| Index: src/base/ieee754.cc
|
| diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc
|
| index 436ae2337a21a782e3e486746a89309327c9c468..67c0c89671aaf9a9ba7b89eeb81399eb12f3b99b 100644
|
| --- a/src/base/ieee754.cc
|
| +++ b/src/base/ieee754.cc
|
| @@ -168,6 +168,599 @@ typedef union {
|
|
|
| #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
|
|
| +int32_t __ieee754_rem_pio2(double x, double *y) WARN_UNUSED_RESULT;
|
| +double __kernel_cos(double x, double y) WARN_UNUSED_RESULT;
|
| +int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
|
| + const int32_t *ipio2) WARN_UNUSED_RESULT;
|
| +double __kernel_sin(double x, double y, int iy) WARN_UNUSED_RESULT;
|
| +
|
| +/* __ieee754_rem_pio2(x,y)
|
| + *
|
| + * return the remainder of x rem pi/2 in y[0]+y[1]
|
| + * use __kernel_rem_pio2()
|
| + */
|
| +int32_t __ieee754_rem_pio2(double x, double *y) {
|
| + /*
|
| + * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
| + */
|
| + static const int32_t two_over_pi[] = {
|
| + 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C,
|
| + 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649,
|
| + 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44,
|
| + 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B,
|
| + 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D,
|
| + 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
| + 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330,
|
| + 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08,
|
| + 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
|
| + 0x73A8C9, 0x60E27B, 0xC08C6B,
|
| + };
|
| +
|
| + static const int32_t npio2_hw[] = {
|
| + 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
|
| + 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
|
| + 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
|
| + 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
|
| + 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
|
| + 0x404858EB, 0x404921FB,
|
| + };
|
| +
|
| + /*
|
| + * invpio2: 53 bits of 2/pi
|
| + * pio2_1: first 33 bit of pi/2
|
| + * pio2_1t: pi/2 - pio2_1
|
| + * pio2_2: second 33 bit of pi/2
|
| + * pio2_2t: pi/2 - (pio2_1+pio2_2)
|
| + * pio2_3: third 33 bit of pi/2
|
| + * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
| + */
|
| +
|
| + static const double
|
| + zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
| + half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
| + two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
| + invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
| + pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
| + pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
| + pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
| + pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
| + pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
| + pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
| +
|
| + double z, w, t, r, fn;
|
| + double tx[3];
|
| + int32_t e0, i, j, nx, n, ix, hx;
|
| + u_int32_t low;
|
| +
|
| + z = 0;
|
| + GET_HIGH_WORD(hx, x); /* high word of x */
|
| + ix = hx & 0x7fffffff;
|
| + if (ix <= 0x3fe921fb) { /* |x| ~<= pi/4 , no need for reduction */
|
| + y[0] = x;
|
| + y[1] = 0;
|
| + return 0;
|
| + }
|
| + if (ix < 0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
|
| + if (hx > 0) {
|
| + z = x - pio2_1;
|
| + if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */
|
| + y[0] = z - pio2_1t;
|
| + y[1] = (z - y[0]) - pio2_1t;
|
| + } else { /* near pi/2, use 33+33+53 bit pi */
|
| + z -= pio2_2;
|
| + y[0] = z - pio2_2t;
|
| + y[1] = (z - y[0]) - pio2_2t;
|
| + }
|
| + return 1;
|
| + } else { /* negative x */
|
| + z = x + pio2_1;
|
| + if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */
|
| + y[0] = z + pio2_1t;
|
| + y[1] = (z - y[0]) + pio2_1t;
|
| + } else { /* near pi/2, use 33+33+53 bit pi */
|
| + z += pio2_2;
|
| + y[0] = z + pio2_2t;
|
| + y[1] = (z - y[0]) + pio2_2t;
|
| + }
|
| + return -1;
|
| + }
|
| + }
|
| + if (ix <= 0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
|
| + t = fabs(x);
|
| + n = static_cast<int32_t>(t * invpio2 + half);
|
| + fn = static_cast<double>(n);
|
| + r = t - fn * pio2_1;
|
| + w = fn * pio2_1t; /* 1st round good to 85 bit */
|
| + if (n < 32 && ix != npio2_hw[n - 1]) {
|
| + y[0] = r - w; /* quick check no cancellation */
|
| + } else {
|
| + u_int32_t high;
|
| + j = ix >> 20;
|
| + y[0] = r - w;
|
| + GET_HIGH_WORD(high, y[0]);
|
| + i = j - ((high >> 20) & 0x7ff);
|
| + if (i > 16) { /* 2nd iteration needed, good to 118 */
|
| + t = r;
|
| + w = fn * pio2_2;
|
| + r = t - w;
|
| + w = fn * pio2_2t - ((t - r) - w);
|
| + y[0] = r - w;
|
| + GET_HIGH_WORD(high, y[0]);
|
| + i = j - ((high >> 20) & 0x7ff);
|
| + if (i > 49) { /* 3rd iteration need, 151 bits acc */
|
| + t = r; /* will cover all possible cases */
|
| + w = fn * pio2_3;
|
| + r = t - w;
|
| + w = fn * pio2_3t - ((t - r) - w);
|
| + y[0] = r - w;
|
| + }
|
| + }
|
| + }
|
| + y[1] = (r - y[0]) - w;
|
| + if (hx < 0) {
|
| + y[0] = -y[0];
|
| + y[1] = -y[1];
|
| + return -n;
|
| + } else {
|
| + return n;
|
| + }
|
| + }
|
| + /*
|
| + * all other (large) arguments
|
| + */
|
| + if (ix >= 0x7ff00000) { /* x is inf or NaN */
|
| + y[0] = y[1] = x - x;
|
| + return 0;
|
| + }
|
| + /* set z = scalbn(|x|,ilogb(x)-23) */
|
| + GET_LOW_WORD(low, x);
|
| + SET_LOW_WORD(z, low);
|
| + e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */
|
| + SET_HIGH_WORD(z, ix - static_cast<int32_t>(e0 << 20));
|
| + for (i = 0; i < 2; i++) {
|
| + tx[i] = static_cast<double>(static_cast<int32_t>(z));
|
| + z = (z - tx[i]) * two24;
|
| + }
|
| + tx[2] = z;
|
| + nx = 3;
|
| + while (tx[nx - 1] == zero) nx--; /* skip zero term */
|
| + n = __kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi);
|
| + if (hx < 0) {
|
| + y[0] = -y[0];
|
| + y[1] = -y[1];
|
| + return -n;
|
| + }
|
| + return n;
|
| +}
|
| +
|
| +/* __kernel_cos( x, y )
|
| + * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
| + * Input x is assumed to be bounded by ~pi/4 in magnitude.
|
| + * Input y is the tail of x.
|
| + *
|
| + * Algorithm
|
| + * 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
| + * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
| + * 3. cos(x) is approximated by a polynomial of degree 14 on
|
| + * [0,pi/4]
|
| + * 4 14
|
| + * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
| + * where the remez error is
|
| + *
|
| + * | 2 4 6 8 10 12 14 | -58
|
| + * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
| + * | |
|
| + *
|
| + * 4 6 8 10 12 14
|
| + * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
| + * cos(x) = 1 - x*x/2 + r
|
| + * since cos(x+y) ~ cos(x) - sin(x)*y
|
| + * ~ cos(x) - x*y,
|
| + * a correction term is necessary in cos(x) and hence
|
| + * cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
| + * For better accuracy when x > 0.3, let qx = |x|/4 with
|
| + * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
| + * Then
|
| + * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
| + * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
| + * magnitude of the latter is at least a quarter of x*x/2,
|
| + * thus, reducing the rounding error in the subtraction.
|
| + */
|
| +V8_INLINE double __kernel_cos(double x, double y) {
|
| + static const double
|
| + one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
| + C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
| + C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
| + C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
| + C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
| + C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
| + C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
| +
|
| + double a, hz, z, r, qx;
|
| + int32_t ix;
|
| + GET_HIGH_WORD(ix, x);
|
| + ix &= 0x7fffffff; /* ix = |x|'s high word*/
|
| + if (ix < 0x3e400000) { /* if x < 2**27 */
|
| + if (static_cast<int>(x) == 0) return one; /* generate inexact */
|
| + }
|
| + z = x * x;
|
| + r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
|
| + if (ix < 0x3FD33333) { /* if |x| < 0.3 */
|
| + return one - (0.5 * z - (z * r - x * y));
|
| + } else {
|
| + if (ix > 0x3fe90000) { /* x > 0.78125 */
|
| + qx = 0.28125;
|
| + } else {
|
| + INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */
|
| + }
|
| + hz = 0.5 * z - qx;
|
| + a = one - qx;
|
| + return a - (hz - (z * r - x * y));
|
| + }
|
| +}
|
| +
|
| +/* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
| + * double x[],y[]; int e0,nx,prec; int ipio2[];
|
| + *
|
| + * __kernel_rem_pio2 return the last three digits of N with
|
| + * y = x - N*pi/2
|
| + * so that |y| < pi/2.
|
| + *
|
| + * The method is to compute the integer (mod 8) and fraction parts of
|
| + * (2/pi)*x without doing the full multiplication. In general we
|
| + * skip the part of the product that are known to be a huge integer (
|
| + * more accurately, = 0 mod 8 ). Thus the number of operations are
|
| + * independent of the exponent of the input.
|
| + *
|
| + * (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
| + *
|
| + * Input parameters:
|
| + * x[] The input value (must be positive) is broken into nx
|
| + * pieces of 24-bit integers in double precision format.
|
| + * x[i] will be the i-th 24 bit of x. The scaled exponent
|
| + * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
| + * match x's up to 24 bits.
|
| + *
|
| + * Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
| + * e0 = ilogb(z)-23
|
| + * z = scalbn(z,-e0)
|
| + * for i = 0,1,2
|
| + * x[i] = floor(z)
|
| + * z = (z-x[i])*2**24
|
| + *
|
| + *
|
| + * y[] output result in an array of double precision numbers.
|
| + * The dimension of y[] is:
|
| + * 24-bit precision 1
|
| + * 53-bit precision 2
|
| + * 64-bit precision 2
|
| + * 113-bit precision 3
|
| + * The actual value is the sum of them. Thus for 113-bit
|
| + * precison, one may have to do something like:
|
| + *
|
| + * long double t,w,r_head, r_tail;
|
| + * t = (long double)y[2] + (long double)y[1];
|
| + * w = (long double)y[0];
|
| + * r_head = t+w;
|
| + * r_tail = w - (r_head - t);
|
| + *
|
| + * e0 The exponent of x[0]
|
| + *
|
| + * nx dimension of x[]
|
| + *
|
| + * prec an integer indicating the precision:
|
| + * 0 24 bits (single)
|
| + * 1 53 bits (double)
|
| + * 2 64 bits (extended)
|
| + * 3 113 bits (quad)
|
| + *
|
| + * ipio2[]
|
| + * integer array, contains the (24*i)-th to (24*i+23)-th
|
| + * bit of 2/pi after binary point. The corresponding
|
| + * floating value is
|
| + *
|
| + * ipio2[i] * 2^(-24(i+1)).
|
| + *
|
| + * External function:
|
| + * double scalbn(), floor();
|
| + *
|
| + *
|
| + * Here is the description of some local variables:
|
| + *
|
| + * jk jk+1 is the initial number of terms of ipio2[] needed
|
| + * in the computation. The recommended value is 2,3,4,
|
| + * 6 for single, double, extended,and quad.
|
| + *
|
| + * jz local integer variable indicating the number of
|
| + * terms of ipio2[] used.
|
| + *
|
| + * jx nx - 1
|
| + *
|
| + * jv index for pointing to the suitable ipio2[] for the
|
| + * computation. In general, we want
|
| + * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
| + * is an integer. Thus
|
| + * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
| + * Hence jv = max(0,(e0-3)/24).
|
| + *
|
| + * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
| + *
|
| + * q[] double array with integral value, representing the
|
| + * 24-bits chunk of the product of x and 2/pi.
|
| + *
|
| + * q0 the corresponding exponent of q[0]. Note that the
|
| + * exponent for q[i] would be q0-24*i.
|
| + *
|
| + * PIo2[] double precision array, obtained by cutting pi/2
|
| + * into 24 bits chunks.
|
| + *
|
| + * f[] ipio2[] in floating point
|
| + *
|
| + * iq[] integer array by breaking up q[] in 24-bits chunk.
|
| + *
|
| + * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
| + *
|
| + * ih integer. If >0 it indicates q[] is >= 0.5, hence
|
| + * it also indicates the *sign* of the result.
|
| + *
|
| + */
|
| +int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
|
| + const int32_t *ipio2) {
|
| + /* Constants:
|
| + * The hexadecimal values are the intended ones for the following
|
| + * constants. The decimal values may be used, provided that the
|
| + * compiler will convert from decimal to binary accurately enough
|
| + * to produce the hexadecimal values shown.
|
| + */
|
| + static const int init_jk[] = {2, 3, 4, 6}; /* initial value for jk */
|
| +
|
| + static const double PIo2[] = {
|
| + 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
| + 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
| + 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
| + 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
| + 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
| + 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
| + 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
| + 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
| + };
|
| +
|
| + static const double
|
| + zero = 0.0,
|
| + one = 1.0,
|
| + two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
| + twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
| +
|
| + int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
|
| + double z, fw, f[20], fq[20], q[20];
|
| +
|
| + /* initialize jk*/
|
| + jk = init_jk[prec];
|
| + jp = jk;
|
| +
|
| + /* determine jx,jv,q0, note that 3>q0 */
|
| + jx = nx - 1;
|
| + jv = (e0 - 3) / 24;
|
| + if (jv < 0) jv = 0;
|
| + q0 = e0 - 24 * (jv + 1);
|
| +
|
| + /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
| + j = jv - jx;
|
| + m = jx + jk;
|
| + for (i = 0; i <= m; i++, j++) {
|
| + f[i] = (j < 0) ? zero : static_cast<double>(ipio2[j]);
|
| + }
|
| +
|
| + /* compute q[0],q[1],...q[jk] */
|
| + for (i = 0; i <= jk; i++) {
|
| + for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
|
| + q[i] = fw;
|
| + }
|
| +
|
| + jz = jk;
|
| +recompute:
|
| + /* distill q[] into iq[] reversingly */
|
| + for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
|
| + fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
|
| + iq[i] = static_cast<int32_t>(z - two24 * fw);
|
| + z = q[j - 1] + fw;
|
| + }
|
| +
|
| + /* compute n */
|
| + z = scalbn(z, q0); /* actual value of z */
|
| + z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
|
| + n = static_cast<int32_t>(z);
|
| + z -= static_cast<double>(n);
|
| + ih = 0;
|
| + if (q0 > 0) { /* need iq[jz-1] to determine n */
|
| + i = (iq[jz - 1] >> (24 - q0));
|
| + n += i;
|
| + iq[jz - 1] -= i << (24 - q0);
|
| + ih = iq[jz - 1] >> (23 - q0);
|
| + } else if (q0 == 0) {
|
| + ih = iq[jz - 1] >> 23;
|
| + } else if (z >= 0.5) {
|
| + ih = 2;
|
| + }
|
| +
|
| + if (ih > 0) { /* q > 0.5 */
|
| + n += 1;
|
| + carry = 0;
|
| + for (i = 0; i < jz; i++) { /* compute 1-q */
|
| + j = iq[i];
|
| + if (carry == 0) {
|
| + if (j != 0) {
|
| + carry = 1;
|
| + iq[i] = 0x1000000 - j;
|
| + }
|
| + } else {
|
| + iq[i] = 0xffffff - j;
|
| + }
|
| + }
|
| + if (q0 > 0) { /* rare case: chance is 1 in 12 */
|
| + switch (q0) {
|
| + case 1:
|
| + iq[jz - 1] &= 0x7fffff;
|
| + break;
|
| + case 2:
|
| + iq[jz - 1] &= 0x3fffff;
|
| + break;
|
| + }
|
| + }
|
| + if (ih == 2) {
|
| + z = one - z;
|
| + if (carry != 0) z -= scalbn(one, q0);
|
| + }
|
| + }
|
| +
|
| + /* check if recomputation is needed */
|
| + if (z == zero) {
|
| + j = 0;
|
| + for (i = jz - 1; i >= jk; i--) j |= iq[i];
|
| + if (j == 0) { /* need recomputation */
|
| + for (k = 1; iq[jk - k] == 0; k++) {
|
| + /* k = no. of terms needed */
|
| + }
|
| +
|
| + for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
|
| + f[jx + i] = ipio2[jv + i];
|
| + for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
|
| + q[i] = fw;
|
| + }
|
| + jz += k;
|
| + goto recompute;
|
| + }
|
| + }
|
| +
|
| + /* chop off zero terms */
|
| + if (z == 0.0) {
|
| + jz -= 1;
|
| + q0 -= 24;
|
| + while (iq[jz] == 0) {
|
| + jz--;
|
| + q0 -= 24;
|
| + }
|
| + } else { /* break z into 24-bit if necessary */
|
| + z = scalbn(z, -q0);
|
| + if (z >= two24) {
|
| + fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
|
| + iq[jz] = z - two24 * fw;
|
| + jz += 1;
|
| + q0 += 24;
|
| + iq[jz] = fw;
|
| + } else {
|
| + iq[jz] = z;
|
| + }
|
| + }
|
| +
|
| + /* convert integer "bit" chunk to floating-point value */
|
| + fw = scalbn(one, q0);
|
| + for (i = jz; i >= 0; i--) {
|
| + q[i] = fw * iq[i];
|
| + fw *= twon24;
|
| + }
|
| +
|
| + /* compute PIo2[0,...,jp]*q[jz,...,0] */
|
| + for (i = jz; i >= 0; i--) {
|
| + for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k];
|
| + fq[jz - i] = fw;
|
| + }
|
| +
|
| + /* compress fq[] into y[] */
|
| + switch (prec) {
|
| + case 0:
|
| + fw = 0.0;
|
| + for (i = jz; i >= 0; i--) fw += fq[i];
|
| + y[0] = (ih == 0) ? fw : -fw;
|
| + break;
|
| + case 1:
|
| + case 2:
|
| + fw = 0.0;
|
| + for (i = jz; i >= 0; i--) fw += fq[i];
|
| + y[0] = (ih == 0) ? fw : -fw;
|
| + fw = fq[0] - fw;
|
| + for (i = 1; i <= jz; i++) fw += fq[i];
|
| + y[1] = (ih == 0) ? fw : -fw;
|
| + break;
|
| + case 3: /* painful */
|
| + for (i = jz; i > 0; i--) {
|
| + fw = fq[i - 1] + fq[i];
|
| + fq[i] += fq[i - 1] - fw;
|
| + fq[i - 1] = fw;
|
| + }
|
| + for (i = jz; i > 1; i--) {
|
| + fw = fq[i - 1] + fq[i];
|
| + fq[i] += fq[i - 1] - fw;
|
| + fq[i - 1] = fw;
|
| + }
|
| + for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i];
|
| + if (ih == 0) {
|
| + y[0] = fq[0];
|
| + y[1] = fq[1];
|
| + y[2] = fw;
|
| + } else {
|
| + y[0] = -fq[0];
|
| + y[1] = -fq[1];
|
| + y[2] = -fw;
|
| + }
|
| + }
|
| + return n & 7;
|
| +}
|
| +
|
| +/* __kernel_sin( x, y, iy)
|
| + * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
| + * Input x is assumed to be bounded by ~pi/4 in magnitude.
|
| + * Input y is the tail of x.
|
| + * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
| + *
|
| + * Algorithm
|
| + * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
| + * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
| + * 3. sin(x) is approximated by a polynomial of degree 13 on
|
| + * [0,pi/4]
|
| + * 3 13
|
| + * sin(x) ~ x + S1*x + ... + S6*x
|
| + * where
|
| + *
|
| + * |sin(x) 2 4 6 8 10 12 | -58
|
| + * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
| + * | x |
|
| + *
|
| + * 4. sin(x+y) = sin(x) + sin'(x')*y
|
| + * ~ sin(x) + (1-x*x/2)*y
|
| + * For better accuracy, let
|
| + * 3 2 2 2 2
|
| + * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
| + * then 3 2
|
| + * sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
| + */
|
| +V8_INLINE double __kernel_sin(double x, double y, int iy) {
|
| + static const double
|
| + half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
| + S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
| + S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
| + S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
| + S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
| + S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
| + S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
| +
|
| + double z, r, v;
|
| + int32_t ix;
|
| + GET_HIGH_WORD(ix, x);
|
| + ix &= 0x7fffffff; /* high word of x */
|
| + if (ix < 0x3e400000) { /* |x| < 2**-27 */
|
| + if (static_cast<int>(x) == 0) return x;
|
| + } /* generate inexact */
|
| + z = x * x;
|
| + v = z * x;
|
| + r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
|
| + if (iy == 0) {
|
| + return x + v * (S1 + z * r);
|
| + } else {
|
| + return x - ((z * (half * y - v * r) - y) - v * S1);
|
| + }
|
| +}
|
| +
|
| } // namespace
|
|
|
| /* atan(x)
|
| @@ -392,6 +985,66 @@ double atan2(double y, double x) {
|
| }
|
| }
|
|
|
| +/* cos(x)
|
| + * Return cosine function of x.
|
| + *
|
| + * kernel function:
|
| + * __kernel_sin ... sine function on [-pi/4,pi/4]
|
| + * __kernel_cos ... cosine function on [-pi/4,pi/4]
|
| + * __ieee754_rem_pio2 ... argument reduction routine
|
| + *
|
| + * Method.
|
| + * Let S,C and T denote the sin, cos and tan respectively on
|
| + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
| + * in [-pi/4 , +pi/4], and let n = k mod 4.
|
| + * We have
|
| + *
|
| + * n sin(x) cos(x) tan(x)
|
| + * ----------------------------------------------------------
|
| + * 0 S C T
|
| + * 1 C -S -1/T
|
| + * 2 -S -C T
|
| + * 3 -C S -1/T
|
| + * ----------------------------------------------------------
|
| + *
|
| + * Special cases:
|
| + * Let trig be any of sin, cos, or tan.
|
| + * trig(+-INF) is NaN, with signals;
|
| + * trig(NaN) is that NaN;
|
| + *
|
| + * Accuracy:
|
| + * TRIG(x) returns trig(x) nearly rounded
|
| + */
|
| +double cos(double x) {
|
| + double y[2], z = 0.0;
|
| + int32_t n, ix;
|
| +
|
| + /* High word of x. */
|
| + GET_HIGH_WORD(ix, x);
|
| +
|
| + /* |x| ~< pi/4 */
|
| + ix &= 0x7fffffff;
|
| + if (ix <= 0x3fe921fb) {
|
| + return __kernel_cos(x, z);
|
| + } else if (ix >= 0x7ff00000) {
|
| + /* cos(Inf or NaN) is NaN */
|
| + return x - x;
|
| + } else {
|
| + /* argument reduction needed */
|
| + n = __ieee754_rem_pio2(x, y);
|
| + switch (n & 3) {
|
| + case 0:
|
| + return __kernel_cos(y[0], y[1]);
|
| + case 1:
|
| + return -__kernel_sin(y[0], y[1], 1);
|
| + case 2:
|
| + return -__kernel_cos(y[0], y[1]);
|
| + default:
|
| + return __kernel_sin(y[0], y[1], 1);
|
| + }
|
| + }
|
| +}
|
| +
|
| /* exp(x)
|
| * Returns the exponential of x.
|
| *
|
| @@ -1410,6 +2063,66 @@ double cbrt(double x) {
|
| return (t);
|
| }
|
|
|
| +/* sin(x)
|
| + * Return sine function of x.
|
| + *
|
| + * kernel function:
|
| + * __kernel_sin ... sine function on [-pi/4,pi/4]
|
| + * __kernel_cos ... cose function on [-pi/4,pi/4]
|
| + * __ieee754_rem_pio2 ... argument reduction routine
|
| + *
|
| + * Method.
|
| + * Let S,C and T denote the sin, cos and tan respectively on
|
| + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
| + * in [-pi/4 , +pi/4], and let n = k mod 4.
|
| + * We have
|
| + *
|
| + * n sin(x) cos(x) tan(x)
|
| + * ----------------------------------------------------------
|
| + * 0 S C T
|
| + * 1 C -S -1/T
|
| + * 2 -S -C T
|
| + * 3 -C S -1/T
|
| + * ----------------------------------------------------------
|
| + *
|
| + * Special cases:
|
| + * Let trig be any of sin, cos, or tan.
|
| + * trig(+-INF) is NaN, with signals;
|
| + * trig(NaN) is that NaN;
|
| + *
|
| + * Accuracy:
|
| + * TRIG(x) returns trig(x) nearly rounded
|
| + */
|
| +double sin(double x) {
|
| + double y[2], z = 0.0;
|
| + int32_t n, ix;
|
| +
|
| + /* High word of x. */
|
| + GET_HIGH_WORD(ix, x);
|
| +
|
| + /* |x| ~< pi/4 */
|
| + ix &= 0x7fffffff;
|
| + if (ix <= 0x3fe921fb) {
|
| + return __kernel_sin(x, z, 0);
|
| + } else if (ix >= 0x7ff00000) {
|
| + /* sin(Inf or NaN) is NaN */
|
| + return x - x;
|
| + } else {
|
| + /* argument reduction needed */
|
| + n = __ieee754_rem_pio2(x, y);
|
| + switch (n & 3) {
|
| + case 0:
|
| + return __kernel_sin(y[0], y[1], 1);
|
| + case 1:
|
| + return __kernel_cos(y[0], y[1]);
|
| + case 2:
|
| + return -__kernel_sin(y[0], y[1], 1);
|
| + default:
|
| + return -__kernel_cos(y[0], y[1]);
|
| + }
|
| + }
|
| +}
|
| +
|
| } // namespace ieee754
|
| } // namespace base
|
| } // namespace v8
|
|
|