| Index: openssl/crypto/bn/bn_mul.c
 | 
| diff --git a/openssl/crypto/bn/bn_mul.c b/openssl/crypto/bn/bn_mul.c
 | 
| deleted file mode 100644
 | 
| index 12e5be80eb2b442db28f6b1955c0d583bb91bb83..0000000000000000000000000000000000000000
 | 
| --- a/openssl/crypto/bn/bn_mul.c
 | 
| +++ /dev/null
 | 
| @@ -1,1166 +0,0 @@
 | 
| -/* crypto/bn/bn_mul.c */
 | 
| -/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 | 
| - * All rights reserved.
 | 
| - *
 | 
| - * This package is an SSL implementation written
 | 
| - * by Eric Young (eay@cryptsoft.com).
 | 
| - * The implementation was written so as to conform with Netscapes SSL.
 | 
| - * 
 | 
| - * This library is free for commercial and non-commercial use as long as
 | 
| - * the following conditions are aheared to.  The following conditions
 | 
| - * apply to all code found in this distribution, be it the RC4, RSA,
 | 
| - * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 | 
| - * included with this distribution is covered by the same copyright terms
 | 
| - * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 | 
| - * 
 | 
| - * Copyright remains Eric Young's, and as such any Copyright notices in
 | 
| - * the code are not to be removed.
 | 
| - * If this package is used in a product, Eric Young should be given attribution
 | 
| - * as the author of the parts of the library used.
 | 
| - * This can be in the form of a textual message at program startup or
 | 
| - * in documentation (online or textual) provided with the package.
 | 
| - * 
 | 
| - * Redistribution and use in source and binary forms, with or without
 | 
| - * modification, are permitted provided that the following conditions
 | 
| - * are met:
 | 
| - * 1. Redistributions of source code must retain the copyright
 | 
| - *    notice, this list of conditions and the following disclaimer.
 | 
| - * 2. Redistributions in binary form must reproduce the above copyright
 | 
| - *    notice, this list of conditions and the following disclaimer in the
 | 
| - *    documentation and/or other materials provided with the distribution.
 | 
| - * 3. All advertising materials mentioning features or use of this software
 | 
| - *    must display the following acknowledgement:
 | 
| - *    "This product includes cryptographic software written by
 | 
| - *     Eric Young (eay@cryptsoft.com)"
 | 
| - *    The word 'cryptographic' can be left out if the rouines from the library
 | 
| - *    being used are not cryptographic related :-).
 | 
| - * 4. If you include any Windows specific code (or a derivative thereof) from 
 | 
| - *    the apps directory (application code) you must include an acknowledgement:
 | 
| - *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 | 
| - * 
 | 
| - * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 | 
| - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
| - * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | 
| - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
| - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | 
| - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
| - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | 
| - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
| - * SUCH DAMAGE.
 | 
| - * 
 | 
| - * The licence and distribution terms for any publically available version or
 | 
| - * derivative of this code cannot be changed.  i.e. this code cannot simply be
 | 
| - * copied and put under another distribution licence
 | 
| - * [including the GNU Public Licence.]
 | 
| - */
 | 
| -
 | 
| -#ifndef BN_DEBUG
 | 
| -# undef NDEBUG /* avoid conflicting definitions */
 | 
| -# define NDEBUG
 | 
| -#endif
 | 
| -
 | 
| -#include <stdio.h>
 | 
| -#include <assert.h>
 | 
| -#include "cryptlib.h"
 | 
| -#include "bn_lcl.h"
 | 
| -
 | 
| -#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
 | 
| -/* Here follows specialised variants of bn_add_words() and
 | 
| -   bn_sub_words().  They have the property performing operations on
 | 
| -   arrays of different sizes.  The sizes of those arrays is expressed through
 | 
| -   cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
 | 
| -   which is the delta between the two lengths, calculated as len(a)-len(b).
 | 
| -   All lengths are the number of BN_ULONGs...  For the operations that require
 | 
| -   a result array as parameter, it must have the length cl+abs(dl).
 | 
| -   These functions should probably end up in bn_asm.c as soon as there are
 | 
| -   assembler counterparts for the systems that use assembler files.  */
 | 
| -
 | 
| -BN_ULONG bn_sub_part_words(BN_ULONG *r,
 | 
| -	const BN_ULONG *a, const BN_ULONG *b,
 | 
| -	int cl, int dl)
 | 
| -	{
 | 
| -	BN_ULONG c, t;
 | 
| -
 | 
| -	assert(cl >= 0);
 | 
| -	c = bn_sub_words(r, a, b, cl);
 | 
| -
 | 
| -	if (dl == 0)
 | 
| -		return c;
 | 
| -
 | 
| -	r += cl;
 | 
| -	a += cl;
 | 
| -	b += cl;
 | 
| -
 | 
| -	if (dl < 0)
 | 
| -		{
 | 
| -#ifdef BN_COUNT
 | 
| -		fprintf(stderr, "  bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
 | 
| -#endif
 | 
| -		for (;;)
 | 
| -			{
 | 
| -			t = b[0];
 | 
| -			r[0] = (0-t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=1;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			t = b[1];
 | 
| -			r[1] = (0-t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=1;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			t = b[2];
 | 
| -			r[2] = (0-t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=1;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			t = b[3];
 | 
| -			r[3] = (0-t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=1;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			b += 4;
 | 
| -			r += 4;
 | 
| -			}
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		int save_dl = dl;
 | 
| -#ifdef BN_COUNT
 | 
| -		fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
 | 
| -#endif
 | 
| -		while(c)
 | 
| -			{
 | 
| -			t = a[0];
 | 
| -			r[0] = (t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=0;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			t = a[1];
 | 
| -			r[1] = (t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=0;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			t = a[2];
 | 
| -			r[2] = (t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=0;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			t = a[3];
 | 
| -			r[3] = (t-c)&BN_MASK2;
 | 
| -			if (t != 0) c=0;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			save_dl = dl;
 | 
| -			a += 4;
 | 
| -			r += 4;
 | 
| -			}
 | 
| -		if (dl > 0)
 | 
| -			{
 | 
| -#ifdef BN_COUNT
 | 
| -			fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
 | 
| -#endif
 | 
| -			if (save_dl > dl)
 | 
| -				{
 | 
| -				switch (save_dl - dl)
 | 
| -					{
 | 
| -				case 1:
 | 
| -					r[1] = a[1];
 | 
| -					if (--dl <= 0) break;
 | 
| -				case 2:
 | 
| -					r[2] = a[2];
 | 
| -					if (--dl <= 0) break;
 | 
| -				case 3:
 | 
| -					r[3] = a[3];
 | 
| -					if (--dl <= 0) break;
 | 
| -					}
 | 
| -				a += 4;
 | 
| -				r += 4;
 | 
| -				}
 | 
| -			}
 | 
| -		if (dl > 0)
 | 
| -			{
 | 
| -#ifdef BN_COUNT
 | 
| -			fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
 | 
| -#endif
 | 
| -			for(;;)
 | 
| -				{
 | 
| -				r[0] = a[0];
 | 
| -				if (--dl <= 0) break;
 | 
| -				r[1] = a[1];
 | 
| -				if (--dl <= 0) break;
 | 
| -				r[2] = a[2];
 | 
| -				if (--dl <= 0) break;
 | 
| -				r[3] = a[3];
 | 
| -				if (--dl <= 0) break;
 | 
| -
 | 
| -				a += 4;
 | 
| -				r += 4;
 | 
| -				}
 | 
| -			}
 | 
| -		}
 | 
| -	return c;
 | 
| -	}
 | 
| -#endif
 | 
| -
 | 
| -BN_ULONG bn_add_part_words(BN_ULONG *r,
 | 
| -	const BN_ULONG *a, const BN_ULONG *b,
 | 
| -	int cl, int dl)
 | 
| -	{
 | 
| -	BN_ULONG c, l, t;
 | 
| -
 | 
| -	assert(cl >= 0);
 | 
| -	c = bn_add_words(r, a, b, cl);
 | 
| -
 | 
| -	if (dl == 0)
 | 
| -		return c;
 | 
| -
 | 
| -	r += cl;
 | 
| -	a += cl;
 | 
| -	b += cl;
 | 
| -
 | 
| -	if (dl < 0)
 | 
| -		{
 | 
| -		int save_dl = dl;
 | 
| -#ifdef BN_COUNT
 | 
| -		fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
 | 
| -#endif
 | 
| -		while (c)
 | 
| -			{
 | 
| -			l=(c+b[0])&BN_MASK2;
 | 
| -			c=(l < c);
 | 
| -			r[0]=l;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			l=(c+b[1])&BN_MASK2;
 | 
| -			c=(l < c);
 | 
| -			r[1]=l;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			l=(c+b[2])&BN_MASK2;
 | 
| -			c=(l < c);
 | 
| -			r[2]=l;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			l=(c+b[3])&BN_MASK2;
 | 
| -			c=(l < c);
 | 
| -			r[3]=l;
 | 
| -			if (++dl >= 0) break;
 | 
| -
 | 
| -			save_dl = dl;
 | 
| -			b+=4;
 | 
| -			r+=4;
 | 
| -			}
 | 
| -		if (dl < 0)
 | 
| -			{
 | 
| -#ifdef BN_COUNT
 | 
| -			fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
 | 
| -#endif
 | 
| -			if (save_dl < dl)
 | 
| -				{
 | 
| -				switch (dl - save_dl)
 | 
| -					{
 | 
| -				case 1:
 | 
| -					r[1] = b[1];
 | 
| -					if (++dl >= 0) break;
 | 
| -				case 2:
 | 
| -					r[2] = b[2];
 | 
| -					if (++dl >= 0) break;
 | 
| -				case 3:
 | 
| -					r[3] = b[3];
 | 
| -					if (++dl >= 0) break;
 | 
| -					}
 | 
| -				b += 4;
 | 
| -				r += 4;
 | 
| -				}
 | 
| -			}
 | 
| -		if (dl < 0)
 | 
| -			{
 | 
| -#ifdef BN_COUNT
 | 
| -			fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
 | 
| -#endif
 | 
| -			for(;;)
 | 
| -				{
 | 
| -				r[0] = b[0];
 | 
| -				if (++dl >= 0) break;
 | 
| -				r[1] = b[1];
 | 
| -				if (++dl >= 0) break;
 | 
| -				r[2] = b[2];
 | 
| -				if (++dl >= 0) break;
 | 
| -				r[3] = b[3];
 | 
| -				if (++dl >= 0) break;
 | 
| -
 | 
| -				b += 4;
 | 
| -				r += 4;
 | 
| -				}
 | 
| -			}
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		int save_dl = dl;
 | 
| -#ifdef BN_COUNT
 | 
| -		fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
 | 
| -#endif
 | 
| -		while (c)
 | 
| -			{
 | 
| -			t=(a[0]+c)&BN_MASK2;
 | 
| -			c=(t < c);
 | 
| -			r[0]=t;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			t=(a[1]+c)&BN_MASK2;
 | 
| -			c=(t < c);
 | 
| -			r[1]=t;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			t=(a[2]+c)&BN_MASK2;
 | 
| -			c=(t < c);
 | 
| -			r[2]=t;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			t=(a[3]+c)&BN_MASK2;
 | 
| -			c=(t < c);
 | 
| -			r[3]=t;
 | 
| -			if (--dl <= 0) break;
 | 
| -
 | 
| -			save_dl = dl;
 | 
| -			a+=4;
 | 
| -			r+=4;
 | 
| -			}
 | 
| -#ifdef BN_COUNT
 | 
| -		fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
 | 
| -#endif
 | 
| -		if (dl > 0)
 | 
| -			{
 | 
| -			if (save_dl > dl)
 | 
| -				{
 | 
| -				switch (save_dl - dl)
 | 
| -					{
 | 
| -				case 1:
 | 
| -					r[1] = a[1];
 | 
| -					if (--dl <= 0) break;
 | 
| -				case 2:
 | 
| -					r[2] = a[2];
 | 
| -					if (--dl <= 0) break;
 | 
| -				case 3:
 | 
| -					r[3] = a[3];
 | 
| -					if (--dl <= 0) break;
 | 
| -					}
 | 
| -				a += 4;
 | 
| -				r += 4;
 | 
| -				}
 | 
| -			}
 | 
| -		if (dl > 0)
 | 
| -			{
 | 
| -#ifdef BN_COUNT
 | 
| -			fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
 | 
| -#endif
 | 
| -			for(;;)
 | 
| -				{
 | 
| -				r[0] = a[0];
 | 
| -				if (--dl <= 0) break;
 | 
| -				r[1] = a[1];
 | 
| -				if (--dl <= 0) break;
 | 
| -				r[2] = a[2];
 | 
| -				if (--dl <= 0) break;
 | 
| -				r[3] = a[3];
 | 
| -				if (--dl <= 0) break;
 | 
| -
 | 
| -				a += 4;
 | 
| -				r += 4;
 | 
| -				}
 | 
| -			}
 | 
| -		}
 | 
| -	return c;
 | 
| -	}
 | 
| -
 | 
| -#ifdef BN_RECURSION
 | 
| -/* Karatsuba recursive multiplication algorithm
 | 
| - * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
 | 
| -
 | 
| -/* r is 2*n2 words in size,
 | 
| - * a and b are both n2 words in size.
 | 
| - * n2 must be a power of 2.
 | 
| - * We multiply and return the result.
 | 
| - * t must be 2*n2 words in size
 | 
| - * We calculate
 | 
| - * a[0]*b[0]
 | 
| - * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 | 
| - * a[1]*b[1]
 | 
| - */
 | 
| -/* dnX may not be positive, but n2/2+dnX has to be */
 | 
| -void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 | 
| -	int dna, int dnb, BN_ULONG *t)
 | 
| -	{
 | 
| -	int n=n2/2,c1,c2;
 | 
| -	int tna=n+dna, tnb=n+dnb;
 | 
| -	unsigned int neg,zero;
 | 
| -	BN_ULONG ln,lo,*p;
 | 
| -
 | 
| -# ifdef BN_COUNT
 | 
| -	fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
 | 
| -# endif
 | 
| -# ifdef BN_MUL_COMBA
 | 
| -#  if 0
 | 
| -	if (n2 == 4)
 | 
| -		{
 | 
| -		bn_mul_comba4(r,a,b);
 | 
| -		return;
 | 
| -		}
 | 
| -#  endif
 | 
| -	/* Only call bn_mul_comba 8 if n2 == 8 and the
 | 
| -	 * two arrays are complete [steve]
 | 
| -	 */
 | 
| -	if (n2 == 8 && dna == 0 && dnb == 0)
 | 
| -		{
 | 
| -		bn_mul_comba8(r,a,b);
 | 
| -		return; 
 | 
| -		}
 | 
| -# endif /* BN_MUL_COMBA */
 | 
| -	/* Else do normal multiply */
 | 
| -	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
 | 
| -		{
 | 
| -		bn_mul_normal(r,a,n2+dna,b,n2+dnb);
 | 
| -		if ((dna + dnb) < 0)
 | 
| -			memset(&r[2*n2 + dna + dnb], 0,
 | 
| -				sizeof(BN_ULONG) * -(dna + dnb));
 | 
| -		return;
 | 
| -		}
 | 
| -	/* r=(a[0]-a[1])*(b[1]-b[0]) */
 | 
| -	c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
 | 
| -	c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
 | 
| -	zero=neg=0;
 | 
| -	switch (c1*3+c2)
 | 
| -		{
 | 
| -	case -4:
 | 
| -		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
 | 
| -		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
 | 
| -		break;
 | 
| -	case -3:
 | 
| -		zero=1;
 | 
| -		break;
 | 
| -	case -2:
 | 
| -		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
 | 
| -		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
 | 
| -		neg=1;
 | 
| -		break;
 | 
| -	case -1:
 | 
| -	case 0:
 | 
| -	case 1:
 | 
| -		zero=1;
 | 
| -		break;
 | 
| -	case 2:
 | 
| -		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
 | 
| -		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
 | 
| -		neg=1;
 | 
| -		break;
 | 
| -	case 3:
 | 
| -		zero=1;
 | 
| -		break;
 | 
| -	case 4:
 | 
| -		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
 | 
| -		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
 | 
| -		break;
 | 
| -		}
 | 
| -
 | 
| -# ifdef BN_MUL_COMBA
 | 
| -	if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
 | 
| -					       extra args to do this well */
 | 
| -		{
 | 
| -		if (!zero)
 | 
| -			bn_mul_comba4(&(t[n2]),t,&(t[n]));
 | 
| -		else
 | 
| -			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
 | 
| -		
 | 
| -		bn_mul_comba4(r,a,b);
 | 
| -		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
 | 
| -		}
 | 
| -	else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
 | 
| -						    take extra args to do this
 | 
| -						    well */
 | 
| -		{
 | 
| -		if (!zero)
 | 
| -			bn_mul_comba8(&(t[n2]),t,&(t[n]));
 | 
| -		else
 | 
| -			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
 | 
| -		
 | 
| -		bn_mul_comba8(r,a,b);
 | 
| -		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
 | 
| -		}
 | 
| -	else
 | 
| -# endif /* BN_MUL_COMBA */
 | 
| -		{
 | 
| -		p= &(t[n2*2]);
 | 
| -		if (!zero)
 | 
| -			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
 | 
| -		else
 | 
| -			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
 | 
| -		bn_mul_recursive(r,a,b,n,0,0,p);
 | 
| -		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
 | 
| -		}
 | 
| -
 | 
| -	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
 | 
| -	 * r[10] holds (a[0]*b[0])
 | 
| -	 * r[32] holds (b[1]*b[1])
 | 
| -	 */
 | 
| -
 | 
| -	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
 | 
| -
 | 
| -	if (neg) /* if t[32] is negative */
 | 
| -		{
 | 
| -		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		/* Might have a carry */
 | 
| -		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
 | 
| -		}
 | 
| -
 | 
| -	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
 | 
| -	 * r[10] holds (a[0]*b[0])
 | 
| -	 * r[32] holds (b[1]*b[1])
 | 
| -	 * c1 holds the carry bits
 | 
| -	 */
 | 
| -	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
 | 
| -	if (c1)
 | 
| -		{
 | 
| -		p= &(r[n+n2]);
 | 
| -		lo= *p;
 | 
| -		ln=(lo+c1)&BN_MASK2;
 | 
| -		*p=ln;
 | 
| -
 | 
| -		/* The overflow will stop before we over write
 | 
| -		 * words we should not overwrite */
 | 
| -		if (ln < (BN_ULONG)c1)
 | 
| -			{
 | 
| -			do	{
 | 
| -				p++;
 | 
| -				lo= *p;
 | 
| -				ln=(lo+1)&BN_MASK2;
 | 
| -				*p=ln;
 | 
| -				} while (ln == 0);
 | 
| -			}
 | 
| -		}
 | 
| -	}
 | 
| -
 | 
| -/* n+tn is the word length
 | 
| - * t needs to be n*4 is size, as does r */
 | 
| -/* tnX may not be negative but less than n */
 | 
| -void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
 | 
| -	     int tna, int tnb, BN_ULONG *t)
 | 
| -	{
 | 
| -	int i,j,n2=n*2;
 | 
| -	int c1,c2,neg;
 | 
| -	BN_ULONG ln,lo,*p;
 | 
| -
 | 
| -# ifdef BN_COUNT
 | 
| -	fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
 | 
| -		n, tna, n, tnb);
 | 
| -# endif
 | 
| -	if (n < 8)
 | 
| -		{
 | 
| -		bn_mul_normal(r,a,n+tna,b,n+tnb);
 | 
| -		return;
 | 
| -		}
 | 
| -
 | 
| -	/* r=(a[0]-a[1])*(b[1]-b[0]) */
 | 
| -	c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
 | 
| -	c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
 | 
| -	neg=0;
 | 
| -	switch (c1*3+c2)
 | 
| -		{
 | 
| -	case -4:
 | 
| -		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
 | 
| -		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
 | 
| -		break;
 | 
| -	case -3:
 | 
| -		/* break; */
 | 
| -	case -2:
 | 
| -		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
 | 
| -		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
 | 
| -		neg=1;
 | 
| -		break;
 | 
| -	case -1:
 | 
| -	case 0:
 | 
| -	case 1:
 | 
| -		/* break; */
 | 
| -	case 2:
 | 
| -		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
 | 
| -		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
 | 
| -		neg=1;
 | 
| -		break;
 | 
| -	case 3:
 | 
| -		/* break; */
 | 
| -	case 4:
 | 
| -		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
 | 
| -		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
 | 
| -		break;
 | 
| -		}
 | 
| -		/* The zero case isn't yet implemented here. The speedup
 | 
| -		   would probably be negligible. */
 | 
| -# if 0
 | 
| -	if (n == 4)
 | 
| -		{
 | 
| -		bn_mul_comba4(&(t[n2]),t,&(t[n]));
 | 
| -		bn_mul_comba4(r,a,b);
 | 
| -		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
 | 
| -		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
 | 
| -		}
 | 
| -	else
 | 
| -# endif
 | 
| -	if (n == 8)
 | 
| -		{
 | 
| -		bn_mul_comba8(&(t[n2]),t,&(t[n]));
 | 
| -		bn_mul_comba8(r,a,b);
 | 
| -		bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
 | 
| -		memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		p= &(t[n2*2]);
 | 
| -		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
 | 
| -		bn_mul_recursive(r,a,b,n,0,0,p);
 | 
| -		i=n/2;
 | 
| -		/* If there is only a bottom half to the number,
 | 
| -		 * just do it */
 | 
| -		if (tna > tnb)
 | 
| -			j = tna - i;
 | 
| -		else
 | 
| -			j = tnb - i;
 | 
| -		if (j == 0)
 | 
| -			{
 | 
| -			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
 | 
| -				i,tna-i,tnb-i,p);
 | 
| -			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
 | 
| -			}
 | 
| -		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
 | 
| -				{
 | 
| -				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
 | 
| -					i,tna-i,tnb-i,p);
 | 
| -				memset(&(r[n2+tna+tnb]),0,
 | 
| -					sizeof(BN_ULONG)*(n2-tna-tnb));
 | 
| -				}
 | 
| -		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
 | 
| -			{
 | 
| -			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
 | 
| -			if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
 | 
| -				&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
 | 
| -				{
 | 
| -				bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
 | 
| -				}
 | 
| -			else
 | 
| -				{
 | 
| -				for (;;)
 | 
| -					{
 | 
| -					i/=2;
 | 
| -					/* these simplified conditions work
 | 
| -					 * exclusively because difference
 | 
| -					 * between tna and tnb is 1 or 0 */
 | 
| -					if (i < tna || i < tnb)
 | 
| -						{
 | 
| -						bn_mul_part_recursive(&(r[n2]),
 | 
| -							&(a[n]),&(b[n]),
 | 
| -							i,tna-i,tnb-i,p);
 | 
| -						break;
 | 
| -						}
 | 
| -					else if (i == tna || i == tnb)
 | 
| -						{
 | 
| -						bn_mul_recursive(&(r[n2]),
 | 
| -							&(a[n]),&(b[n]),
 | 
| -							i,tna-i,tnb-i,p);
 | 
| -						break;
 | 
| -						}
 | 
| -					}
 | 
| -				}
 | 
| -			}
 | 
| -		}
 | 
| -
 | 
| -	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
 | 
| -	 * r[10] holds (a[0]*b[0])
 | 
| -	 * r[32] holds (b[1]*b[1])
 | 
| -	 */
 | 
| -
 | 
| -	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
 | 
| -
 | 
| -	if (neg) /* if t[32] is negative */
 | 
| -		{
 | 
| -		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		/* Might have a carry */
 | 
| -		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
 | 
| -		}
 | 
| -
 | 
| -	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
 | 
| -	 * r[10] holds (a[0]*b[0])
 | 
| -	 * r[32] holds (b[1]*b[1])
 | 
| -	 * c1 holds the carry bits
 | 
| -	 */
 | 
| -	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
 | 
| -	if (c1)
 | 
| -		{
 | 
| -		p= &(r[n+n2]);
 | 
| -		lo= *p;
 | 
| -		ln=(lo+c1)&BN_MASK2;
 | 
| -		*p=ln;
 | 
| -
 | 
| -		/* The overflow will stop before we over write
 | 
| -		 * words we should not overwrite */
 | 
| -		if (ln < (BN_ULONG)c1)
 | 
| -			{
 | 
| -			do	{
 | 
| -				p++;
 | 
| -				lo= *p;
 | 
| -				ln=(lo+1)&BN_MASK2;
 | 
| -				*p=ln;
 | 
| -				} while (ln == 0);
 | 
| -			}
 | 
| -		}
 | 
| -	}
 | 
| -
 | 
| -/* a and b must be the same size, which is n2.
 | 
| - * r needs to be n2 words and t needs to be n2*2
 | 
| - */
 | 
| -void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 | 
| -	     BN_ULONG *t)
 | 
| -	{
 | 
| -	int n=n2/2;
 | 
| -
 | 
| -# ifdef BN_COUNT
 | 
| -	fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
 | 
| -# endif
 | 
| -
 | 
| -	bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
 | 
| -	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
 | 
| -		{
 | 
| -		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
 | 
| -		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
 | 
| -		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
 | 
| -		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
 | 
| -		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
 | 
| -		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
 | 
| -		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
 | 
| -		}
 | 
| -	}
 | 
| -
 | 
| -/* a and b must be the same size, which is n2.
 | 
| - * r needs to be n2 words and t needs to be n2*2
 | 
| - * l is the low words of the output.
 | 
| - * t needs to be n2*3
 | 
| - */
 | 
| -void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
 | 
| -	     BN_ULONG *t)
 | 
| -	{
 | 
| -	int i,n;
 | 
| -	int c1,c2;
 | 
| -	int neg,oneg,zero;
 | 
| -	BN_ULONG ll,lc,*lp,*mp;
 | 
| -
 | 
| -# ifdef BN_COUNT
 | 
| -	fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
 | 
| -# endif
 | 
| -	n=n2/2;
 | 
| -
 | 
| -	/* Calculate (al-ah)*(bh-bl) */
 | 
| -	neg=zero=0;
 | 
| -	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
 | 
| -	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
 | 
| -	switch (c1*3+c2)
 | 
| -		{
 | 
| -	case -4:
 | 
| -		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
 | 
| -		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
 | 
| -		break;
 | 
| -	case -3:
 | 
| -		zero=1;
 | 
| -		break;
 | 
| -	case -2:
 | 
| -		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
 | 
| -		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
 | 
| -		neg=1;
 | 
| -		break;
 | 
| -	case -1:
 | 
| -	case 0:
 | 
| -	case 1:
 | 
| -		zero=1;
 | 
| -		break;
 | 
| -	case 2:
 | 
| -		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
 | 
| -		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
 | 
| -		neg=1;
 | 
| -		break;
 | 
| -	case 3:
 | 
| -		zero=1;
 | 
| -		break;
 | 
| -	case 4:
 | 
| -		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
 | 
| -		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
 | 
| -		break;
 | 
| -		}
 | 
| -		
 | 
| -	oneg=neg;
 | 
| -	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
 | 
| -	/* r[10] = (a[1]*b[1]) */
 | 
| -# ifdef BN_MUL_COMBA
 | 
| -	if (n == 8)
 | 
| -		{
 | 
| -		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
 | 
| -		bn_mul_comba8(r,&(a[n]),&(b[n]));
 | 
| -		}
 | 
| -	else
 | 
| -# endif
 | 
| -		{
 | 
| -		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
 | 
| -		bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
 | 
| -		}
 | 
| -
 | 
| -	/* s0 == low(al*bl)
 | 
| -	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
 | 
| -	 * We know s0 and s1 so the only unknown is high(al*bl)
 | 
| -	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
 | 
| -	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
 | 
| -	 */
 | 
| -	if (l != NULL)
 | 
| -		{
 | 
| -		lp= &(t[n2+n]);
 | 
| -		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		c1=0;
 | 
| -		lp= &(r[0]);
 | 
| -		}
 | 
| -
 | 
| -	if (neg)
 | 
| -		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
 | 
| -	else
 | 
| -		{
 | 
| -		bn_add_words(&(t[n2]),lp,&(t[0]),n);
 | 
| -		neg=0;
 | 
| -		}
 | 
| -
 | 
| -	if (l != NULL)
 | 
| -		{
 | 
| -		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		lp= &(t[n2+n]);
 | 
| -		mp= &(t[n2]);
 | 
| -		for (i=0; i<n; i++)
 | 
| -			lp[i]=((~mp[i])+1)&BN_MASK2;
 | 
| -		}
 | 
| -
 | 
| -	/* s[0] = low(al*bl)
 | 
| -	 * t[3] = high(al*bl)
 | 
| -	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
 | 
| -	 * r[10] = (a[1]*b[1])
 | 
| -	 */
 | 
| -	/* R[10] = al*bl
 | 
| -	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
 | 
| -	 * R[32] = ah*bh
 | 
| -	 */
 | 
| -	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
 | 
| -	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
 | 
| -	 * R[3]=r[1]+(carry/borrow)
 | 
| -	 */
 | 
| -	if (l != NULL)
 | 
| -		{
 | 
| -		lp= &(t[n2]);
 | 
| -		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
 | 
| -		}
 | 
| -	else
 | 
| -		{
 | 
| -		lp= &(t[n2+n]);
 | 
| -		c1=0;
 | 
| -		}
 | 
| -	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
 | 
| -	if (oneg)
 | 
| -		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
 | 
| -	else
 | 
| -		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
 | 
| -
 | 
| -	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
 | 
| -	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
 | 
| -	if (oneg)
 | 
| -		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
 | 
| -	else
 | 
| -		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
 | 
| -	
 | 
| -	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
 | 
| -		{
 | 
| -		i=0;
 | 
| -		if (c1 > 0)
 | 
| -			{
 | 
| -			lc=c1;
 | 
| -			do	{
 | 
| -				ll=(r[i]+lc)&BN_MASK2;
 | 
| -				r[i++]=ll;
 | 
| -				lc=(lc > ll);
 | 
| -				} while (lc);
 | 
| -			}
 | 
| -		else
 | 
| -			{
 | 
| -			lc= -c1;
 | 
| -			do	{
 | 
| -				ll=r[i];
 | 
| -				r[i++]=(ll-lc)&BN_MASK2;
 | 
| -				lc=(lc > ll);
 | 
| -				} while (lc);
 | 
| -			}
 | 
| -		}
 | 
| -	if (c2 != 0) /* Add starting at r[1] */
 | 
| -		{
 | 
| -		i=n;
 | 
| -		if (c2 > 0)
 | 
| -			{
 | 
| -			lc=c2;
 | 
| -			do	{
 | 
| -				ll=(r[i]+lc)&BN_MASK2;
 | 
| -				r[i++]=ll;
 | 
| -				lc=(lc > ll);
 | 
| -				} while (lc);
 | 
| -			}
 | 
| -		else
 | 
| -			{
 | 
| -			lc= -c2;
 | 
| -			do	{
 | 
| -				ll=r[i];
 | 
| -				r[i++]=(ll-lc)&BN_MASK2;
 | 
| -				lc=(lc > ll);
 | 
| -				} while (lc);
 | 
| -			}
 | 
| -		}
 | 
| -	}
 | 
| -#endif /* BN_RECURSION */
 | 
| -
 | 
| -int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
| -	{
 | 
| -	int ret=0;
 | 
| -	int top,al,bl;
 | 
| -	BIGNUM *rr;
 | 
| -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | 
| -	int i;
 | 
| -#endif
 | 
| -#ifdef BN_RECURSION
 | 
| -	BIGNUM *t=NULL;
 | 
| -	int j=0,k;
 | 
| -#endif
 | 
| -
 | 
| -#ifdef BN_COUNT
 | 
| -	fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
 | 
| -#endif
 | 
| -
 | 
| -	bn_check_top(a);
 | 
| -	bn_check_top(b);
 | 
| -	bn_check_top(r);
 | 
| -
 | 
| -	al=a->top;
 | 
| -	bl=b->top;
 | 
| -
 | 
| -	if ((al == 0) || (bl == 0))
 | 
| -		{
 | 
| -		BN_zero(r);
 | 
| -		return(1);
 | 
| -		}
 | 
| -	top=al+bl;
 | 
| -
 | 
| -	BN_CTX_start(ctx);
 | 
| -	if ((r == a) || (r == b))
 | 
| -		{
 | 
| -		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
 | 
| -		}
 | 
| -	else
 | 
| -		rr = r;
 | 
| -	rr->neg=a->neg^b->neg;
 | 
| -
 | 
| -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | 
| -	i = al-bl;
 | 
| -#endif
 | 
| -#ifdef BN_MUL_COMBA
 | 
| -	if (i == 0)
 | 
| -		{
 | 
| -# if 0
 | 
| -		if (al == 4)
 | 
| -			{
 | 
| -			if (bn_wexpand(rr,8) == NULL) goto err;
 | 
| -			rr->top=8;
 | 
| -			bn_mul_comba4(rr->d,a->d,b->d);
 | 
| -			goto end;
 | 
| -			}
 | 
| -# endif
 | 
| -		if (al == 8)
 | 
| -			{
 | 
| -			if (bn_wexpand(rr,16) == NULL) goto err;
 | 
| -			rr->top=16;
 | 
| -			bn_mul_comba8(rr->d,a->d,b->d);
 | 
| -			goto end;
 | 
| -			}
 | 
| -		}
 | 
| -#endif /* BN_MUL_COMBA */
 | 
| -#ifdef BN_RECURSION
 | 
| -	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
 | 
| -		{
 | 
| -		if (i >= -1 && i <= 1)
 | 
| -			{
 | 
| -			/* Find out the power of two lower or equal
 | 
| -			   to the longest of the two numbers */
 | 
| -			if (i >= 0)
 | 
| -				{
 | 
| -				j = BN_num_bits_word((BN_ULONG)al);
 | 
| -				}
 | 
| -			if (i == -1)
 | 
| -				{
 | 
| -				j = BN_num_bits_word((BN_ULONG)bl);
 | 
| -				}
 | 
| -			j = 1<<(j-1);
 | 
| -			assert(j <= al || j <= bl);
 | 
| -			k = j+j;
 | 
| -			t = BN_CTX_get(ctx);
 | 
| -			if (t == NULL)
 | 
| -				goto err;
 | 
| -			if (al > j || bl > j)
 | 
| -				{
 | 
| -				if (bn_wexpand(t,k*4) == NULL) goto err;
 | 
| -				if (bn_wexpand(rr,k*4) == NULL) goto err;
 | 
| -				bn_mul_part_recursive(rr->d,a->d,b->d,
 | 
| -					j,al-j,bl-j,t->d);
 | 
| -				}
 | 
| -			else	/* al <= j || bl <= j */
 | 
| -				{
 | 
| -				if (bn_wexpand(t,k*2) == NULL) goto err;
 | 
| -				if (bn_wexpand(rr,k*2) == NULL) goto err;
 | 
| -				bn_mul_recursive(rr->d,a->d,b->d,
 | 
| -					j,al-j,bl-j,t->d);
 | 
| -				}
 | 
| -			rr->top=top;
 | 
| -			goto end;
 | 
| -			}
 | 
| -#if 0
 | 
| -		if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
 | 
| -			{
 | 
| -			BIGNUM *tmp_bn = (BIGNUM *)b;
 | 
| -			if (bn_wexpand(tmp_bn,al) == NULL) goto err;
 | 
| -			tmp_bn->d[bl]=0;
 | 
| -			bl++;
 | 
| -			i--;
 | 
| -			}
 | 
| -		else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
 | 
| -			{
 | 
| -			BIGNUM *tmp_bn = (BIGNUM *)a;
 | 
| -			if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
 | 
| -			tmp_bn->d[al]=0;
 | 
| -			al++;
 | 
| -			i++;
 | 
| -			}
 | 
| -		if (i == 0)
 | 
| -			{
 | 
| -			/* symmetric and > 4 */
 | 
| -			/* 16 or larger */
 | 
| -			j=BN_num_bits_word((BN_ULONG)al);
 | 
| -			j=1<<(j-1);
 | 
| -			k=j+j;
 | 
| -			t = BN_CTX_get(ctx);
 | 
| -			if (al == j) /* exact multiple */
 | 
| -				{
 | 
| -				if (bn_wexpand(t,k*2) == NULL) goto err;
 | 
| -				if (bn_wexpand(rr,k*2) == NULL) goto err;
 | 
| -				bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
 | 
| -				}
 | 
| -			else
 | 
| -				{
 | 
| -				if (bn_wexpand(t,k*4) == NULL) goto err;
 | 
| -				if (bn_wexpand(rr,k*4) == NULL) goto err;
 | 
| -				bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
 | 
| -				}
 | 
| -			rr->top=top;
 | 
| -			goto end;
 | 
| -			}
 | 
| -#endif
 | 
| -		}
 | 
| -#endif /* BN_RECURSION */
 | 
| -	if (bn_wexpand(rr,top) == NULL) goto err;
 | 
| -	rr->top=top;
 | 
| -	bn_mul_normal(rr->d,a->d,al,b->d,bl);
 | 
| -
 | 
| -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | 
| -end:
 | 
| -#endif
 | 
| -	bn_correct_top(rr);
 | 
| -	if (r != rr) BN_copy(r,rr);
 | 
| -	ret=1;
 | 
| -err:
 | 
| -	bn_check_top(r);
 | 
| -	BN_CTX_end(ctx);
 | 
| -	return(ret);
 | 
| -	}
 | 
| -
 | 
| -void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
 | 
| -	{
 | 
| -	BN_ULONG *rr;
 | 
| -
 | 
| -#ifdef BN_COUNT
 | 
| -	fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
 | 
| -#endif
 | 
| -
 | 
| -	if (na < nb)
 | 
| -		{
 | 
| -		int itmp;
 | 
| -		BN_ULONG *ltmp;
 | 
| -
 | 
| -		itmp=na; na=nb; nb=itmp;
 | 
| -		ltmp=a;   a=b;   b=ltmp;
 | 
| -
 | 
| -		}
 | 
| -	rr= &(r[na]);
 | 
| -	if (nb <= 0)
 | 
| -		{
 | 
| -		(void)bn_mul_words(r,a,na,0);
 | 
| -		return;
 | 
| -		}
 | 
| -	else
 | 
| -		rr[0]=bn_mul_words(r,a,na,b[0]);
 | 
| -
 | 
| -	for (;;)
 | 
| -		{
 | 
| -		if (--nb <= 0) return;
 | 
| -		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
 | 
| -		if (--nb <= 0) return;
 | 
| -		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
 | 
| -		if (--nb <= 0) return;
 | 
| -		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
 | 
| -		if (--nb <= 0) return;
 | 
| -		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
 | 
| -		rr+=4;
 | 
| -		r+=4;
 | 
| -		b+=4;
 | 
| -		}
 | 
| -	}
 | 
| -
 | 
| -void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
 | 
| -	{
 | 
| -#ifdef BN_COUNT
 | 
| -	fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
 | 
| -#endif
 | 
| -	bn_mul_words(r,a,n,b[0]);
 | 
| -
 | 
| -	for (;;)
 | 
| -		{
 | 
| -		if (--n <= 0) return;
 | 
| -		bn_mul_add_words(&(r[1]),a,n,b[1]);
 | 
| -		if (--n <= 0) return;
 | 
| -		bn_mul_add_words(&(r[2]),a,n,b[2]);
 | 
| -		if (--n <= 0) return;
 | 
| -		bn_mul_add_words(&(r[3]),a,n,b[3]);
 | 
| -		if (--n <= 0) return;
 | 
| -		bn_mul_add_words(&(r[4]),a,n,b[4]);
 | 
| -		r+=4;
 | 
| -		b+=4;
 | 
| -		}
 | 
| -	}
 | 
| 
 |