| Index: openssl/crypto/bn/bn_mul.c
|
| diff --git a/openssl/crypto/bn/bn_mul.c b/openssl/crypto/bn/bn_mul.c
|
| deleted file mode 100644
|
| index 12e5be80eb2b442db28f6b1955c0d583bb91bb83..0000000000000000000000000000000000000000
|
| --- a/openssl/crypto/bn/bn_mul.c
|
| +++ /dev/null
|
| @@ -1,1166 +0,0 @@
|
| -/* crypto/bn/bn_mul.c */
|
| -/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
| - * All rights reserved.
|
| - *
|
| - * This package is an SSL implementation written
|
| - * by Eric Young (eay@cryptsoft.com).
|
| - * The implementation was written so as to conform with Netscapes SSL.
|
| - *
|
| - * This library is free for commercial and non-commercial use as long as
|
| - * the following conditions are aheared to. The following conditions
|
| - * apply to all code found in this distribution, be it the RC4, RSA,
|
| - * lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
| - * included with this distribution is covered by the same copyright terms
|
| - * except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
| - *
|
| - * Copyright remains Eric Young's, and as such any Copyright notices in
|
| - * the code are not to be removed.
|
| - * If this package is used in a product, Eric Young should be given attribution
|
| - * as the author of the parts of the library used.
|
| - * This can be in the form of a textual message at program startup or
|
| - * in documentation (online or textual) provided with the package.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - * 1. Redistributions of source code must retain the copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - * 3. All advertising materials mentioning features or use of this software
|
| - * must display the following acknowledgement:
|
| - * "This product includes cryptographic software written by
|
| - * Eric Young (eay@cryptsoft.com)"
|
| - * The word 'cryptographic' can be left out if the rouines from the library
|
| - * being used are not cryptographic related :-).
|
| - * 4. If you include any Windows specific code (or a derivative thereof) from
|
| - * the apps directory (application code) you must include an acknowledgement:
|
| - * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
| - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
| - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
| - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
| - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
| - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
| - * SUCH DAMAGE.
|
| - *
|
| - * The licence and distribution terms for any publically available version or
|
| - * derivative of this code cannot be changed. i.e. this code cannot simply be
|
| - * copied and put under another distribution licence
|
| - * [including the GNU Public Licence.]
|
| - */
|
| -
|
| -#ifndef BN_DEBUG
|
| -# undef NDEBUG /* avoid conflicting definitions */
|
| -# define NDEBUG
|
| -#endif
|
| -
|
| -#include <stdio.h>
|
| -#include <assert.h>
|
| -#include "cryptlib.h"
|
| -#include "bn_lcl.h"
|
| -
|
| -#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
|
| -/* Here follows specialised variants of bn_add_words() and
|
| - bn_sub_words(). They have the property performing operations on
|
| - arrays of different sizes. The sizes of those arrays is expressed through
|
| - cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
|
| - which is the delta between the two lengths, calculated as len(a)-len(b).
|
| - All lengths are the number of BN_ULONGs... For the operations that require
|
| - a result array as parameter, it must have the length cl+abs(dl).
|
| - These functions should probably end up in bn_asm.c as soon as there are
|
| - assembler counterparts for the systems that use assembler files. */
|
| -
|
| -BN_ULONG bn_sub_part_words(BN_ULONG *r,
|
| - const BN_ULONG *a, const BN_ULONG *b,
|
| - int cl, int dl)
|
| - {
|
| - BN_ULONG c, t;
|
| -
|
| - assert(cl >= 0);
|
| - c = bn_sub_words(r, a, b, cl);
|
| -
|
| - if (dl == 0)
|
| - return c;
|
| -
|
| - r += cl;
|
| - a += cl;
|
| - b += cl;
|
| -
|
| - if (dl < 0)
|
| - {
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
|
| -#endif
|
| - for (;;)
|
| - {
|
| - t = b[0];
|
| - r[0] = (0-t-c)&BN_MASK2;
|
| - if (t != 0) c=1;
|
| - if (++dl >= 0) break;
|
| -
|
| - t = b[1];
|
| - r[1] = (0-t-c)&BN_MASK2;
|
| - if (t != 0) c=1;
|
| - if (++dl >= 0) break;
|
| -
|
| - t = b[2];
|
| - r[2] = (0-t-c)&BN_MASK2;
|
| - if (t != 0) c=1;
|
| - if (++dl >= 0) break;
|
| -
|
| - t = b[3];
|
| - r[3] = (0-t-c)&BN_MASK2;
|
| - if (t != 0) c=1;
|
| - if (++dl >= 0) break;
|
| -
|
| - b += 4;
|
| - r += 4;
|
| - }
|
| - }
|
| - else
|
| - {
|
| - int save_dl = dl;
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
|
| -#endif
|
| - while(c)
|
| - {
|
| - t = a[0];
|
| - r[0] = (t-c)&BN_MASK2;
|
| - if (t != 0) c=0;
|
| - if (--dl <= 0) break;
|
| -
|
| - t = a[1];
|
| - r[1] = (t-c)&BN_MASK2;
|
| - if (t != 0) c=0;
|
| - if (--dl <= 0) break;
|
| -
|
| - t = a[2];
|
| - r[2] = (t-c)&BN_MASK2;
|
| - if (t != 0) c=0;
|
| - if (--dl <= 0) break;
|
| -
|
| - t = a[3];
|
| - r[3] = (t-c)&BN_MASK2;
|
| - if (t != 0) c=0;
|
| - if (--dl <= 0) break;
|
| -
|
| - save_dl = dl;
|
| - a += 4;
|
| - r += 4;
|
| - }
|
| - if (dl > 0)
|
| - {
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
|
| -#endif
|
| - if (save_dl > dl)
|
| - {
|
| - switch (save_dl - dl)
|
| - {
|
| - case 1:
|
| - r[1] = a[1];
|
| - if (--dl <= 0) break;
|
| - case 2:
|
| - r[2] = a[2];
|
| - if (--dl <= 0) break;
|
| - case 3:
|
| - r[3] = a[3];
|
| - if (--dl <= 0) break;
|
| - }
|
| - a += 4;
|
| - r += 4;
|
| - }
|
| - }
|
| - if (dl > 0)
|
| - {
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
|
| -#endif
|
| - for(;;)
|
| - {
|
| - r[0] = a[0];
|
| - if (--dl <= 0) break;
|
| - r[1] = a[1];
|
| - if (--dl <= 0) break;
|
| - r[2] = a[2];
|
| - if (--dl <= 0) break;
|
| - r[3] = a[3];
|
| - if (--dl <= 0) break;
|
| -
|
| - a += 4;
|
| - r += 4;
|
| - }
|
| - }
|
| - }
|
| - return c;
|
| - }
|
| -#endif
|
| -
|
| -BN_ULONG bn_add_part_words(BN_ULONG *r,
|
| - const BN_ULONG *a, const BN_ULONG *b,
|
| - int cl, int dl)
|
| - {
|
| - BN_ULONG c, l, t;
|
| -
|
| - assert(cl >= 0);
|
| - c = bn_add_words(r, a, b, cl);
|
| -
|
| - if (dl == 0)
|
| - return c;
|
| -
|
| - r += cl;
|
| - a += cl;
|
| - b += cl;
|
| -
|
| - if (dl < 0)
|
| - {
|
| - int save_dl = dl;
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
|
| -#endif
|
| - while (c)
|
| - {
|
| - l=(c+b[0])&BN_MASK2;
|
| - c=(l < c);
|
| - r[0]=l;
|
| - if (++dl >= 0) break;
|
| -
|
| - l=(c+b[1])&BN_MASK2;
|
| - c=(l < c);
|
| - r[1]=l;
|
| - if (++dl >= 0) break;
|
| -
|
| - l=(c+b[2])&BN_MASK2;
|
| - c=(l < c);
|
| - r[2]=l;
|
| - if (++dl >= 0) break;
|
| -
|
| - l=(c+b[3])&BN_MASK2;
|
| - c=(l < c);
|
| - r[3]=l;
|
| - if (++dl >= 0) break;
|
| -
|
| - save_dl = dl;
|
| - b+=4;
|
| - r+=4;
|
| - }
|
| - if (dl < 0)
|
| - {
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
|
| -#endif
|
| - if (save_dl < dl)
|
| - {
|
| - switch (dl - save_dl)
|
| - {
|
| - case 1:
|
| - r[1] = b[1];
|
| - if (++dl >= 0) break;
|
| - case 2:
|
| - r[2] = b[2];
|
| - if (++dl >= 0) break;
|
| - case 3:
|
| - r[3] = b[3];
|
| - if (++dl >= 0) break;
|
| - }
|
| - b += 4;
|
| - r += 4;
|
| - }
|
| - }
|
| - if (dl < 0)
|
| - {
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
|
| -#endif
|
| - for(;;)
|
| - {
|
| - r[0] = b[0];
|
| - if (++dl >= 0) break;
|
| - r[1] = b[1];
|
| - if (++dl >= 0) break;
|
| - r[2] = b[2];
|
| - if (++dl >= 0) break;
|
| - r[3] = b[3];
|
| - if (++dl >= 0) break;
|
| -
|
| - b += 4;
|
| - r += 4;
|
| - }
|
| - }
|
| - }
|
| - else
|
| - {
|
| - int save_dl = dl;
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
|
| -#endif
|
| - while (c)
|
| - {
|
| - t=(a[0]+c)&BN_MASK2;
|
| - c=(t < c);
|
| - r[0]=t;
|
| - if (--dl <= 0) break;
|
| -
|
| - t=(a[1]+c)&BN_MASK2;
|
| - c=(t < c);
|
| - r[1]=t;
|
| - if (--dl <= 0) break;
|
| -
|
| - t=(a[2]+c)&BN_MASK2;
|
| - c=(t < c);
|
| - r[2]=t;
|
| - if (--dl <= 0) break;
|
| -
|
| - t=(a[3]+c)&BN_MASK2;
|
| - c=(t < c);
|
| - r[3]=t;
|
| - if (--dl <= 0) break;
|
| -
|
| - save_dl = dl;
|
| - a+=4;
|
| - r+=4;
|
| - }
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
|
| -#endif
|
| - if (dl > 0)
|
| - {
|
| - if (save_dl > dl)
|
| - {
|
| - switch (save_dl - dl)
|
| - {
|
| - case 1:
|
| - r[1] = a[1];
|
| - if (--dl <= 0) break;
|
| - case 2:
|
| - r[2] = a[2];
|
| - if (--dl <= 0) break;
|
| - case 3:
|
| - r[3] = a[3];
|
| - if (--dl <= 0) break;
|
| - }
|
| - a += 4;
|
| - r += 4;
|
| - }
|
| - }
|
| - if (dl > 0)
|
| - {
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
|
| -#endif
|
| - for(;;)
|
| - {
|
| - r[0] = a[0];
|
| - if (--dl <= 0) break;
|
| - r[1] = a[1];
|
| - if (--dl <= 0) break;
|
| - r[2] = a[2];
|
| - if (--dl <= 0) break;
|
| - r[3] = a[3];
|
| - if (--dl <= 0) break;
|
| -
|
| - a += 4;
|
| - r += 4;
|
| - }
|
| - }
|
| - }
|
| - return c;
|
| - }
|
| -
|
| -#ifdef BN_RECURSION
|
| -/* Karatsuba recursive multiplication algorithm
|
| - * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
|
| -
|
| -/* r is 2*n2 words in size,
|
| - * a and b are both n2 words in size.
|
| - * n2 must be a power of 2.
|
| - * We multiply and return the result.
|
| - * t must be 2*n2 words in size
|
| - * We calculate
|
| - * a[0]*b[0]
|
| - * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
|
| - * a[1]*b[1]
|
| - */
|
| -/* dnX may not be positive, but n2/2+dnX has to be */
|
| -void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
| - int dna, int dnb, BN_ULONG *t)
|
| - {
|
| - int n=n2/2,c1,c2;
|
| - int tna=n+dna, tnb=n+dnb;
|
| - unsigned int neg,zero;
|
| - BN_ULONG ln,lo,*p;
|
| -
|
| -# ifdef BN_COUNT
|
| - fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
|
| -# endif
|
| -# ifdef BN_MUL_COMBA
|
| -# if 0
|
| - if (n2 == 4)
|
| - {
|
| - bn_mul_comba4(r,a,b);
|
| - return;
|
| - }
|
| -# endif
|
| - /* Only call bn_mul_comba 8 if n2 == 8 and the
|
| - * two arrays are complete [steve]
|
| - */
|
| - if (n2 == 8 && dna == 0 && dnb == 0)
|
| - {
|
| - bn_mul_comba8(r,a,b);
|
| - return;
|
| - }
|
| -# endif /* BN_MUL_COMBA */
|
| - /* Else do normal multiply */
|
| - if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
|
| - {
|
| - bn_mul_normal(r,a,n2+dna,b,n2+dnb);
|
| - if ((dna + dnb) < 0)
|
| - memset(&r[2*n2 + dna + dnb], 0,
|
| - sizeof(BN_ULONG) * -(dna + dnb));
|
| - return;
|
| - }
|
| - /* r=(a[0]-a[1])*(b[1]-b[0]) */
|
| - c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
|
| - c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
|
| - zero=neg=0;
|
| - switch (c1*3+c2)
|
| - {
|
| - case -4:
|
| - bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
| - bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
| - break;
|
| - case -3:
|
| - zero=1;
|
| - break;
|
| - case -2:
|
| - bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
| - bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
|
| - neg=1;
|
| - break;
|
| - case -1:
|
| - case 0:
|
| - case 1:
|
| - zero=1;
|
| - break;
|
| - case 2:
|
| - bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
|
| - bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
| - neg=1;
|
| - break;
|
| - case 3:
|
| - zero=1;
|
| - break;
|
| - case 4:
|
| - bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
|
| - bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
|
| - break;
|
| - }
|
| -
|
| -# ifdef BN_MUL_COMBA
|
| - if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
|
| - extra args to do this well */
|
| - {
|
| - if (!zero)
|
| - bn_mul_comba4(&(t[n2]),t,&(t[n]));
|
| - else
|
| - memset(&(t[n2]),0,8*sizeof(BN_ULONG));
|
| -
|
| - bn_mul_comba4(r,a,b);
|
| - bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
|
| - }
|
| - else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
|
| - take extra args to do this
|
| - well */
|
| - {
|
| - if (!zero)
|
| - bn_mul_comba8(&(t[n2]),t,&(t[n]));
|
| - else
|
| - memset(&(t[n2]),0,16*sizeof(BN_ULONG));
|
| -
|
| - bn_mul_comba8(r,a,b);
|
| - bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
|
| - }
|
| - else
|
| -# endif /* BN_MUL_COMBA */
|
| - {
|
| - p= &(t[n2*2]);
|
| - if (!zero)
|
| - bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
|
| - else
|
| - memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
|
| - bn_mul_recursive(r,a,b,n,0,0,p);
|
| - bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
|
| - }
|
| -
|
| - /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
| - * r[10] holds (a[0]*b[0])
|
| - * r[32] holds (b[1]*b[1])
|
| - */
|
| -
|
| - c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
|
| -
|
| - if (neg) /* if t[32] is negative */
|
| - {
|
| - c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
|
| - }
|
| - else
|
| - {
|
| - /* Might have a carry */
|
| - c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
|
| - }
|
| -
|
| - /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
| - * r[10] holds (a[0]*b[0])
|
| - * r[32] holds (b[1]*b[1])
|
| - * c1 holds the carry bits
|
| - */
|
| - c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
|
| - if (c1)
|
| - {
|
| - p= &(r[n+n2]);
|
| - lo= *p;
|
| - ln=(lo+c1)&BN_MASK2;
|
| - *p=ln;
|
| -
|
| - /* The overflow will stop before we over write
|
| - * words we should not overwrite */
|
| - if (ln < (BN_ULONG)c1)
|
| - {
|
| - do {
|
| - p++;
|
| - lo= *p;
|
| - ln=(lo+1)&BN_MASK2;
|
| - *p=ln;
|
| - } while (ln == 0);
|
| - }
|
| - }
|
| - }
|
| -
|
| -/* n+tn is the word length
|
| - * t needs to be n*4 is size, as does r */
|
| -/* tnX may not be negative but less than n */
|
| -void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
|
| - int tna, int tnb, BN_ULONG *t)
|
| - {
|
| - int i,j,n2=n*2;
|
| - int c1,c2,neg;
|
| - BN_ULONG ln,lo,*p;
|
| -
|
| -# ifdef BN_COUNT
|
| - fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
|
| - n, tna, n, tnb);
|
| -# endif
|
| - if (n < 8)
|
| - {
|
| - bn_mul_normal(r,a,n+tna,b,n+tnb);
|
| - return;
|
| - }
|
| -
|
| - /* r=(a[0]-a[1])*(b[1]-b[0]) */
|
| - c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
|
| - c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
|
| - neg=0;
|
| - switch (c1*3+c2)
|
| - {
|
| - case -4:
|
| - bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
| - bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
| - break;
|
| - case -3:
|
| - /* break; */
|
| - case -2:
|
| - bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
| - bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
|
| - neg=1;
|
| - break;
|
| - case -1:
|
| - case 0:
|
| - case 1:
|
| - /* break; */
|
| - case 2:
|
| - bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
|
| - bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
| - neg=1;
|
| - break;
|
| - case 3:
|
| - /* break; */
|
| - case 4:
|
| - bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
|
| - bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
|
| - break;
|
| - }
|
| - /* The zero case isn't yet implemented here. The speedup
|
| - would probably be negligible. */
|
| -# if 0
|
| - if (n == 4)
|
| - {
|
| - bn_mul_comba4(&(t[n2]),t,&(t[n]));
|
| - bn_mul_comba4(r,a,b);
|
| - bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
|
| - memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
|
| - }
|
| - else
|
| -# endif
|
| - if (n == 8)
|
| - {
|
| - bn_mul_comba8(&(t[n2]),t,&(t[n]));
|
| - bn_mul_comba8(r,a,b);
|
| - bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
|
| - memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
|
| - }
|
| - else
|
| - {
|
| - p= &(t[n2*2]);
|
| - bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
|
| - bn_mul_recursive(r,a,b,n,0,0,p);
|
| - i=n/2;
|
| - /* If there is only a bottom half to the number,
|
| - * just do it */
|
| - if (tna > tnb)
|
| - j = tna - i;
|
| - else
|
| - j = tnb - i;
|
| - if (j == 0)
|
| - {
|
| - bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
|
| - i,tna-i,tnb-i,p);
|
| - memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
|
| - }
|
| - else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
|
| - {
|
| - bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
|
| - i,tna-i,tnb-i,p);
|
| - memset(&(r[n2+tna+tnb]),0,
|
| - sizeof(BN_ULONG)*(n2-tna-tnb));
|
| - }
|
| - else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
|
| - {
|
| - memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
|
| - if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
|
| - && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
|
| - {
|
| - bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
|
| - }
|
| - else
|
| - {
|
| - for (;;)
|
| - {
|
| - i/=2;
|
| - /* these simplified conditions work
|
| - * exclusively because difference
|
| - * between tna and tnb is 1 or 0 */
|
| - if (i < tna || i < tnb)
|
| - {
|
| - bn_mul_part_recursive(&(r[n2]),
|
| - &(a[n]),&(b[n]),
|
| - i,tna-i,tnb-i,p);
|
| - break;
|
| - }
|
| - else if (i == tna || i == tnb)
|
| - {
|
| - bn_mul_recursive(&(r[n2]),
|
| - &(a[n]),&(b[n]),
|
| - i,tna-i,tnb-i,p);
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
| - * r[10] holds (a[0]*b[0])
|
| - * r[32] holds (b[1]*b[1])
|
| - */
|
| -
|
| - c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
|
| -
|
| - if (neg) /* if t[32] is negative */
|
| - {
|
| - c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
|
| - }
|
| - else
|
| - {
|
| - /* Might have a carry */
|
| - c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
|
| - }
|
| -
|
| - /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
| - * r[10] holds (a[0]*b[0])
|
| - * r[32] holds (b[1]*b[1])
|
| - * c1 holds the carry bits
|
| - */
|
| - c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
|
| - if (c1)
|
| - {
|
| - p= &(r[n+n2]);
|
| - lo= *p;
|
| - ln=(lo+c1)&BN_MASK2;
|
| - *p=ln;
|
| -
|
| - /* The overflow will stop before we over write
|
| - * words we should not overwrite */
|
| - if (ln < (BN_ULONG)c1)
|
| - {
|
| - do {
|
| - p++;
|
| - lo= *p;
|
| - ln=(lo+1)&BN_MASK2;
|
| - *p=ln;
|
| - } while (ln == 0);
|
| - }
|
| - }
|
| - }
|
| -
|
| -/* a and b must be the same size, which is n2.
|
| - * r needs to be n2 words and t needs to be n2*2
|
| - */
|
| -void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
| - BN_ULONG *t)
|
| - {
|
| - int n=n2/2;
|
| -
|
| -# ifdef BN_COUNT
|
| - fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
|
| -# endif
|
| -
|
| - bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
|
| - if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
|
| - {
|
| - bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
|
| - bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
|
| - bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
|
| - bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
|
| - }
|
| - else
|
| - {
|
| - bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
|
| - bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
|
| - bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
|
| - bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
|
| - }
|
| - }
|
| -
|
| -/* a and b must be the same size, which is n2.
|
| - * r needs to be n2 words and t needs to be n2*2
|
| - * l is the low words of the output.
|
| - * t needs to be n2*3
|
| - */
|
| -void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
|
| - BN_ULONG *t)
|
| - {
|
| - int i,n;
|
| - int c1,c2;
|
| - int neg,oneg,zero;
|
| - BN_ULONG ll,lc,*lp,*mp;
|
| -
|
| -# ifdef BN_COUNT
|
| - fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
|
| -# endif
|
| - n=n2/2;
|
| -
|
| - /* Calculate (al-ah)*(bh-bl) */
|
| - neg=zero=0;
|
| - c1=bn_cmp_words(&(a[0]),&(a[n]),n);
|
| - c2=bn_cmp_words(&(b[n]),&(b[0]),n);
|
| - switch (c1*3+c2)
|
| - {
|
| - case -4:
|
| - bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
|
| - bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
|
| - break;
|
| - case -3:
|
| - zero=1;
|
| - break;
|
| - case -2:
|
| - bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
|
| - bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
|
| - neg=1;
|
| - break;
|
| - case -1:
|
| - case 0:
|
| - case 1:
|
| - zero=1;
|
| - break;
|
| - case 2:
|
| - bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
|
| - bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
|
| - neg=1;
|
| - break;
|
| - case 3:
|
| - zero=1;
|
| - break;
|
| - case 4:
|
| - bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
|
| - bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
|
| - break;
|
| - }
|
| -
|
| - oneg=neg;
|
| - /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
|
| - /* r[10] = (a[1]*b[1]) */
|
| -# ifdef BN_MUL_COMBA
|
| - if (n == 8)
|
| - {
|
| - bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
|
| - bn_mul_comba8(r,&(a[n]),&(b[n]));
|
| - }
|
| - else
|
| -# endif
|
| - {
|
| - bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
|
| - bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
|
| - }
|
| -
|
| - /* s0 == low(al*bl)
|
| - * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
|
| - * We know s0 and s1 so the only unknown is high(al*bl)
|
| - * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
|
| - * high(al*bl) == s1 - (r[0]+l[0]+t[0])
|
| - */
|
| - if (l != NULL)
|
| - {
|
| - lp= &(t[n2+n]);
|
| - c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
|
| - }
|
| - else
|
| - {
|
| - c1=0;
|
| - lp= &(r[0]);
|
| - }
|
| -
|
| - if (neg)
|
| - neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
|
| - else
|
| - {
|
| - bn_add_words(&(t[n2]),lp,&(t[0]),n);
|
| - neg=0;
|
| - }
|
| -
|
| - if (l != NULL)
|
| - {
|
| - bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
|
| - }
|
| - else
|
| - {
|
| - lp= &(t[n2+n]);
|
| - mp= &(t[n2]);
|
| - for (i=0; i<n; i++)
|
| - lp[i]=((~mp[i])+1)&BN_MASK2;
|
| - }
|
| -
|
| - /* s[0] = low(al*bl)
|
| - * t[3] = high(al*bl)
|
| - * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
|
| - * r[10] = (a[1]*b[1])
|
| - */
|
| - /* R[10] = al*bl
|
| - * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
|
| - * R[32] = ah*bh
|
| - */
|
| - /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
|
| - * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
|
| - * R[3]=r[1]+(carry/borrow)
|
| - */
|
| - if (l != NULL)
|
| - {
|
| - lp= &(t[n2]);
|
| - c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
|
| - }
|
| - else
|
| - {
|
| - lp= &(t[n2+n]);
|
| - c1=0;
|
| - }
|
| - c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n));
|
| - if (oneg)
|
| - c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
|
| - else
|
| - c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
|
| -
|
| - c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
|
| - c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
|
| - if (oneg)
|
| - c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
|
| - else
|
| - c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
|
| -
|
| - if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
|
| - {
|
| - i=0;
|
| - if (c1 > 0)
|
| - {
|
| - lc=c1;
|
| - do {
|
| - ll=(r[i]+lc)&BN_MASK2;
|
| - r[i++]=ll;
|
| - lc=(lc > ll);
|
| - } while (lc);
|
| - }
|
| - else
|
| - {
|
| - lc= -c1;
|
| - do {
|
| - ll=r[i];
|
| - r[i++]=(ll-lc)&BN_MASK2;
|
| - lc=(lc > ll);
|
| - } while (lc);
|
| - }
|
| - }
|
| - if (c2 != 0) /* Add starting at r[1] */
|
| - {
|
| - i=n;
|
| - if (c2 > 0)
|
| - {
|
| - lc=c2;
|
| - do {
|
| - ll=(r[i]+lc)&BN_MASK2;
|
| - r[i++]=ll;
|
| - lc=(lc > ll);
|
| - } while (lc);
|
| - }
|
| - else
|
| - {
|
| - lc= -c2;
|
| - do {
|
| - ll=r[i];
|
| - r[i++]=(ll-lc)&BN_MASK2;
|
| - lc=(lc > ll);
|
| - } while (lc);
|
| - }
|
| - }
|
| - }
|
| -#endif /* BN_RECURSION */
|
| -
|
| -int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
| - {
|
| - int ret=0;
|
| - int top,al,bl;
|
| - BIGNUM *rr;
|
| -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
| - int i;
|
| -#endif
|
| -#ifdef BN_RECURSION
|
| - BIGNUM *t=NULL;
|
| - int j=0,k;
|
| -#endif
|
| -
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
|
| -#endif
|
| -
|
| - bn_check_top(a);
|
| - bn_check_top(b);
|
| - bn_check_top(r);
|
| -
|
| - al=a->top;
|
| - bl=b->top;
|
| -
|
| - if ((al == 0) || (bl == 0))
|
| - {
|
| - BN_zero(r);
|
| - return(1);
|
| - }
|
| - top=al+bl;
|
| -
|
| - BN_CTX_start(ctx);
|
| - if ((r == a) || (r == b))
|
| - {
|
| - if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
|
| - }
|
| - else
|
| - rr = r;
|
| - rr->neg=a->neg^b->neg;
|
| -
|
| -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
| - i = al-bl;
|
| -#endif
|
| -#ifdef BN_MUL_COMBA
|
| - if (i == 0)
|
| - {
|
| -# if 0
|
| - if (al == 4)
|
| - {
|
| - if (bn_wexpand(rr,8) == NULL) goto err;
|
| - rr->top=8;
|
| - bn_mul_comba4(rr->d,a->d,b->d);
|
| - goto end;
|
| - }
|
| -# endif
|
| - if (al == 8)
|
| - {
|
| - if (bn_wexpand(rr,16) == NULL) goto err;
|
| - rr->top=16;
|
| - bn_mul_comba8(rr->d,a->d,b->d);
|
| - goto end;
|
| - }
|
| - }
|
| -#endif /* BN_MUL_COMBA */
|
| -#ifdef BN_RECURSION
|
| - if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
|
| - {
|
| - if (i >= -1 && i <= 1)
|
| - {
|
| - /* Find out the power of two lower or equal
|
| - to the longest of the two numbers */
|
| - if (i >= 0)
|
| - {
|
| - j = BN_num_bits_word((BN_ULONG)al);
|
| - }
|
| - if (i == -1)
|
| - {
|
| - j = BN_num_bits_word((BN_ULONG)bl);
|
| - }
|
| - j = 1<<(j-1);
|
| - assert(j <= al || j <= bl);
|
| - k = j+j;
|
| - t = BN_CTX_get(ctx);
|
| - if (t == NULL)
|
| - goto err;
|
| - if (al > j || bl > j)
|
| - {
|
| - if (bn_wexpand(t,k*4) == NULL) goto err;
|
| - if (bn_wexpand(rr,k*4) == NULL) goto err;
|
| - bn_mul_part_recursive(rr->d,a->d,b->d,
|
| - j,al-j,bl-j,t->d);
|
| - }
|
| - else /* al <= j || bl <= j */
|
| - {
|
| - if (bn_wexpand(t,k*2) == NULL) goto err;
|
| - if (bn_wexpand(rr,k*2) == NULL) goto err;
|
| - bn_mul_recursive(rr->d,a->d,b->d,
|
| - j,al-j,bl-j,t->d);
|
| - }
|
| - rr->top=top;
|
| - goto end;
|
| - }
|
| -#if 0
|
| - if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
|
| - {
|
| - BIGNUM *tmp_bn = (BIGNUM *)b;
|
| - if (bn_wexpand(tmp_bn,al) == NULL) goto err;
|
| - tmp_bn->d[bl]=0;
|
| - bl++;
|
| - i--;
|
| - }
|
| - else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
|
| - {
|
| - BIGNUM *tmp_bn = (BIGNUM *)a;
|
| - if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
|
| - tmp_bn->d[al]=0;
|
| - al++;
|
| - i++;
|
| - }
|
| - if (i == 0)
|
| - {
|
| - /* symmetric and > 4 */
|
| - /* 16 or larger */
|
| - j=BN_num_bits_word((BN_ULONG)al);
|
| - j=1<<(j-1);
|
| - k=j+j;
|
| - t = BN_CTX_get(ctx);
|
| - if (al == j) /* exact multiple */
|
| - {
|
| - if (bn_wexpand(t,k*2) == NULL) goto err;
|
| - if (bn_wexpand(rr,k*2) == NULL) goto err;
|
| - bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
|
| - }
|
| - else
|
| - {
|
| - if (bn_wexpand(t,k*4) == NULL) goto err;
|
| - if (bn_wexpand(rr,k*4) == NULL) goto err;
|
| - bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
|
| - }
|
| - rr->top=top;
|
| - goto end;
|
| - }
|
| -#endif
|
| - }
|
| -#endif /* BN_RECURSION */
|
| - if (bn_wexpand(rr,top) == NULL) goto err;
|
| - rr->top=top;
|
| - bn_mul_normal(rr->d,a->d,al,b->d,bl);
|
| -
|
| -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
| -end:
|
| -#endif
|
| - bn_correct_top(rr);
|
| - if (r != rr) BN_copy(r,rr);
|
| - ret=1;
|
| -err:
|
| - bn_check_top(r);
|
| - BN_CTX_end(ctx);
|
| - return(ret);
|
| - }
|
| -
|
| -void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
|
| - {
|
| - BN_ULONG *rr;
|
| -
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
|
| -#endif
|
| -
|
| - if (na < nb)
|
| - {
|
| - int itmp;
|
| - BN_ULONG *ltmp;
|
| -
|
| - itmp=na; na=nb; nb=itmp;
|
| - ltmp=a; a=b; b=ltmp;
|
| -
|
| - }
|
| - rr= &(r[na]);
|
| - if (nb <= 0)
|
| - {
|
| - (void)bn_mul_words(r,a,na,0);
|
| - return;
|
| - }
|
| - else
|
| - rr[0]=bn_mul_words(r,a,na,b[0]);
|
| -
|
| - for (;;)
|
| - {
|
| - if (--nb <= 0) return;
|
| - rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
|
| - if (--nb <= 0) return;
|
| - rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
|
| - if (--nb <= 0) return;
|
| - rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
|
| - if (--nb <= 0) return;
|
| - rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
|
| - rr+=4;
|
| - r+=4;
|
| - b+=4;
|
| - }
|
| - }
|
| -
|
| -void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
|
| - {
|
| -#ifdef BN_COUNT
|
| - fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
|
| -#endif
|
| - bn_mul_words(r,a,n,b[0]);
|
| -
|
| - for (;;)
|
| - {
|
| - if (--n <= 0) return;
|
| - bn_mul_add_words(&(r[1]),a,n,b[1]);
|
| - if (--n <= 0) return;
|
| - bn_mul_add_words(&(r[2]),a,n,b[2]);
|
| - if (--n <= 0) return;
|
| - bn_mul_add_words(&(r[3]),a,n,b[3]);
|
| - if (--n <= 0) return;
|
| - bn_mul_add_words(&(r[4]),a,n,b[4]);
|
| - r+=4;
|
| - b+=4;
|
| - }
|
| - }
|
|
|