| Index: openssl/crypto/modes/asm/ghash-s390x.pl
|
| diff --git a/openssl/crypto/modes/asm/ghash-s390x.pl b/openssl/crypto/modes/asm/ghash-s390x.pl
|
| deleted file mode 100644
|
| index 6a40d5d89c0cd25ca6e884746f58b25ccf726bba..0000000000000000000000000000000000000000
|
| --- a/openssl/crypto/modes/asm/ghash-s390x.pl
|
| +++ /dev/null
|
| @@ -1,262 +0,0 @@
|
| -#!/usr/bin/env perl
|
| -
|
| -# ====================================================================
|
| -# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
| -# project. The module is, however, dual licensed under OpenSSL and
|
| -# CRYPTOGAMS licenses depending on where you obtain it. For further
|
| -# details see http://www.openssl.org/~appro/cryptogams/.
|
| -# ====================================================================
|
| -
|
| -# September 2010.
|
| -#
|
| -# The module implements "4-bit" GCM GHASH function and underlying
|
| -# single multiplication operation in GF(2^128). "4-bit" means that it
|
| -# uses 256 bytes per-key table [+128 bytes shared table]. Performance
|
| -# was measured to be ~18 cycles per processed byte on z10, which is
|
| -# almost 40% better than gcc-generated code. It should be noted that
|
| -# 18 cycles is worse result than expected: loop is scheduled for 12
|
| -# and the result should be close to 12. In the lack of instruction-
|
| -# level profiling data it's impossible to tell why...
|
| -
|
| -# November 2010.
|
| -#
|
| -# Adapt for -m31 build. If kernel supports what's called "highgprs"
|
| -# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
|
| -# instructions and achieve "64-bit" performance even in 31-bit legacy
|
| -# application context. The feature is not specific to any particular
|
| -# processor, as long as it's "z-CPU". Latter implies that the code
|
| -# remains z/Architecture specific. On z990 it was measured to perform
|
| -# 2.8x better than 32-bit code generated by gcc 4.3.
|
| -
|
| -# March 2011.
|
| -#
|
| -# Support for hardware KIMD-GHASH is verified to produce correct
|
| -# result and therefore is engaged. On z196 it was measured to process
|
| -# 8KB buffer ~7 faster than software implementation. It's not as
|
| -# impressive for smaller buffer sizes and for smallest 16-bytes buffer
|
| -# it's actually almost 2 times slower. Which is the reason why
|
| -# KIMD-GHASH is not used in gcm_gmult_4bit.
|
| -
|
| -$flavour = shift;
|
| -
|
| -if ($flavour =~ /3[12]/) {
|
| - $SIZE_T=4;
|
| - $g="";
|
| -} else {
|
| - $SIZE_T=8;
|
| - $g="g";
|
| -}
|
| -
|
| -while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
| -open STDOUT,">$output";
|
| -
|
| -$softonly=0;
|
| -
|
| -$Zhi="%r0";
|
| -$Zlo="%r1";
|
| -
|
| -$Xi="%r2"; # argument block
|
| -$Htbl="%r3";
|
| -$inp="%r4";
|
| -$len="%r5";
|
| -
|
| -$rem0="%r6"; # variables
|
| -$rem1="%r7";
|
| -$nlo="%r8";
|
| -$nhi="%r9";
|
| -$xi="%r10";
|
| -$cnt="%r11";
|
| -$tmp="%r12";
|
| -$x78="%r13";
|
| -$rem_4bit="%r14";
|
| -
|
| -$sp="%r15";
|
| -
|
| -$code.=<<___;
|
| -.text
|
| -
|
| -.globl gcm_gmult_4bit
|
| -.align 32
|
| -gcm_gmult_4bit:
|
| -___
|
| -$code.=<<___ if(!$softonly && 0); # hardware is slow for single block...
|
| - larl %r1,OPENSSL_s390xcap_P
|
| - lg %r0,0(%r1)
|
| - tmhl %r0,0x4000 # check for message-security-assist
|
| - jz .Lsoft_gmult
|
| - lghi %r0,0
|
| - la %r1,16($sp)
|
| - .long 0xb93e0004 # kimd %r0,%r4
|
| - lg %r1,24($sp)
|
| - tmhh %r1,0x4000 # check for function 65
|
| - jz .Lsoft_gmult
|
| - stg %r0,16($sp) # arrange 16 bytes of zero input
|
| - stg %r0,24($sp)
|
| - lghi %r0,65 # function 65
|
| - la %r1,0($Xi) # H lies right after Xi in gcm128_context
|
| - la $inp,16($sp)
|
| - lghi $len,16
|
| - .long 0xb93e0004 # kimd %r0,$inp
|
| - brc 1,.-4 # pay attention to "partial completion"
|
| - br %r14
|
| -.align 32
|
| -.Lsoft_gmult:
|
| -___
|
| -$code.=<<___;
|
| - stm${g} %r6,%r14,6*$SIZE_T($sp)
|
| -
|
| - aghi $Xi,-1
|
| - lghi $len,1
|
| - lghi $x78,`0xf<<3`
|
| - larl $rem_4bit,rem_4bit
|
| -
|
| - lg $Zlo,8+1($Xi) # Xi
|
| - j .Lgmult_shortcut
|
| -.type gcm_gmult_4bit,\@function
|
| -.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
|
| -
|
| -.globl gcm_ghash_4bit
|
| -.align 32
|
| -gcm_ghash_4bit:
|
| -___
|
| -$code.=<<___ if(!$softonly);
|
| - larl %r1,OPENSSL_s390xcap_P
|
| - lg %r0,0(%r1)
|
| - tmhl %r0,0x4000 # check for message-security-assist
|
| - jz .Lsoft_ghash
|
| - lghi %r0,0
|
| - la %r1,16($sp)
|
| - .long 0xb93e0004 # kimd %r0,%r4
|
| - lg %r1,24($sp)
|
| - tmhh %r1,0x4000 # check for function 65
|
| - jz .Lsoft_ghash
|
| - lghi %r0,65 # function 65
|
| - la %r1,0($Xi) # H lies right after Xi in gcm128_context
|
| - .long 0xb93e0004 # kimd %r0,$inp
|
| - brc 1,.-4 # pay attention to "partial completion"
|
| - br %r14
|
| -.align 32
|
| -.Lsoft_ghash:
|
| -___
|
| -$code.=<<___ if ($flavour =~ /3[12]/);
|
| - llgfr $len,$len
|
| -___
|
| -$code.=<<___;
|
| - stm${g} %r6,%r14,6*$SIZE_T($sp)
|
| -
|
| - aghi $Xi,-1
|
| - srlg $len,$len,4
|
| - lghi $x78,`0xf<<3`
|
| - larl $rem_4bit,rem_4bit
|
| -
|
| - lg $Zlo,8+1($Xi) # Xi
|
| - lg $Zhi,0+1($Xi)
|
| - lghi $tmp,0
|
| -.Louter:
|
| - xg $Zhi,0($inp) # Xi ^= inp
|
| - xg $Zlo,8($inp)
|
| - xgr $Zhi,$tmp
|
| - stg $Zlo,8+1($Xi)
|
| - stg $Zhi,0+1($Xi)
|
| -
|
| -.Lgmult_shortcut:
|
| - lghi $tmp,0xf0
|
| - sllg $nlo,$Zlo,4
|
| - srlg $xi,$Zlo,8 # extract second byte
|
| - ngr $nlo,$tmp
|
| - lgr $nhi,$Zlo
|
| - lghi $cnt,14
|
| - ngr $nhi,$tmp
|
| -
|
| - lg $Zlo,8($nlo,$Htbl)
|
| - lg $Zhi,0($nlo,$Htbl)
|
| -
|
| - sllg $nlo,$xi,4
|
| - sllg $rem0,$Zlo,3
|
| - ngr $nlo,$tmp
|
| - ngr $rem0,$x78
|
| - ngr $xi,$tmp
|
| -
|
| - sllg $tmp,$Zhi,60
|
| - srlg $Zlo,$Zlo,4
|
| - srlg $Zhi,$Zhi,4
|
| - xg $Zlo,8($nhi,$Htbl)
|
| - xg $Zhi,0($nhi,$Htbl)
|
| - lgr $nhi,$xi
|
| - sllg $rem1,$Zlo,3
|
| - xgr $Zlo,$tmp
|
| - ngr $rem1,$x78
|
| - j .Lghash_inner
|
| -.align 16
|
| -.Lghash_inner:
|
| - srlg $Zlo,$Zlo,4
|
| - sllg $tmp,$Zhi,60
|
| - xg $Zlo,8($nlo,$Htbl)
|
| - srlg $Zhi,$Zhi,4
|
| - llgc $xi,0($cnt,$Xi)
|
| - xg $Zhi,0($nlo,$Htbl)
|
| - sllg $nlo,$xi,4
|
| - xg $Zhi,0($rem0,$rem_4bit)
|
| - nill $nlo,0xf0
|
| - sllg $rem0,$Zlo,3
|
| - xgr $Zlo,$tmp
|
| - ngr $rem0,$x78
|
| - nill $xi,0xf0
|
| -
|
| - sllg $tmp,$Zhi,60
|
| - srlg $Zlo,$Zlo,4
|
| - srlg $Zhi,$Zhi,4
|
| - xg $Zlo,8($nhi,$Htbl)
|
| - xg $Zhi,0($nhi,$Htbl)
|
| - lgr $nhi,$xi
|
| - xg $Zhi,0($rem1,$rem_4bit)
|
| - sllg $rem1,$Zlo,3
|
| - xgr $Zlo,$tmp
|
| - ngr $rem1,$x78
|
| - brct $cnt,.Lghash_inner
|
| -
|
| - sllg $tmp,$Zhi,60
|
| - srlg $Zlo,$Zlo,4
|
| - srlg $Zhi,$Zhi,4
|
| - xg $Zlo,8($nlo,$Htbl)
|
| - xg $Zhi,0($nlo,$Htbl)
|
| - sllg $xi,$Zlo,3
|
| - xg $Zhi,0($rem0,$rem_4bit)
|
| - xgr $Zlo,$tmp
|
| - ngr $xi,$x78
|
| -
|
| - sllg $tmp,$Zhi,60
|
| - srlg $Zlo,$Zlo,4
|
| - srlg $Zhi,$Zhi,4
|
| - xg $Zlo,8($nhi,$Htbl)
|
| - xg $Zhi,0($nhi,$Htbl)
|
| - xgr $Zlo,$tmp
|
| - xg $Zhi,0($rem1,$rem_4bit)
|
| -
|
| - lg $tmp,0($xi,$rem_4bit)
|
| - la $inp,16($inp)
|
| - sllg $tmp,$tmp,4 # correct last rem_4bit[rem]
|
| - brctg $len,.Louter
|
| -
|
| - xgr $Zhi,$tmp
|
| - stg $Zlo,8+1($Xi)
|
| - stg $Zhi,0+1($Xi)
|
| - lm${g} %r6,%r14,6*$SIZE_T($sp)
|
| - br %r14
|
| -.type gcm_ghash_4bit,\@function
|
| -.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
|
| -
|
| -.align 64
|
| -rem_4bit:
|
| - .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
|
| - .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
|
| - .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
|
| - .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
|
| -.type rem_4bit,\@object
|
| -.size rem_4bit,(.-rem_4bit)
|
| -.string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
|
| -___
|
| -
|
| -$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
| -print $code;
|
| -close STDOUT;
|
|
|