Index: src/base/ieee754.cc |
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
index 436ae2337a21a782e3e486746a89309327c9c468..67c0c89671aaf9a9ba7b89eeb81399eb12f3b99b 100644 |
--- a/src/base/ieee754.cc |
+++ b/src/base/ieee754.cc |
@@ -168,6 +168,599 @@ typedef union { |
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) |
+int32_t __ieee754_rem_pio2(double x, double *y) WARN_UNUSED_RESULT; |
+double __kernel_cos(double x, double y) WARN_UNUSED_RESULT; |
+int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, |
+ const int32_t *ipio2) WARN_UNUSED_RESULT; |
+double __kernel_sin(double x, double y, int iy) WARN_UNUSED_RESULT; |
+ |
+/* __ieee754_rem_pio2(x,y) |
+ * |
+ * return the remainder of x rem pi/2 in y[0]+y[1] |
+ * use __kernel_rem_pio2() |
+ */ |
+int32_t __ieee754_rem_pio2(double x, double *y) { |
+ /* |
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi |
+ */ |
+ static const int32_t two_over_pi[] = { |
+ 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, |
+ 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, |
+ 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, |
+ 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, |
+ 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, |
+ 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, |
+ 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, |
+ 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, |
+ 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, |
+ 0x73A8C9, 0x60E27B, 0xC08C6B, |
+ }; |
+ |
+ static const int32_t npio2_hw[] = { |
+ 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, |
+ 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, |
+ 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, |
+ 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, |
+ 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, |
+ 0x404858EB, 0x404921FB, |
+ }; |
+ |
+ /* |
+ * invpio2: 53 bits of 2/pi |
+ * pio2_1: first 33 bit of pi/2 |
+ * pio2_1t: pi/2 - pio2_1 |
+ * pio2_2: second 33 bit of pi/2 |
+ * pio2_2t: pi/2 - (pio2_1+pio2_2) |
+ * pio2_3: third 33 bit of pi/2 |
+ * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
+ */ |
+ |
+ static const double |
+ zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
+ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
+ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
+ invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
+ pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ |
+ pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ |
+ pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ |
+ pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ |
+ pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ |
+ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ |
+ |
+ double z, w, t, r, fn; |
+ double tx[3]; |
+ int32_t e0, i, j, nx, n, ix, hx; |
+ u_int32_t low; |
+ |
+ z = 0; |
+ GET_HIGH_WORD(hx, x); /* high word of x */ |
+ ix = hx & 0x7fffffff; |
+ if (ix <= 0x3fe921fb) { /* |x| ~<= pi/4 , no need for reduction */ |
+ y[0] = x; |
+ y[1] = 0; |
+ return 0; |
+ } |
+ if (ix < 0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ |
+ if (hx > 0) { |
+ z = x - pio2_1; |
+ if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */ |
+ y[0] = z - pio2_1t; |
+ y[1] = (z - y[0]) - pio2_1t; |
+ } else { /* near pi/2, use 33+33+53 bit pi */ |
+ z -= pio2_2; |
+ y[0] = z - pio2_2t; |
+ y[1] = (z - y[0]) - pio2_2t; |
+ } |
+ return 1; |
+ } else { /* negative x */ |
+ z = x + pio2_1; |
+ if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */ |
+ y[0] = z + pio2_1t; |
+ y[1] = (z - y[0]) + pio2_1t; |
+ } else { /* near pi/2, use 33+33+53 bit pi */ |
+ z += pio2_2; |
+ y[0] = z + pio2_2t; |
+ y[1] = (z - y[0]) + pio2_2t; |
+ } |
+ return -1; |
+ } |
+ } |
+ if (ix <= 0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ |
+ t = fabs(x); |
+ n = static_cast<int32_t>(t * invpio2 + half); |
+ fn = static_cast<double>(n); |
+ r = t - fn * pio2_1; |
+ w = fn * pio2_1t; /* 1st round good to 85 bit */ |
+ if (n < 32 && ix != npio2_hw[n - 1]) { |
+ y[0] = r - w; /* quick check no cancellation */ |
+ } else { |
+ u_int32_t high; |
+ j = ix >> 20; |
+ y[0] = r - w; |
+ GET_HIGH_WORD(high, y[0]); |
+ i = j - ((high >> 20) & 0x7ff); |
+ if (i > 16) { /* 2nd iteration needed, good to 118 */ |
+ t = r; |
+ w = fn * pio2_2; |
+ r = t - w; |
+ w = fn * pio2_2t - ((t - r) - w); |
+ y[0] = r - w; |
+ GET_HIGH_WORD(high, y[0]); |
+ i = j - ((high >> 20) & 0x7ff); |
+ if (i > 49) { /* 3rd iteration need, 151 bits acc */ |
+ t = r; /* will cover all possible cases */ |
+ w = fn * pio2_3; |
+ r = t - w; |
+ w = fn * pio2_3t - ((t - r) - w); |
+ y[0] = r - w; |
+ } |
+ } |
+ } |
+ y[1] = (r - y[0]) - w; |
+ if (hx < 0) { |
+ y[0] = -y[0]; |
+ y[1] = -y[1]; |
+ return -n; |
+ } else { |
+ return n; |
+ } |
+ } |
+ /* |
+ * all other (large) arguments |
+ */ |
+ if (ix >= 0x7ff00000) { /* x is inf or NaN */ |
+ y[0] = y[1] = x - x; |
+ return 0; |
+ } |
+ /* set z = scalbn(|x|,ilogb(x)-23) */ |
+ GET_LOW_WORD(low, x); |
+ SET_LOW_WORD(z, low); |
+ e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */ |
+ SET_HIGH_WORD(z, ix - static_cast<int32_t>(e0 << 20)); |
+ for (i = 0; i < 2; i++) { |
+ tx[i] = static_cast<double>(static_cast<int32_t>(z)); |
+ z = (z - tx[i]) * two24; |
+ } |
+ tx[2] = z; |
+ nx = 3; |
+ while (tx[nx - 1] == zero) nx--; /* skip zero term */ |
+ n = __kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi); |
+ if (hx < 0) { |
+ y[0] = -y[0]; |
+ y[1] = -y[1]; |
+ return -n; |
+ } |
+ return n; |
+} |
+ |
+/* __kernel_cos( x, y ) |
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
+ * Input x is assumed to be bounded by ~pi/4 in magnitude. |
+ * Input y is the tail of x. |
+ * |
+ * Algorithm |
+ * 1. Since cos(-x) = cos(x), we need only to consider positive x. |
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. |
+ * 3. cos(x) is approximated by a polynomial of degree 14 on |
+ * [0,pi/4] |
+ * 4 14 |
+ * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
+ * where the remez error is |
+ * |
+ * | 2 4 6 8 10 12 14 | -58 |
+ * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
+ * | | |
+ * |
+ * 4 6 8 10 12 14 |
+ * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
+ * cos(x) = 1 - x*x/2 + r |
+ * since cos(x+y) ~ cos(x) - sin(x)*y |
+ * ~ cos(x) - x*y, |
+ * a correction term is necessary in cos(x) and hence |
+ * cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
+ * For better accuracy when x > 0.3, let qx = |x|/4 with |
+ * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
+ * Then |
+ * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
+ * Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
+ * magnitude of the latter is at least a quarter of x*x/2, |
+ * thus, reducing the rounding error in the subtraction. |
+ */ |
+V8_INLINE double __kernel_cos(double x, double y) { |
+ static const double |
+ one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
+ C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
+ C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
+ C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
+ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
+ C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
+ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
+ |
+ double a, hz, z, r, qx; |
+ int32_t ix; |
+ GET_HIGH_WORD(ix, x); |
+ ix &= 0x7fffffff; /* ix = |x|'s high word*/ |
+ if (ix < 0x3e400000) { /* if x < 2**27 */ |
+ if (static_cast<int>(x) == 0) return one; /* generate inexact */ |
+ } |
+ z = x * x; |
+ r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6))))); |
+ if (ix < 0x3FD33333) { /* if |x| < 0.3 */ |
+ return one - (0.5 * z - (z * r - x * y)); |
+ } else { |
+ if (ix > 0x3fe90000) { /* x > 0.78125 */ |
+ qx = 0.28125; |
+ } else { |
+ INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */ |
+ } |
+ hz = 0.5 * z - qx; |
+ a = one - qx; |
+ return a - (hz - (z * r - x * y)); |
+ } |
+} |
+ |
+/* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
+ * double x[],y[]; int e0,nx,prec; int ipio2[]; |
+ * |
+ * __kernel_rem_pio2 return the last three digits of N with |
+ * y = x - N*pi/2 |
+ * so that |y| < pi/2. |
+ * |
+ * The method is to compute the integer (mod 8) and fraction parts of |
+ * (2/pi)*x without doing the full multiplication. In general we |
+ * skip the part of the product that are known to be a huge integer ( |
+ * more accurately, = 0 mod 8 ). Thus the number of operations are |
+ * independent of the exponent of the input. |
+ * |
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
+ * |
+ * Input parameters: |
+ * x[] The input value (must be positive) is broken into nx |
+ * pieces of 24-bit integers in double precision format. |
+ * x[i] will be the i-th 24 bit of x. The scaled exponent |
+ * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
+ * match x's up to 24 bits. |
+ * |
+ * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
+ * e0 = ilogb(z)-23 |
+ * z = scalbn(z,-e0) |
+ * for i = 0,1,2 |
+ * x[i] = floor(z) |
+ * z = (z-x[i])*2**24 |
+ * |
+ * |
+ * y[] output result in an array of double precision numbers. |
+ * The dimension of y[] is: |
+ * 24-bit precision 1 |
+ * 53-bit precision 2 |
+ * 64-bit precision 2 |
+ * 113-bit precision 3 |
+ * The actual value is the sum of them. Thus for 113-bit |
+ * precison, one may have to do something like: |
+ * |
+ * long double t,w,r_head, r_tail; |
+ * t = (long double)y[2] + (long double)y[1]; |
+ * w = (long double)y[0]; |
+ * r_head = t+w; |
+ * r_tail = w - (r_head - t); |
+ * |
+ * e0 The exponent of x[0] |
+ * |
+ * nx dimension of x[] |
+ * |
+ * prec an integer indicating the precision: |
+ * 0 24 bits (single) |
+ * 1 53 bits (double) |
+ * 2 64 bits (extended) |
+ * 3 113 bits (quad) |
+ * |
+ * ipio2[] |
+ * integer array, contains the (24*i)-th to (24*i+23)-th |
+ * bit of 2/pi after binary point. The corresponding |
+ * floating value is |
+ * |
+ * ipio2[i] * 2^(-24(i+1)). |
+ * |
+ * External function: |
+ * double scalbn(), floor(); |
+ * |
+ * |
+ * Here is the description of some local variables: |
+ * |
+ * jk jk+1 is the initial number of terms of ipio2[] needed |
+ * in the computation. The recommended value is 2,3,4, |
+ * 6 for single, double, extended,and quad. |
+ * |
+ * jz local integer variable indicating the number of |
+ * terms of ipio2[] used. |
+ * |
+ * jx nx - 1 |
+ * |
+ * jv index for pointing to the suitable ipio2[] for the |
+ * computation. In general, we want |
+ * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
+ * is an integer. Thus |
+ * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
+ * Hence jv = max(0,(e0-3)/24). |
+ * |
+ * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
+ * |
+ * q[] double array with integral value, representing the |
+ * 24-bits chunk of the product of x and 2/pi. |
+ * |
+ * q0 the corresponding exponent of q[0]. Note that the |
+ * exponent for q[i] would be q0-24*i. |
+ * |
+ * PIo2[] double precision array, obtained by cutting pi/2 |
+ * into 24 bits chunks. |
+ * |
+ * f[] ipio2[] in floating point |
+ * |
+ * iq[] integer array by breaking up q[] in 24-bits chunk. |
+ * |
+ * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
+ * |
+ * ih integer. If >0 it indicates q[] is >= 0.5, hence |
+ * it also indicates the *sign* of the result. |
+ * |
+ */ |
+int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, |
+ const int32_t *ipio2) { |
+ /* Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ */ |
+ static const int init_jk[] = {2, 3, 4, 6}; /* initial value for jk */ |
+ |
+ static const double PIo2[] = { |
+ 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
+ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
+ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
+ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
+ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
+ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
+ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
+ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
+ }; |
+ |
+ static const double |
+ zero = 0.0, |
+ one = 1.0, |
+ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
+ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
+ |
+ int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; |
+ double z, fw, f[20], fq[20], q[20]; |
+ |
+ /* initialize jk*/ |
+ jk = init_jk[prec]; |
+ jp = jk; |
+ |
+ /* determine jx,jv,q0, note that 3>q0 */ |
+ jx = nx - 1; |
+ jv = (e0 - 3) / 24; |
+ if (jv < 0) jv = 0; |
+ q0 = e0 - 24 * (jv + 1); |
+ |
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
+ j = jv - jx; |
+ m = jx + jk; |
+ for (i = 0; i <= m; i++, j++) { |
+ f[i] = (j < 0) ? zero : static_cast<double>(ipio2[j]); |
+ } |
+ |
+ /* compute q[0],q[1],...q[jk] */ |
+ for (i = 0; i <= jk; i++) { |
+ for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; |
+ q[i] = fw; |
+ } |
+ |
+ jz = jk; |
+recompute: |
+ /* distill q[] into iq[] reversingly */ |
+ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { |
+ fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); |
+ iq[i] = static_cast<int32_t>(z - two24 * fw); |
+ z = q[j - 1] + fw; |
+ } |
+ |
+ /* compute n */ |
+ z = scalbn(z, q0); /* actual value of z */ |
+ z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ |
+ n = static_cast<int32_t>(z); |
+ z -= static_cast<double>(n); |
+ ih = 0; |
+ if (q0 > 0) { /* need iq[jz-1] to determine n */ |
+ i = (iq[jz - 1] >> (24 - q0)); |
+ n += i; |
+ iq[jz - 1] -= i << (24 - q0); |
+ ih = iq[jz - 1] >> (23 - q0); |
+ } else if (q0 == 0) { |
+ ih = iq[jz - 1] >> 23; |
+ } else if (z >= 0.5) { |
+ ih = 2; |
+ } |
+ |
+ if (ih > 0) { /* q > 0.5 */ |
+ n += 1; |
+ carry = 0; |
+ for (i = 0; i < jz; i++) { /* compute 1-q */ |
+ j = iq[i]; |
+ if (carry == 0) { |
+ if (j != 0) { |
+ carry = 1; |
+ iq[i] = 0x1000000 - j; |
+ } |
+ } else { |
+ iq[i] = 0xffffff - j; |
+ } |
+ } |
+ if (q0 > 0) { /* rare case: chance is 1 in 12 */ |
+ switch (q0) { |
+ case 1: |
+ iq[jz - 1] &= 0x7fffff; |
+ break; |
+ case 2: |
+ iq[jz - 1] &= 0x3fffff; |
+ break; |
+ } |
+ } |
+ if (ih == 2) { |
+ z = one - z; |
+ if (carry != 0) z -= scalbn(one, q0); |
+ } |
+ } |
+ |
+ /* check if recomputation is needed */ |
+ if (z == zero) { |
+ j = 0; |
+ for (i = jz - 1; i >= jk; i--) j |= iq[i]; |
+ if (j == 0) { /* need recomputation */ |
+ for (k = 1; iq[jk - k] == 0; k++) { |
+ /* k = no. of terms needed */ |
+ } |
+ |
+ for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ |
+ f[jx + i] = ipio2[jv + i]; |
+ for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; |
+ q[i] = fw; |
+ } |
+ jz += k; |
+ goto recompute; |
+ } |
+ } |
+ |
+ /* chop off zero terms */ |
+ if (z == 0.0) { |
+ jz -= 1; |
+ q0 -= 24; |
+ while (iq[jz] == 0) { |
+ jz--; |
+ q0 -= 24; |
+ } |
+ } else { /* break z into 24-bit if necessary */ |
+ z = scalbn(z, -q0); |
+ if (z >= two24) { |
+ fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); |
+ iq[jz] = z - two24 * fw; |
+ jz += 1; |
+ q0 += 24; |
+ iq[jz] = fw; |
+ } else { |
+ iq[jz] = z; |
+ } |
+ } |
+ |
+ /* convert integer "bit" chunk to floating-point value */ |
+ fw = scalbn(one, q0); |
+ for (i = jz; i >= 0; i--) { |
+ q[i] = fw * iq[i]; |
+ fw *= twon24; |
+ } |
+ |
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
+ for (i = jz; i >= 0; i--) { |
+ for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k]; |
+ fq[jz - i] = fw; |
+ } |
+ |
+ /* compress fq[] into y[] */ |
+ switch (prec) { |
+ case 0: |
+ fw = 0.0; |
+ for (i = jz; i >= 0; i--) fw += fq[i]; |
+ y[0] = (ih == 0) ? fw : -fw; |
+ break; |
+ case 1: |
+ case 2: |
+ fw = 0.0; |
+ for (i = jz; i >= 0; i--) fw += fq[i]; |
+ y[0] = (ih == 0) ? fw : -fw; |
+ fw = fq[0] - fw; |
+ for (i = 1; i <= jz; i++) fw += fq[i]; |
+ y[1] = (ih == 0) ? fw : -fw; |
+ break; |
+ case 3: /* painful */ |
+ for (i = jz; i > 0; i--) { |
+ fw = fq[i - 1] + fq[i]; |
+ fq[i] += fq[i - 1] - fw; |
+ fq[i - 1] = fw; |
+ } |
+ for (i = jz; i > 1; i--) { |
+ fw = fq[i - 1] + fq[i]; |
+ fq[i] += fq[i - 1] - fw; |
+ fq[i - 1] = fw; |
+ } |
+ for (fw = 0.0, i = jz; i >= 2; i--) fw += fq[i]; |
+ if (ih == 0) { |
+ y[0] = fq[0]; |
+ y[1] = fq[1]; |
+ y[2] = fw; |
+ } else { |
+ y[0] = -fq[0]; |
+ y[1] = -fq[1]; |
+ y[2] = -fw; |
+ } |
+ } |
+ return n & 7; |
+} |
+ |
+/* __kernel_sin( x, y, iy) |
+ * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
+ * Input x is assumed to be bounded by ~pi/4 in magnitude. |
+ * Input y is the tail of x. |
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). |
+ * |
+ * Algorithm |
+ * 1. Since sin(-x) = -sin(x), we need only to consider positive x. |
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. |
+ * 3. sin(x) is approximated by a polynomial of degree 13 on |
+ * [0,pi/4] |
+ * 3 13 |
+ * sin(x) ~ x + S1*x + ... + S6*x |
+ * where |
+ * |
+ * |sin(x) 2 4 6 8 10 12 | -58 |
+ * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
+ * | x | |
+ * |
+ * 4. sin(x+y) = sin(x) + sin'(x')*y |
+ * ~ sin(x) + (1-x*x/2)*y |
+ * For better accuracy, let |
+ * 3 2 2 2 2 |
+ * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) |
+ * then 3 2 |
+ * sin(x) = x + (S1*x + (x *(r-y/2)+y)) |
+ */ |
+V8_INLINE double __kernel_sin(double x, double y, int iy) { |
+ static const double |
+ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
+ S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ |
+ S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ |
+ S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ |
+ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ |
+ S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ |
+ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ |
+ |
+ double z, r, v; |
+ int32_t ix; |
+ GET_HIGH_WORD(ix, x); |
+ ix &= 0x7fffffff; /* high word of x */ |
+ if (ix < 0x3e400000) { /* |x| < 2**-27 */ |
+ if (static_cast<int>(x) == 0) return x; |
+ } /* generate inexact */ |
+ z = x * x; |
+ v = z * x; |
+ r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6))); |
+ if (iy == 0) { |
+ return x + v * (S1 + z * r); |
+ } else { |
+ return x - ((z * (half * y - v * r) - y) - v * S1); |
+ } |
+} |
+ |
} // namespace |
/* atan(x) |
@@ -392,6 +985,66 @@ double atan2(double y, double x) { |
} |
} |
+/* cos(x) |
+ * Return cosine function of x. |
+ * |
+ * kernel function: |
+ * __kernel_sin ... sine function on [-pi/4,pi/4] |
+ * __kernel_cos ... cosine function on [-pi/4,pi/4] |
+ * __ieee754_rem_pio2 ... argument reduction routine |
+ * |
+ * Method. |
+ * Let S,C and T denote the sin, cos and tan respectively on |
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
+ * in [-pi/4 , +pi/4], and let n = k mod 4. |
+ * We have |
+ * |
+ * n sin(x) cos(x) tan(x) |
+ * ---------------------------------------------------------- |
+ * 0 S C T |
+ * 1 C -S -1/T |
+ * 2 -S -C T |
+ * 3 -C S -1/T |
+ * ---------------------------------------------------------- |
+ * |
+ * Special cases: |
+ * Let trig be any of sin, cos, or tan. |
+ * trig(+-INF) is NaN, with signals; |
+ * trig(NaN) is that NaN; |
+ * |
+ * Accuracy: |
+ * TRIG(x) returns trig(x) nearly rounded |
+ */ |
+double cos(double x) { |
+ double y[2], z = 0.0; |
+ int32_t n, ix; |
+ |
+ /* High word of x. */ |
+ GET_HIGH_WORD(ix, x); |
+ |
+ /* |x| ~< pi/4 */ |
+ ix &= 0x7fffffff; |
+ if (ix <= 0x3fe921fb) { |
+ return __kernel_cos(x, z); |
+ } else if (ix >= 0x7ff00000) { |
+ /* cos(Inf or NaN) is NaN */ |
+ return x - x; |
+ } else { |
+ /* argument reduction needed */ |
+ n = __ieee754_rem_pio2(x, y); |
+ switch (n & 3) { |
+ case 0: |
+ return __kernel_cos(y[0], y[1]); |
+ case 1: |
+ return -__kernel_sin(y[0], y[1], 1); |
+ case 2: |
+ return -__kernel_cos(y[0], y[1]); |
+ default: |
+ return __kernel_sin(y[0], y[1], 1); |
+ } |
+ } |
+} |
+ |
/* exp(x) |
* Returns the exponential of x. |
* |
@@ -1410,6 +2063,66 @@ double cbrt(double x) { |
return (t); |
} |
+/* sin(x) |
+ * Return sine function of x. |
+ * |
+ * kernel function: |
+ * __kernel_sin ... sine function on [-pi/4,pi/4] |
+ * __kernel_cos ... cose function on [-pi/4,pi/4] |
+ * __ieee754_rem_pio2 ... argument reduction routine |
+ * |
+ * Method. |
+ * Let S,C and T denote the sin, cos and tan respectively on |
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
+ * in [-pi/4 , +pi/4], and let n = k mod 4. |
+ * We have |
+ * |
+ * n sin(x) cos(x) tan(x) |
+ * ---------------------------------------------------------- |
+ * 0 S C T |
+ * 1 C -S -1/T |
+ * 2 -S -C T |
+ * 3 -C S -1/T |
+ * ---------------------------------------------------------- |
+ * |
+ * Special cases: |
+ * Let trig be any of sin, cos, or tan. |
+ * trig(+-INF) is NaN, with signals; |
+ * trig(NaN) is that NaN; |
+ * |
+ * Accuracy: |
+ * TRIG(x) returns trig(x) nearly rounded |
+ */ |
+double sin(double x) { |
+ double y[2], z = 0.0; |
+ int32_t n, ix; |
+ |
+ /* High word of x. */ |
+ GET_HIGH_WORD(ix, x); |
+ |
+ /* |x| ~< pi/4 */ |
+ ix &= 0x7fffffff; |
+ if (ix <= 0x3fe921fb) { |
+ return __kernel_sin(x, z, 0); |
+ } else if (ix >= 0x7ff00000) { |
+ /* sin(Inf or NaN) is NaN */ |
+ return x - x; |
+ } else { |
+ /* argument reduction needed */ |
+ n = __ieee754_rem_pio2(x, y); |
+ switch (n & 3) { |
+ case 0: |
+ return __kernel_sin(y[0], y[1], 1); |
+ case 1: |
+ return __kernel_cos(y[0], y[1]); |
+ case 2: |
+ return -__kernel_sin(y[0], y[1], 1); |
+ default: |
+ return -__kernel_cos(y[0], y[1]); |
+ } |
+ } |
+} |
+ |
} // namespace ieee754 |
} // namespace base |
} // namespace v8 |