OLD | NEW |
| (Empty) |
1 // Copyright 2013 the V8 project authors. All rights reserved. | |
2 // | |
3 // Redistribution and use in source and binary forms, with or without | |
4 // modification, are permitted provided that the following conditions are | |
5 // met: | |
6 // | |
7 // * Redistributions of source code must retain the above copyright | |
8 // notice, this list of conditions and the following disclaimer. | |
9 // * Redistributions in binary form must reproduce the above | |
10 // copyright notice, this list of conditions and the following | |
11 // disclaimer in the documentation and/or other materials provided | |
12 // with the distribution. | |
13 // * Neither the name of Google Inc. nor the names of its | |
14 // contributors may be used to endorse or promote products derived | |
15 // from this software without specific prior written permission. | |
16 // | |
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
28 | |
29 #include "v8.h" | |
30 | |
31 #if V8_TARGET_ARCH_A64 | |
32 | |
33 #define A64_DEFINE_REG_STATICS | |
34 | |
35 #include "a64/assembler-a64-inl.h" | |
36 | |
37 namespace v8 { | |
38 namespace internal { | |
39 | |
40 | |
41 // ----------------------------------------------------------------------------- | |
42 // CpuFeatures utilities (for V8 compatibility). | |
43 | |
44 ExternalReference ExternalReference::cpu_features() { | |
45 return ExternalReference(&CpuFeatures::supported_); | |
46 } | |
47 | |
48 | |
49 // ----------------------------------------------------------------------------- | |
50 // CPURegList utilities. | |
51 | |
52 CPURegister CPURegList::PopLowestIndex() { | |
53 ASSERT(IsValid()); | |
54 if (IsEmpty()) { | |
55 return NoCPUReg; | |
56 } | |
57 int index = CountTrailingZeros(list_, kRegListSizeInBits); | |
58 ASSERT((1 << index) & list_); | |
59 Remove(index); | |
60 return CPURegister::Create(index, size_, type_); | |
61 } | |
62 | |
63 | |
64 CPURegister CPURegList::PopHighestIndex() { | |
65 ASSERT(IsValid()); | |
66 if (IsEmpty()) { | |
67 return NoCPUReg; | |
68 } | |
69 int index = CountLeadingZeros(list_, kRegListSizeInBits); | |
70 index = kRegListSizeInBits - 1 - index; | |
71 ASSERT((1 << index) & list_); | |
72 Remove(index); | |
73 return CPURegister::Create(index, size_, type_); | |
74 } | |
75 | |
76 | |
77 void CPURegList::RemoveCalleeSaved() { | |
78 if (type() == CPURegister::kRegister) { | |
79 Remove(GetCalleeSaved(RegisterSizeInBits())); | |
80 } else if (type() == CPURegister::kFPRegister) { | |
81 Remove(GetCalleeSavedFP(RegisterSizeInBits())); | |
82 } else { | |
83 ASSERT(type() == CPURegister::kNoRegister); | |
84 ASSERT(IsEmpty()); | |
85 // The list must already be empty, so do nothing. | |
86 } | |
87 } | |
88 | |
89 | |
90 CPURegList CPURegList::GetCalleeSaved(unsigned size) { | |
91 return CPURegList(CPURegister::kRegister, size, 19, 29); | |
92 } | |
93 | |
94 | |
95 CPURegList CPURegList::GetCalleeSavedFP(unsigned size) { | |
96 return CPURegList(CPURegister::kFPRegister, size, 8, 15); | |
97 } | |
98 | |
99 | |
100 CPURegList CPURegList::GetCallerSaved(unsigned size) { | |
101 // Registers x0-x18 and lr (x30) are caller-saved. | |
102 CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18); | |
103 list.Combine(lr); | |
104 return list; | |
105 } | |
106 | |
107 | |
108 CPURegList CPURegList::GetCallerSavedFP(unsigned size) { | |
109 // Registers d0-d7 and d16-d31 are caller-saved. | |
110 CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7); | |
111 list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31)); | |
112 return list; | |
113 } | |
114 | |
115 | |
116 // This function defines the list of registers which are associated with a | |
117 // safepoint slot. Safepoint register slots are saved contiguously on the stack. | |
118 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register | |
119 // code to index in the safepoint register slots. Any change here can affect | |
120 // this mapping. | |
121 CPURegList CPURegList::GetSafepointSavedRegisters() { | |
122 CPURegList list = CPURegList::GetCalleeSaved(); | |
123 list.Combine( | |
124 CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved)); | |
125 | |
126 // Note that unfortunately we can't use symbolic names for registers and have | |
127 // to directly use register codes. This is because this function is used to | |
128 // initialize some static variables and we can't rely on register variables | |
129 // to be initialized due to static initialization order issues in C++. | |
130 | |
131 // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be | |
132 // preserved outside of the macro assembler. | |
133 list.Remove(16); | |
134 list.Remove(17); | |
135 | |
136 // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it | |
137 // is a caller-saved register according to the procedure call standard. | |
138 list.Combine(18); | |
139 | |
140 // Drop jssp as the stack pointer doesn't need to be included. | |
141 list.Remove(28); | |
142 | |
143 // Add the link register (x30) to the safepoint list. | |
144 list.Combine(30); | |
145 | |
146 return list; | |
147 } | |
148 | |
149 | |
150 // ----------------------------------------------------------------------------- | |
151 // Implementation of RelocInfo | |
152 | |
153 const int RelocInfo::kApplyMask = 0; | |
154 | |
155 | |
156 bool RelocInfo::IsCodedSpecially() { | |
157 // The deserializer needs to know whether a pointer is specially coded. Being | |
158 // specially coded on A64 means that it is a movz/movk sequence. We don't | |
159 // generate those for relocatable pointers. | |
160 return false; | |
161 } | |
162 | |
163 | |
164 bool RelocInfo::IsInConstantPool() { | |
165 Instruction* instr = reinterpret_cast<Instruction*>(pc_); | |
166 return instr->IsLdrLiteralX(); | |
167 } | |
168 | |
169 | |
170 void RelocInfo::PatchCode(byte* instructions, int instruction_count) { | |
171 // Patch the code at the current address with the supplied instructions. | |
172 Instr* pc = reinterpret_cast<Instr*>(pc_); | |
173 Instr* instr = reinterpret_cast<Instr*>(instructions); | |
174 for (int i = 0; i < instruction_count; i++) { | |
175 *(pc + i) = *(instr + i); | |
176 } | |
177 | |
178 // Indicate that code has changed. | |
179 CPU::FlushICache(pc_, instruction_count * kInstructionSize); | |
180 } | |
181 | |
182 | |
183 // Patch the code at the current PC with a call to the target address. | |
184 // Additional guard instructions can be added if required. | |
185 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { | |
186 UNIMPLEMENTED(); | |
187 } | |
188 | |
189 | |
190 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2, | |
191 Register reg3, Register reg4) { | |
192 CPURegList regs(reg1, reg2, reg3, reg4); | |
193 for (int i = 0; i < Register::NumAllocatableRegisters(); i++) { | |
194 Register candidate = Register::FromAllocationIndex(i); | |
195 if (regs.IncludesAliasOf(candidate)) continue; | |
196 return candidate; | |
197 } | |
198 UNREACHABLE(); | |
199 return NoReg; | |
200 } | |
201 | |
202 | |
203 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, | |
204 const CPURegister& reg3, const CPURegister& reg4, | |
205 const CPURegister& reg5, const CPURegister& reg6, | |
206 const CPURegister& reg7, const CPURegister& reg8) { | |
207 int number_of_valid_regs = 0; | |
208 int number_of_valid_fpregs = 0; | |
209 | |
210 RegList unique_regs = 0; | |
211 RegList unique_fpregs = 0; | |
212 | |
213 const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}; | |
214 | |
215 for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) { | |
216 if (regs[i].IsRegister()) { | |
217 number_of_valid_regs++; | |
218 unique_regs |= regs[i].Bit(); | |
219 } else if (regs[i].IsFPRegister()) { | |
220 number_of_valid_fpregs++; | |
221 unique_fpregs |= regs[i].Bit(); | |
222 } else { | |
223 ASSERT(!regs[i].IsValid()); | |
224 } | |
225 } | |
226 | |
227 int number_of_unique_regs = | |
228 CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte); | |
229 int number_of_unique_fpregs = | |
230 CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte); | |
231 | |
232 ASSERT(number_of_valid_regs >= number_of_unique_regs); | |
233 ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs); | |
234 | |
235 return (number_of_valid_regs != number_of_unique_regs) || | |
236 (number_of_valid_fpregs != number_of_unique_fpregs); | |
237 } | |
238 | |
239 | |
240 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, | |
241 const CPURegister& reg3, const CPURegister& reg4, | |
242 const CPURegister& reg5, const CPURegister& reg6, | |
243 const CPURegister& reg7, const CPURegister& reg8) { | |
244 ASSERT(reg1.IsValid()); | |
245 bool match = true; | |
246 match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1); | |
247 match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1); | |
248 match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1); | |
249 match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1); | |
250 match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1); | |
251 match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1); | |
252 match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1); | |
253 return match; | |
254 } | |
255 | |
256 | |
257 void Operand::initialize_handle(Handle<Object> handle) { | |
258 AllowDeferredHandleDereference using_raw_address; | |
259 | |
260 // Verify all Objects referred by code are NOT in new space. | |
261 Object* obj = *handle; | |
262 if (obj->IsHeapObject()) { | |
263 ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj)); | |
264 immediate_ = reinterpret_cast<intptr_t>(handle.location()); | |
265 rmode_ = RelocInfo::EMBEDDED_OBJECT; | |
266 } else { | |
267 STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t)); | |
268 immediate_ = reinterpret_cast<intptr_t>(obj); | |
269 rmode_ = RelocInfo::NONE64; | |
270 } | |
271 } | |
272 | |
273 | |
274 bool Operand::NeedsRelocation() const { | |
275 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) { | |
276 #ifdef DEBUG | |
277 if (!Serializer::enabled()) { | |
278 Serializer::TooLateToEnableNow(); | |
279 } | |
280 #endif | |
281 return Serializer::enabled(); | |
282 } | |
283 | |
284 return !RelocInfo::IsNone(rmode_); | |
285 } | |
286 | |
287 | |
288 // Assembler | |
289 | |
290 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size) | |
291 : AssemblerBase(isolate, buffer, buffer_size), | |
292 recorded_ast_id_(TypeFeedbackId::None()), | |
293 unresolved_branches_(), | |
294 positions_recorder_(this) { | |
295 const_pool_blocked_nesting_ = 0; | |
296 veneer_pool_blocked_nesting_ = 0; | |
297 Reset(); | |
298 } | |
299 | |
300 | |
301 Assembler::~Assembler() { | |
302 ASSERT(num_pending_reloc_info_ == 0); | |
303 ASSERT(const_pool_blocked_nesting_ == 0); | |
304 ASSERT(veneer_pool_blocked_nesting_ == 0); | |
305 } | |
306 | |
307 | |
308 void Assembler::Reset() { | |
309 #ifdef DEBUG | |
310 ASSERT((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_)); | |
311 ASSERT(const_pool_blocked_nesting_ == 0); | |
312 ASSERT(veneer_pool_blocked_nesting_ == 0); | |
313 ASSERT(unresolved_branches_.empty()); | |
314 memset(buffer_, 0, pc_ - buffer_); | |
315 #endif | |
316 pc_ = buffer_; | |
317 reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_), | |
318 reinterpret_cast<byte*>(pc_)); | |
319 num_pending_reloc_info_ = 0; | |
320 next_constant_pool_check_ = 0; | |
321 next_veneer_pool_check_ = kMaxInt; | |
322 no_const_pool_before_ = 0; | |
323 first_const_pool_use_ = -1; | |
324 ClearRecordedAstId(); | |
325 } | |
326 | |
327 | |
328 void Assembler::GetCode(CodeDesc* desc) { | |
329 // Emit constant pool if necessary. | |
330 CheckConstPool(true, false); | |
331 ASSERT(num_pending_reloc_info_ == 0); | |
332 | |
333 // Set up code descriptor. | |
334 if (desc) { | |
335 desc->buffer = reinterpret_cast<byte*>(buffer_); | |
336 desc->buffer_size = buffer_size_; | |
337 desc->instr_size = pc_offset(); | |
338 desc->reloc_size = (reinterpret_cast<byte*>(buffer_) + buffer_size_) - | |
339 reloc_info_writer.pos(); | |
340 desc->origin = this; | |
341 } | |
342 } | |
343 | |
344 | |
345 void Assembler::Align(int m) { | |
346 ASSERT(m >= 4 && IsPowerOf2(m)); | |
347 while ((pc_offset() & (m - 1)) != 0) { | |
348 nop(); | |
349 } | |
350 } | |
351 | |
352 | |
353 void Assembler::CheckLabelLinkChain(Label const * label) { | |
354 #ifdef DEBUG | |
355 if (label->is_linked()) { | |
356 int linkoffset = label->pos(); | |
357 bool end_of_chain = false; | |
358 while (!end_of_chain) { | |
359 Instruction * link = InstructionAt(linkoffset); | |
360 int linkpcoffset = link->ImmPCOffset(); | |
361 int prevlinkoffset = linkoffset + linkpcoffset; | |
362 | |
363 end_of_chain = (linkoffset == prevlinkoffset); | |
364 linkoffset = linkoffset + linkpcoffset; | |
365 } | |
366 } | |
367 #endif | |
368 } | |
369 | |
370 | |
371 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch, | |
372 Label* label, | |
373 Instruction* label_veneer) { | |
374 ASSERT(label->is_linked()); | |
375 | |
376 CheckLabelLinkChain(label); | |
377 | |
378 Instruction* link = InstructionAt(label->pos()); | |
379 Instruction* prev_link = link; | |
380 Instruction* next_link; | |
381 bool end_of_chain = false; | |
382 | |
383 while (link != branch && !end_of_chain) { | |
384 next_link = link->ImmPCOffsetTarget(); | |
385 end_of_chain = (link == next_link); | |
386 prev_link = link; | |
387 link = next_link; | |
388 } | |
389 | |
390 ASSERT(branch == link); | |
391 next_link = branch->ImmPCOffsetTarget(); | |
392 | |
393 if (branch == prev_link) { | |
394 // The branch is the first instruction in the chain. | |
395 if (branch == next_link) { | |
396 // It is also the last instruction in the chain, so it is the only branch | |
397 // currently referring to this label. | |
398 label->Unuse(); | |
399 } else { | |
400 label->link_to(reinterpret_cast<byte*>(next_link) - buffer_); | |
401 } | |
402 | |
403 } else if (branch == next_link) { | |
404 // The branch is the last (but not also the first) instruction in the chain. | |
405 prev_link->SetImmPCOffsetTarget(prev_link); | |
406 | |
407 } else { | |
408 // The branch is in the middle of the chain. | |
409 if (prev_link->IsTargetInImmPCOffsetRange(next_link)) { | |
410 prev_link->SetImmPCOffsetTarget(next_link); | |
411 } else if (label_veneer != NULL) { | |
412 // Use the veneer for all previous links in the chain. | |
413 prev_link->SetImmPCOffsetTarget(prev_link); | |
414 | |
415 end_of_chain = false; | |
416 link = next_link; | |
417 while (!end_of_chain) { | |
418 next_link = link->ImmPCOffsetTarget(); | |
419 end_of_chain = (link == next_link); | |
420 link->SetImmPCOffsetTarget(label_veneer); | |
421 link = next_link; | |
422 } | |
423 } else { | |
424 // The assert below will fire. | |
425 // Some other work could be attempted to fix up the chain, but it would be | |
426 // rather complicated. If we crash here, we may want to consider using an | |
427 // other mechanism than a chain of branches. | |
428 // | |
429 // Note that this situation currently should not happen, as we always call | |
430 // this function with a veneer to the target label. | |
431 // However this could happen with a MacroAssembler in the following state: | |
432 // [previous code] | |
433 // B(label); | |
434 // [20KB code] | |
435 // Tbz(label); // First tbz. Pointing to unconditional branch. | |
436 // [20KB code] | |
437 // Tbz(label); // Second tbz. Pointing to the first tbz. | |
438 // [more code] | |
439 // and this function is called to remove the first tbz from the label link | |
440 // chain. Since tbz has a range of +-32KB, the second tbz cannot point to | |
441 // the unconditional branch. | |
442 CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link)); | |
443 UNREACHABLE(); | |
444 } | |
445 } | |
446 | |
447 CheckLabelLinkChain(label); | |
448 } | |
449 | |
450 | |
451 void Assembler::bind(Label* label) { | |
452 // Bind label to the address at pc_. All instructions (most likely branches) | |
453 // that are linked to this label will be updated to point to the newly-bound | |
454 // label. | |
455 | |
456 ASSERT(!label->is_near_linked()); | |
457 ASSERT(!label->is_bound()); | |
458 | |
459 // If the label is linked, the link chain looks something like this: | |
460 // | |
461 // |--I----I-------I-------L | |
462 // |---------------------->| pc_offset | |
463 // |-------------->| linkoffset = label->pos() | |
464 // |<------| link->ImmPCOffset() | |
465 // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset() | |
466 // | |
467 // On each iteration, the last link is updated and then removed from the | |
468 // chain until only one remains. At that point, the label is bound. | |
469 // | |
470 // If the label is not linked, no preparation is required before binding. | |
471 while (label->is_linked()) { | |
472 int linkoffset = label->pos(); | |
473 Instruction* link = InstructionAt(linkoffset); | |
474 int prevlinkoffset = linkoffset + link->ImmPCOffset(); | |
475 | |
476 CheckLabelLinkChain(label); | |
477 | |
478 ASSERT(linkoffset >= 0); | |
479 ASSERT(linkoffset < pc_offset()); | |
480 ASSERT((linkoffset > prevlinkoffset) || | |
481 (linkoffset - prevlinkoffset == kStartOfLabelLinkChain)); | |
482 ASSERT(prevlinkoffset >= 0); | |
483 | |
484 // Update the link to point to the label. | |
485 link->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_)); | |
486 | |
487 // Link the label to the previous link in the chain. | |
488 if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) { | |
489 // We hit kStartOfLabelLinkChain, so the chain is fully processed. | |
490 label->Unuse(); | |
491 } else { | |
492 // Update the label for the next iteration. | |
493 label->link_to(prevlinkoffset); | |
494 } | |
495 } | |
496 label->bind_to(pc_offset()); | |
497 | |
498 ASSERT(label->is_bound()); | |
499 ASSERT(!label->is_linked()); | |
500 | |
501 DeleteUnresolvedBranchInfoForLabel(label); | |
502 } | |
503 | |
504 | |
505 int Assembler::LinkAndGetByteOffsetTo(Label* label) { | |
506 ASSERT(sizeof(*pc_) == 1); | |
507 CheckLabelLinkChain(label); | |
508 | |
509 int offset; | |
510 if (label->is_bound()) { | |
511 // The label is bound, so it does not need to be updated. Referring | |
512 // instructions must link directly to the label as they will not be | |
513 // updated. | |
514 // | |
515 // In this case, label->pos() returns the offset of the label from the | |
516 // start of the buffer. | |
517 // | |
518 // Note that offset can be zero for self-referential instructions. (This | |
519 // could be useful for ADR, for example.) | |
520 offset = label->pos() - pc_offset(); | |
521 ASSERT(offset <= 0); | |
522 } else { | |
523 if (label->is_linked()) { | |
524 // The label is linked, so the referring instruction should be added onto | |
525 // the end of the label's link chain. | |
526 // | |
527 // In this case, label->pos() returns the offset of the last linked | |
528 // instruction from the start of the buffer. | |
529 offset = label->pos() - pc_offset(); | |
530 ASSERT(offset != kStartOfLabelLinkChain); | |
531 // Note that the offset here needs to be PC-relative only so that the | |
532 // first instruction in a buffer can link to an unbound label. Otherwise, | |
533 // the offset would be 0 for this case, and 0 is reserved for | |
534 // kStartOfLabelLinkChain. | |
535 } else { | |
536 // The label is unused, so it now becomes linked and the referring | |
537 // instruction is at the start of the new link chain. | |
538 offset = kStartOfLabelLinkChain; | |
539 } | |
540 // The instruction at pc is now the last link in the label's chain. | |
541 label->link_to(pc_offset()); | |
542 } | |
543 | |
544 return offset; | |
545 } | |
546 | |
547 | |
548 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) { | |
549 if (unresolved_branches_.empty()) { | |
550 ASSERT(next_veneer_pool_check_ == kMaxInt); | |
551 return; | |
552 } | |
553 | |
554 // Branches to this label will be resolved when the label is bound below. | |
555 std::multimap<int, FarBranchInfo>::iterator it_tmp, it; | |
556 it = unresolved_branches_.begin(); | |
557 while (it != unresolved_branches_.end()) { | |
558 it_tmp = it++; | |
559 if (it_tmp->second.label_ == label) { | |
560 CHECK(it_tmp->first >= pc_offset()); | |
561 unresolved_branches_.erase(it_tmp); | |
562 } | |
563 } | |
564 if (unresolved_branches_.empty()) { | |
565 next_veneer_pool_check_ = kMaxInt; | |
566 } else { | |
567 next_veneer_pool_check_ = | |
568 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; | |
569 } | |
570 } | |
571 | |
572 | |
573 void Assembler::StartBlockConstPool() { | |
574 if (const_pool_blocked_nesting_++ == 0) { | |
575 // Prevent constant pool checks happening by setting the next check to | |
576 // the biggest possible offset. | |
577 next_constant_pool_check_ = kMaxInt; | |
578 } | |
579 } | |
580 | |
581 | |
582 void Assembler::EndBlockConstPool() { | |
583 if (--const_pool_blocked_nesting_ == 0) { | |
584 // Check the constant pool hasn't been blocked for too long. | |
585 ASSERT((num_pending_reloc_info_ == 0) || | |
586 (pc_offset() < (first_const_pool_use_ + kMaxDistToConstPool))); | |
587 // Two cases: | |
588 // * no_const_pool_before_ >= next_constant_pool_check_ and the emission is | |
589 // still blocked | |
590 // * no_const_pool_before_ < next_constant_pool_check_ and the next emit | |
591 // will trigger a check. | |
592 next_constant_pool_check_ = no_const_pool_before_; | |
593 } | |
594 } | |
595 | |
596 | |
597 bool Assembler::is_const_pool_blocked() const { | |
598 return (const_pool_blocked_nesting_ > 0) || | |
599 (pc_offset() < no_const_pool_before_); | |
600 } | |
601 | |
602 | |
603 bool Assembler::IsConstantPoolAt(Instruction* instr) { | |
604 // The constant pool marker is made of two instructions. These instructions | |
605 // will never be emitted by the JIT, so checking for the first one is enough: | |
606 // 0: ldr xzr, #<size of pool> | |
607 bool result = instr->IsLdrLiteralX() && (instr->Rt() == xzr.code()); | |
608 | |
609 // It is still worth asserting the marker is complete. | |
610 // 4: blr xzr | |
611 ASSERT(!result || (instr->following()->IsBranchAndLinkToRegister() && | |
612 instr->following()->Rn() == xzr.code())); | |
613 | |
614 return result; | |
615 } | |
616 | |
617 | |
618 int Assembler::ConstantPoolSizeAt(Instruction* instr) { | |
619 #ifdef USE_SIMULATOR | |
620 // Assembler::debug() embeds constants directly into the instruction stream. | |
621 // Although this is not a genuine constant pool, treat it like one to avoid | |
622 // disassembling the constants. | |
623 if ((instr->Mask(ExceptionMask) == HLT) && | |
624 (instr->ImmException() == kImmExceptionIsDebug)) { | |
625 const char* message = | |
626 reinterpret_cast<const char*>( | |
627 instr->InstructionAtOffset(kDebugMessageOffset)); | |
628 int size = kDebugMessageOffset + strlen(message) + 1; | |
629 return RoundUp(size, kInstructionSize) / kInstructionSize; | |
630 } | |
631 // Same for printf support, see MacroAssembler::CallPrintf(). | |
632 if ((instr->Mask(ExceptionMask) == HLT) && | |
633 (instr->ImmException() == kImmExceptionIsPrintf)) { | |
634 return kPrintfLength / kInstructionSize; | |
635 } | |
636 #endif | |
637 if (IsConstantPoolAt(instr)) { | |
638 return instr->ImmLLiteral(); | |
639 } else { | |
640 return -1; | |
641 } | |
642 } | |
643 | |
644 | |
645 void Assembler::ConstantPoolMarker(uint32_t size) { | |
646 ASSERT(is_const_pool_blocked()); | |
647 // + 1 is for the crash guard. | |
648 Emit(LDR_x_lit | ImmLLiteral(2 * size + 1) | Rt(xzr)); | |
649 } | |
650 | |
651 | |
652 void Assembler::EmitPoolGuard() { | |
653 // We must generate only one instruction as this is used in scopes that | |
654 // control the size of the code generated. | |
655 Emit(BLR | Rn(xzr)); | |
656 } | |
657 | |
658 | |
659 void Assembler::ConstantPoolGuard() { | |
660 #ifdef DEBUG | |
661 // Currently this is only used after a constant pool marker. | |
662 ASSERT(is_const_pool_blocked()); | |
663 Instruction* instr = reinterpret_cast<Instruction*>(pc_); | |
664 ASSERT(instr->preceding()->IsLdrLiteralX() && | |
665 instr->preceding()->Rt() == xzr.code()); | |
666 #endif | |
667 EmitPoolGuard(); | |
668 } | |
669 | |
670 | |
671 void Assembler::StartBlockVeneerPool() { | |
672 ++veneer_pool_blocked_nesting_; | |
673 } | |
674 | |
675 | |
676 void Assembler::EndBlockVeneerPool() { | |
677 if (--veneer_pool_blocked_nesting_ == 0) { | |
678 // Check the veneer pool hasn't been blocked for too long. | |
679 ASSERT(unresolved_branches_.empty() || | |
680 (pc_offset() < unresolved_branches_first_limit())); | |
681 } | |
682 } | |
683 | |
684 | |
685 void Assembler::br(const Register& xn) { | |
686 positions_recorder()->WriteRecordedPositions(); | |
687 ASSERT(xn.Is64Bits()); | |
688 Emit(BR | Rn(xn)); | |
689 } | |
690 | |
691 | |
692 void Assembler::blr(const Register& xn) { | |
693 positions_recorder()->WriteRecordedPositions(); | |
694 ASSERT(xn.Is64Bits()); | |
695 // The pattern 'blr xzr' is used as a guard to detect when execution falls | |
696 // through the constant pool. It should not be emitted. | |
697 ASSERT(!xn.Is(xzr)); | |
698 Emit(BLR | Rn(xn)); | |
699 } | |
700 | |
701 | |
702 void Assembler::ret(const Register& xn) { | |
703 positions_recorder()->WriteRecordedPositions(); | |
704 ASSERT(xn.Is64Bits()); | |
705 Emit(RET | Rn(xn)); | |
706 } | |
707 | |
708 | |
709 void Assembler::b(int imm26) { | |
710 Emit(B | ImmUncondBranch(imm26)); | |
711 } | |
712 | |
713 | |
714 void Assembler::b(Label* label) { | |
715 positions_recorder()->WriteRecordedPositions(); | |
716 b(LinkAndGetInstructionOffsetTo(label)); | |
717 } | |
718 | |
719 | |
720 void Assembler::b(int imm19, Condition cond) { | |
721 Emit(B_cond | ImmCondBranch(imm19) | cond); | |
722 } | |
723 | |
724 | |
725 void Assembler::b(Label* label, Condition cond) { | |
726 positions_recorder()->WriteRecordedPositions(); | |
727 b(LinkAndGetInstructionOffsetTo(label), cond); | |
728 } | |
729 | |
730 | |
731 void Assembler::bl(int imm26) { | |
732 positions_recorder()->WriteRecordedPositions(); | |
733 Emit(BL | ImmUncondBranch(imm26)); | |
734 } | |
735 | |
736 | |
737 void Assembler::bl(Label* label) { | |
738 positions_recorder()->WriteRecordedPositions(); | |
739 bl(LinkAndGetInstructionOffsetTo(label)); | |
740 } | |
741 | |
742 | |
743 void Assembler::cbz(const Register& rt, | |
744 int imm19) { | |
745 positions_recorder()->WriteRecordedPositions(); | |
746 Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt)); | |
747 } | |
748 | |
749 | |
750 void Assembler::cbz(const Register& rt, | |
751 Label* label) { | |
752 positions_recorder()->WriteRecordedPositions(); | |
753 cbz(rt, LinkAndGetInstructionOffsetTo(label)); | |
754 } | |
755 | |
756 | |
757 void Assembler::cbnz(const Register& rt, | |
758 int imm19) { | |
759 positions_recorder()->WriteRecordedPositions(); | |
760 Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt)); | |
761 } | |
762 | |
763 | |
764 void Assembler::cbnz(const Register& rt, | |
765 Label* label) { | |
766 positions_recorder()->WriteRecordedPositions(); | |
767 cbnz(rt, LinkAndGetInstructionOffsetTo(label)); | |
768 } | |
769 | |
770 | |
771 void Assembler::tbz(const Register& rt, | |
772 unsigned bit_pos, | |
773 int imm14) { | |
774 positions_recorder()->WriteRecordedPositions(); | |
775 ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits))); | |
776 Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); | |
777 } | |
778 | |
779 | |
780 void Assembler::tbz(const Register& rt, | |
781 unsigned bit_pos, | |
782 Label* label) { | |
783 positions_recorder()->WriteRecordedPositions(); | |
784 tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); | |
785 } | |
786 | |
787 | |
788 void Assembler::tbnz(const Register& rt, | |
789 unsigned bit_pos, | |
790 int imm14) { | |
791 positions_recorder()->WriteRecordedPositions(); | |
792 ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits))); | |
793 Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); | |
794 } | |
795 | |
796 | |
797 void Assembler::tbnz(const Register& rt, | |
798 unsigned bit_pos, | |
799 Label* label) { | |
800 positions_recorder()->WriteRecordedPositions(); | |
801 tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); | |
802 } | |
803 | |
804 | |
805 void Assembler::adr(const Register& rd, int imm21) { | |
806 ASSERT(rd.Is64Bits()); | |
807 Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd)); | |
808 } | |
809 | |
810 | |
811 void Assembler::adr(const Register& rd, Label* label) { | |
812 adr(rd, LinkAndGetByteOffsetTo(label)); | |
813 } | |
814 | |
815 | |
816 void Assembler::add(const Register& rd, | |
817 const Register& rn, | |
818 const Operand& operand) { | |
819 AddSub(rd, rn, operand, LeaveFlags, ADD); | |
820 } | |
821 | |
822 | |
823 void Assembler::adds(const Register& rd, | |
824 const Register& rn, | |
825 const Operand& operand) { | |
826 AddSub(rd, rn, operand, SetFlags, ADD); | |
827 } | |
828 | |
829 | |
830 void Assembler::cmn(const Register& rn, | |
831 const Operand& operand) { | |
832 Register zr = AppropriateZeroRegFor(rn); | |
833 adds(zr, rn, operand); | |
834 } | |
835 | |
836 | |
837 void Assembler::sub(const Register& rd, | |
838 const Register& rn, | |
839 const Operand& operand) { | |
840 AddSub(rd, rn, operand, LeaveFlags, SUB); | |
841 } | |
842 | |
843 | |
844 void Assembler::subs(const Register& rd, | |
845 const Register& rn, | |
846 const Operand& operand) { | |
847 AddSub(rd, rn, operand, SetFlags, SUB); | |
848 } | |
849 | |
850 | |
851 void Assembler::cmp(const Register& rn, const Operand& operand) { | |
852 Register zr = AppropriateZeroRegFor(rn); | |
853 subs(zr, rn, operand); | |
854 } | |
855 | |
856 | |
857 void Assembler::neg(const Register& rd, const Operand& operand) { | |
858 Register zr = AppropriateZeroRegFor(rd); | |
859 sub(rd, zr, operand); | |
860 } | |
861 | |
862 | |
863 void Assembler::negs(const Register& rd, const Operand& operand) { | |
864 Register zr = AppropriateZeroRegFor(rd); | |
865 subs(rd, zr, operand); | |
866 } | |
867 | |
868 | |
869 void Assembler::adc(const Register& rd, | |
870 const Register& rn, | |
871 const Operand& operand) { | |
872 AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC); | |
873 } | |
874 | |
875 | |
876 void Assembler::adcs(const Register& rd, | |
877 const Register& rn, | |
878 const Operand& operand) { | |
879 AddSubWithCarry(rd, rn, operand, SetFlags, ADC); | |
880 } | |
881 | |
882 | |
883 void Assembler::sbc(const Register& rd, | |
884 const Register& rn, | |
885 const Operand& operand) { | |
886 AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC); | |
887 } | |
888 | |
889 | |
890 void Assembler::sbcs(const Register& rd, | |
891 const Register& rn, | |
892 const Operand& operand) { | |
893 AddSubWithCarry(rd, rn, operand, SetFlags, SBC); | |
894 } | |
895 | |
896 | |
897 void Assembler::ngc(const Register& rd, const Operand& operand) { | |
898 Register zr = AppropriateZeroRegFor(rd); | |
899 sbc(rd, zr, operand); | |
900 } | |
901 | |
902 | |
903 void Assembler::ngcs(const Register& rd, const Operand& operand) { | |
904 Register zr = AppropriateZeroRegFor(rd); | |
905 sbcs(rd, zr, operand); | |
906 } | |
907 | |
908 | |
909 // Logical instructions. | |
910 void Assembler::and_(const Register& rd, | |
911 const Register& rn, | |
912 const Operand& operand) { | |
913 Logical(rd, rn, operand, AND); | |
914 } | |
915 | |
916 | |
917 void Assembler::ands(const Register& rd, | |
918 const Register& rn, | |
919 const Operand& operand) { | |
920 Logical(rd, rn, operand, ANDS); | |
921 } | |
922 | |
923 | |
924 void Assembler::tst(const Register& rn, | |
925 const Operand& operand) { | |
926 ands(AppropriateZeroRegFor(rn), rn, operand); | |
927 } | |
928 | |
929 | |
930 void Assembler::bic(const Register& rd, | |
931 const Register& rn, | |
932 const Operand& operand) { | |
933 Logical(rd, rn, operand, BIC); | |
934 } | |
935 | |
936 | |
937 void Assembler::bics(const Register& rd, | |
938 const Register& rn, | |
939 const Operand& operand) { | |
940 Logical(rd, rn, operand, BICS); | |
941 } | |
942 | |
943 | |
944 void Assembler::orr(const Register& rd, | |
945 const Register& rn, | |
946 const Operand& operand) { | |
947 Logical(rd, rn, operand, ORR); | |
948 } | |
949 | |
950 | |
951 void Assembler::orn(const Register& rd, | |
952 const Register& rn, | |
953 const Operand& operand) { | |
954 Logical(rd, rn, operand, ORN); | |
955 } | |
956 | |
957 | |
958 void Assembler::eor(const Register& rd, | |
959 const Register& rn, | |
960 const Operand& operand) { | |
961 Logical(rd, rn, operand, EOR); | |
962 } | |
963 | |
964 | |
965 void Assembler::eon(const Register& rd, | |
966 const Register& rn, | |
967 const Operand& operand) { | |
968 Logical(rd, rn, operand, EON); | |
969 } | |
970 | |
971 | |
972 void Assembler::lslv(const Register& rd, | |
973 const Register& rn, | |
974 const Register& rm) { | |
975 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
976 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
977 Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd)); | |
978 } | |
979 | |
980 | |
981 void Assembler::lsrv(const Register& rd, | |
982 const Register& rn, | |
983 const Register& rm) { | |
984 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
985 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
986 Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd)); | |
987 } | |
988 | |
989 | |
990 void Assembler::asrv(const Register& rd, | |
991 const Register& rn, | |
992 const Register& rm) { | |
993 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
994 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
995 Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd)); | |
996 } | |
997 | |
998 | |
999 void Assembler::rorv(const Register& rd, | |
1000 const Register& rn, | |
1001 const Register& rm) { | |
1002 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1003 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
1004 Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd)); | |
1005 } | |
1006 | |
1007 | |
1008 // Bitfield operations. | |
1009 void Assembler::bfm(const Register& rd, | |
1010 const Register& rn, | |
1011 unsigned immr, | |
1012 unsigned imms) { | |
1013 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1014 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); | |
1015 Emit(SF(rd) | BFM | N | | |
1016 ImmR(immr, rd.SizeInBits()) | | |
1017 ImmS(imms, rn.SizeInBits()) | | |
1018 Rn(rn) | Rd(rd)); | |
1019 } | |
1020 | |
1021 | |
1022 void Assembler::sbfm(const Register& rd, | |
1023 const Register& rn, | |
1024 unsigned immr, | |
1025 unsigned imms) { | |
1026 ASSERT(rd.Is64Bits() || rn.Is32Bits()); | |
1027 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); | |
1028 Emit(SF(rd) | SBFM | N | | |
1029 ImmR(immr, rd.SizeInBits()) | | |
1030 ImmS(imms, rn.SizeInBits()) | | |
1031 Rn(rn) | Rd(rd)); | |
1032 } | |
1033 | |
1034 | |
1035 void Assembler::ubfm(const Register& rd, | |
1036 const Register& rn, | |
1037 unsigned immr, | |
1038 unsigned imms) { | |
1039 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1040 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); | |
1041 Emit(SF(rd) | UBFM | N | | |
1042 ImmR(immr, rd.SizeInBits()) | | |
1043 ImmS(imms, rn.SizeInBits()) | | |
1044 Rn(rn) | Rd(rd)); | |
1045 } | |
1046 | |
1047 | |
1048 void Assembler::extr(const Register& rd, | |
1049 const Register& rn, | |
1050 const Register& rm, | |
1051 unsigned lsb) { | |
1052 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1053 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
1054 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); | |
1055 Emit(SF(rd) | EXTR | N | Rm(rm) | | |
1056 ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd)); | |
1057 } | |
1058 | |
1059 | |
1060 void Assembler::csel(const Register& rd, | |
1061 const Register& rn, | |
1062 const Register& rm, | |
1063 Condition cond) { | |
1064 ConditionalSelect(rd, rn, rm, cond, CSEL); | |
1065 } | |
1066 | |
1067 | |
1068 void Assembler::csinc(const Register& rd, | |
1069 const Register& rn, | |
1070 const Register& rm, | |
1071 Condition cond) { | |
1072 ConditionalSelect(rd, rn, rm, cond, CSINC); | |
1073 } | |
1074 | |
1075 | |
1076 void Assembler::csinv(const Register& rd, | |
1077 const Register& rn, | |
1078 const Register& rm, | |
1079 Condition cond) { | |
1080 ConditionalSelect(rd, rn, rm, cond, CSINV); | |
1081 } | |
1082 | |
1083 | |
1084 void Assembler::csneg(const Register& rd, | |
1085 const Register& rn, | |
1086 const Register& rm, | |
1087 Condition cond) { | |
1088 ConditionalSelect(rd, rn, rm, cond, CSNEG); | |
1089 } | |
1090 | |
1091 | |
1092 void Assembler::cset(const Register &rd, Condition cond) { | |
1093 ASSERT((cond != al) && (cond != nv)); | |
1094 Register zr = AppropriateZeroRegFor(rd); | |
1095 csinc(rd, zr, zr, InvertCondition(cond)); | |
1096 } | |
1097 | |
1098 | |
1099 void Assembler::csetm(const Register &rd, Condition cond) { | |
1100 ASSERT((cond != al) && (cond != nv)); | |
1101 Register zr = AppropriateZeroRegFor(rd); | |
1102 csinv(rd, zr, zr, InvertCondition(cond)); | |
1103 } | |
1104 | |
1105 | |
1106 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) { | |
1107 ASSERT((cond != al) && (cond != nv)); | |
1108 csinc(rd, rn, rn, InvertCondition(cond)); | |
1109 } | |
1110 | |
1111 | |
1112 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) { | |
1113 ASSERT((cond != al) && (cond != nv)); | |
1114 csinv(rd, rn, rn, InvertCondition(cond)); | |
1115 } | |
1116 | |
1117 | |
1118 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) { | |
1119 ASSERT((cond != al) && (cond != nv)); | |
1120 csneg(rd, rn, rn, InvertCondition(cond)); | |
1121 } | |
1122 | |
1123 | |
1124 void Assembler::ConditionalSelect(const Register& rd, | |
1125 const Register& rn, | |
1126 const Register& rm, | |
1127 Condition cond, | |
1128 ConditionalSelectOp op) { | |
1129 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1130 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
1131 Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd)); | |
1132 } | |
1133 | |
1134 | |
1135 void Assembler::ccmn(const Register& rn, | |
1136 const Operand& operand, | |
1137 StatusFlags nzcv, | |
1138 Condition cond) { | |
1139 ConditionalCompare(rn, operand, nzcv, cond, CCMN); | |
1140 } | |
1141 | |
1142 | |
1143 void Assembler::ccmp(const Register& rn, | |
1144 const Operand& operand, | |
1145 StatusFlags nzcv, | |
1146 Condition cond) { | |
1147 ConditionalCompare(rn, operand, nzcv, cond, CCMP); | |
1148 } | |
1149 | |
1150 | |
1151 void Assembler::DataProcessing3Source(const Register& rd, | |
1152 const Register& rn, | |
1153 const Register& rm, | |
1154 const Register& ra, | |
1155 DataProcessing3SourceOp op) { | |
1156 Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd)); | |
1157 } | |
1158 | |
1159 | |
1160 void Assembler::mul(const Register& rd, | |
1161 const Register& rn, | |
1162 const Register& rm) { | |
1163 ASSERT(AreSameSizeAndType(rd, rn, rm)); | |
1164 Register zr = AppropriateZeroRegFor(rn); | |
1165 DataProcessing3Source(rd, rn, rm, zr, MADD); | |
1166 } | |
1167 | |
1168 | |
1169 void Assembler::madd(const Register& rd, | |
1170 const Register& rn, | |
1171 const Register& rm, | |
1172 const Register& ra) { | |
1173 ASSERT(AreSameSizeAndType(rd, rn, rm, ra)); | |
1174 DataProcessing3Source(rd, rn, rm, ra, MADD); | |
1175 } | |
1176 | |
1177 | |
1178 void Assembler::mneg(const Register& rd, | |
1179 const Register& rn, | |
1180 const Register& rm) { | |
1181 ASSERT(AreSameSizeAndType(rd, rn, rm)); | |
1182 Register zr = AppropriateZeroRegFor(rn); | |
1183 DataProcessing3Source(rd, rn, rm, zr, MSUB); | |
1184 } | |
1185 | |
1186 | |
1187 void Assembler::msub(const Register& rd, | |
1188 const Register& rn, | |
1189 const Register& rm, | |
1190 const Register& ra) { | |
1191 ASSERT(AreSameSizeAndType(rd, rn, rm, ra)); | |
1192 DataProcessing3Source(rd, rn, rm, ra, MSUB); | |
1193 } | |
1194 | |
1195 | |
1196 void Assembler::smaddl(const Register& rd, | |
1197 const Register& rn, | |
1198 const Register& rm, | |
1199 const Register& ra) { | |
1200 ASSERT(rd.Is64Bits() && ra.Is64Bits()); | |
1201 ASSERT(rn.Is32Bits() && rm.Is32Bits()); | |
1202 DataProcessing3Source(rd, rn, rm, ra, SMADDL_x); | |
1203 } | |
1204 | |
1205 | |
1206 void Assembler::smsubl(const Register& rd, | |
1207 const Register& rn, | |
1208 const Register& rm, | |
1209 const Register& ra) { | |
1210 ASSERT(rd.Is64Bits() && ra.Is64Bits()); | |
1211 ASSERT(rn.Is32Bits() && rm.Is32Bits()); | |
1212 DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x); | |
1213 } | |
1214 | |
1215 | |
1216 void Assembler::umaddl(const Register& rd, | |
1217 const Register& rn, | |
1218 const Register& rm, | |
1219 const Register& ra) { | |
1220 ASSERT(rd.Is64Bits() && ra.Is64Bits()); | |
1221 ASSERT(rn.Is32Bits() && rm.Is32Bits()); | |
1222 DataProcessing3Source(rd, rn, rm, ra, UMADDL_x); | |
1223 } | |
1224 | |
1225 | |
1226 void Assembler::umsubl(const Register& rd, | |
1227 const Register& rn, | |
1228 const Register& rm, | |
1229 const Register& ra) { | |
1230 ASSERT(rd.Is64Bits() && ra.Is64Bits()); | |
1231 ASSERT(rn.Is32Bits() && rm.Is32Bits()); | |
1232 DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x); | |
1233 } | |
1234 | |
1235 | |
1236 void Assembler::smull(const Register& rd, | |
1237 const Register& rn, | |
1238 const Register& rm) { | |
1239 ASSERT(rd.Is64Bits()); | |
1240 ASSERT(rn.Is32Bits() && rm.Is32Bits()); | |
1241 DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x); | |
1242 } | |
1243 | |
1244 | |
1245 void Assembler::smulh(const Register& rd, | |
1246 const Register& rn, | |
1247 const Register& rm) { | |
1248 ASSERT(AreSameSizeAndType(rd, rn, rm)); | |
1249 DataProcessing3Source(rd, rn, rm, xzr, SMULH_x); | |
1250 } | |
1251 | |
1252 | |
1253 void Assembler::sdiv(const Register& rd, | |
1254 const Register& rn, | |
1255 const Register& rm) { | |
1256 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1257 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
1258 Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd)); | |
1259 } | |
1260 | |
1261 | |
1262 void Assembler::udiv(const Register& rd, | |
1263 const Register& rn, | |
1264 const Register& rm) { | |
1265 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1266 ASSERT(rd.SizeInBits() == rm.SizeInBits()); | |
1267 Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd)); | |
1268 } | |
1269 | |
1270 | |
1271 void Assembler::rbit(const Register& rd, | |
1272 const Register& rn) { | |
1273 DataProcessing1Source(rd, rn, RBIT); | |
1274 } | |
1275 | |
1276 | |
1277 void Assembler::rev16(const Register& rd, | |
1278 const Register& rn) { | |
1279 DataProcessing1Source(rd, rn, REV16); | |
1280 } | |
1281 | |
1282 | |
1283 void Assembler::rev32(const Register& rd, | |
1284 const Register& rn) { | |
1285 ASSERT(rd.Is64Bits()); | |
1286 DataProcessing1Source(rd, rn, REV); | |
1287 } | |
1288 | |
1289 | |
1290 void Assembler::rev(const Register& rd, | |
1291 const Register& rn) { | |
1292 DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w); | |
1293 } | |
1294 | |
1295 | |
1296 void Assembler::clz(const Register& rd, | |
1297 const Register& rn) { | |
1298 DataProcessing1Source(rd, rn, CLZ); | |
1299 } | |
1300 | |
1301 | |
1302 void Assembler::cls(const Register& rd, | |
1303 const Register& rn) { | |
1304 DataProcessing1Source(rd, rn, CLS); | |
1305 } | |
1306 | |
1307 | |
1308 void Assembler::ldp(const CPURegister& rt, | |
1309 const CPURegister& rt2, | |
1310 const MemOperand& src) { | |
1311 LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2)); | |
1312 } | |
1313 | |
1314 | |
1315 void Assembler::stp(const CPURegister& rt, | |
1316 const CPURegister& rt2, | |
1317 const MemOperand& dst) { | |
1318 LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2)); | |
1319 } | |
1320 | |
1321 | |
1322 void Assembler::ldpsw(const Register& rt, | |
1323 const Register& rt2, | |
1324 const MemOperand& src) { | |
1325 ASSERT(rt.Is64Bits()); | |
1326 LoadStorePair(rt, rt2, src, LDPSW_x); | |
1327 } | |
1328 | |
1329 | |
1330 void Assembler::LoadStorePair(const CPURegister& rt, | |
1331 const CPURegister& rt2, | |
1332 const MemOperand& addr, | |
1333 LoadStorePairOp op) { | |
1334 // 'rt' and 'rt2' can only be aliased for stores. | |
1335 ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2)); | |
1336 ASSERT(AreSameSizeAndType(rt, rt2)); | |
1337 | |
1338 Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | | |
1339 ImmLSPair(addr.offset(), CalcLSPairDataSize(op)); | |
1340 | |
1341 Instr addrmodeop; | |
1342 if (addr.IsImmediateOffset()) { | |
1343 addrmodeop = LoadStorePairOffsetFixed; | |
1344 } else { | |
1345 // Pre-index and post-index modes. | |
1346 ASSERT(!rt.Is(addr.base())); | |
1347 ASSERT(!rt2.Is(addr.base())); | |
1348 ASSERT(addr.offset() != 0); | |
1349 if (addr.IsPreIndex()) { | |
1350 addrmodeop = LoadStorePairPreIndexFixed; | |
1351 } else { | |
1352 ASSERT(addr.IsPostIndex()); | |
1353 addrmodeop = LoadStorePairPostIndexFixed; | |
1354 } | |
1355 } | |
1356 Emit(addrmodeop | memop); | |
1357 } | |
1358 | |
1359 | |
1360 void Assembler::ldnp(const CPURegister& rt, | |
1361 const CPURegister& rt2, | |
1362 const MemOperand& src) { | |
1363 LoadStorePairNonTemporal(rt, rt2, src, | |
1364 LoadPairNonTemporalOpFor(rt, rt2)); | |
1365 } | |
1366 | |
1367 | |
1368 void Assembler::stnp(const CPURegister& rt, | |
1369 const CPURegister& rt2, | |
1370 const MemOperand& dst) { | |
1371 LoadStorePairNonTemporal(rt, rt2, dst, | |
1372 StorePairNonTemporalOpFor(rt, rt2)); | |
1373 } | |
1374 | |
1375 | |
1376 void Assembler::LoadStorePairNonTemporal(const CPURegister& rt, | |
1377 const CPURegister& rt2, | |
1378 const MemOperand& addr, | |
1379 LoadStorePairNonTemporalOp op) { | |
1380 ASSERT(!rt.Is(rt2)); | |
1381 ASSERT(AreSameSizeAndType(rt, rt2)); | |
1382 ASSERT(addr.IsImmediateOffset()); | |
1383 | |
1384 LSDataSize size = CalcLSPairDataSize( | |
1385 static_cast<LoadStorePairOp>(op & LoadStorePairMask)); | |
1386 Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | | |
1387 ImmLSPair(addr.offset(), size)); | |
1388 } | |
1389 | |
1390 | |
1391 // Memory instructions. | |
1392 void Assembler::ldrb(const Register& rt, const MemOperand& src) { | |
1393 LoadStore(rt, src, LDRB_w); | |
1394 } | |
1395 | |
1396 | |
1397 void Assembler::strb(const Register& rt, const MemOperand& dst) { | |
1398 LoadStore(rt, dst, STRB_w); | |
1399 } | |
1400 | |
1401 | |
1402 void Assembler::ldrsb(const Register& rt, const MemOperand& src) { | |
1403 LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w); | |
1404 } | |
1405 | |
1406 | |
1407 void Assembler::ldrh(const Register& rt, const MemOperand& src) { | |
1408 LoadStore(rt, src, LDRH_w); | |
1409 } | |
1410 | |
1411 | |
1412 void Assembler::strh(const Register& rt, const MemOperand& dst) { | |
1413 LoadStore(rt, dst, STRH_w); | |
1414 } | |
1415 | |
1416 | |
1417 void Assembler::ldrsh(const Register& rt, const MemOperand& src) { | |
1418 LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w); | |
1419 } | |
1420 | |
1421 | |
1422 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) { | |
1423 LoadStore(rt, src, LoadOpFor(rt)); | |
1424 } | |
1425 | |
1426 | |
1427 void Assembler::str(const CPURegister& rt, const MemOperand& src) { | |
1428 LoadStore(rt, src, StoreOpFor(rt)); | |
1429 } | |
1430 | |
1431 | |
1432 void Assembler::ldrsw(const Register& rt, const MemOperand& src) { | |
1433 ASSERT(rt.Is64Bits()); | |
1434 LoadStore(rt, src, LDRSW_x); | |
1435 } | |
1436 | |
1437 | |
1438 void Assembler::ldr(const Register& rt, uint64_t imm) { | |
1439 // TODO(all): Constant pool may be garbage collected. Hence we cannot store | |
1440 // arbitrary values in them. Manually move it for now. Fix | |
1441 // MacroAssembler::Fmov when this is implemented. | |
1442 UNIMPLEMENTED(); | |
1443 } | |
1444 | |
1445 | |
1446 void Assembler::ldr(const FPRegister& ft, double imm) { | |
1447 // TODO(all): Constant pool may be garbage collected. Hence we cannot store | |
1448 // arbitrary values in them. Manually move it for now. Fix | |
1449 // MacroAssembler::Fmov when this is implemented. | |
1450 UNIMPLEMENTED(); | |
1451 } | |
1452 | |
1453 | |
1454 void Assembler::ldr(const FPRegister& ft, float imm) { | |
1455 // TODO(all): Constant pool may be garbage collected. Hence we cannot store | |
1456 // arbitrary values in them. Manually move it for now. Fix | |
1457 // MacroAssembler::Fmov when this is implemented. | |
1458 UNIMPLEMENTED(); | |
1459 } | |
1460 | |
1461 | |
1462 void Assembler::mov(const Register& rd, const Register& rm) { | |
1463 // Moves involving the stack pointer are encoded as add immediate with | |
1464 // second operand of zero. Otherwise, orr with first operand zr is | |
1465 // used. | |
1466 if (rd.IsSP() || rm.IsSP()) { | |
1467 add(rd, rm, 0); | |
1468 } else { | |
1469 orr(rd, AppropriateZeroRegFor(rd), rm); | |
1470 } | |
1471 } | |
1472 | |
1473 | |
1474 void Assembler::mvn(const Register& rd, const Operand& operand) { | |
1475 orn(rd, AppropriateZeroRegFor(rd), operand); | |
1476 } | |
1477 | |
1478 | |
1479 void Assembler::mrs(const Register& rt, SystemRegister sysreg) { | |
1480 ASSERT(rt.Is64Bits()); | |
1481 Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); | |
1482 } | |
1483 | |
1484 | |
1485 void Assembler::msr(SystemRegister sysreg, const Register& rt) { | |
1486 ASSERT(rt.Is64Bits()); | |
1487 Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); | |
1488 } | |
1489 | |
1490 | |
1491 void Assembler::hint(SystemHint code) { | |
1492 Emit(HINT | ImmHint(code) | Rt(xzr)); | |
1493 } | |
1494 | |
1495 | |
1496 void Assembler::dmb(BarrierDomain domain, BarrierType type) { | |
1497 Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); | |
1498 } | |
1499 | |
1500 | |
1501 void Assembler::dsb(BarrierDomain domain, BarrierType type) { | |
1502 Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); | |
1503 } | |
1504 | |
1505 | |
1506 void Assembler::isb() { | |
1507 Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); | |
1508 } | |
1509 | |
1510 | |
1511 void Assembler::fmov(FPRegister fd, double imm) { | |
1512 ASSERT(fd.Is64Bits()); | |
1513 ASSERT(IsImmFP64(imm)); | |
1514 Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm)); | |
1515 } | |
1516 | |
1517 | |
1518 void Assembler::fmov(FPRegister fd, float imm) { | |
1519 ASSERT(fd.Is32Bits()); | |
1520 ASSERT(IsImmFP32(imm)); | |
1521 Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm)); | |
1522 } | |
1523 | |
1524 | |
1525 void Assembler::fmov(Register rd, FPRegister fn) { | |
1526 ASSERT(rd.SizeInBits() == fn.SizeInBits()); | |
1527 FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; | |
1528 Emit(op | Rd(rd) | Rn(fn)); | |
1529 } | |
1530 | |
1531 | |
1532 void Assembler::fmov(FPRegister fd, Register rn) { | |
1533 ASSERT(fd.SizeInBits() == rn.SizeInBits()); | |
1534 FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx; | |
1535 Emit(op | Rd(fd) | Rn(rn)); | |
1536 } | |
1537 | |
1538 | |
1539 void Assembler::fmov(FPRegister fd, FPRegister fn) { | |
1540 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1541 Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn)); | |
1542 } | |
1543 | |
1544 | |
1545 void Assembler::fadd(const FPRegister& fd, | |
1546 const FPRegister& fn, | |
1547 const FPRegister& fm) { | |
1548 FPDataProcessing2Source(fd, fn, fm, FADD); | |
1549 } | |
1550 | |
1551 | |
1552 void Assembler::fsub(const FPRegister& fd, | |
1553 const FPRegister& fn, | |
1554 const FPRegister& fm) { | |
1555 FPDataProcessing2Source(fd, fn, fm, FSUB); | |
1556 } | |
1557 | |
1558 | |
1559 void Assembler::fmul(const FPRegister& fd, | |
1560 const FPRegister& fn, | |
1561 const FPRegister& fm) { | |
1562 FPDataProcessing2Source(fd, fn, fm, FMUL); | |
1563 } | |
1564 | |
1565 | |
1566 void Assembler::fmadd(const FPRegister& fd, | |
1567 const FPRegister& fn, | |
1568 const FPRegister& fm, | |
1569 const FPRegister& fa) { | |
1570 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d); | |
1571 } | |
1572 | |
1573 | |
1574 void Assembler::fmsub(const FPRegister& fd, | |
1575 const FPRegister& fn, | |
1576 const FPRegister& fm, | |
1577 const FPRegister& fa) { | |
1578 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d); | |
1579 } | |
1580 | |
1581 | |
1582 void Assembler::fnmadd(const FPRegister& fd, | |
1583 const FPRegister& fn, | |
1584 const FPRegister& fm, | |
1585 const FPRegister& fa) { | |
1586 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d); | |
1587 } | |
1588 | |
1589 | |
1590 void Assembler::fnmsub(const FPRegister& fd, | |
1591 const FPRegister& fn, | |
1592 const FPRegister& fm, | |
1593 const FPRegister& fa) { | |
1594 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d); | |
1595 } | |
1596 | |
1597 | |
1598 void Assembler::fdiv(const FPRegister& fd, | |
1599 const FPRegister& fn, | |
1600 const FPRegister& fm) { | |
1601 FPDataProcessing2Source(fd, fn, fm, FDIV); | |
1602 } | |
1603 | |
1604 | |
1605 void Assembler::fmax(const FPRegister& fd, | |
1606 const FPRegister& fn, | |
1607 const FPRegister& fm) { | |
1608 FPDataProcessing2Source(fd, fn, fm, FMAX); | |
1609 } | |
1610 | |
1611 | |
1612 void Assembler::fmaxnm(const FPRegister& fd, | |
1613 const FPRegister& fn, | |
1614 const FPRegister& fm) { | |
1615 FPDataProcessing2Source(fd, fn, fm, FMAXNM); | |
1616 } | |
1617 | |
1618 | |
1619 void Assembler::fmin(const FPRegister& fd, | |
1620 const FPRegister& fn, | |
1621 const FPRegister& fm) { | |
1622 FPDataProcessing2Source(fd, fn, fm, FMIN); | |
1623 } | |
1624 | |
1625 | |
1626 void Assembler::fminnm(const FPRegister& fd, | |
1627 const FPRegister& fn, | |
1628 const FPRegister& fm) { | |
1629 FPDataProcessing2Source(fd, fn, fm, FMINNM); | |
1630 } | |
1631 | |
1632 | |
1633 void Assembler::fabs(const FPRegister& fd, | |
1634 const FPRegister& fn) { | |
1635 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1636 FPDataProcessing1Source(fd, fn, FABS); | |
1637 } | |
1638 | |
1639 | |
1640 void Assembler::fneg(const FPRegister& fd, | |
1641 const FPRegister& fn) { | |
1642 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1643 FPDataProcessing1Source(fd, fn, FNEG); | |
1644 } | |
1645 | |
1646 | |
1647 void Assembler::fsqrt(const FPRegister& fd, | |
1648 const FPRegister& fn) { | |
1649 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1650 FPDataProcessing1Source(fd, fn, FSQRT); | |
1651 } | |
1652 | |
1653 | |
1654 void Assembler::frinta(const FPRegister& fd, | |
1655 const FPRegister& fn) { | |
1656 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1657 FPDataProcessing1Source(fd, fn, FRINTA); | |
1658 } | |
1659 | |
1660 | |
1661 void Assembler::frintn(const FPRegister& fd, | |
1662 const FPRegister& fn) { | |
1663 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1664 FPDataProcessing1Source(fd, fn, FRINTN); | |
1665 } | |
1666 | |
1667 | |
1668 void Assembler::frintz(const FPRegister& fd, | |
1669 const FPRegister& fn) { | |
1670 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1671 FPDataProcessing1Source(fd, fn, FRINTZ); | |
1672 } | |
1673 | |
1674 | |
1675 void Assembler::fcmp(const FPRegister& fn, | |
1676 const FPRegister& fm) { | |
1677 ASSERT(fn.SizeInBits() == fm.SizeInBits()); | |
1678 Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn)); | |
1679 } | |
1680 | |
1681 | |
1682 void Assembler::fcmp(const FPRegister& fn, | |
1683 double value) { | |
1684 USE(value); | |
1685 // Although the fcmp instruction can strictly only take an immediate value of | |
1686 // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't | |
1687 // affect the result of the comparison. | |
1688 ASSERT(value == 0.0); | |
1689 Emit(FPType(fn) | FCMP_zero | Rn(fn)); | |
1690 } | |
1691 | |
1692 | |
1693 void Assembler::fccmp(const FPRegister& fn, | |
1694 const FPRegister& fm, | |
1695 StatusFlags nzcv, | |
1696 Condition cond) { | |
1697 ASSERT(fn.SizeInBits() == fm.SizeInBits()); | |
1698 Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv)); | |
1699 } | |
1700 | |
1701 | |
1702 void Assembler::fcsel(const FPRegister& fd, | |
1703 const FPRegister& fn, | |
1704 const FPRegister& fm, | |
1705 Condition cond) { | |
1706 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
1707 ASSERT(fd.SizeInBits() == fm.SizeInBits()); | |
1708 Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd)); | |
1709 } | |
1710 | |
1711 | |
1712 void Assembler::FPConvertToInt(const Register& rd, | |
1713 const FPRegister& fn, | |
1714 FPIntegerConvertOp op) { | |
1715 Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd)); | |
1716 } | |
1717 | |
1718 | |
1719 void Assembler::fcvt(const FPRegister& fd, | |
1720 const FPRegister& fn) { | |
1721 if (fd.Is64Bits()) { | |
1722 // Convert float to double. | |
1723 ASSERT(fn.Is32Bits()); | |
1724 FPDataProcessing1Source(fd, fn, FCVT_ds); | |
1725 } else { | |
1726 // Convert double to float. | |
1727 ASSERT(fn.Is64Bits()); | |
1728 FPDataProcessing1Source(fd, fn, FCVT_sd); | |
1729 } | |
1730 } | |
1731 | |
1732 | |
1733 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) { | |
1734 FPConvertToInt(rd, fn, FCVTAU); | |
1735 } | |
1736 | |
1737 | |
1738 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) { | |
1739 FPConvertToInt(rd, fn, FCVTAS); | |
1740 } | |
1741 | |
1742 | |
1743 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) { | |
1744 FPConvertToInt(rd, fn, FCVTMU); | |
1745 } | |
1746 | |
1747 | |
1748 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) { | |
1749 FPConvertToInt(rd, fn, FCVTMS); | |
1750 } | |
1751 | |
1752 | |
1753 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) { | |
1754 FPConvertToInt(rd, fn, FCVTNU); | |
1755 } | |
1756 | |
1757 | |
1758 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) { | |
1759 FPConvertToInt(rd, fn, FCVTNS); | |
1760 } | |
1761 | |
1762 | |
1763 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) { | |
1764 FPConvertToInt(rd, fn, FCVTZU); | |
1765 } | |
1766 | |
1767 | |
1768 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) { | |
1769 FPConvertToInt(rd, fn, FCVTZS); | |
1770 } | |
1771 | |
1772 | |
1773 void Assembler::scvtf(const FPRegister& fd, | |
1774 const Register& rn, | |
1775 unsigned fbits) { | |
1776 if (fbits == 0) { | |
1777 Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd)); | |
1778 } else { | |
1779 Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | | |
1780 Rd(fd)); | |
1781 } | |
1782 } | |
1783 | |
1784 | |
1785 void Assembler::ucvtf(const FPRegister& fd, | |
1786 const Register& rn, | |
1787 unsigned fbits) { | |
1788 if (fbits == 0) { | |
1789 Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd)); | |
1790 } else { | |
1791 Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | | |
1792 Rd(fd)); | |
1793 } | |
1794 } | |
1795 | |
1796 | |
1797 // Note: | |
1798 // Below, a difference in case for the same letter indicates a | |
1799 // negated bit. | |
1800 // If b is 1, then B is 0. | |
1801 Instr Assembler::ImmFP32(float imm) { | |
1802 ASSERT(IsImmFP32(imm)); | |
1803 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 | |
1804 uint32_t bits = float_to_rawbits(imm); | |
1805 // bit7: a000.0000 | |
1806 uint32_t bit7 = ((bits >> 31) & 0x1) << 7; | |
1807 // bit6: 0b00.0000 | |
1808 uint32_t bit6 = ((bits >> 29) & 0x1) << 6; | |
1809 // bit5_to_0: 00cd.efgh | |
1810 uint32_t bit5_to_0 = (bits >> 19) & 0x3f; | |
1811 | |
1812 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; | |
1813 } | |
1814 | |
1815 | |
1816 Instr Assembler::ImmFP64(double imm) { | |
1817 ASSERT(IsImmFP64(imm)); | |
1818 // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 | |
1819 // 0000.0000.0000.0000.0000.0000.0000.0000 | |
1820 uint64_t bits = double_to_rawbits(imm); | |
1821 // bit7: a000.0000 | |
1822 uint32_t bit7 = ((bits >> 63) & 0x1) << 7; | |
1823 // bit6: 0b00.0000 | |
1824 uint32_t bit6 = ((bits >> 61) & 0x1) << 6; | |
1825 // bit5_to_0: 00cd.efgh | |
1826 uint32_t bit5_to_0 = (bits >> 48) & 0x3f; | |
1827 | |
1828 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; | |
1829 } | |
1830 | |
1831 | |
1832 // Code generation helpers. | |
1833 void Assembler::MoveWide(const Register& rd, | |
1834 uint64_t imm, | |
1835 int shift, | |
1836 MoveWideImmediateOp mov_op) { | |
1837 if (shift >= 0) { | |
1838 // Explicit shift specified. | |
1839 ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); | |
1840 ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16)); | |
1841 shift /= 16; | |
1842 } else { | |
1843 // Calculate a new immediate and shift combination to encode the immediate | |
1844 // argument. | |
1845 shift = 0; | |
1846 if ((imm & ~0xffffUL) == 0) { | |
1847 // Nothing to do. | |
1848 } else if ((imm & ~(0xffffUL << 16)) == 0) { | |
1849 imm >>= 16; | |
1850 shift = 1; | |
1851 } else if ((imm & ~(0xffffUL << 32)) == 0) { | |
1852 ASSERT(rd.Is64Bits()); | |
1853 imm >>= 32; | |
1854 shift = 2; | |
1855 } else if ((imm & ~(0xffffUL << 48)) == 0) { | |
1856 ASSERT(rd.Is64Bits()); | |
1857 imm >>= 48; | |
1858 shift = 3; | |
1859 } | |
1860 } | |
1861 | |
1862 ASSERT(is_uint16(imm)); | |
1863 | |
1864 Emit(SF(rd) | MoveWideImmediateFixed | mov_op | | |
1865 Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift)); | |
1866 } | |
1867 | |
1868 | |
1869 void Assembler::AddSub(const Register& rd, | |
1870 const Register& rn, | |
1871 const Operand& operand, | |
1872 FlagsUpdate S, | |
1873 AddSubOp op) { | |
1874 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1875 ASSERT(!operand.NeedsRelocation()); | |
1876 if (operand.IsImmediate()) { | |
1877 int64_t immediate = operand.immediate(); | |
1878 ASSERT(IsImmAddSub(immediate)); | |
1879 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); | |
1880 Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | | |
1881 ImmAddSub(immediate) | dest_reg | RnSP(rn)); | |
1882 } else if (operand.IsShiftedRegister()) { | |
1883 ASSERT(operand.reg().SizeInBits() == rd.SizeInBits()); | |
1884 ASSERT(operand.shift() != ROR); | |
1885 | |
1886 // For instructions of the form: | |
1887 // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ] | |
1888 // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ] | |
1889 // add/sub wsp, wsp, <Wm> [, LSL #0-3 ] | |
1890 // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ] | |
1891 // or their 64-bit register equivalents, convert the operand from shifted to | |
1892 // extended register mode, and emit an add/sub extended instruction. | |
1893 if (rn.IsSP() || rd.IsSP()) { | |
1894 ASSERT(!(rd.IsSP() && (S == SetFlags))); | |
1895 DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S, | |
1896 AddSubExtendedFixed | op); | |
1897 } else { | |
1898 DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op); | |
1899 } | |
1900 } else { | |
1901 ASSERT(operand.IsExtendedRegister()); | |
1902 DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op); | |
1903 } | |
1904 } | |
1905 | |
1906 | |
1907 void Assembler::AddSubWithCarry(const Register& rd, | |
1908 const Register& rn, | |
1909 const Operand& operand, | |
1910 FlagsUpdate S, | |
1911 AddSubWithCarryOp op) { | |
1912 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1913 ASSERT(rd.SizeInBits() == operand.reg().SizeInBits()); | |
1914 ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); | |
1915 ASSERT(!operand.NeedsRelocation()); | |
1916 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); | |
1917 } | |
1918 | |
1919 | |
1920 void Assembler::hlt(int code) { | |
1921 ASSERT(is_uint16(code)); | |
1922 Emit(HLT | ImmException(code)); | |
1923 } | |
1924 | |
1925 | |
1926 void Assembler::brk(int code) { | |
1927 ASSERT(is_uint16(code)); | |
1928 Emit(BRK | ImmException(code)); | |
1929 } | |
1930 | |
1931 | |
1932 void Assembler::debug(const char* message, uint32_t code, Instr params) { | |
1933 #ifdef USE_SIMULATOR | |
1934 // Don't generate simulator specific code if we are building a snapshot, which | |
1935 // might be run on real hardware. | |
1936 if (!Serializer::enabled()) { | |
1937 #ifdef DEBUG | |
1938 Serializer::TooLateToEnableNow(); | |
1939 #endif | |
1940 // The arguments to the debug marker need to be contiguous in memory, so | |
1941 // make sure we don't try to emit pools. | |
1942 BlockPoolsScope scope(this); | |
1943 | |
1944 Label start; | |
1945 bind(&start); | |
1946 | |
1947 // Refer to instructions-a64.h for a description of the marker and its | |
1948 // arguments. | |
1949 hlt(kImmExceptionIsDebug); | |
1950 ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset); | |
1951 dc32(code); | |
1952 ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset); | |
1953 dc32(params); | |
1954 ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset); | |
1955 EmitStringData(message); | |
1956 hlt(kImmExceptionIsUnreachable); | |
1957 | |
1958 return; | |
1959 } | |
1960 // Fall through if Serializer is enabled. | |
1961 #endif | |
1962 | |
1963 if (params & BREAK) { | |
1964 hlt(kImmExceptionIsDebug); | |
1965 } | |
1966 } | |
1967 | |
1968 | |
1969 void Assembler::Logical(const Register& rd, | |
1970 const Register& rn, | |
1971 const Operand& operand, | |
1972 LogicalOp op) { | |
1973 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
1974 ASSERT(!operand.NeedsRelocation()); | |
1975 if (operand.IsImmediate()) { | |
1976 int64_t immediate = operand.immediate(); | |
1977 unsigned reg_size = rd.SizeInBits(); | |
1978 | |
1979 ASSERT(immediate != 0); | |
1980 ASSERT(immediate != -1); | |
1981 ASSERT(rd.Is64Bits() || is_uint32(immediate)); | |
1982 | |
1983 // If the operation is NOT, invert the operation and immediate. | |
1984 if ((op & NOT) == NOT) { | |
1985 op = static_cast<LogicalOp>(op & ~NOT); | |
1986 immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask); | |
1987 } | |
1988 | |
1989 unsigned n, imm_s, imm_r; | |
1990 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { | |
1991 // Immediate can be encoded in the instruction. | |
1992 LogicalImmediate(rd, rn, n, imm_s, imm_r, op); | |
1993 } else { | |
1994 // This case is handled in the macro assembler. | |
1995 UNREACHABLE(); | |
1996 } | |
1997 } else { | |
1998 ASSERT(operand.IsShiftedRegister()); | |
1999 ASSERT(operand.reg().SizeInBits() == rd.SizeInBits()); | |
2000 Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed); | |
2001 DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op); | |
2002 } | |
2003 } | |
2004 | |
2005 | |
2006 void Assembler::LogicalImmediate(const Register& rd, | |
2007 const Register& rn, | |
2008 unsigned n, | |
2009 unsigned imm_s, | |
2010 unsigned imm_r, | |
2011 LogicalOp op) { | |
2012 unsigned reg_size = rd.SizeInBits(); | |
2013 Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd); | |
2014 Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) | | |
2015 ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg | | |
2016 Rn(rn)); | |
2017 } | |
2018 | |
2019 | |
2020 void Assembler::ConditionalCompare(const Register& rn, | |
2021 const Operand& operand, | |
2022 StatusFlags nzcv, | |
2023 Condition cond, | |
2024 ConditionalCompareOp op) { | |
2025 Instr ccmpop; | |
2026 ASSERT(!operand.NeedsRelocation()); | |
2027 if (operand.IsImmediate()) { | |
2028 int64_t immediate = operand.immediate(); | |
2029 ASSERT(IsImmConditionalCompare(immediate)); | |
2030 ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate); | |
2031 } else { | |
2032 ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); | |
2033 ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg()); | |
2034 } | |
2035 Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv)); | |
2036 } | |
2037 | |
2038 | |
2039 void Assembler::DataProcessing1Source(const Register& rd, | |
2040 const Register& rn, | |
2041 DataProcessing1SourceOp op) { | |
2042 ASSERT(rd.SizeInBits() == rn.SizeInBits()); | |
2043 Emit(SF(rn) | op | Rn(rn) | Rd(rd)); | |
2044 } | |
2045 | |
2046 | |
2047 void Assembler::FPDataProcessing1Source(const FPRegister& fd, | |
2048 const FPRegister& fn, | |
2049 FPDataProcessing1SourceOp op) { | |
2050 Emit(FPType(fn) | op | Rn(fn) | Rd(fd)); | |
2051 } | |
2052 | |
2053 | |
2054 void Assembler::FPDataProcessing2Source(const FPRegister& fd, | |
2055 const FPRegister& fn, | |
2056 const FPRegister& fm, | |
2057 FPDataProcessing2SourceOp op) { | |
2058 ASSERT(fd.SizeInBits() == fn.SizeInBits()); | |
2059 ASSERT(fd.SizeInBits() == fm.SizeInBits()); | |
2060 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd)); | |
2061 } | |
2062 | |
2063 | |
2064 void Assembler::FPDataProcessing3Source(const FPRegister& fd, | |
2065 const FPRegister& fn, | |
2066 const FPRegister& fm, | |
2067 const FPRegister& fa, | |
2068 FPDataProcessing3SourceOp op) { | |
2069 ASSERT(AreSameSizeAndType(fd, fn, fm, fa)); | |
2070 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa)); | |
2071 } | |
2072 | |
2073 | |
2074 void Assembler::EmitShift(const Register& rd, | |
2075 const Register& rn, | |
2076 Shift shift, | |
2077 unsigned shift_amount) { | |
2078 switch (shift) { | |
2079 case LSL: | |
2080 lsl(rd, rn, shift_amount); | |
2081 break; | |
2082 case LSR: | |
2083 lsr(rd, rn, shift_amount); | |
2084 break; | |
2085 case ASR: | |
2086 asr(rd, rn, shift_amount); | |
2087 break; | |
2088 case ROR: | |
2089 ror(rd, rn, shift_amount); | |
2090 break; | |
2091 default: | |
2092 UNREACHABLE(); | |
2093 } | |
2094 } | |
2095 | |
2096 | |
2097 void Assembler::EmitExtendShift(const Register& rd, | |
2098 const Register& rn, | |
2099 Extend extend, | |
2100 unsigned left_shift) { | |
2101 ASSERT(rd.SizeInBits() >= rn.SizeInBits()); | |
2102 unsigned reg_size = rd.SizeInBits(); | |
2103 // Use the correct size of register. | |
2104 Register rn_ = Register::Create(rn.code(), rd.SizeInBits()); | |
2105 // Bits extracted are high_bit:0. | |
2106 unsigned high_bit = (8 << (extend & 0x3)) - 1; | |
2107 // Number of bits left in the result that are not introduced by the shift. | |
2108 unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1); | |
2109 | |
2110 if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) { | |
2111 switch (extend) { | |
2112 case UXTB: | |
2113 case UXTH: | |
2114 case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break; | |
2115 case SXTB: | |
2116 case SXTH: | |
2117 case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break; | |
2118 case UXTX: | |
2119 case SXTX: { | |
2120 ASSERT(rn.SizeInBits() == kXRegSizeInBits); | |
2121 // Nothing to extend. Just shift. | |
2122 lsl(rd, rn_, left_shift); | |
2123 break; | |
2124 } | |
2125 default: UNREACHABLE(); | |
2126 } | |
2127 } else { | |
2128 // No need to extend as the extended bits would be shifted away. | |
2129 lsl(rd, rn_, left_shift); | |
2130 } | |
2131 } | |
2132 | |
2133 | |
2134 void Assembler::DataProcShiftedRegister(const Register& rd, | |
2135 const Register& rn, | |
2136 const Operand& operand, | |
2137 FlagsUpdate S, | |
2138 Instr op) { | |
2139 ASSERT(operand.IsShiftedRegister()); | |
2140 ASSERT(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount()))); | |
2141 ASSERT(!operand.NeedsRelocation()); | |
2142 Emit(SF(rd) | op | Flags(S) | | |
2143 ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) | | |
2144 Rm(operand.reg()) | Rn(rn) | Rd(rd)); | |
2145 } | |
2146 | |
2147 | |
2148 void Assembler::DataProcExtendedRegister(const Register& rd, | |
2149 const Register& rn, | |
2150 const Operand& operand, | |
2151 FlagsUpdate S, | |
2152 Instr op) { | |
2153 ASSERT(!operand.NeedsRelocation()); | |
2154 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); | |
2155 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | | |
2156 ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) | | |
2157 dest_reg | RnSP(rn)); | |
2158 } | |
2159 | |
2160 | |
2161 bool Assembler::IsImmAddSub(int64_t immediate) { | |
2162 return is_uint12(immediate) || | |
2163 (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0)); | |
2164 } | |
2165 | |
2166 void Assembler::LoadStore(const CPURegister& rt, | |
2167 const MemOperand& addr, | |
2168 LoadStoreOp op) { | |
2169 Instr memop = op | Rt(rt) | RnSP(addr.base()); | |
2170 ptrdiff_t offset = addr.offset(); | |
2171 | |
2172 if (addr.IsImmediateOffset()) { | |
2173 LSDataSize size = CalcLSDataSize(op); | |
2174 if (IsImmLSScaled(offset, size)) { | |
2175 // Use the scaled addressing mode. | |
2176 Emit(LoadStoreUnsignedOffsetFixed | memop | | |
2177 ImmLSUnsigned(offset >> size)); | |
2178 } else if (IsImmLSUnscaled(offset)) { | |
2179 // Use the unscaled addressing mode. | |
2180 Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset)); | |
2181 } else { | |
2182 // This case is handled in the macro assembler. | |
2183 UNREACHABLE(); | |
2184 } | |
2185 } else if (addr.IsRegisterOffset()) { | |
2186 Extend ext = addr.extend(); | |
2187 Shift shift = addr.shift(); | |
2188 unsigned shift_amount = addr.shift_amount(); | |
2189 | |
2190 // LSL is encoded in the option field as UXTX. | |
2191 if (shift == LSL) { | |
2192 ext = UXTX; | |
2193 } | |
2194 | |
2195 // Shifts are encoded in one bit, indicating a left shift by the memory | |
2196 // access size. | |
2197 ASSERT((shift_amount == 0) || | |
2198 (shift_amount == static_cast<unsigned>(CalcLSDataSize(op)))); | |
2199 Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) | | |
2200 ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0)); | |
2201 } else { | |
2202 // Pre-index and post-index modes. | |
2203 ASSERT(!rt.Is(addr.base())); | |
2204 if (IsImmLSUnscaled(offset)) { | |
2205 if (addr.IsPreIndex()) { | |
2206 Emit(LoadStorePreIndexFixed | memop | ImmLS(offset)); | |
2207 } else { | |
2208 ASSERT(addr.IsPostIndex()); | |
2209 Emit(LoadStorePostIndexFixed | memop | ImmLS(offset)); | |
2210 } | |
2211 } else { | |
2212 // This case is handled in the macro assembler. | |
2213 UNREACHABLE(); | |
2214 } | |
2215 } | |
2216 } | |
2217 | |
2218 | |
2219 bool Assembler::IsImmLSUnscaled(ptrdiff_t offset) { | |
2220 return is_int9(offset); | |
2221 } | |
2222 | |
2223 | |
2224 bool Assembler::IsImmLSScaled(ptrdiff_t offset, LSDataSize size) { | |
2225 bool offset_is_size_multiple = (((offset >> size) << size) == offset); | |
2226 return offset_is_size_multiple && is_uint12(offset >> size); | |
2227 } | |
2228 | |
2229 | |
2230 void Assembler::LoadLiteral(const CPURegister& rt, int offset_from_pc) { | |
2231 ASSERT((offset_from_pc & ((1 << kLiteralEntrySizeLog2) - 1)) == 0); | |
2232 // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a | |
2233 // constant pool. It should not be emitted. | |
2234 ASSERT(!rt.Is(xzr)); | |
2235 Emit(LDR_x_lit | | |
2236 ImmLLiteral(offset_from_pc >> kLiteralEntrySizeLog2) | | |
2237 Rt(rt)); | |
2238 } | |
2239 | |
2240 | |
2241 void Assembler::LoadRelocatedValue(const CPURegister& rt, | |
2242 const Operand& operand, | |
2243 LoadLiteralOp op) { | |
2244 int64_t imm = operand.immediate(); | |
2245 ASSERT(is_int32(imm) || is_uint32(imm) || (rt.Is64Bits())); | |
2246 RecordRelocInfo(operand.rmode(), imm); | |
2247 BlockConstPoolFor(1); | |
2248 Emit(op | ImmLLiteral(0) | Rt(rt)); | |
2249 } | |
2250 | |
2251 | |
2252 // Test if a given value can be encoded in the immediate field of a logical | |
2253 // instruction. | |
2254 // If it can be encoded, the function returns true, and values pointed to by n, | |
2255 // imm_s and imm_r are updated with immediates encoded in the format required | |
2256 // by the corresponding fields in the logical instruction. | |
2257 // If it can not be encoded, the function returns false, and the values pointed | |
2258 // to by n, imm_s and imm_r are undefined. | |
2259 bool Assembler::IsImmLogical(uint64_t value, | |
2260 unsigned width, | |
2261 unsigned* n, | |
2262 unsigned* imm_s, | |
2263 unsigned* imm_r) { | |
2264 ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); | |
2265 ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); | |
2266 | |
2267 // Logical immediates are encoded using parameters n, imm_s and imm_r using | |
2268 // the following table: | |
2269 // | |
2270 // N imms immr size S R | |
2271 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) | |
2272 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) | |
2273 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) | |
2274 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) | |
2275 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) | |
2276 // 0 11110s xxxxxr 2 UInt(s) UInt(r) | |
2277 // (s bits must not be all set) | |
2278 // | |
2279 // A pattern is constructed of size bits, where the least significant S+1 | |
2280 // bits are set. The pattern is rotated right by R, and repeated across a | |
2281 // 32 or 64-bit value, depending on destination register width. | |
2282 // | |
2283 // To test if an arbitary immediate can be encoded using this scheme, an | |
2284 // iterative algorithm is used. | |
2285 // | |
2286 // TODO(mcapewel) This code does not consider using X/W register overlap to | |
2287 // support 64-bit immediates where the top 32-bits are zero, and the bottom | |
2288 // 32-bits are an encodable logical immediate. | |
2289 | |
2290 // 1. If the value has all set or all clear bits, it can't be encoded. | |
2291 if ((value == 0) || (value == 0xffffffffffffffffUL) || | |
2292 ((width == kWRegSizeInBits) && (value == 0xffffffff))) { | |
2293 return false; | |
2294 } | |
2295 | |
2296 unsigned lead_zero = CountLeadingZeros(value, width); | |
2297 unsigned lead_one = CountLeadingZeros(~value, width); | |
2298 unsigned trail_zero = CountTrailingZeros(value, width); | |
2299 unsigned trail_one = CountTrailingZeros(~value, width); | |
2300 unsigned set_bits = CountSetBits(value, width); | |
2301 | |
2302 // The fixed bits in the immediate s field. | |
2303 // If width == 64 (X reg), start at 0xFFFFFF80. | |
2304 // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit | |
2305 // widths won't be executed. | |
2306 int imm_s_fixed = (width == kXRegSizeInBits) ? -128 : -64; | |
2307 int imm_s_mask = 0x3F; | |
2308 | |
2309 for (;;) { | |
2310 // 2. If the value is two bits wide, it can be encoded. | |
2311 if (width == 2) { | |
2312 *n = 0; | |
2313 *imm_s = 0x3C; | |
2314 *imm_r = (value & 3) - 1; | |
2315 return true; | |
2316 } | |
2317 | |
2318 *n = (width == 64) ? 1 : 0; | |
2319 *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask); | |
2320 if ((lead_zero + set_bits) == width) { | |
2321 *imm_r = 0; | |
2322 } else { | |
2323 *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one; | |
2324 } | |
2325 | |
2326 // 3. If the sum of leading zeros, trailing zeros and set bits is equal to | |
2327 // the bit width of the value, it can be encoded. | |
2328 if (lead_zero + trail_zero + set_bits == width) { | |
2329 return true; | |
2330 } | |
2331 | |
2332 // 4. If the sum of leading ones, trailing ones and unset bits in the | |
2333 // value is equal to the bit width of the value, it can be encoded. | |
2334 if (lead_one + trail_one + (width - set_bits) == width) { | |
2335 return true; | |
2336 } | |
2337 | |
2338 // 5. If the most-significant half of the bitwise value is equal to the | |
2339 // least-significant half, return to step 2 using the least-significant | |
2340 // half of the value. | |
2341 uint64_t mask = (1UL << (width >> 1)) - 1; | |
2342 if ((value & mask) == ((value >> (width >> 1)) & mask)) { | |
2343 width >>= 1; | |
2344 set_bits >>= 1; | |
2345 imm_s_fixed >>= 1; | |
2346 continue; | |
2347 } | |
2348 | |
2349 // 6. Otherwise, the value can't be encoded. | |
2350 return false; | |
2351 } | |
2352 } | |
2353 | |
2354 | |
2355 bool Assembler::IsImmConditionalCompare(int64_t immediate) { | |
2356 return is_uint5(immediate); | |
2357 } | |
2358 | |
2359 | |
2360 bool Assembler::IsImmFP32(float imm) { | |
2361 // Valid values will have the form: | |
2362 // aBbb.bbbc.defg.h000.0000.0000.0000.0000 | |
2363 uint32_t bits = float_to_rawbits(imm); | |
2364 // bits[19..0] are cleared. | |
2365 if ((bits & 0x7ffff) != 0) { | |
2366 return false; | |
2367 } | |
2368 | |
2369 // bits[29..25] are all set or all cleared. | |
2370 uint32_t b_pattern = (bits >> 16) & 0x3e00; | |
2371 if (b_pattern != 0 && b_pattern != 0x3e00) { | |
2372 return false; | |
2373 } | |
2374 | |
2375 // bit[30] and bit[29] are opposite. | |
2376 if (((bits ^ (bits << 1)) & 0x40000000) == 0) { | |
2377 return false; | |
2378 } | |
2379 | |
2380 return true; | |
2381 } | |
2382 | |
2383 | |
2384 bool Assembler::IsImmFP64(double imm) { | |
2385 // Valid values will have the form: | |
2386 // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 | |
2387 // 0000.0000.0000.0000.0000.0000.0000.0000 | |
2388 uint64_t bits = double_to_rawbits(imm); | |
2389 // bits[47..0] are cleared. | |
2390 if ((bits & 0xffffffffffffL) != 0) { | |
2391 return false; | |
2392 } | |
2393 | |
2394 // bits[61..54] are all set or all cleared. | |
2395 uint32_t b_pattern = (bits >> 48) & 0x3fc0; | |
2396 if (b_pattern != 0 && b_pattern != 0x3fc0) { | |
2397 return false; | |
2398 } | |
2399 | |
2400 // bit[62] and bit[61] are opposite. | |
2401 if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) { | |
2402 return false; | |
2403 } | |
2404 | |
2405 return true; | |
2406 } | |
2407 | |
2408 | |
2409 void Assembler::GrowBuffer() { | |
2410 if (!own_buffer_) FATAL("external code buffer is too small"); | |
2411 | |
2412 // Compute new buffer size. | |
2413 CodeDesc desc; // the new buffer | |
2414 if (buffer_size_ < 4 * KB) { | |
2415 desc.buffer_size = 4 * KB; | |
2416 } else if (buffer_size_ < 1 * MB) { | |
2417 desc.buffer_size = 2 * buffer_size_; | |
2418 } else { | |
2419 desc.buffer_size = buffer_size_ + 1 * MB; | |
2420 } | |
2421 CHECK_GT(desc.buffer_size, 0); // No overflow. | |
2422 | |
2423 byte* buffer = reinterpret_cast<byte*>(buffer_); | |
2424 | |
2425 // Set up new buffer. | |
2426 desc.buffer = NewArray<byte>(desc.buffer_size); | |
2427 | |
2428 desc.instr_size = pc_offset(); | |
2429 desc.reloc_size = (buffer + buffer_size_) - reloc_info_writer.pos(); | |
2430 | |
2431 // Copy the data. | |
2432 intptr_t pc_delta = desc.buffer - buffer; | |
2433 intptr_t rc_delta = (desc.buffer + desc.buffer_size) - | |
2434 (buffer + buffer_size_); | |
2435 memmove(desc.buffer, buffer, desc.instr_size); | |
2436 memmove(reloc_info_writer.pos() + rc_delta, | |
2437 reloc_info_writer.pos(), desc.reloc_size); | |
2438 | |
2439 // Switch buffers. | |
2440 DeleteArray(buffer_); | |
2441 buffer_ = desc.buffer; | |
2442 buffer_size_ = desc.buffer_size; | |
2443 pc_ = reinterpret_cast<byte*>(pc_) + pc_delta; | |
2444 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, | |
2445 reloc_info_writer.last_pc() + pc_delta); | |
2446 | |
2447 // None of our relocation types are pc relative pointing outside the code | |
2448 // buffer nor pc absolute pointing inside the code buffer, so there is no need | |
2449 // to relocate any emitted relocation entries. | |
2450 | |
2451 // Relocate pending relocation entries. | |
2452 for (int i = 0; i < num_pending_reloc_info_; i++) { | |
2453 RelocInfo& rinfo = pending_reloc_info_[i]; | |
2454 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | |
2455 rinfo.rmode() != RelocInfo::POSITION); | |
2456 if (rinfo.rmode() != RelocInfo::JS_RETURN) { | |
2457 rinfo.set_pc(rinfo.pc() + pc_delta); | |
2458 } | |
2459 } | |
2460 } | |
2461 | |
2462 | |
2463 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { | |
2464 // We do not try to reuse pool constants. | |
2465 RelocInfo rinfo(reinterpret_cast<byte*>(pc_), rmode, data, NULL); | |
2466 if (((rmode >= RelocInfo::JS_RETURN) && | |
2467 (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) || | |
2468 (rmode == RelocInfo::CONST_POOL) || | |
2469 (rmode == RelocInfo::VENEER_POOL)) { | |
2470 // Adjust code for new modes. | |
2471 ASSERT(RelocInfo::IsDebugBreakSlot(rmode) | |
2472 || RelocInfo::IsJSReturn(rmode) | |
2473 || RelocInfo::IsComment(rmode) | |
2474 || RelocInfo::IsPosition(rmode) | |
2475 || RelocInfo::IsConstPool(rmode) | |
2476 || RelocInfo::IsVeneerPool(rmode)); | |
2477 // These modes do not need an entry in the constant pool. | |
2478 } else { | |
2479 ASSERT(num_pending_reloc_info_ < kMaxNumPendingRelocInfo); | |
2480 if (num_pending_reloc_info_ == 0) { | |
2481 first_const_pool_use_ = pc_offset(); | |
2482 } | |
2483 pending_reloc_info_[num_pending_reloc_info_++] = rinfo; | |
2484 // Make sure the constant pool is not emitted in place of the next | |
2485 // instruction for which we just recorded relocation info. | |
2486 BlockConstPoolFor(1); | |
2487 } | |
2488 | |
2489 if (!RelocInfo::IsNone(rmode)) { | |
2490 // Don't record external references unless the heap will be serialized. | |
2491 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { | |
2492 #ifdef DEBUG | |
2493 if (!Serializer::enabled()) { | |
2494 Serializer::TooLateToEnableNow(); | |
2495 } | |
2496 #endif | |
2497 if (!Serializer::enabled() && !emit_debug_code()) { | |
2498 return; | |
2499 } | |
2500 } | |
2501 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here | |
2502 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { | |
2503 RelocInfo reloc_info_with_ast_id( | |
2504 reinterpret_cast<byte*>(pc_), rmode, RecordedAstId().ToInt(), NULL); | |
2505 ClearRecordedAstId(); | |
2506 reloc_info_writer.Write(&reloc_info_with_ast_id); | |
2507 } else { | |
2508 reloc_info_writer.Write(&rinfo); | |
2509 } | |
2510 } | |
2511 } | |
2512 | |
2513 | |
2514 void Assembler::BlockConstPoolFor(int instructions) { | |
2515 int pc_limit = pc_offset() + instructions * kInstructionSize; | |
2516 if (no_const_pool_before_ < pc_limit) { | |
2517 // If there are some pending entries, the constant pool cannot be blocked | |
2518 // further than first_const_pool_use_ + kMaxDistToConstPool | |
2519 ASSERT((num_pending_reloc_info_ == 0) || | |
2520 (pc_limit < (first_const_pool_use_ + kMaxDistToConstPool))); | |
2521 no_const_pool_before_ = pc_limit; | |
2522 } | |
2523 | |
2524 if (next_constant_pool_check_ < no_const_pool_before_) { | |
2525 next_constant_pool_check_ = no_const_pool_before_; | |
2526 } | |
2527 } | |
2528 | |
2529 | |
2530 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { | |
2531 // Some short sequence of instruction mustn't be broken up by constant pool | |
2532 // emission, such sequences are protected by calls to BlockConstPoolFor and | |
2533 // BlockConstPoolScope. | |
2534 if (is_const_pool_blocked()) { | |
2535 // Something is wrong if emission is forced and blocked at the same time. | |
2536 ASSERT(!force_emit); | |
2537 return; | |
2538 } | |
2539 | |
2540 // There is nothing to do if there are no pending constant pool entries. | |
2541 if (num_pending_reloc_info_ == 0) { | |
2542 // Calculate the offset of the next check. | |
2543 next_constant_pool_check_ = pc_offset() + kCheckConstPoolInterval; | |
2544 return; | |
2545 } | |
2546 | |
2547 // We emit a constant pool when: | |
2548 // * requested to do so by parameter force_emit (e.g. after each function). | |
2549 // * the distance to the first instruction accessing the constant pool is | |
2550 // kAvgDistToConstPool or more. | |
2551 // * no jump is required and the distance to the first instruction accessing | |
2552 // the constant pool is at least kMaxDistToPConstool / 2. | |
2553 ASSERT(first_const_pool_use_ >= 0); | |
2554 int dist = pc_offset() - first_const_pool_use_; | |
2555 if (!force_emit && dist < kAvgDistToConstPool && | |
2556 (require_jump || (dist < (kMaxDistToConstPool / 2)))) { | |
2557 return; | |
2558 } | |
2559 | |
2560 int jump_instr = require_jump ? kInstructionSize : 0; | |
2561 int size_pool_marker = kInstructionSize; | |
2562 int size_pool_guard = kInstructionSize; | |
2563 int pool_size = jump_instr + size_pool_marker + size_pool_guard + | |
2564 num_pending_reloc_info_ * kPointerSize; | |
2565 int needed_space = pool_size + kGap; | |
2566 | |
2567 // Emit veneers for branches that would go out of range during emission of the | |
2568 // constant pool. | |
2569 CheckVeneerPool(false, require_jump, kVeneerDistanceMargin + pool_size); | |
2570 | |
2571 Label size_check; | |
2572 bind(&size_check); | |
2573 | |
2574 // Check that the code buffer is large enough before emitting the constant | |
2575 // pool (include the jump over the pool, the constant pool marker, the | |
2576 // constant pool guard, and the gap to the relocation information). | |
2577 while (buffer_space() <= needed_space) { | |
2578 GrowBuffer(); | |
2579 } | |
2580 | |
2581 { | |
2582 // Block recursive calls to CheckConstPool and protect from veneer pools. | |
2583 BlockPoolsScope block_pools(this); | |
2584 RecordComment("[ Constant Pool"); | |
2585 RecordConstPool(pool_size); | |
2586 | |
2587 // Emit jump over constant pool if necessary. | |
2588 Label after_pool; | |
2589 if (require_jump) { | |
2590 b(&after_pool); | |
2591 } | |
2592 | |
2593 // Emit a constant pool header. The header has two goals: | |
2594 // 1) Encode the size of the constant pool, for use by the disassembler. | |
2595 // 2) Terminate the program, to try to prevent execution from accidentally | |
2596 // flowing into the constant pool. | |
2597 // The header is therefore made of two a64 instructions: | |
2598 // ldr xzr, #<size of the constant pool in 32-bit words> | |
2599 // blr xzr | |
2600 // If executed the code will likely segfault and lr will point to the | |
2601 // beginning of the constant pool. | |
2602 // TODO(all): currently each relocated constant is 64 bits, consider adding | |
2603 // support for 32-bit entries. | |
2604 ConstantPoolMarker(2 * num_pending_reloc_info_); | |
2605 ConstantPoolGuard(); | |
2606 | |
2607 // Emit constant pool entries. | |
2608 for (int i = 0; i < num_pending_reloc_info_; i++) { | |
2609 RelocInfo& rinfo = pending_reloc_info_[i]; | |
2610 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | |
2611 rinfo.rmode() != RelocInfo::POSITION && | |
2612 rinfo.rmode() != RelocInfo::STATEMENT_POSITION && | |
2613 rinfo.rmode() != RelocInfo::CONST_POOL && | |
2614 rinfo.rmode() != RelocInfo::VENEER_POOL); | |
2615 | |
2616 Instruction* instr = reinterpret_cast<Instruction*>(rinfo.pc()); | |
2617 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0. | |
2618 ASSERT(instr->IsLdrLiteral() && | |
2619 instr->ImmLLiteral() == 0); | |
2620 | |
2621 instr->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_)); | |
2622 dc64(rinfo.data()); | |
2623 } | |
2624 | |
2625 num_pending_reloc_info_ = 0; | |
2626 first_const_pool_use_ = -1; | |
2627 | |
2628 RecordComment("]"); | |
2629 | |
2630 if (after_pool.is_linked()) { | |
2631 bind(&after_pool); | |
2632 } | |
2633 } | |
2634 | |
2635 // Since a constant pool was just emitted, move the check offset forward by | |
2636 // the standard interval. | |
2637 next_constant_pool_check_ = pc_offset() + kCheckConstPoolInterval; | |
2638 | |
2639 ASSERT(SizeOfCodeGeneratedSince(&size_check) == | |
2640 static_cast<unsigned>(pool_size)); | |
2641 } | |
2642 | |
2643 | |
2644 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) { | |
2645 // Account for the branch around the veneers and the guard. | |
2646 int protection_offset = 2 * kInstructionSize; | |
2647 return pc_offset() > max_reachable_pc - margin - protection_offset - | |
2648 static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize); | |
2649 } | |
2650 | |
2651 | |
2652 void Assembler::RecordVeneerPool(int location_offset, int size) { | |
2653 #ifdef ENABLE_DEBUGGER_SUPPORT | |
2654 RelocInfo rinfo(buffer_ + location_offset, | |
2655 RelocInfo::VENEER_POOL, static_cast<intptr_t>(size), | |
2656 NULL); | |
2657 reloc_info_writer.Write(&rinfo); | |
2658 #endif | |
2659 } | |
2660 | |
2661 | |
2662 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) { | |
2663 BlockPoolsScope scope(this); | |
2664 RecordComment("[ Veneers"); | |
2665 | |
2666 // The exact size of the veneer pool must be recorded (see the comment at the | |
2667 // declaration site of RecordConstPool()), but computing the number of | |
2668 // veneers that will be generated is not obvious. So instead we remember the | |
2669 // current position and will record the size after the pool has been | |
2670 // generated. | |
2671 Label size_check; | |
2672 bind(&size_check); | |
2673 int veneer_pool_relocinfo_loc = pc_offset(); | |
2674 | |
2675 Label end; | |
2676 if (need_protection) { | |
2677 b(&end); | |
2678 } | |
2679 | |
2680 EmitVeneersGuard(); | |
2681 | |
2682 Label veneer_size_check; | |
2683 | |
2684 std::multimap<int, FarBranchInfo>::iterator it, it_to_delete; | |
2685 | |
2686 it = unresolved_branches_.begin(); | |
2687 while (it != unresolved_branches_.end()) { | |
2688 if (force_emit || ShouldEmitVeneer(it->first, margin)) { | |
2689 Instruction* branch = InstructionAt(it->second.pc_offset_); | |
2690 Label* label = it->second.label_; | |
2691 | |
2692 #ifdef DEBUG | |
2693 bind(&veneer_size_check); | |
2694 #endif | |
2695 // Patch the branch to point to the current position, and emit a branch | |
2696 // to the label. | |
2697 Instruction* veneer = reinterpret_cast<Instruction*>(pc_); | |
2698 RemoveBranchFromLabelLinkChain(branch, label, veneer); | |
2699 branch->SetImmPCOffsetTarget(veneer); | |
2700 b(label); | |
2701 #ifdef DEBUG | |
2702 ASSERT(SizeOfCodeGeneratedSince(&veneer_size_check) <= | |
2703 static_cast<uint64_t>(kMaxVeneerCodeSize)); | |
2704 veneer_size_check.Unuse(); | |
2705 #endif | |
2706 | |
2707 it_to_delete = it++; | |
2708 unresolved_branches_.erase(it_to_delete); | |
2709 } else { | |
2710 ++it; | |
2711 } | |
2712 } | |
2713 | |
2714 // Record the veneer pool size. | |
2715 int pool_size = SizeOfCodeGeneratedSince(&size_check); | |
2716 RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size); | |
2717 | |
2718 if (unresolved_branches_.empty()) { | |
2719 next_veneer_pool_check_ = kMaxInt; | |
2720 } else { | |
2721 next_veneer_pool_check_ = | |
2722 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; | |
2723 } | |
2724 | |
2725 bind(&end); | |
2726 | |
2727 RecordComment("]"); | |
2728 } | |
2729 | |
2730 | |
2731 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump, | |
2732 int margin) { | |
2733 // There is nothing to do if there are no pending veneer pool entries. | |
2734 if (unresolved_branches_.empty()) { | |
2735 ASSERT(next_veneer_pool_check_ == kMaxInt); | |
2736 return; | |
2737 } | |
2738 | |
2739 ASSERT(pc_offset() < unresolved_branches_first_limit()); | |
2740 | |
2741 // Some short sequence of instruction mustn't be broken up by veneer pool | |
2742 // emission, such sequences are protected by calls to BlockVeneerPoolFor and | |
2743 // BlockVeneerPoolScope. | |
2744 if (is_veneer_pool_blocked()) { | |
2745 ASSERT(!force_emit); | |
2746 return; | |
2747 } | |
2748 | |
2749 if (!require_jump) { | |
2750 // Prefer emitting veneers protected by an existing instruction. | |
2751 margin *= kVeneerNoProtectionFactor; | |
2752 } | |
2753 if (force_emit || ShouldEmitVeneers(margin)) { | |
2754 EmitVeneers(force_emit, require_jump, margin); | |
2755 } else { | |
2756 next_veneer_pool_check_ = | |
2757 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; | |
2758 } | |
2759 } | |
2760 | |
2761 | |
2762 void Assembler::RecordComment(const char* msg) { | |
2763 if (FLAG_code_comments) { | |
2764 CheckBuffer(); | |
2765 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); | |
2766 } | |
2767 } | |
2768 | |
2769 | |
2770 int Assembler::buffer_space() const { | |
2771 return reloc_info_writer.pos() - reinterpret_cast<byte*>(pc_); | |
2772 } | |
2773 | |
2774 | |
2775 void Assembler::RecordJSReturn() { | |
2776 positions_recorder()->WriteRecordedPositions(); | |
2777 CheckBuffer(); | |
2778 RecordRelocInfo(RelocInfo::JS_RETURN); | |
2779 } | |
2780 | |
2781 | |
2782 void Assembler::RecordDebugBreakSlot() { | |
2783 positions_recorder()->WriteRecordedPositions(); | |
2784 CheckBuffer(); | |
2785 RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); | |
2786 } | |
2787 | |
2788 | |
2789 void Assembler::RecordConstPool(int size) { | |
2790 // We only need this for debugger support, to correctly compute offsets in the | |
2791 // code. | |
2792 #ifdef ENABLE_DEBUGGER_SUPPORT | |
2793 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size)); | |
2794 #endif | |
2795 } | |
2796 | |
2797 | |
2798 MaybeObject* Assembler::AllocateConstantPool(Heap* heap) { | |
2799 // No out-of-line constant pool support. | |
2800 UNREACHABLE(); | |
2801 return NULL; | |
2802 } | |
2803 | |
2804 | |
2805 void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) { | |
2806 // No out-of-line constant pool support. | |
2807 UNREACHABLE(); | |
2808 } | |
2809 | |
2810 | |
2811 } } // namespace v8::internal | |
2812 | |
2813 #endif // V8_TARGET_ARCH_A64 | |
OLD | NEW |