| Index: openssl/crypto/ec/ec2_smpl.c
 | 
| diff --git a/openssl/crypto/ec/ec2_smpl.c b/openssl/crypto/ec/ec2_smpl.c
 | 
| deleted file mode 100644
 | 
| index e0e59c7d8299b0ccebb7e2027a7e48b6c02c8dc7..0000000000000000000000000000000000000000
 | 
| --- a/openssl/crypto/ec/ec2_smpl.c
 | 
| +++ /dev/null
 | 
| @@ -1,719 +0,0 @@
 | 
| -/* crypto/ec/ec2_smpl.c */
 | 
| -/* ====================================================================
 | 
| - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 | 
| - *
 | 
| - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
 | 
| - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
 | 
| - * to the OpenSSL project.
 | 
| - *
 | 
| - * The ECC Code is licensed pursuant to the OpenSSL open source
 | 
| - * license provided below.
 | 
| - *
 | 
| - * The software is originally written by Sheueling Chang Shantz and
 | 
| - * Douglas Stebila of Sun Microsystems Laboratories.
 | 
| - *
 | 
| - */
 | 
| -/* ====================================================================
 | 
| - * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 | 
| - *
 | 
| - * Redistribution and use in source and binary forms, with or without
 | 
| - * modification, are permitted provided that the following conditions
 | 
| - * are met:
 | 
| - *
 | 
| - * 1. Redistributions of source code must retain the above copyright
 | 
| - *    notice, this list of conditions and the following disclaimer. 
 | 
| - *
 | 
| - * 2. Redistributions in binary form must reproduce the above copyright
 | 
| - *    notice, this list of conditions and the following disclaimer in
 | 
| - *    the documentation and/or other materials provided with the
 | 
| - *    distribution.
 | 
| - *
 | 
| - * 3. All advertising materials mentioning features or use of this
 | 
| - *    software must display the following acknowledgment:
 | 
| - *    "This product includes software developed by the OpenSSL Project
 | 
| - *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 | 
| - *
 | 
| - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 | 
| - *    endorse or promote products derived from this software without
 | 
| - *    prior written permission. For written permission, please contact
 | 
| - *    openssl-core@openssl.org.
 | 
| - *
 | 
| - * 5. Products derived from this software may not be called "OpenSSL"
 | 
| - *    nor may "OpenSSL" appear in their names without prior written
 | 
| - *    permission of the OpenSSL Project.
 | 
| - *
 | 
| - * 6. Redistributions of any form whatsoever must retain the following
 | 
| - *    acknowledgment:
 | 
| - *    "This product includes software developed by the OpenSSL Project
 | 
| - *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 | 
| - *
 | 
| - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 | 
| - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | 
| - * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 | 
| - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
| - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | 
| - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
| - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | 
| - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
| - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 | 
| - * OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
| - * ====================================================================
 | 
| - *
 | 
| - * This product includes cryptographic software written by Eric Young
 | 
| - * (eay@cryptsoft.com).  This product includes software written by Tim
 | 
| - * Hudson (tjh@cryptsoft.com).
 | 
| - *
 | 
| - */
 | 
| -
 | 
| -#include <openssl/err.h>
 | 
| -
 | 
| -#include "ec_lcl.h"
 | 
| -
 | 
| -#ifndef OPENSSL_NO_EC2M
 | 
| -
 | 
| -#ifdef OPENSSL_FIPS
 | 
| -#include <openssl/fips.h>
 | 
| -#endif
 | 
| -
 | 
| -
 | 
| -const EC_METHOD *EC_GF2m_simple_method(void)
 | 
| -	{
 | 
| -#ifdef OPENSSL_FIPS
 | 
| -	return fips_ec_gf2m_simple_method();
 | 
| -#else
 | 
| -	static const EC_METHOD ret = {
 | 
| -		EC_FLAGS_DEFAULT_OCT,
 | 
| -		NID_X9_62_characteristic_two_field,
 | 
| -		ec_GF2m_simple_group_init,
 | 
| -		ec_GF2m_simple_group_finish,
 | 
| -		ec_GF2m_simple_group_clear_finish,
 | 
| -		ec_GF2m_simple_group_copy,
 | 
| -		ec_GF2m_simple_group_set_curve,
 | 
| -		ec_GF2m_simple_group_get_curve,
 | 
| -		ec_GF2m_simple_group_get_degree,
 | 
| -		ec_GF2m_simple_group_check_discriminant,
 | 
| -		ec_GF2m_simple_point_init,
 | 
| -		ec_GF2m_simple_point_finish,
 | 
| -		ec_GF2m_simple_point_clear_finish,
 | 
| -		ec_GF2m_simple_point_copy,
 | 
| -		ec_GF2m_simple_point_set_to_infinity,
 | 
| -		0 /* set_Jprojective_coordinates_GFp */,
 | 
| -		0 /* get_Jprojective_coordinates_GFp */,
 | 
| -		ec_GF2m_simple_point_set_affine_coordinates,
 | 
| -		ec_GF2m_simple_point_get_affine_coordinates,
 | 
| -		0,0,0,
 | 
| -		ec_GF2m_simple_add,
 | 
| -		ec_GF2m_simple_dbl,
 | 
| -		ec_GF2m_simple_invert,
 | 
| -		ec_GF2m_simple_is_at_infinity,
 | 
| -		ec_GF2m_simple_is_on_curve,
 | 
| -		ec_GF2m_simple_cmp,
 | 
| -		ec_GF2m_simple_make_affine,
 | 
| -		ec_GF2m_simple_points_make_affine,
 | 
| -
 | 
| -		/* the following three method functions are defined in ec2_mult.c */
 | 
| -		ec_GF2m_simple_mul,
 | 
| -		ec_GF2m_precompute_mult,
 | 
| -		ec_GF2m_have_precompute_mult,
 | 
| -
 | 
| -		ec_GF2m_simple_field_mul,
 | 
| -		ec_GF2m_simple_field_sqr,
 | 
| -		ec_GF2m_simple_field_div,
 | 
| -		0 /* field_encode */,
 | 
| -		0 /* field_decode */,
 | 
| -		0 /* field_set_to_one */ };
 | 
| -
 | 
| -	return &ret;
 | 
| -#endif
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Initialize a GF(2^m)-based EC_GROUP structure.
 | 
| - * Note that all other members are handled by EC_GROUP_new.
 | 
| - */
 | 
| -int ec_GF2m_simple_group_init(EC_GROUP *group)
 | 
| -	{
 | 
| -	BN_init(&group->field);
 | 
| -	BN_init(&group->a);
 | 
| -	BN_init(&group->b);
 | 
| -	return 1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Free a GF(2^m)-based EC_GROUP structure.
 | 
| - * Note that all other members are handled by EC_GROUP_free.
 | 
| - */
 | 
| -void ec_GF2m_simple_group_finish(EC_GROUP *group)
 | 
| -	{
 | 
| -	BN_free(&group->field);
 | 
| -	BN_free(&group->a);
 | 
| -	BN_free(&group->b);
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Clear and free a GF(2^m)-based EC_GROUP structure.
 | 
| - * Note that all other members are handled by EC_GROUP_clear_free.
 | 
| - */
 | 
| -void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
 | 
| -	{
 | 
| -	BN_clear_free(&group->field);
 | 
| -	BN_clear_free(&group->a);
 | 
| -	BN_clear_free(&group->b);
 | 
| -	group->poly[0] = 0;
 | 
| -	group->poly[1] = 0;
 | 
| -	group->poly[2] = 0;
 | 
| -	group->poly[3] = 0;
 | 
| -	group->poly[4] = 0;
 | 
| -	group->poly[5] = -1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Copy a GF(2^m)-based EC_GROUP structure.
 | 
| - * Note that all other members are handled by EC_GROUP_copy.
 | 
| - */
 | 
| -int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
 | 
| -	{
 | 
| -	int i;
 | 
| -	if (!BN_copy(&dest->field, &src->field)) return 0;
 | 
| -	if (!BN_copy(&dest->a, &src->a)) return 0;
 | 
| -	if (!BN_copy(&dest->b, &src->b)) return 0;
 | 
| -	dest->poly[0] = src->poly[0];
 | 
| -	dest->poly[1] = src->poly[1];
 | 
| -	dest->poly[2] = src->poly[2];
 | 
| -	dest->poly[3] = src->poly[3];
 | 
| -	dest->poly[4] = src->poly[4];
 | 
| -	dest->poly[5] = src->poly[5];
 | 
| -	if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
 | 
| -	if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
 | 
| -	for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
 | 
| -	for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
 | 
| -	return 1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Set the curve parameters of an EC_GROUP structure. */
 | 
| -int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
 | 
| -	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
| -	{
 | 
| -	int ret = 0, i;
 | 
| -
 | 
| -	/* group->field */
 | 
| -	if (!BN_copy(&group->field, p)) goto err;
 | 
| -	i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
 | 
| -	if ((i != 5) && (i != 3))
 | 
| -		{
 | 
| -		ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
 | 
| -		goto err;
 | 
| -		}
 | 
| -
 | 
| -	/* group->a */
 | 
| -	if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
 | 
| -	if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
 | 
| -	for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
 | 
| -	
 | 
| -	/* group->b */
 | 
| -	if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
 | 
| -	if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
 | 
| -	for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
 | 
| -		
 | 
| -	ret = 1;
 | 
| -  err:
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Get the curve parameters of an EC_GROUP structure.
 | 
| - * If p, a, or b are NULL then there values will not be set but the method will return with success.
 | 
| - */
 | 
| -int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
 | 
| -	{
 | 
| -	int ret = 0;
 | 
| -	
 | 
| -	if (p != NULL)
 | 
| -		{
 | 
| -		if (!BN_copy(p, &group->field)) return 0;
 | 
| -		}
 | 
| -
 | 
| -	if (a != NULL)
 | 
| -		{
 | 
| -		if (!BN_copy(a, &group->a)) goto err;
 | 
| -		}
 | 
| -
 | 
| -	if (b != NULL)
 | 
| -		{
 | 
| -		if (!BN_copy(b, &group->b)) goto err;
 | 
| -		}
 | 
| -	
 | 
| -	ret = 1;
 | 
| -	
 | 
| -  err:
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
 | 
| -int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
 | 
| -	{
 | 
| -	return BN_num_bits(&group->field)-1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Checks the discriminant of the curve.
 | 
| - * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) 
 | 
| - */
 | 
| -int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
 | 
| -	{
 | 
| -	int ret = 0;
 | 
| -	BIGNUM *b;
 | 
| -	BN_CTX *new_ctx = NULL;
 | 
| -
 | 
| -	if (ctx == NULL)
 | 
| -		{
 | 
| -		ctx = new_ctx = BN_CTX_new();
 | 
| -		if (ctx == NULL)
 | 
| -			{
 | 
| -			ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
 | 
| -			goto err;
 | 
| -			}
 | 
| -		}
 | 
| -	BN_CTX_start(ctx);
 | 
| -	b = BN_CTX_get(ctx);
 | 
| -	if (b == NULL) goto err;
 | 
| -
 | 
| -	if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
 | 
| -	
 | 
| -	/* check the discriminant:
 | 
| -	 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) 
 | 
| -	 */
 | 
| -	if (BN_is_zero(b)) goto err;
 | 
| -
 | 
| -	ret = 1;
 | 
| -
 | 
| -err:
 | 
| -	if (ctx != NULL)
 | 
| -		BN_CTX_end(ctx);
 | 
| -	if (new_ctx != NULL)
 | 
| -		BN_CTX_free(new_ctx);
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Initializes an EC_POINT. */
 | 
| -int ec_GF2m_simple_point_init(EC_POINT *point)
 | 
| -	{
 | 
| -	BN_init(&point->X);
 | 
| -	BN_init(&point->Y);
 | 
| -	BN_init(&point->Z);
 | 
| -	return 1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Frees an EC_POINT. */
 | 
| -void ec_GF2m_simple_point_finish(EC_POINT *point)
 | 
| -	{
 | 
| -	BN_free(&point->X);
 | 
| -	BN_free(&point->Y);
 | 
| -	BN_free(&point->Z);
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Clears and frees an EC_POINT. */
 | 
| -void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
 | 
| -	{
 | 
| -	BN_clear_free(&point->X);
 | 
| -	BN_clear_free(&point->Y);
 | 
| -	BN_clear_free(&point->Z);
 | 
| -	point->Z_is_one = 0;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
 | 
| -int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
 | 
| -	{
 | 
| -	if (!BN_copy(&dest->X, &src->X)) return 0;
 | 
| -	if (!BN_copy(&dest->Y, &src->Y)) return 0;
 | 
| -	if (!BN_copy(&dest->Z, &src->Z)) return 0;
 | 
| -	dest->Z_is_one = src->Z_is_one;
 | 
| -
 | 
| -	return 1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Set an EC_POINT to the point at infinity.  
 | 
| - * A point at infinity is represented by having Z=0.
 | 
| - */
 | 
| -int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
 | 
| -	{
 | 
| -	point->Z_is_one = 0;
 | 
| -	BN_zero(&point->Z);
 | 
| -	return 1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Set the coordinates of an EC_POINT using affine coordinates. 
 | 
| - * Note that the simple implementation only uses affine coordinates.
 | 
| - */
 | 
| -int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
 | 
| -	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
 | 
| -	{
 | 
| -	int ret = 0;	
 | 
| -	if (x == NULL || y == NULL)
 | 
| -		{
 | 
| -		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
 | 
| -		return 0;
 | 
| -		}
 | 
| -
 | 
| -	if (!BN_copy(&point->X, x)) goto err;
 | 
| -	BN_set_negative(&point->X, 0);
 | 
| -	if (!BN_copy(&point->Y, y)) goto err;
 | 
| -	BN_set_negative(&point->Y, 0);
 | 
| -	if (!BN_copy(&point->Z, BN_value_one())) goto err;
 | 
| -	BN_set_negative(&point->Z, 0);
 | 
| -	point->Z_is_one = 1;
 | 
| -	ret = 1;
 | 
| -
 | 
| -  err:
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Gets the affine coordinates of an EC_POINT. 
 | 
| - * Note that the simple implementation only uses affine coordinates.
 | 
| - */
 | 
| -int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
 | 
| -	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
 | 
| -	{
 | 
| -	int ret = 0;
 | 
| -
 | 
| -	if (EC_POINT_is_at_infinity(group, point))
 | 
| -		{
 | 
| -		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
 | 
| -		return 0;
 | 
| -		}
 | 
| -
 | 
| -	if (BN_cmp(&point->Z, BN_value_one())) 
 | 
| -		{
 | 
| -		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | 
| -		return 0;
 | 
| -		}
 | 
| -	if (x != NULL)
 | 
| -		{
 | 
| -		if (!BN_copy(x, &point->X)) goto err;
 | 
| -		BN_set_negative(x, 0);
 | 
| -		}
 | 
| -	if (y != NULL)
 | 
| -		{
 | 
| -		if (!BN_copy(y, &point->Y)) goto err;
 | 
| -		BN_set_negative(y, 0);
 | 
| -		}
 | 
| -	ret = 1;
 | 
| -		
 | 
| - err:
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -/* Computes a + b and stores the result in r.  r could be a or b, a could be b.
 | 
| - * Uses algorithm A.10.2 of IEEE P1363.
 | 
| - */
 | 
| -int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
 | 
| -	{
 | 
| -	BN_CTX *new_ctx = NULL;
 | 
| -	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
 | 
| -	int ret = 0;
 | 
| -	
 | 
| -	if (EC_POINT_is_at_infinity(group, a))
 | 
| -		{
 | 
| -		if (!EC_POINT_copy(r, b)) return 0;
 | 
| -		return 1;
 | 
| -		}
 | 
| -
 | 
| -	if (EC_POINT_is_at_infinity(group, b))
 | 
| -		{
 | 
| -		if (!EC_POINT_copy(r, a)) return 0;
 | 
| -		return 1;
 | 
| -		}
 | 
| -
 | 
| -	if (ctx == NULL)
 | 
| -		{
 | 
| -		ctx = new_ctx = BN_CTX_new();
 | 
| -		if (ctx == NULL)
 | 
| -			return 0;
 | 
| -		}
 | 
| -
 | 
| -	BN_CTX_start(ctx);
 | 
| -	x0 = BN_CTX_get(ctx);
 | 
| -	y0 = BN_CTX_get(ctx);
 | 
| -	x1 = BN_CTX_get(ctx);
 | 
| -	y1 = BN_CTX_get(ctx);
 | 
| -	x2 = BN_CTX_get(ctx);
 | 
| -	y2 = BN_CTX_get(ctx);
 | 
| -	s = BN_CTX_get(ctx);
 | 
| -	t = BN_CTX_get(ctx);
 | 
| -	if (t == NULL) goto err;
 | 
| -
 | 
| -	if (a->Z_is_one) 
 | 
| -		{
 | 
| -		if (!BN_copy(x0, &a->X)) goto err;
 | 
| -		if (!BN_copy(y0, &a->Y)) goto err;
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
 | 
| -		}
 | 
| -	if (b->Z_is_one) 
 | 
| -		{
 | 
| -		if (!BN_copy(x1, &b->X)) goto err;
 | 
| -		if (!BN_copy(y1, &b->Y)) goto err;
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
 | 
| -		}
 | 
| -
 | 
| -
 | 
| -	if (BN_GF2m_cmp(x0, x1))
 | 
| -		{
 | 
| -		if (!BN_GF2m_add(t, x0, x1)) goto err;
 | 
| -		if (!BN_GF2m_add(s, y0, y1)) goto err;
 | 
| -		if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
 | 
| -		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
 | 
| -		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
 | 
| -		if (!BN_GF2m_add(x2, x2, s)) goto err;
 | 
| -		if (!BN_GF2m_add(x2, x2, t)) goto err;
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
 | 
| -			{
 | 
| -			if (!EC_POINT_set_to_infinity(group, r)) goto err;
 | 
| -			ret = 1;
 | 
| -			goto err;
 | 
| -			}
 | 
| -		if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
 | 
| -		if (!BN_GF2m_add(s, s, x1)) goto err;
 | 
| -		
 | 
| -		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
 | 
| -		if (!BN_GF2m_add(x2, x2, s)) goto err;
 | 
| -		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
 | 
| -		}
 | 
| -
 | 
| -	if (!BN_GF2m_add(y2, x1, x2)) goto err;
 | 
| -	if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
 | 
| -	if (!BN_GF2m_add(y2, y2, x2)) goto err;
 | 
| -	if (!BN_GF2m_add(y2, y2, y1)) goto err;
 | 
| -
 | 
| -	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
 | 
| -
 | 
| -	ret = 1;
 | 
| -
 | 
| - err:
 | 
| -	BN_CTX_end(ctx);
 | 
| -	if (new_ctx != NULL)
 | 
| -		BN_CTX_free(new_ctx);
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Computes 2 * a and stores the result in r.  r could be a.
 | 
| - * Uses algorithm A.10.2 of IEEE P1363.
 | 
| - */
 | 
| -int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
 | 
| -	{
 | 
| -	return ec_GF2m_simple_add(group, r, a, a, ctx);
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
 | 
| -	{
 | 
| -	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
 | 
| -		/* point is its own inverse */
 | 
| -		return 1;
 | 
| -	
 | 
| -	if (!EC_POINT_make_affine(group, point, ctx)) return 0;
 | 
| -	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Indicates whether the given point is the point at infinity. */
 | 
| -int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
 | 
| -	{
 | 
| -	return BN_is_zero(&point->Z);
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Determines whether the given EC_POINT is an actual point on the curve defined
 | 
| - * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
 | 
| - *      y^2 + x*y = x^3 + a*x^2 + b.
 | 
| - */
 | 
| -int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
 | 
| -	{
 | 
| -	int ret = -1;
 | 
| -	BN_CTX *new_ctx = NULL;
 | 
| -	BIGNUM *lh, *y2;
 | 
| -	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
 | 
| -	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
 | 
| -
 | 
| -	if (EC_POINT_is_at_infinity(group, point))
 | 
| -		return 1;
 | 
| -
 | 
| -	field_mul = group->meth->field_mul;
 | 
| -	field_sqr = group->meth->field_sqr;	
 | 
| -
 | 
| -	/* only support affine coordinates */
 | 
| -	if (!point->Z_is_one) return -1;
 | 
| -
 | 
| -	if (ctx == NULL)
 | 
| -		{
 | 
| -		ctx = new_ctx = BN_CTX_new();
 | 
| -		if (ctx == NULL)
 | 
| -			return -1;
 | 
| -		}
 | 
| -
 | 
| -	BN_CTX_start(ctx);
 | 
| -	y2 = BN_CTX_get(ctx);
 | 
| -	lh = BN_CTX_get(ctx);
 | 
| -	if (lh == NULL) goto err;
 | 
| -
 | 
| -	/* We have a curve defined by a Weierstrass equation
 | 
| -	 *      y^2 + x*y = x^3 + a*x^2 + b.
 | 
| -	 *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
 | 
| -	 *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
 | 
| -	 */
 | 
| -	if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
 | 
| -	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
 | 
| -	if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
 | 
| -	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
 | 
| -	if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
 | 
| -	if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
 | 
| -	if (!BN_GF2m_add(lh, lh, y2)) goto err;
 | 
| -	ret = BN_is_zero(lh);
 | 
| - err:
 | 
| -	if (ctx) BN_CTX_end(ctx);
 | 
| -	if (new_ctx) BN_CTX_free(new_ctx);
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Indicates whether two points are equal.
 | 
| - * Return values:
 | 
| - *  -1   error
 | 
| - *   0   equal (in affine coordinates)
 | 
| - *   1   not equal
 | 
| - */
 | 
| -int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
 | 
| -	{
 | 
| -	BIGNUM *aX, *aY, *bX, *bY;
 | 
| -	BN_CTX *new_ctx = NULL;
 | 
| -	int ret = -1;
 | 
| -
 | 
| -	if (EC_POINT_is_at_infinity(group, a))
 | 
| -		{
 | 
| -		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
 | 
| -		}
 | 
| -
 | 
| -	if (EC_POINT_is_at_infinity(group, b))
 | 
| -		return 1;
 | 
| -	
 | 
| -	if (a->Z_is_one && b->Z_is_one)
 | 
| -		{
 | 
| -		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
 | 
| -		}
 | 
| -
 | 
| -	if (ctx == NULL)
 | 
| -		{
 | 
| -		ctx = new_ctx = BN_CTX_new();
 | 
| -		if (ctx == NULL)
 | 
| -			return -1;
 | 
| -		}
 | 
| -
 | 
| -	BN_CTX_start(ctx);
 | 
| -	aX = BN_CTX_get(ctx);
 | 
| -	aY = BN_CTX_get(ctx);
 | 
| -	bX = BN_CTX_get(ctx);
 | 
| -	bY = BN_CTX_get(ctx);
 | 
| -	if (bY == NULL) goto err;
 | 
| -
 | 
| -	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
 | 
| -	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
 | 
| -	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
 | 
| -
 | 
| -  err:	
 | 
| -	if (ctx) BN_CTX_end(ctx);
 | 
| -	if (new_ctx) BN_CTX_free(new_ctx);
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Forces the given EC_POINT to internally use affine coordinates. */
 | 
| -int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
 | 
| -	{
 | 
| -	BN_CTX *new_ctx = NULL;
 | 
| -	BIGNUM *x, *y;
 | 
| -	int ret = 0;
 | 
| -
 | 
| -	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
 | 
| -		return 1;
 | 
| -	
 | 
| -	if (ctx == NULL)
 | 
| -		{
 | 
| -		ctx = new_ctx = BN_CTX_new();
 | 
| -		if (ctx == NULL)
 | 
| -			return 0;
 | 
| -		}
 | 
| -
 | 
| -	BN_CTX_start(ctx);
 | 
| -	x = BN_CTX_get(ctx);
 | 
| -	y = BN_CTX_get(ctx);
 | 
| -	if (y == NULL) goto err;
 | 
| -	
 | 
| -	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
 | 
| -	if (!BN_copy(&point->X, x)) goto err;
 | 
| -	if (!BN_copy(&point->Y, y)) goto err;
 | 
| -	if (!BN_one(&point->Z)) goto err;
 | 
| -	
 | 
| -	ret = 1;		
 | 
| -
 | 
| -  err:
 | 
| -	if (ctx) BN_CTX_end(ctx);
 | 
| -	if (new_ctx) BN_CTX_free(new_ctx);
 | 
| -	return ret;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
 | 
| -int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
 | 
| -	{
 | 
| -	size_t i;
 | 
| -
 | 
| -	for (i = 0; i < num; i++)
 | 
| -		{
 | 
| -		if (!group->meth->make_affine(group, points[i], ctx)) return 0;
 | 
| -		}
 | 
| -
 | 
| -	return 1;
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Wrapper to simple binary polynomial field multiplication implementation. */
 | 
| -int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
| -	{
 | 
| -	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Wrapper to simple binary polynomial field squaring implementation. */
 | 
| -int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
 | 
| -	{
 | 
| -	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
 | 
| -	}
 | 
| -
 | 
| -
 | 
| -/* Wrapper to simple binary polynomial field division implementation. */
 | 
| -int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
| -	{
 | 
| -	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
 | 
| -	}
 | 
| -
 | 
| -#endif
 | 
| 
 |