Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(40)

Unified Diff: src/base/ieee754.cc

Issue 2073123002: [builtins] Introduce proper Float64Cos and Float64Sin. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Fix missing breaks Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/base/ieee754.h ('k') | src/bootstrapper.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/base/ieee754.cc
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc
index 436ae2337a21a782e3e486746a89309327c9c468..67c0c89671aaf9a9ba7b89eeb81399eb12f3b99b 100644
--- a/src/base/ieee754.cc
+++ b/src/base/ieee754.cc
@@ -168,6 +168,599 @@ typedef union {
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
+int32_t __ieee754_rem_pio2(double x, double *y) WARN_UNUSED_RESULT;
+double __kernel_cos(double x, double y) WARN_UNUSED_RESULT;
+int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
+ const int32_t *ipio2) WARN_UNUSED_RESULT;
+double __kernel_sin(double x, double y, int iy) WARN_UNUSED_RESULT;
+
+/* __ieee754_rem_pio2(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __kernel_rem_pio2()
+ */
+int32_t __ieee754_rem_pio2(double x, double *y) {
+ /*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ */
+ static const int32_t two_over_pi[] = {
+ 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C,
+ 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649,
+ 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44,
+ 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B,
+ 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D,
+ 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+ 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330,
+ 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08,
+ 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
+ 0x73A8C9, 0x60E27B, 0xC08C6B,
+ };
+
+ static const int32_t npio2_hw[] = {
+ 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
+ 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
+ 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
+ 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
+ 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
+ 0x404858EB, 0x404921FB,
+ };
+
+ /*
+ * invpio2: 53 bits of 2/pi
+ * pio2_1: first 33 bit of pi/2
+ * pio2_1t: pi/2 - pio2_1
+ * pio2_2: second 33 bit of pi/2
+ * pio2_2t: pi/2 - (pio2_1+pio2_2)
+ * pio2_3: third 33 bit of pi/2
+ * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+
+ static const double
+ zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+ invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+ pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
+ pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
+ pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
+ pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
+ pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
+ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+ double z, w, t, r, fn;
+ double tx[3];
+ int32_t e0, i, j, nx, n, ix, hx;
+ u_int32_t low;
+
+ z = 0;
+ GET_HIGH_WORD(hx, x); /* high word of x */
+ ix = hx & 0x7fffffff;
+ if (ix <= 0x3fe921fb) { /* |x| ~<= pi/4 , no need for reduction */
+ y[0] = x;
+ y[1] = 0;
+ return 0;
+ }
+ if (ix < 0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
+ if (hx > 0) {
+ z = x - pio2_1;
+ if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */
+ y[0] = z - pio2_1t;
+ y[1] = (z - y[0]) - pio2_1t;
+ } else { /* near pi/2, use 33+33+53 bit pi */
+ z -= pio2_2;
+ y[0] = z - pio2_2t;
+ y[1] = (z - y[0]) - pio2_2t;
+ }
+ return 1;
+ } else { /* negative x */
+ z = x + pio2_1;
+ if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */
+ y[0] = z + pio2_1t;
+ y[1] = (z - y[0]) + pio2_1t;
+ } else { /* near pi/2, use 33+33+53 bit pi */
+ z += pio2_2;
+ y[0] = z + pio2_2t;
+ y[1] = (z - y[0]) + pio2_2t;
+ }
+ return -1;
+ }
+ }
+ if (ix <= 0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
+ t = fabs(x);
+ n = static_cast<int32_t>(t * invpio2 + half);
+ fn = static_cast<double>(n);
+ r = t - fn * pio2_1;
+ w = fn * pio2_1t; /* 1st round good to 85 bit */
+ if (n < 32 && ix != npio2_hw[n - 1]) {
+ y[0] = r - w; /* quick check no cancellation */
+ } else {
+ u_int32_t high;
+ j = ix >> 20;
+ y[0] = r - w;
+ GET_HIGH_WORD(high, y[0]);
+ i = j - ((high >> 20) & 0x7ff);
+ if (i > 16) { /* 2nd iteration needed, good to 118 */
+ t = r;
+ w = fn * pio2_2;
+ r = t - w;
+ w = fn * pio2_2t - ((t - r) - w);
+ y[0] = r - w;
+ GET_HIGH_WORD(high, y[0]);
+ i = j - ((high >> 20) & 0x7ff);
+ if (i > 49) { /* 3rd iteration need, 151 bits acc */
+ t = r; /* will cover all possible cases */
+ w = fn * pio2_3;
+ r = t - w;
+ w = fn * pio2_3t - ((t - r) - w);
+ y[0] = r - w;
+ }
+ }
+ }
+ y[1] = (r - y[0]) - w;
+ if (hx < 0) {
+ y[0] = -y[0];
+ y[1] = -y[1];
+ return -n;
+ } else {
+ return n;
+ }
+ }
+ /*
+ * all other (large) arguments
+ */
+ if (ix >= 0x7ff00000) { /* x is inf or NaN */
+ y[0] = y[1] = x - x;
+ return 0;
+ }
+ /* set z = scalbn(|x|,ilogb(x)-23) */
+ GET_LOW_WORD(low, x);
+ SET_LOW_WORD(z, low);
+ e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */
+ SET_HIGH_WORD(z, ix - static_cast<int32_t>(e0 << 20));
+ for (i = 0; i < 2; i++) {
+ tx[i] = static_cast<double>(static_cast<int32_t>(z));
+ z = (z - tx[i]) * two24;
+ }
+ tx[2] = z;
+ nx = 3;
+ while (tx[nx - 1] == zero) nx--; /* skip zero term */
+ n = __kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi);
+ if (hx < 0) {
+ y[0] = -y[0];
+ y[1] = -y[1];
+ return -n;
+ }
+ return n;
+}
+
+/* __kernel_cos( x, y )
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ *
+ * Algorithm
+ * 1. Since cos(-x) = cos(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+ * 3. cos(x) is approximated by a polynomial of degree 14 on
+ * [0,pi/4]
+ * 4 14
+ * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+ * where the remez error is
+ *
+ * | 2 4 6 8 10 12 14 | -58
+ * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
+ * | |
+ *
+ * 4 6 8 10 12 14
+ * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
+ * cos(x) = 1 - x*x/2 + r
+ * since cos(x+y) ~ cos(x) - sin(x)*y
+ * ~ cos(x) - x*y,
+ * a correction term is necessary in cos(x) and hence
+ * cos(x+y) = 1 - (x*x/2 - (r - x*y))
+ * For better accuracy when x > 0.3, let qx = |x|/4 with
+ * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+ * Then
+ * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
+ * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
+ * magnitude of the latter is at least a quarter of x*x/2,
+ * thus, reducing the rounding error in the subtraction.
+ */
+V8_INLINE double __kernel_cos(double x, double y) {
+ static const double
+ one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+ C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+ C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
+ C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
+ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
+ C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
+ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+ double a, hz, z, r, qx;
+ int32_t ix;
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff; /* ix = |x|'s high word*/
+ if (ix < 0x3e400000) { /* if x < 2**27 */
+ if (static_cast<int>(x) == 0) return one; /* generate inexact */
+ }
+ z = x * x;
+ r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
+ if (ix < 0x3FD33333) { /* if |x| < 0.3 */
+ return one - (0.5 * z - (z * r - x * y));
+ } else {
+ if (ix > 0x3fe90000) { /* x > 0.78125 */
+ qx = 0.28125;
+ } else {
+ INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */
+ }
+ hz = 0.5 * z - qx;
+ a = one - qx;
+ return a - (hz - (z * r - x * y));
+ }
+}
+
+/* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ * double x[],y[]; int e0,nx,prec; int ipio2[];
+ *
+ * __kernel_rem_pio2 return the last three digits of N with
+ * y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ * x[] The input value (must be positive) is broken into nx
+ * pieces of 24-bit integers in double precision format.
+ * x[i] will be the i-th 24 bit of x. The scaled exponent
+ * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ * match x's up to 24 bits.
+ *
+ * Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ * e0 = ilogb(z)-23
+ * z = scalbn(z,-e0)
+ * for i = 0,1,2
+ * x[i] = floor(z)
+ * z = (z-x[i])*2**24
+ *
+ *
+ * y[] output result in an array of double precision numbers.
+ * The dimension of y[] is:
+ * 24-bit precision 1
+ * 53-bit precision 2
+ * 64-bit precision 2
+ * 113-bit precision 3
+ * The actual value is the sum of them. Thus for 113-bit
+ * precison, one may have to do something like:
+ *
+ * long double t,w,r_head, r_tail;
+ * t = (long double)y[2] + (long double)y[1];
+ * w = (long double)y[0];
+ * r_head = t+w;
+ * r_tail = w - (r_head - t);
+ *
+ * e0 The exponent of x[0]
+ *
+ * nx dimension of x[]
+ *
+ * prec an integer indicating the precision:
+ * 0 24 bits (single)
+ * 1 53 bits (double)
+ * 2 64 bits (extended)
+ * 3 113 bits (quad)
+ *
+ * ipio2[]
+ * integer array, contains the (24*i)-th to (24*i+23)-th
+ * bit of 2/pi after binary point. The corresponding
+ * floating value is
+ *
+ * ipio2[i] * 2^(-24(i+1)).
+ *
+ * External function:
+ * double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ * jk jk+1 is the initial number of terms of ipio2[] needed
+ * in the computation. The recommended value is 2,3,4,
+ * 6 for single, double, extended,and quad.
+ *
+ * jz local integer variable indicating the number of
+ * terms of ipio2[] used.
+ *
+ * jx nx - 1
+ *
+ * jv index for pointing to the suitable ipio2[] for the
+ * computation. In general, we want
+ * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ * is an integer. Thus
+ * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ * Hence jv = max(0,(e0-3)/24).
+ *
+ * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ * q[] double array with integral value, representing the
+ * 24-bits chunk of the product of x and 2/pi.
+ *
+ * q0 the corresponding exponent of q[0]. Note that the
+ * exponent for q[i] would be q0-24*i.
+ *
+ * PIo2[] double precision array, obtained by cutting pi/2
+ * into 24 bits chunks.
+ *
+ * f[] ipio2[] in floating point
+ *
+ * iq[] integer array by breaking up q[] in 24-bits chunk.
+ *
+ * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ * ih integer. If >0 it indicates q[] is >= 0.5, hence
+ * it also indicates the *sign* of the result.
+ *
+ */
+int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
+ const int32_t *ipio2) {
+ /* Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+ static const int init_jk[] = {2, 3, 4, 6}; /* initial value for jk */
+
+ static const double PIo2[] = {
+ 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+ };
+
+ static const double
+ zero = 0.0,
+ one = 1.0,
+ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
+
+ int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
+ double z, fw, f[20], fq[20], q[20];
+
+ /* initialize jk*/
+ jk = init_jk[prec];
+ jp = jk;
+
+ /* determine jx,jv,q0, note that 3>q0 */
+ jx = nx - 1;
+ jv = (e0 - 3) / 24;
+ if (jv < 0) jv = 0;
+ q0 = e0 - 24 * (jv + 1);
+
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+ j = jv - jx;
+ m = jx + jk;
+ for (i = 0; i <= m; i++, j++) {
+ f[i] = (j < 0) ? zero : static_cast<double>(ipio2[j]);
+ }
+
+ /* compute q[0],q[1],...q[jk] */
+ for (i = 0; i <= jk; i++) {
+ for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
+ q[i] = fw;
+ }
+
+ jz = jk;
+recompute:
+ /* distill q[] into iq[] reversingly */
+ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
+ fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
+ iq[i] = static_cast<int32_t>(z - two24 * fw);
+ z = q[j - 1] + fw;
+ }
+
+ /* compute n */
+ z = scalbn(z, q0); /* actual value of z */
+ z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
+ n = static_cast<int32_t>(z);
+ z -= static_cast<double>(n);
+ ih = 0;
+ if (q0 > 0) { /* need iq[jz-1] to determine n */
+ i = (iq[jz - 1] >> (24 - q0));
+ n += i;
+ iq[jz - 1] -= i << (24 - q0);
+ ih = iq[jz - 1] >> (23 - q0);
+ } else if (q0 == 0) {
+ ih = iq[jz - 1] >> 23;
+ } else if (z >= 0.5) {
+ ih = 2;
+ }
+
+ if (ih > 0) { /* q > 0.5 */
+ n += 1;
+ carry = 0;
+ for (i = 0; i < jz; i++) { /* compute 1-q */
+ j = iq[i];
+ if (carry == 0) {
+ if (j != 0) {
+ carry = 1;
+ iq[i] = 0x1000000 - j;
+ }
+ } else {
+ iq[i] = 0xffffff - j;
+ }
+ }
+ if (q0 > 0) { /* rare case: chance is 1 in 12 */
+ switch (q0) {
+ case 1:
+ iq[jz - 1] &= 0x7fffff;
+ break;
+ case 2:
+ iq[jz - 1] &= 0x3fffff;
+ break;
+ }
+ }
+ if (ih == 2) {
+ z = one - z;
+ if (carry != 0) z -= scalbn(one, q0);
+ }
+ }
+
+ /* check if recomputation is needed */
+ if (z == zero) {
+ j = 0;
+ for (i = jz - 1; i >= jk; i--) j |= iq[i];
+ if (j == 0) { /* need recomputation */
+ for (k = 1; iq[jk - k] == 0; k++) {
+ /* k = no. of terms needed */
+ }
+
+ for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
+ f[jx + i] = ipio2[jv + i];
+ for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
+ q[i] = fw;
+ }
+ jz += k;
+ goto recompute;
+ }
+ }
+
+ /* chop off zero terms */
+ if (z == 0.0) {
+ jz -= 1;
+ q0 -= 24;
+ while (iq[jz] == 0) {
+ jz--;
+ q0 -= 24;
+ }
+ } else { /* break z into 24-bit if necessary */
+ z = scalbn(z, -q0);
+ if (z >= two24) {
+ fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
+ iq[jz] = z - two24 * fw;
+ jz += 1;
+ q0 += 24;
+ iq[jz] = fw;
+ } else {
+ iq[jz] = z;
+ }
+ }
+
+ /* convert integer "bit" chunk to floating-point value */
+ fw = scalbn(one, q0);
+ for (i = jz; i >= 0; i--) {
+ q[i] = fw * iq[i];
+ fw *= twon24;
+ }
+
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */
+ for (i = jz; i >= 0; i--) {
+ for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k];
+ fq[jz - i] = fw;
+ }
+
+ /* compress fq[] into y[] */
+ switch (prec) {
+ case 0:
+ fw = 0.0;
+ for (i = jz; i >= 0; i--) fw += fq[i];
+ y[0] = (ih == 0) ? fw : -fw;
+ break;
+ case 1:
+ case 2:
+ fw = 0.0;
+ for (i = jz; i >= 0; i--) fw += fq[i];
+ y[0] = (ih == 0) ? fw : -fw;
+ fw = fq[0] - fw;
+ for (i = 1; i <= jz; i++) fw += fq[i];
+ y[1] = (ih == 0) ? fw : -fw;
+ break;
+ case 3: /* painful */
+ for (i = jz; i > 0; i--) {
+ fw = fq[i - 1] + fq[i];
+ fq[i] += fq[i - 1] - fw;
+ fq[i - 1] = fw;
+ }
+ for (i = jz; i > 1; i--) {
+ fw = fq[i - 1] + fq[i];
+ fq[i] += fq[i - 1] - fw;
+ fq[i - 1] = fw;
+ }
+ for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i];
+ if (ih == 0) {
+ y[0] = fq[0];
+ y[1] = fq[1];
+ y[2] = fw;
+ } else {
+ y[0] = -fq[0];
+ y[1] = -fq[1];
+ y[2] = -fw;
+ }
+ }
+ return n & 7;
+}
+
+/* __kernel_sin( x, y, iy)
+ * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ *
+ * Algorithm
+ * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
+ * 3. sin(x) is approximated by a polynomial of degree 13 on
+ * [0,pi/4]
+ * 3 13
+ * sin(x) ~ x + S1*x + ... + S6*x
+ * where
+ *
+ * |sin(x) 2 4 6 8 10 12 | -58
+ * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
+ * | x |
+ *
+ * 4. sin(x+y) = sin(x) + sin'(x')*y
+ * ~ sin(x) + (1-x*x/2)*y
+ * For better accuracy, let
+ * 3 2 2 2 2
+ * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+ * then 3 2
+ * sin(x) = x + (S1*x + (x *(r-y/2)+y))
+ */
+V8_INLINE double __kernel_sin(double x, double y, int iy) {
+ static const double
+ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+ S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+ S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
+ S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
+ S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+
+ double z, r, v;
+ int32_t ix;
+ GET_HIGH_WORD(ix, x);
+ ix &= 0x7fffffff; /* high word of x */
+ if (ix < 0x3e400000) { /* |x| < 2**-27 */
+ if (static_cast<int>(x) == 0) return x;
+ } /* generate inexact */
+ z = x * x;
+ v = z * x;
+ r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
+ if (iy == 0) {
+ return x + v * (S1 + z * r);
+ } else {
+ return x - ((z * (half * y - v * r) - y) - v * S1);
+ }
+}
+
} // namespace
/* atan(x)
@@ -392,6 +985,66 @@ double atan2(double y, double x) {
}
}
+/* cos(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cosine function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+double cos(double x) {
+ double y[2], z = 0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix, x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if (ix <= 0x3fe921fb) {
+ return __kernel_cos(x, z);
+ } else if (ix >= 0x7ff00000) {
+ /* cos(Inf or NaN) is NaN */
+ return x - x;
+ } else {
+ /* argument reduction needed */
+ n = __ieee754_rem_pio2(x, y);
+ switch (n & 3) {
+ case 0:
+ return __kernel_cos(y[0], y[1]);
+ case 1:
+ return -__kernel_sin(y[0], y[1], 1);
+ case 2:
+ return -__kernel_cos(y[0], y[1]);
+ default:
+ return __kernel_sin(y[0], y[1], 1);
+ }
+ }
+}
+
/* exp(x)
* Returns the exponential of x.
*
@@ -1410,6 +2063,66 @@ double cbrt(double x) {
return (t);
}
+/* sin(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cose function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+double sin(double x) {
+ double y[2], z = 0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix, x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if (ix <= 0x3fe921fb) {
+ return __kernel_sin(x, z, 0);
+ } else if (ix >= 0x7ff00000) {
+ /* sin(Inf or NaN) is NaN */
+ return x - x;
+ } else {
+ /* argument reduction needed */
+ n = __ieee754_rem_pio2(x, y);
+ switch (n & 3) {
+ case 0:
+ return __kernel_sin(y[0], y[1], 1);
+ case 1:
+ return __kernel_cos(y[0], y[1]);
+ case 2:
+ return -__kernel_sin(y[0], y[1], 1);
+ default:
+ return -__kernel_cos(y[0], y[1]);
+ }
+ }
+}
+
} // namespace ieee754
} // namespace base
} // namespace v8
« no previous file with comments | « src/base/ieee754.h ('k') | src/bootstrapper.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698