symbol_string())) {
5714 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
5715 Register map = ToRegister(instr->temp1());
5716 Register scratch = ToRegister(instr->temp2());
5717
5718 __ JumpIfSmi(value, false_label);
5719 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5720 EmitBranch(instr, eq);
5721
5722 } else if (type_name->Equals(heap()->boolean_string())) {
5723 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5724 __ CompareRoot(value, Heap::kFalseValueRootIndex);
5725 EmitBranch(instr, eq);
5726
5727 } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_string())) {
5728 __ CompareRoot(value, Heap::kNullValueRootIndex);
5729 EmitBranch(instr, eq);
5730
5731 } else if (type_name->Equals(heap()->undefined_string())) {
5732 ASSERT(instr->temp1() != NULL);
5733 Register scratch = ToRegister(instr->temp1());
5734
5735 __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
5736 __ JumpIfSmi(value, false_label);
5737 // Check for undetectable objects and jump to the true branch in this case.
5738 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5739 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5740 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5741
5742 } else if (type_name->Equals(heap()->function_string())) {
5743 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5744 ASSERT(instr->temp1() != NULL);
5745 Register type = ToRegister(instr->temp1());
5746
5747 __ JumpIfSmi(value, false_label);
5748 __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label);
5749 // HeapObject's type has been loaded into type register by JumpIfObjectType.
5750 EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE);
5751
5752 } else if (type_name->Equals(heap()->object_string())) {
5753 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
5754 Register map = ToRegister(instr->temp1());
5755 Register scratch = ToRegister(instr->temp2());
5756
5757 __ JumpIfSmi(value, false_label);
5758 if (!FLAG_harmony_typeof) {
5759 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5760 }
5761 __ JumpIfObjectType(value, map, scratch,
5762 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt);
5763 __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5764 __ B(gt, false_label);
5765 // Check for undetectable objects => false.
5766 __ Ldrb(scratch, FieldMemOperand(value, Map::kBitFieldOffset));
5767 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
5768
5769 } else {
5770 __ B(false_label);
5771 }
5772 }
5773
5774
5775 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5776 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5777 }
5778
5779
5780 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5781 Register object = ToRegister(instr->value());
5782 Register map = ToRegister(instr->map());
5783 Register temp = ToRegister(instr->temp());
5784 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5785 __ Cmp(map, temp);
5786 DeoptimizeIf(ne, instr->environment());
5787 }
5788
5789
5790 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5791 Register receiver = ToRegister(instr->receiver());
5792 Register function = ToRegister(instr->function());
5793 Register result = ToRegister(instr->result());
5794
5795 // If the receiver is null or undefined, we have to pass the global object as
5796 // a receiver to normal functions. Values have to be passed unchanged to
5797 // builtins and strict-mode functions.
5798 Label global_object, done, deopt;
5799
5800 if (!instr->hydrogen()->known_function()) {
5801 __ Ldr(result, FieldMemOperand(function,
5802 JSFunction::kSharedFunctionInfoOffset));
5803
5804 // CompilerHints is an int32 field. See objects.h.
5805 __ Ldr(result.W(),
5806 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5807
5808 // Do not transform the receiver to object for strict mode functions.
5809 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &done);
5810
5811 // Do not transform the receiver to object for builtins.
5812 __ Tbnz(result, SharedFunctionInfo::kNative, &done);
5813 }
5814
5815 // Normal function. Replace undefined or null with global receiver.
5816 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5817 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5818
5819 // Deoptimize if the receiver is not a JS object.
5820 __ JumpIfSmi(receiver, &deopt);
5821 __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
5822 __ Mov(result, receiver);
5823 __ B(ge, &done);
5824 // Otherwise, fall through to deopt.
5825
5826 __ Bind(&deopt);
5827 Deoptimize(instr->environment());
5828
5829 __ Bind(&global_object);
5830 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5831 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX));
5832 __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalReceiverOffset));
5833
5834 __ Bind(&done);
5835 }
5836
5837
5838 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5839 Register object = ToRegister(instr->object());
5840 Register index = ToRegister(instr->index());
5841 Register result = ToRegister(instr->result());
5842
5843 __ AssertSmi(index);
5844
5845 Label out_of_object, done;
5846 __ Cmp(index, Smi::FromInt(0));
5847 __ B(lt, &out_of_object);
5848
5849 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5850 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5851 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
5852
5853 __ B(&done);
5854
5855 __ Bind(&out_of_object);
5856 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5857 // Index is equal to negated out of object property index plus 1.
5858 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5859 __ Ldr(result, FieldMemOperand(result,
5860 FixedArray::kHeaderSize - kPointerSize));
5861 __ Bind(&done);
5862 }
5863
5864 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/a64/lithium-codegen-a64.h ('k') | src/a64/lithium-gap-resolver-a64.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698